

1

2 **A Comparison of the Variability and Changes in Global Ocean Heat Content 3 from Multiple Objective Analysis Products During the Argo Period**

4

5

6

7 Xinfeng Liang^{1*}, Chao Liu¹, Rui M. Ponte², Don P. Chambers³

8 1. School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA

9 2. Atmospheric and Environmental Research, Lexington, MA, 02421, USA

10 3. College of Marine Science, University of South Florida, St Petersburg, FL, 33701, USA

11

12

13 * Corresponding author: Xinfeng Liang (xliang@udel.edu)

14 **Abstract**

15 Ocean heat content (OHC) is key to estimating the energy imbalance of the earth system. Over
16 the past two decades, an increasing number of OHC studies were conducted using oceanic
17 objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA
18 products with a focus on their robust features and significant differences over the Argo period
19 (2005-2019), when the most reliable global scale oceanic measurements are available. For the
20 global ocean, robust warming in the upper 2000 m is confirmed. The 0-300 m layer shows the
21 highest warming rate but is heavily modulated by interannual variability, particularly the El
22 Niño–Southern Oscillation. The 300-700 m and 700-2000 m layers, on the other hand, show
23 unabated warming. Regionally, the Southern Ocean and mid-latitude North Atlantic show a
24 substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few
25 apparent differences in OHC among the examined OA products were identified. In particular,
26 temporal means of a few OA products that incorporated other ocean measurements besides Argo
27 show a global-scale cooling difference, which is likely related to the baseline climatology fields
28 used to generate those products. Large differences also appear in the interannual variability in the
29 Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences
30 remind us of the possibility of product-dependent conclusions on OHC variations. Caution is
31 therefore warranted when using merely one OA product to conduct OHC studies, particularly in
32 regions and on timescales that display significant differences.

33 **1 Introduction**

34 Over the past decades, about 93% of the accumulated energy imbalance of the earth system is
35 stored in the ocean (e.g., Roemmich et al. 2015; Riser et al. 2016). Therefore, besides being one
36 of the most important indicators of climate change, ocean heat content (OHC) provides essential
37 constraints for estimating the global energy imbalance (Hansen et al. 2011; Trenberth et al. 2014;
38 von Schuckmann et al. 2016; von Schuckmann et al. 2020). Many efforts have been made to
39 unveil and understand the variability of global and regional OHC on various timescales. For the
40 global ocean, previous studies show that OHC variations are strongly modulated by both
41 anthropogenic forcing and natural climate variability (e.g., Lyman et al. 2010; Balmaseda et al.
42 2013; Xie et al. 2015). In particular, the globally integrated OHC in the upper 300 m clearly
43 responds to major El Niño–Southern Oscillation (ENSO) events (e.g., Domingues et al. 2008;
44 Cheng et al. 2019). Below 300 m, the globally integrated OHC is less affected by temporal
45 variability and shows clear trends. Regionally, OHC is heavily affected by lateral and vertical
46 redistributions and displays different variability and change (e.g., Trenberth and Fasullo, 2013;
47 Chen and Tung, 2014; von Schuckmann et al. 2016; Liang et al. 2017).

48 Many previous studies on OHC variations are based on different types of ocean products,
49 including objective analyses (OA), reanalyses and state estimates (Balmaseda et al. 2013; Chen
50 and Tung 2014; Cheng et al. 2015, Wunsch and Heimbach, 2014). However, substantial
51 uncertainties in various data products have been noted (e.g., Palmer et al., 2017; Wang et al.
52 2018). A major source of the uncertainties is the temporally and spatially sparse historical
53 observations of ocean temperature (Desbruyères et al. 2014). The situation has been dramatically
54 improved with the deployment of the global Argo float array since the 2000s. The Argo program,
55 which has become a major component of the present global ocean observing system, provided

56 most of the present global-scale temperature and salinity measurements in the upper 2000 m
57 (Roemmich et al. 2009, 2015, 2019).

58 Several groups have used the measurements from the Argo floats to produce gridded OA
59 products (e.g., Hosoda et al. 2008; Roemmich and Gilson, 2009; Good et al. 2013; Li et al.
60 2017). These products have been widely used by the oceanography and climate communities to
61 address various ocean and climate questions (e.g., Cheng et al. 2015; Desbruyères et al. 2017).

62 For example, previous OHC studies based on those products have revealed robust and rapid
63 warming in the global ocean and provide constraints for estimating the Earth's energy imbalance
64 (e.g., Trenberth et al. 2016). Despite the fact that the Argo program provides the most abundant
65 global-scale temperature and salinity measurements over the past 15 years, apparent differences
66 among those products that are solely or primarily based on Argo products still exist (e.g.,
67 Trenberth et al. 2016; Wang et al. 2017; Liu et al. 2020). These differences were generally
68 attributed to the different baseline climatology and mapping methods used to produce those data
69 products (Abraham et al. 2013; Cheng and Zhu, 2014, 2015; Boyer et al. 2016). However, as far
70 as we are aware, a detailed examination of the differences in OHC among those OA products
71 over the Argo period is still lacking.

72 In this study, following Liu et al. (2020), a companion paper focusing on the salinity field, we
73 examine the OHC variations during the Argo period (2005-2019) from a set of widely used OA
74 products. In contrast to previous studies, we explicitly present and examine the differences
75 among the selected OAs. The results, particularly the differences among the examined OAs, can
76 serve as a useful reference for future OHC studies. The paper is organized as follows: the
77 selected OAs and the comparison methods are described in Section 2. A thorough
78 intercomparison of the spatial and temporal variations of the global OHC from the selected OA

79 products during the Argo period (2005-2019) is presented in Sections 3, 4 and 5. The results are
80 summarized and discussed in Section 6.

81 **2 Data and Methods**

82 **2.1 Gridded Temperature Datasets**

83 Eight coarse resolution OA products were used in this study, including BOA global ocean Argo
84 gridded dataset (BOA; Li et al. 2017), the Institute of Atmospheric Physics ocean gridded
85 product (IAP; Cheng and Zhu, 2016), the Met Office EN4.2.1 (EN4; Good et al. 2013), gridded
86 product from the International Pacific Research Center (IPRC), objective analyses from
87 Meteorological Research Institute (Ishii; Ishii et al. 2017), MOAA-GPV from JAMSTEC
88 (MOAA; Hosoda et al. 2008), Roemmich-Gilson Argo Climatology from the Scripps Institution
89 of Oceanography (SIO; Roemmich and Gilson, 2009), and gridded product from National
90 Centers for Environmental Information (NCEI; Boyer et al. 2005; Levitus et al. 2012). Most of
91 the intercomparison conducted in this study is based on these eight coarse resolution OAs.

92 Seven of the OAs provide monthly gridded fields; one (the NCEI product) supplies only 3-month
93 averages. All have the same horizontal gridding of $1^\circ \times 1^\circ$. Some of the selected products include
94 other data sources, such as expendable bathythermograph (XBT) data and CTD data (Table 1).

95 Consequently, some of them (i.e., EN4, IAP, Ishii and NCEI) have much longer temporal
96 coverages than the purely Argo-based products. Although the depth range varies among the
97 selected products, all of them cover the upper 2000 m of the global ocean, where Argo floats are
98 the primary data source. Another main difference among the OAs stems from their various
99 interpolation techniques (e.g., Stammer et al., 2020). More specifically, EN4, MOAA and SIO
100 used objective analysis with different covariance functions and decorrelation radii; BOA further
101 applied a refined Barnes successive method to improve its monthly data; Ishii and NCEI used bin

102 weighted averages; and IAP used an ensemble optimal interpolation method combined with
103 model simulations to provide first-guess climatology. Some detailed information about the
104 selected OA products is summarized in Table 1.

105 Two relatively high-resolution ($\frac{1}{4}^\circ$) OA climatologies, the World Ocean Atlas 2018 (WOA18)
106 and the WOCE Argo-based ocean global climatology (WOCE Argo, Gouretski, 2018), were also
107 used in this study. Both WOA18 and WOCE Argo cover pre-Argo period and thus use other data
108 sources besides Argo. Because of their differences in temporal (multi-decadal climatology for
109 WOA18, monthly climatology for WOCE Argo) and spatial resolution from the other products
110 listed above, WOA18 and WOCE Argo were not used in generating the ensembles and
111 intercomparison but in discussing the possible impacts of product resolution. Some further
112 information about WOA18 and WOCE Argo is also provided in Table 1.

113 **2.2 Methods**

114 In this study, OHC within a certain layer was defined as:

$$115 \quad OHC = \int_{h_1}^{h_2} \rho C_p T(z) dz \quad (1)$$

116 where T is the temperature profile of seawater, and ρ and C_p are the density and heat capacity
117 computed from the temperature, salinity and pressure based on the Thermodynamic Equation of
118 Seawater - 2010 (TEOS-10); h_1 and h_2 are the lower and upper limits of the corresponding layer.
119 Following previous studies (e.g., Liu et al. 2020), the analyzed layers for the intercomparison are
120 0-300 m, 300-700 m and 700-2000 m. Since the vertical spacing is different among the examined
121 products, our analyses focus more on the depth-averaged fields and their temporal and spatial
122 variations.

123 Ensemble mean and ensemble spread were used to examine the robustness of features revealed in
124 selected OA products. Due to their different temporal intervals, monthly temperature fields from
125 the seven monthly OA products were firstly averaged to match the 3-month resolution of NCEI.
126 The ensemble values were then generated from the eight coarse-resolution OA products for their
127 overlapping spatial coverage (65°N to 60°S) and time span (2005 through 2019). At each grid
128 point, the ensemble mean was calculated as the mean of the eight OA products. The ensemble
129 spread was defined as the standard deviation of the eight products and served as an indicator of
130 the level of “disagreement” of the corresponding values from the selected OA products. For
131 some quantities, a ratio of spread-to-mean was also provided to further quantify the
132 corresponding uncertainty.

133 In this study, we first calculated the temporal mean of OHC to present and examine its mean
134 state in each of the three layers over the period 2005-2019. After that, the climatological annual
135 cycle of OHC was calculated and removed from the OHC time series at each grid point. Since
136 the focuses of this study are the low-frequency components, a yearly running-mean was also
137 used to remove the subannual signals, which are likely non-physical in the examined OA
138 products (Trenberth et al. 2016). The linear trend of OHC was computed with the least-squares
139 regression, and its uncertainty was defined as twice the standard error (95% confidence), in
140 which the reduced degrees of freedom were considered for error correction. The interannual
141 variability was then defined as the detrended and low-pass filtered OHC time series.

142 **3 Spatial Patterns**

143 **3.1 Time Mean**

144 The time mean of the ensemble mean of OHC and the spread of OA products around the
145 ensemble mean over the Argo period are shown in Figure 1. Major well-known features appear,

146 such as the Pacific Warm Pool in the 0-300 m and 300-700 m layers, and the relatively warm
147 patches in the Indian Ocean and the North Atlantic in the 700-2000 m layer. The ensemble
148 spread can be interpreted as a quantification of the uncertainty of the ensemble mean fields. The
149 calculated ensemble spread (Fig. 1d-f) shows that the largest uncertainties appear along the
150 major western boundary currents (e.g., Kuroshio and Gulf Stream) and the Antarctic
151 Circumpolar Current (ACC) in all the examined layers. For the 0-300 m layer, large ensemble
152 spreads also appear in the tropical regions as zonal bands. The spread-to-mean ratio (Fig. 1g-i)
153 further depicts the relative relationship of the two terms described above. For all three layers, the
154 overall uncertainty is very small since the spread-to-mean ratio is around or below 10^{-3} at nearly
155 every grid point except a few regions where mesoscale variability is high (10^6 J m^{-2} of the spread
156 to 10^9 J m^{-2} of the mean).

157 Although its magnitude is small, it is still useful to examine sources of the ensemble spread,
158 particularly in regions where relatively large ensemble spread appears. Differences in temporal
159 mean OHC between each examined OA and the ensemble mean are displayed in Figure 2.
160 Global-scale differences appear in many of the OA products. In particular, EN4 (Fig. 2g-i) shows
161 widespread negative differences from the ensemble mean in all the three layers. Similar patterns
162 appear in the 0-300 m layer results from IAP, Ishii and NCEI, which all have longer time spans
163 and utilize a lot of historical observations in the pre-Argo period. As previous studies (e.g.,
164 Boyer et al. 2016; Wang et al. 2017) suggested, the uncertainty of the time mean OHC estimates
165 is likely related to the choice of the “first guess” climatological field as well as the mapping
166 methods used to generate the OA products. For the case of EN4, its difference is most likely due
167 to its choice of the baseline climatology, which represents the average temperature field over a
168 multidecadal period before Argo (Good et al. 2013). Due to the general warming trend over the

169 past decades, the mean temperature during the Argo period will be higher than that for any pre-
170 Argo period; using the pre-Argo climatology could potentially cause OHC estimates to lower
171 values during the Argo period. Compared to the ensemble mean, the EN4 shows a difference of -
172 0.5°C in the 0-300 m layer and -0.2°C in the deeper layers. In addition to the global-scale
173 differences, other interesting patterns exist. For instance, IPRC displays various zonally banded
174 structures (Fig. 2j), which are likely associated with the altimetry SSH data used to adjust regular
175 grids; shifts of surface currents between different time periods and consequently the SSH
176 patterns would cause such banded structure. Also, consistent with the ensemble spread (Fig. 1d-
177 f), many of the examined OA products show noticeable differences associated with major ocean
178 currents.

179 3.2 Interannual Variability

180 The robust and inconsistent features of interannual variability of OHC were investigated by
181 examining the distribution of its amplitude, defined as its temporal standard deviation (Figs. 3 &
182 4). The strongest interannual variability is associated with the major ocean currents in all the
183 examined layers and appears in the tropical ocean in the upper 300 m (Fig. 3a-c). The ensemble
184 spreads of the amplitude of the interannual variability in OHC (Fig. 3d-f) display similar patterns
185 to the amplitude of interannual variability. More specifically, large spread appears in the
186 Kuroshio region, the Gulf Stream, and the ACC in all the examined layers. In the upper 300 m,
187 large spread also appears in the tropical regions, such as the Eastern Tropical Pacific and the
188 Western Tropical Atlantic Ocean. Most regions mentioned above are usually associated with
189 high mesoscale activity (Dong et al. 2014; Thomas et al. 2016), and the way impacts of
190 mesoscale eddies are incorporated in different products could be a reason for the large
191 differences in those regions. In contrast to the amplitudes and spreads of the interannual

192 variability in OHC, the patterns of the spread-to-mean ratio are largely different (Fig. 3g-i).
193 While the spread-to-mean ratio of the interannual variability is mostly below 0.5 in each of
194 examined layers, some areas with larger values do appear in the Indian sector of the Southern
195 Ocean, particularly in the subsurface layers. Based on values of this ratio, the uncertainty of
196 interannual variability in OHC is clearly larger than that of the time mean (Fig. 1g-i).

197 The plausible sources of the ensemble spread of the amplitude of interannual variability in OHC
198 were further investigated. Figure 4 presents the differences of the amplitude of interannual OHC
199 variability between each OA product and the ensemble mean. The most notable feature is the
200 differences along major ocean currents. In particular, the interannual variability from BOA is
201 about 50% stronger than the others in regions like the ACC and western boundary currents (Fig.
202 4b&c). EN4, IPRC and SIO also show similar patterns in the subsurface layers, but to a lesser
203 extent. IAP, on the other hand, shows clear negative differences along the major ocean currents.
204 Since the associated ensemble members in each group include both Argo-only and Argo-
205 included products (see Table 1), the source of such differences is likely the interpolation method
206 (Boyer et al. 2016) rather than bias from certain measurements. Caution is warranted when using
207 OA products to explore the OHC interannual variability in those regions of strong currents,
208 particularly for conclusions that depend on the magnitude of interannual variability.

209 **3.3 Trend**

210 The 15-year linear trends of the globally and regionally integrated OHC in different layers were
211 calculated (Fig.5). Globally, the trend varies from 3.6 (BOA) to $4.1 \times 10^{21} \text{ J yr}^{-1}$ in the 0-
212 300 m layer, 1.5 (IPRC) to $2.1 \times 10^{21} \text{ J yr}^{-1}$ in the 300-700 m layer, 3.1 (IAP) to $4.4 \times 10^{21} \text{ J yr}^{-1}$
213 in the 700-2000 m (Fig. 5). These estimated trends marginally overlap within

214 the uncertainty of 2σ except for EN4 in the 700-2000 m layer. All the OA products show
215 significant warming trends in all the three layers (Fig. 5).

216 While the globally integrated OHC continually increases during the examined period, substantial
217 regional differences were observed (Figs. 5&6). Figure 6 shows spatial patterns of the linear
218 trend of OHC over 2005-2019. As numerous prior studies have found (e.g., Gille 2008, Böning
219 et al. 2008), substantial warming appears in the Southern Ocean in all layers. For the Pacific
220 Ocean, a clear ENSO like structure appears in the 0-300 m and 300-700 m layers, with warming
221 in the eastern tropical Pacific and cooling in the western tropical Pacific. However, it should be
222 noted that trends in a large portion of the region displaying ENSO like feature are not statistically
223 significant. Also, a warming pattern dominates the 700-2000 m layer in the Pacific. For the
224 North Atlantic, the OHC trend shows a clear dipole pattern in all three layers, with cooling in the
225 subpolar region and warming in the subtropical region. In contrast, the South Atlantic is
226 dominated by a warming trend, particularly in the 300-700 m and 700-2000 m layers.

227 The ensemble spread of the OHC trends is presented in Fig. 6d-f. Similar to the results of the
228 time mean and interannual variability, large spreads of the OHC trend are associated with major
229 ocean currents (i.e., Kuroshio, Gulf Stream and the ACC). The differences in OHC trend
230 between each OA and their ensemble mean (Fig. 7) confirm again that most of the differences
231 occur in the most mesoscale-dynamic regions in the global ocean. But, in contrast to results of
232 the time mean and interannual variability, differences of the OHC trends show much clearer
233 relatively short-scale features, particularly in the upper 300 m, highlighting the challenges on
234 interpretation of regional OHC changes based on one-degree OA products.

235 The trends of the horizontally averaged OHC were also examined (Fig. 8a-b). Overall, the global
236 ocean shows widespread warming trend over 2005-2019 in the entire upper 2000 m. The largest

237 trend is observed within the top 50 m (around 3×10^{19} J yr $^{-1}$) but with large uncertainty, and then
238 rapidly decreases to $0.5\text{--}0.7 \times 10^{19}$ J yr $^{-1}$ around 150 m. Below 150 m, the warming rate
239 decreases slowly with depth in all examined products. The warming trends are overall significant
240 except between 150–250 m where the 95% confidence interval cross zero. The trends of the
241 zonally averaged OHC shows a number of similar patterns in all examined layers (Fig. 8c–e),
242 such as cooling in the northern subpolar region and warming south of 30°S although some are
243 not significantly different from zero. Combining with Figure 6, we can see that the subpolar
244 cooling in the Northern Hemisphere comes from the Atlantic. For regions between 30°S and
245 30°N, the upper 300 m (Fig. 8c) shows substantial differences from the layers below. In
246 particularly, a cooling trend appears around 10°N in the 0–300 m layer, which is very likely
247 ENSO related, but disappears in the layers below. Again, this indicates the calculation of global
248 OHC trend in the upper ocean will be heavily affected by ENSO events that occurred during the
249 examined period.

250 Figure 8 also shows a few notable differences in the vertical and meridional structures of the
251 long-term global OHC trends. Vertically, EN4 consistently shows stronger warming than other
252 products; NCEI displays a small and suspicious signal around 800 m; and IPRC and SIO show
253 similar and weaker warming between 300 m and about 1000 m. Meridionally, the most evident
254 differences appear in the northern subpolar region (Fig. 8c–f). More specifically, IPRC, BOA,
255 MOAA and SIO show strong cooling both in the top 300 m and below, but IAP, EN4, Ishii and
256 NCEI show much weaker cooling or even warming trend in the northern subpolar region. Since
257 the two groups are largely different in their data sources, i.e., with or without other
258 measurements besides Argo, the use of other ocean measurements in the high latitude regions
259 could be the reason for the substantial differences. Cautions should be taken when describing and

260 interpreting OHC changes in regions displaying significant differences, particularly the subpolar
261 Atlantic Ocean and subsurface ocean.

262 **4 Temporal Patterns**

263 **4.1 Time Series**

264 Time series of the globally integrated OHC (after removing the annual cycles) in each examined
265 layer are presented in Figure 9. In general, temporal variations of OHC are consistent among the
266 examined OA products. The integrated OHC in different layers show variations on different
267 timescales, ranging from interannual variations to decadal trends. Regarding the interannual
268 variations, ENSO is the dominant climate mode (Balmaseda et al. 2013; Trenberth et al. 2014).
269 The warm and cold ENSO events since 2005 are marked as color bands in Figure 9. The OHC,
270 particularly in the upper 300 m layer, generally decreases (increases) during warm (cool) ENSO
271 events, likely related to the energy exchange at the sea surface (Trenberth et al. 2002; Mayer et
272 al. 2014). On the decadal scale, robust warming occurs in all three layers. Our calculation shows
273 that the 0-300 m and the 700-2000 m layer each accounts for about 40% of the OHC changes in
274 the entire upper 2000 m, and the 300-700 m layer makes up the other 20%.

275 We also calculated the 5-year rolling trends of OHC in each layer following Smith et al. (2015).
276 By doing so, we highlight the differences among the OHC variations from the selected OAs (Fig.
277 10). All 5-year trends in the 0-300 m layer are positive and below $9 \times 10^{21} \text{ J yr}^{-1}$. For the 300-700
278 m and 700-2000 m layers, most of the 5-year trends are positive except a few years at the
279 beginning and end of the examined period. The most apparent differences among the examined
280 OA products appear in the 0-300 m layer, where much larger trends are estimated from SIO
281 between 2013 and 2016, indicating much faster warming in SIO over that period. Further
282 examination reveals that these differences (see Fig. 12) are mostly from the top 200 m and are

likely due to the uncertainties related to the unusual ENSO events in the most recent decade (Kim et al. 2011; Hu and Fedorov, 2019). Better agreement is achieved for the 300-700 and 700-2000 m layers, in which the strongest five-year warming trend appears following the 2010/2011 La Niña event.

4.2 Time Evolution as Functions of Depth and Latitude

More information on temporal variations of the OHC over the global ocean can be obtained from its time evolution as a function of depth (Figs. 11 and 12) and of latitude (Figs. 13 & 14). Figure 11a presents the time evolution of vertical profiles of the horizontally integrated OHC anomaly (relative to the time means). The OHC anomaly in the upper ocean is strongly correlated with the Oceanic Niño Index, with a correlation coefficient around 0.7 in the top 100 m and -0.6 at 200 m. The opposite signs of the correlation coefficients at different depths indicate that in addition to the air-sea heat exchanges modulated by ENSO (e.g., Trenberth et al. 2005; Roemmich and Gilson 2011; Cheng et al. 2015, 2019), the vertical redistribution of heat, which is associated with the vertical movement of the thermocline, likely contributes to the upper-ocean temperature changes as well. The ocean below 300 m shows a broad warming that decreases with depth and generally has a much weaker correlation with the Oceanic Niño Index. We also examined the evolution of the spread of OHC anomaly (Fig. 11b,d), which is generally small except the beginning years of the examined period (spread-to-mean ratio around 0.5) and decreases with increasing depth. The large spread at the beginning of the Argo period is likely due to the smaller number of Argo floats.

303 The differences in temporal variations of the OHC profiles between each OA product and the
304 ensemble mean are shown in Figure 12. The difference from the ensemble mean ranges about
305 half of the mean OHC in Figure 11, and varies distinctively across the examined products. For

306 instance, EN4 displays stronger temporal variations than the ensemble mean for its differences
307 present the same pattern to the ensemble mean (cf. Fig. 11a & c and Fig. 12 e & f). On the
308 contrary, differences of SIO present an opposite pattern to the ensemble mean and therefore
309 likely show overall weaker temporal variability (cf. Fig. 11a & c, and Fig. 12 m & n). The other
310 products also present small differences on interannual to decadal timescales. In particular, NCEI
311 shows some differences around 800 m, which is warmer before 2010 and cooler after, causing
312 the “spike” in Figure 8b. Overall, while the ENSO signal in the upper ocean and the widespread
313 warming along the entire water column are robust, the observed differences imply that the
314 detailed vertical structures are represented slightly differently by the different OA products,
315 which can also be inferred from Figure 8b.

316 The time series of the zonally averaged OHC anomaly is shown in Figure 13. For the 0-300 m
317 layer, the tropical region between 20°N and 20°S presents high interannual variability associated
318 with ENSO, appearing as strong meridional redistribution of OHC. Mid-latitude Southern
319 Hemisphere and Northern Hemisphere show clear warming, and the subpolar region of 60°N -
320 65°N displays substantial cooling. In the deeper layers, except for a significant cooling trend in
321 the northernmost region, the variation of the zonally averaged OHC is dominated by long-term
322 warming with different strength. The spread of the zonally averaged OHC (Fig. 13d-f) shows
323 that the most substantial difference appears in the high latitude region in the Northern
324 Hemisphere. More specifically, as shown in the differences between each OA product and the
325 ensemble mean (Fig. 14), the cooling in the northern subpolar region is weaker in at least five of
326 the eight examined OAs (i.e., IAP, EN4, Ishii, MOAA and NCEI) than results from the ensemble
327 mean; each of these OA products incorporates other ocean measurements besides Argo data. In

328 addition, a number of differences on interannual timescales appear in different regions of the
329 various OA products, mostly poleward of 30°S and 30°N.

330 **5 Spatial-Temporal Modes**

331 To reveal the possible differences in interpreting OHC variations from different OA products, a
332 common EOF analysis was applied to each OA product and their ensemble mean to identify and
333 compare their major spatial-temporal modes. Figure 15 shows the first two EOF modes in each
334 of the examined layers based on the ensemble of the selected OA products. For the upper 300 m,
335 the leading mode shows an ENSO-related pattern in the Pacific Ocean and a dipole pattern in the
336 North Atlantic (Fig. 15a). The second mode shows some banded structures in the Pacific and a
337 dipole in the North Atlantic but with different polarities from the first mode (Fig. 15d). For the
338 300-700 m layer, its first EOF mode displays similar but nosier patterns to the first mode of the
339 0-300 m layer, suggesting this layer is affected by similar dynamics as the top layer. For the 700-
340 2000 m layer, the first mode displays uniform change in most regions of the global ocean except
341 the North Atlantic and the Southern Ocean. The second mode also shows various basin-scale
342 changes, but their spatial patterns are nosier than the first mode.

343 The normalized EOF patterns from each of the examined OAs are presented in Figures 16&17.
344 In general, the EOF patterns are more consistent in the top layer than in the deep layers, and the
345 first mode is more consistent than the second and other higher modes. For instance, the first EOF
346 mode (Fig. 16) in the 0-300 m layer from all the products shows almost identical large-scale
347 spatial patterns despite the different percentage of explained variance. Although their agreement
348 is not as striking as in the 0-300 m, reasonable consistency in large-scale structures is also
349 achieved for the first EOF mode of the 300-700 m and 700-2000 m layers. The structures of the
350 second mode show more differences than the first mode does (Fig. 17). In particular, the zonal

351 banded structure in the Pacific Ocean and the dipole pattern in the North Atlantic in the 0-300
352 layer are much weaker in EN4 than in other OAs. In addition, many relatively small-scale
353 patterns appear in BOA but not that clear in the other OA products.

354 The PCs of the leading EOF modes (Fig. 18) are usually used to detect major modes of climate
355 variability (e.g., Chen and Tung, 2014). For instance, in the 0-300 m layer, PC1 is correlated
356 with the Oceanic Niño Index at relatively high rates around 0.80. In deeper layers, PCs show
357 long-term change in the first mode, and decadal oscillation in the second mode. Although the
358 EOF patterns in general agree well among the examined OA products, particularly in the 0-300
359 m layer, noticeable differences are found in the PCs. More specifically, although the PC1 values
360 agree well in the 0-300 layer, the PC2 values have considerably larger spread, with the results
361 from EN4 the most noticeable. SIO has a positive signal in PC2 between 2016 and 2017, while
362 the others are either negative or close to zero.

363 In the 300-700 m layer, all PC1 values indicate a trend. However, the trend from BOA is
364 significantly larger (more negative at beginning of record and more positive at the end). PC1
365 from SIO generally agrees with the values from other OA products at the beginning of the record
366 but is substantially higher at the end, although not as much as that from the BOA product. The
367 PC2 from BOA is also a clear in the 300-700m layer. All products have similar PCs for the
368 deepest layer considered. The differences revealed here could potentially lead to different
369 interpretation on the strength of the observed climate variability depending on the product used,
370 especially for the 300-700 m layer.

371 6 Summary and Discussion

372 In this study, we compared the global OHC variations from eight widely used OA products with
373 a focus on their robust features as well as differences over the Argo period, when Argo

374 measurements serve as their only or major data source. Our intercomparison confirmed that
375 widespread warming occurred in the upper 2000 m of the global ocean and the largest warming
376 rate appeared in the top 150 m (Figs. 8&9). Robust spatial patterns of the OHC changes in all
377 examined layers were also obtained. In particular, as many prior studies have shown (e.g.,
378 Roemmich et al. 2015; von Schuckmann et al. 2020), the Southern Ocean and mid-latitude North
379 Atlantic have experienced substantial warming, and the subpolar North Atlantic shows an
380 apparent cooling (Figs. 6&8).

381 In comparison to a similar study on ocean salinity (Liu et al. 2020), the overall differences in
382 OHC across the examined OA products are not as marked as in the salinity products. With that
383 said, a few substantial differences were still identified on various timescales and in different
384 regions (e.g., major ocean currents). By examining their spatial patterns, we found that a few OA
385 products that incorporated measurements other than Argo and had longer time span (e.g., EN4)
386 display global-scale differences of negative sign from the others in the temporal mean,
387 particularly in the 0-300 m layer (Fig. 2). As previous studies (e.g., Boyer et al. 2016; Wang et
388 al. 2017) have suggested, these differences are likely related to the choice of the climatological
389 field that were used to generate the OA products. On the interannual timescale, substantial
390 differences appear in regions with strong interannual variability, such as near major ocean
391 currents (Fig. 4). In particular, BOA disagrees significantly from the others in the Southern
392 Ocean and North Atlantic in the 0-300 m layer. On the long-term trend, while the global and
393 regional OHC trends are consistent among the OAs, there are also some noticeable exceptions
394 like the patch in the tropical Atlantic in the 700-2000 m layer from IAP (Fig. 6), the different
395 magnitude of warming between 300 and 2000 m, and the divergent cooling magnitude in the
396 subpolar northern latitudes (Fig. 8).

397 By examining the spatial and temporal structure of OHC variations, we were able to provide
398 more information on when and where these differences happened. Vertically, EN4 shows higher-
399 than-average trends at all depth, and NCEI shows a suspicious trend at 800 m depth (Fig. 8). For
400 the other OAs, small differences are also observed on interannual to decadal timescales. Zonally,
401 most examined OAs (i.e., IAP, EN4, Ishii, MOAA and NCEI) show a weaker cooling in the
402 northern subpolar regions than the ensemble (Fig. 14), indicating the OAs solely based on Argo
403 floats, which are not so abundant in the subpolar latitudes, could overestimate the warming in
404 that region. Through a common EOF analysis, we found that the leading modes of the OAs are
405 largely similar on the spatial patterns and PCs. While the 0-300 m layer is clearly under impact
406 of ENSO, the deeper layers show long-term trend in mode 1 and decadal oscillation in mode 2.
407 Nevertheless, noticeable differences were also identified, and these differences are more likely
408 coming from OAs with longer time span, which could make it harder for them to adjust the
409 warming acceleration correctly.

410 It is worth noting that the patterns of ensemble spreads of the time mean, interannual variability
411 and long-term trend are all closed related to the most dynamic regions in the ocean, where
412 mesoscale eddies are abundant (Figs. 1, 3&6). The most substantial differences appearing in
413 those regions suggest that the selected OA products are limited by the relatively sparse data or
414 their low resolutions, which are inadequate to resolve the mesoscale structures (e.g., Seidov et al.
415 2019). As a preliminary test of the possible impacts of higher grid resolution, we compared the
416 temporal mean from the one-degree ensemble mean with two currently available $\frac{1}{4}$ degree OA
417 products, WOA and WOCE-Argo Climatology, both of which were subsampled at the same one-
418 degree grids as the other OAs (Fig. 19). Both high resolution products show good agreement
419 with the ensemble mean, but noticeable differences still appear along the major ocean current

420 systems, particularly in the 300-700 m layer. This test indicates that although increased OA
421 resolutions could help, ultimately denser in-situ observations are needed to reduce the
422 differences in those dynamic regions.

423 The existence of various differences in OHC among the examined OA products during the most
424 data abundant Argo period suggests the possibility of product-dependent conclusions,
425 particularly for studies in regions and on timescales that display substantial differences. Caution
426 is therefore warranted before making any strong conclusions if only one OA data has been
427 examined. Also, similar to our previous finding on the ocean salinity, which is based on some of
428 the OA products used here (Liu et al. 2020), while the number of Argo floats has increased
429 stably since 2005 (Johnson et al. 2015; Wijffels et al. 2016; Riser et al. 2016; Boyer et al. 2018),
430 regional differences (e.g., Figs. 3 and 6) still exist in some of the most dynamic regions (e.g., the
431 Southern Ocean and the western boundary currents). This work highlights the necessity of denser
432 in-situ observations in those dynamic regions as well as OA products of higher-resolution, which
433 are and will be essential for addressing various ocean and climate questions.

434

435 **Acknowledgments**

436 The authors thank three anonymous reviewers for their helpful comments and suggestions. The
437 work was supported in part by the National Science Foundation through Grant OCE-2021274
438 and the National Aeronautics and Space Administration through Grant 80NSSC20K0752 and
439 80NSSC20K0728. All the data used in this study are publicly available. BOA
440 (ftp://data.argo.org.cn/pub/ARGO/BOA_Argo/); IAP (<http://159.226.119.60/cheng/>); EN4
441 (<https://www.metoffice.gov.uk/hadobs/en4/index.html>); IPRC

442 (http://apdrc.soest.hawaii.edu/projects/Argo/); Ishii (https://climate.mri-
443 jma.go.jp/pub/ocean/ts/v7.3/); MOAA (http://www.godac.jamstec.go.jp/argogpv/); SIO
444 (http://sio-argo.ucsd.edu/RG_Climatology.html); NCEI
445 (https://www.ncei.noaa.gov/access/global-ocean-heat-content/); WOA18
446 (https://www.ncei.noaa.gov/products/world-ocean-atlas); WOCE-Argo
447 (https://doi.org/10.1594/WDCC/WAGHC_V1.0).

448

449 **References**

450 Abraham, J. P. et al. 2013: A review of global ocean temperature observations: Implications for
451 ocean heat content estimates and climate change, *Rev. Geophys.* 51, 450– 483, <https://doi.org/10.1002/rog.20022>.

453 Balmaseda M.A. K.E. Trenberth, E Kaellen, 2013: Distinctive climate signals in reanalysis of
454 global ocean heat content. *Geophys Res Lett* 40:1754–1759, <https://doi.org/10.1002/grl.50382>

455 Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in
456 salinity for the World Ocean, 1955–1998. *Geophys. Res. Lett.*, **32**, L01604, <https://doi.org/10.1029/2004GL021791>.

458 Böning, C., Dispert, A., Visbeck, M. et al. 2008: The response of the Antarctic Circumpolar
459 Current to recent climate change. *Nature Geosci* **1**, 864–869. <https://doi.org/10.1038/ngeo362>

460 Boyer, T. et al. 2016: Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping
461 Methods, XBT Bias Corrections, and Baseline Climatologies. *J. Climate*, **29**, 4817–
462 4842, <https://doi.org/10.1175/JCLI-D-15-0801.1>.

463 Boyer, T.P. et al. 2018: World Ocean Database 2018. A. Mishonov, technical ed. *NOAA Atlas*
464 *NESDIS 87*, https://data.nodc.noaa.gov/woa/WOD/DOC/wod_intro.pdf.

465 Chen X, K.K. Tung, 2014: Varying planetary heat sink led to global warming slowdown and
466 acceleration. *Science* 345:897–903. <https://doi.org/10.1126/science.1254937>

467 Cheng L, F Zheng, J Zhu, 2015: Distinctive ocean interior changes during the recent warming
468 slowdown. *Sci Rep.* <https://doi.org/10.1038/srep14346>

469 Cheng, L., and J. Zhu 2014: Artifacts in variations of ocean heat content induced by the
470 observation system changes, *Geophys. Res. Lett.*, 41, 7276–7283,
471 <https://doi.org/10.1002/2014GL061881>

472 Cheng, L., and J. Zhu, 2015: Influences of the Choice of Climatology on Ocean Heat Content
473 Estimation. *J. Atmos. Oceanic Technol.*, **32**, 388–394, <https://doi.org/10.1175/JTECH-D-14-00169.1>.

475 Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing
476 historical ocean subsurface temperature variation. *J. Climate*, **29**, 5393–
477 5416, <https://doi.org/10.1175/JCLI-D-15-0730.1>.

478 Cheng, L. K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution
479 of Ocean Heat Content Related to ENSO. *J. Climate*, **32**, 3529–
480 3556, <https://doi.org/10.1175/JCLI-D-18-0607.1>.

481 Desbruyères DG et al. 2014: Full-depth temperature trends in the northeastern Atlantic through
482 the early 21st century. *Geophys Res Lett* 41:7971–7979. <https://doi.org/10.1002/2014GL061844>

483 Desbruyères, D., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and Full-Depth
484 Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat
485 Hydrography. *J. Climate*, **30**, 1985–1997, <https://doi.org/10.1175/JCLI-D-16-0396.1>.

486 Domingues, C. Church, J. White, N. Gleckler, P. Wijffels, S. Barker, P. and Dunn, J. 2008:
487 Improved estimates of upper-ocean warming and multi-decadal sea-level rise. *Nature*,
488 **453**(7198), 1090-1093, <https://doi.org/10.1175/2010jtecho773.1>.

489 Dong, C. J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy
490 movement, *Nat Commun*, **5**, 3294, <https://doi.org/10.1038/ncomms4294>.

491 Gille, S. T. 2008: Decadal-Scale Temperature Trends in the Southern Hemisphere
492 Ocean, *Journal of Climate*, **21**(18), 4749-4765. <https://doi.org/10.1175/2008JCLI2131.1>.

493 Good, S. A. M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature
494 and salinity profiles and monthly objective analyses with uncertainty estimates, *J. Geophys. Res.*
495 *Oceans*, **118**(12), 6704.6716, <https://doi.org/10.1002/2013jc009067>.

496 Gouretski, V. 2018: World Ocean Circulation Experiment-Argo Global Hydrographic
497 Climatology. *Ocean Science*, **14**(5), 1127–1146, <https://doi.org/10.5194/os-14-1127-2018>.

498 Hansen, J. M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth's energy imbalance and
499 implications. *Atmos. Chem. Phys.* **11**, 13 421–13 449, <https://doi.org/10.5194/acp-11-13421-2011>

500 Hosoda, S. Ohira, T. and Nakamura, T. 2008: A monthly mean dataset of global oceanic
501 temperature and salinity derived from Argo float observations. *JAMSTEC Report of Research
502 and Development*, **8**, 47-59.

504 Hu, S. Fedorov, A.V. 2019: The extreme El Niño of 2015–2016: the role of westerly and easterly
505 wind bursts, and preconditioning by the failed 2014 event. *Clim Dyn* **52**, 7339–7357,
506 <https://doi.org/10.1007/s00382-017-3531-2>.

507 Johnson G.C, J.M. Lyman, S.G. Purkey, 2015: Informing deep Argo array design using Argo and
508 full-depth hydrographic section data, *J. Atmos. Ocean Technol.* **32**, 2187–2198.
509 <https://doi.org/10.1175/JTECH-D-15-0139.1>.

510 Kim, W. Yeh, S.- W. Kim, J.- H. Kug, J.- S. and Kwon, M. 2011: The unique 2009–2010 El
511 Niño event: A fast phase transition of warm pool El Niño to La Niña, *Geophys. Res. Lett.* **38**,
512 L15809, . <https://doi.org/10.1029/2011GL048521>.

513 Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change
514 (0–2000 m), 1955–2010. *Geophys. Res. Lett.*, **39**, L10603,
515 <https://doi.org/10.1029/2012GL051106>.

516 Li, H. F. H. Xu, W. Zhou, D. X. Wang, J. S. Wright, Z. H. Liu, and Y. L. Lin, 2017:
517 Development of a global gridded Argo data set with Barnes successive corrections, *J. Geophys.*
518 *Res. Oceans*, **122**(2), 866-889, <https://doi.org/10.1002/2016jc012285>.

519 Liang, X., C. G. Piecuch, R. M. Ponte, G. Forget, C. Wunsch, and P. Heimbach, 2017: Change of
520 the global ocean vertical heat transport over 1993–2010. *J. Climate*, **30**, 5319–5327,
521 <https://doi.org/10.1175/JCLI-D-16-0569.1>

522 Liu, C. X. Liang, D. P. Chambers, and R. M. Ponte, 2020: Global Patterns of Spatial and
523 Temporal Variability in Salinity from Multiple Gridded Argo Products. *J. Climate*, **1**-42,
524 <https://doi.org/10.1175/JCLI-D-20-0053.1>.

525 Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global
526 upper ocean heat content estimation expected from present observational data sets. *SOLA*, **13**,
527 163–167, <https://doi.org/10.2151/SOLA.2017-030>.

528 Lyman, J. Good, S. Gouretski, V. *et al.* 2010: Robust warming of the global upper
529 ocean. *Nature* **465**, 334–337. <https://doi.org/10.1038/nature09043>

530 Mayer, M. L. Haimberger, and M. A. Balmaseda, 2014: On the Energy Exchange between
531 Tropical Ocean Basins Related to ENSO. *J. Climate*, **27**, 6393–
532 6403, <https://doi.org/10.1175/JCLI-D-14-00123.1>.

533 Riser SC, Freeland HJ, Roemmich D *et al*, 2016: Fifteen years of ocean observations with the
534 global Argo array, *Nat. Clim. Change*, **6**, 145–153. <https://doi.org/10.1038/nclimate2872>.

535 Roemmich, D. and J. Gilson, 2009: The 2004.2008 mean and annual cycle of temperature,
536 salinity, and steric height in the global ocean from the Argo Program, *Prog. Oceanogr.* **82**(2),
537 81.100, <https://doi.org/10.1016/j.pocean.2009.03.004>.

538 Roemmich, D. and J. Gilson, 2011: The global ocean imprint of ENSO. *Geophys. Res. Lett.* **38**,
539 L13606, <https://doi.org/10.1029/2011GL047992>.

540 Roemmich, D. *et al.* 2009: The Argo Program Observing the Global Ocean with Profiling Floats,
541 *Oceanography*, **22**(2), 34.43, <https://doi.org/10.3389/fmars.2019.00439>.

542 Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated
543 planetary warming and its ocean structure since 2006. *Nat. Climate Change*, **5**, 240–245,
544 <https://doi.org/10.1038/nclimate2513>.

545 Seidov, D., Mishonov, A., Reagan, J., & Parsons, R. 2019: Eddy- resolving in situ ocean
546 climatologies of temperature and salinity in the Northwest Atlantic Ocean. *J. Geophys. Res.*
547 *Oceans*, 124, 41– 58. <https://doi.org/10.1029/2018JC014548>.

548 Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M.
549 D., Roberts, C. D. and Scaife, A. A. 2015: Earth's energy imbalance since 1960 in observations
550 and CMIP5 models. *Geophys. Res. Lett.*, 42: 1205– 1213.
551 <https://doi.org/10.1002/2014GL062669>.

552 Stammer, D., Martins, M. S., Köhler, J., & Köhl, A., 2021: How well do we know ocean salinity
553 and its changes?. *Progress in Oceanography*, 190, 102478.
554 <https://doi.org/10.1016/j.pocean.2020.102478>.

555 Thomas, L. N. J. R. Taylor, E. A. D'Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2016:
556 Symmetric Instability, Inertial Oscillations, and Turbulence at the Gulf Stream Front. *J. Phys.*
557 *Oceanogr.* **46**, 197–217, <https://doi.org/10.1175/JPO-D-15-0008.1>.

558 Trenberth, K. E. J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–
559 Southern Oscillation and global atmospheric surface temperatures. *J. Geophys. Res.* 107,
560 4065, <https://doi.org/10.1029/2000JD000298>.

561 Trenberth, K. E. J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–
562 Southern Oscillation and global atmospheric surface temperatures. *J. Geophys. Res.* 107,
563 4065, <https://doi.org/10.1029/2000JD000298>.

564 Trenberth, K. E. J. T. Fasullo, 2013: An apparent hiatus in global warming? *Earth's Future* 1:19–
565 32. <https://doi.org/10.1002/2013EF000165>.

565 Trenberth, K. E. J. T. Fasullo, and M. A. Balmaseda, 2014: Earth's Energy Imbalance. *J.
566 Climate*, 27, 3129–3144, <https://doi.org/10.1175/JCLI-D-13-00294.1>.

567 Trenberth, K.E. J.T. Fasullo, K. von Schuckmann, and L. Cheng, 2016: Insights into Earth's
568 Energy Imbalance from Multiple Sources. *J. Climate*, 29, 7495–7505,
569 <https://doi.org/10.1175/JCLI-D-16-0339.1>.

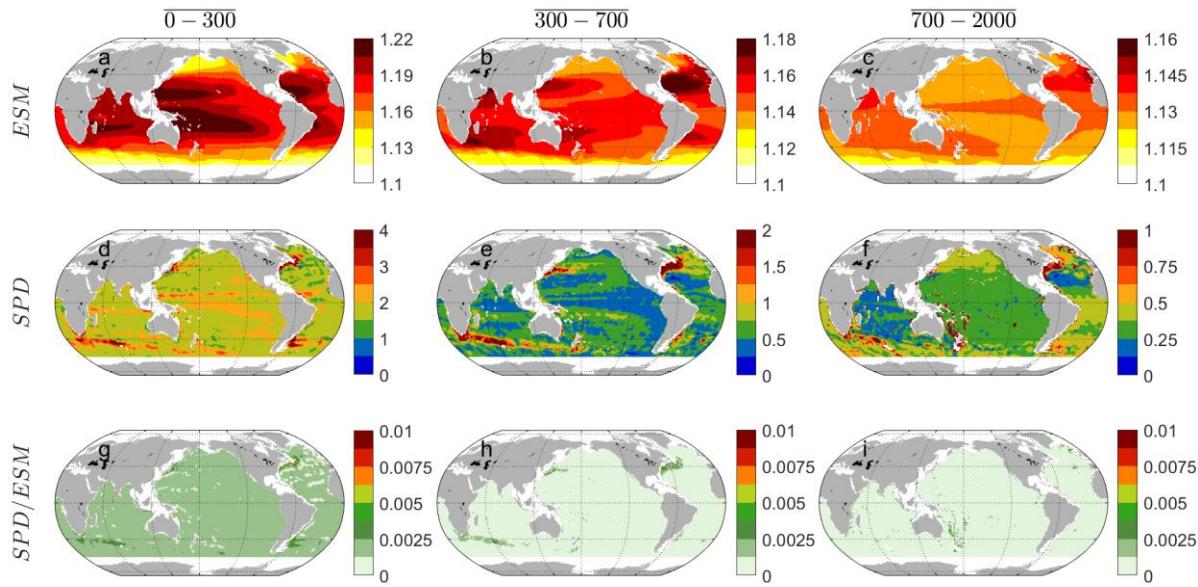
570 Von Schuckmann et al. 2016: An imperative to monitor Earth's energy imbalance. *Nat. Climate
571 Change*, 6, 138–144, <https://doi.org/10.1038/nclimate2876>.

572 Von Schuckmann, K., Cheng, L., Palmer, M.D., Hansen, J., Tassone, C., Aich, V., Adusumilli,
573 S., Beltrami, H., Boyer, T., Cuesta-Valero, F.J. and Desbruyères, D., 2020: Heat stored in the
574 Earth system: where does the energy go?. *Earth System Science Data*, 12(3), 2013-2041.

575 Wang, G. J. L. J. Cheng, T. Boyer, and C. Y. Li, 2017: Halosteric Sea Level Changes during the
576 Argo Era, *Water*, 9(7), 484, <https://doi.org/10.3390/w9070484>.

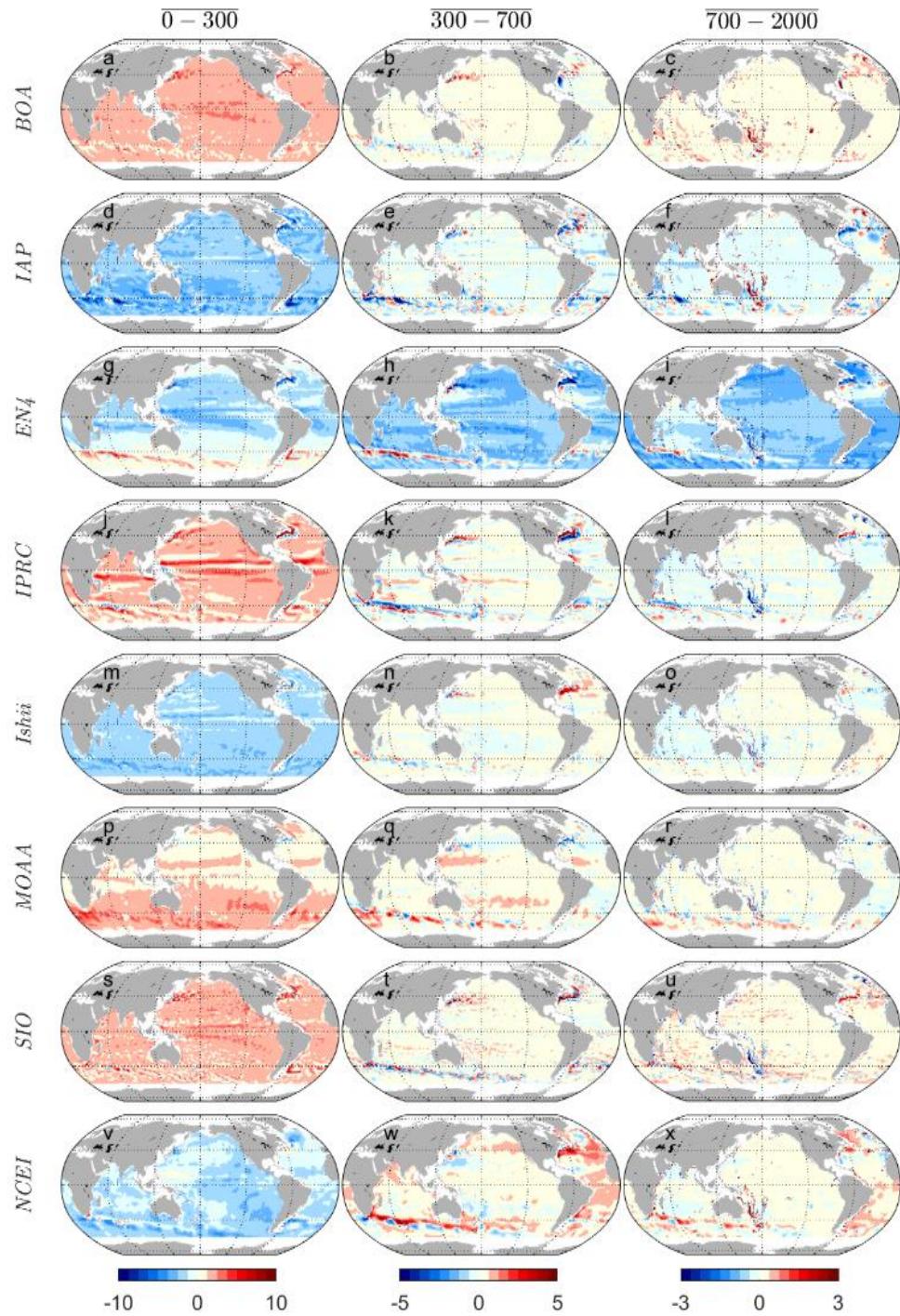
577 Wang, G. Cheng, L. Abraham, J. & Li, C. 2018: Consensuses and discrepancies of basin-scale
578 ocean heat content changes in different ocean analyses. *Clim. Dyn.* 50(7-8), 2471-2487,
579 <https://doi.org/10.1007/s00382-017-3751-5>.

580 Wijffels S, Roemmich D, Monselesan D et al. 2016: Ocean temperatures chronicle the ongoing
581 warming of Earth, *Nat. Clim. Change*, 6, 116–118. <https://doi.org/10.1038/nclimate2924>.

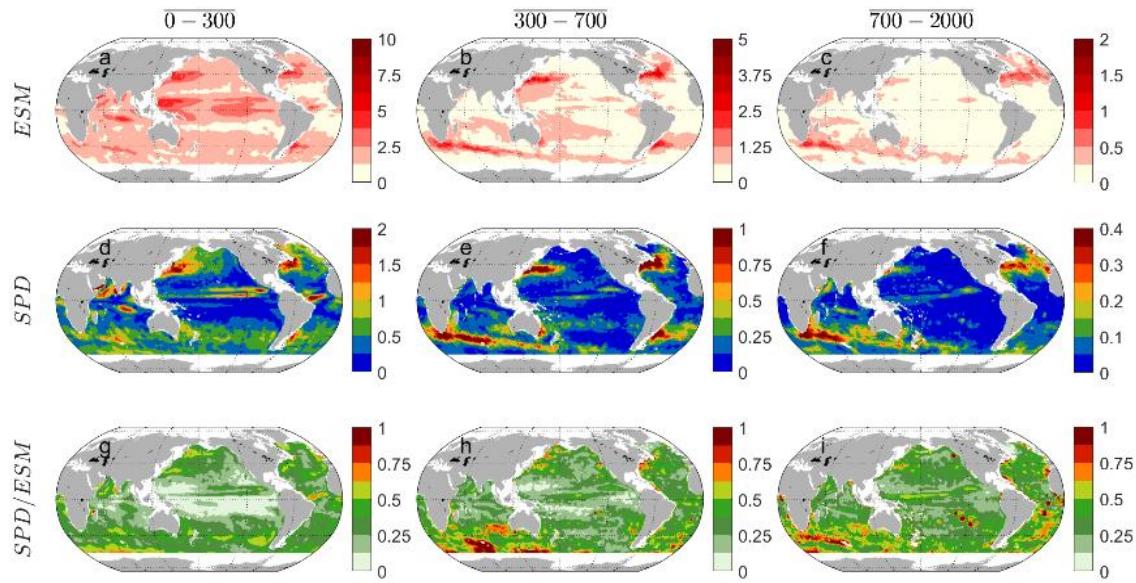

582 Wunsch, C. and Heimbach, P., 2014. Bidecadal thermal changes in the abyssal ocean. *J. Phys.
583 Oceanogr.* 44(8), 2013-2030. <https://doi.org/10.1175/JPO-D-13-096.1>

584 Xie SP, Yu K, Okumura YM , 2015: Distinct energy budgets for anthropogenic and natural
585 changes during global warming hiatus. *Nat Geosci.* <https://doi.org/10.1038/NGEO2581>

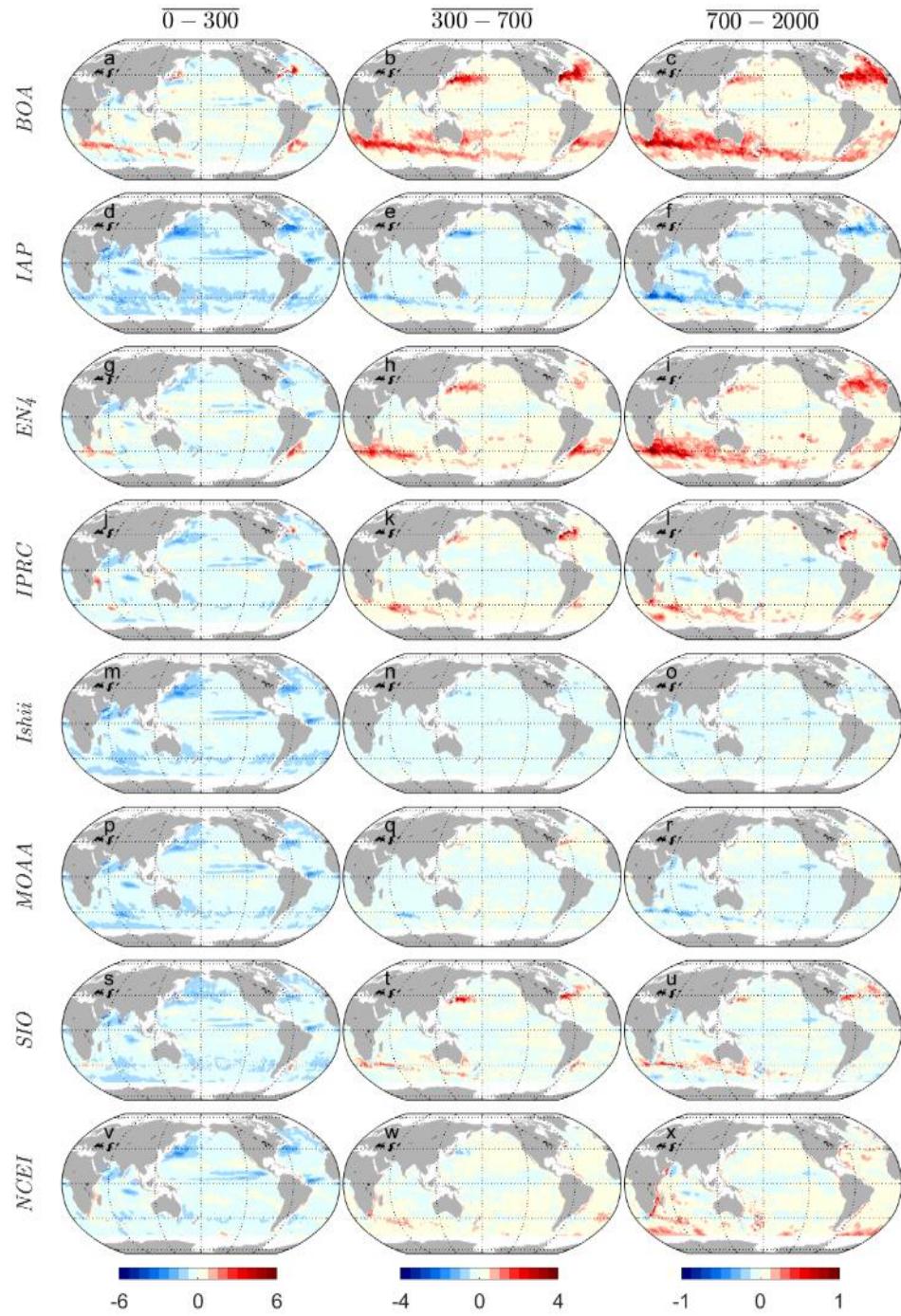
586 **Table 1** Overview of the OA products used in this study. Data with $\frac{1}{4}$ degree resolution are in italics; the
 587 others are with 1 degree resolution.


Product	Spatial	Temporal	Vertical	Data	Interpolation	References
	Coverage	Coverage	Resolution	Source	Method	
BOA	80S-80N	2004-	58 levels to	Argo only	Barnes Successive	Li et al. 2017
		present	1975 m		Method	
IAP	90S-90N	1940-	41 levels to	Argo plus	Ensemble Optimum	Cheng and Zhu, 2016
		present	2000 m	others	Interpolation	
EN4	90S-90N	1900-	42 levels to	Argo plus	Objective Analysis	Good et al. 2013
		present	5350 m	others		
IPRC	63S-63N	2005-	27 levels to	Argo plus	Variational	http://apdrc.soest.hawa
		present	2000 m	Altimetry	Analysis Technique	ii.edu/projects/argo/
Ishii	90S-90N	1955-	28 levels to	Argo plus	Bin-Average	Ishii et al. 2017
		present	3000 m	others		
MOAA	60S-70N	2001-	25 levels to	Argo plus	Objective Analysis	Hosoda et al. 2008
		present	2000 m	others		
SIO	64S-80N	2004-	58 levels to	Argo only	Weighted Least-Squares Fit	Roemmich and Gilson, 2009
		present	2000 m			
NCEI	90S-90N	1955-	26 levels to	Argo plus	Bin-Average	Levitus et al. 2012
		present	2000 m	others		
WOA18	90S-90N	2005-	<i>102 levels</i>	Argo plus	Bin-Average	Boyer et al. 2005
		2017	<i>to 5500 m</i>	others		
WOCE-	80S-90N	1985-	<i>65 levels to</i>	Argo plus	Optimal	Gouretski, 2018
Argo		2016	<i>6650 m</i>	others	Interpolation	

588

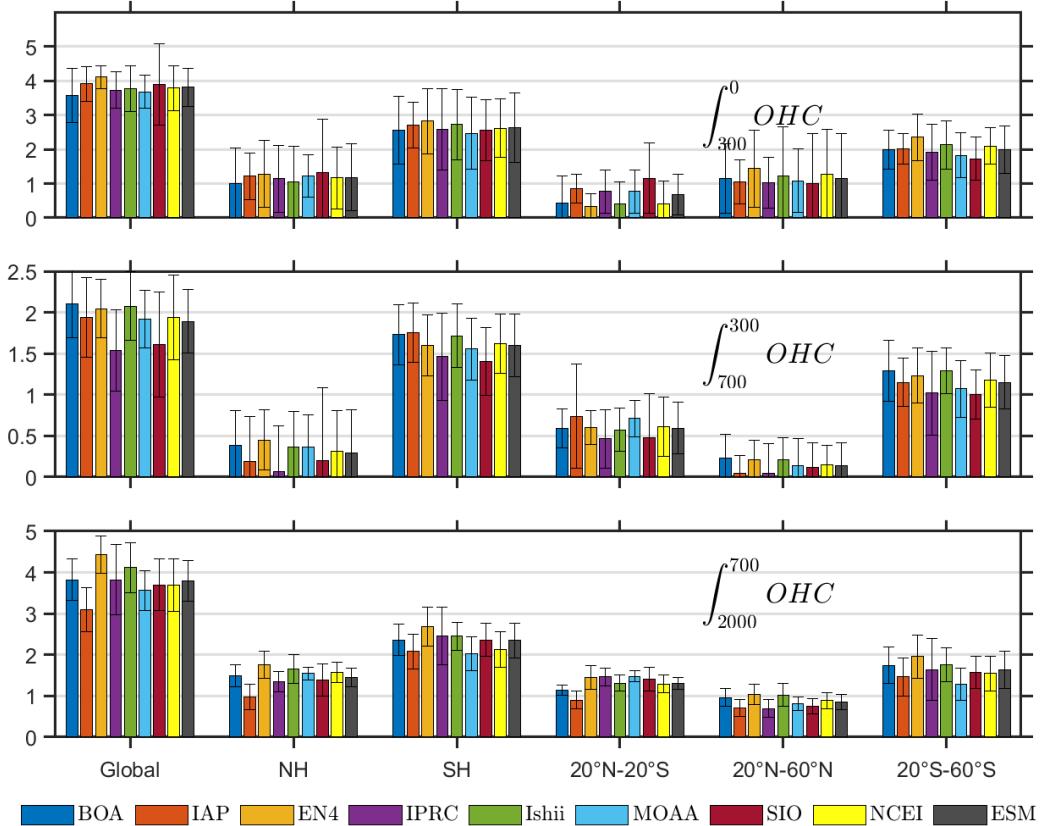

589

590 **Fig. 1** Ensemble mean (ESM), ensemble spread (SPD), and the spread/mean ratio (SPD/ESM) of
 591 the time mean of depth-averaged OHC for the period 2005-2019. (Unit: 10^9 J m^{-2} for the
 592 ensemble mean, 10^6 J m^{-2} for ensemble spread)

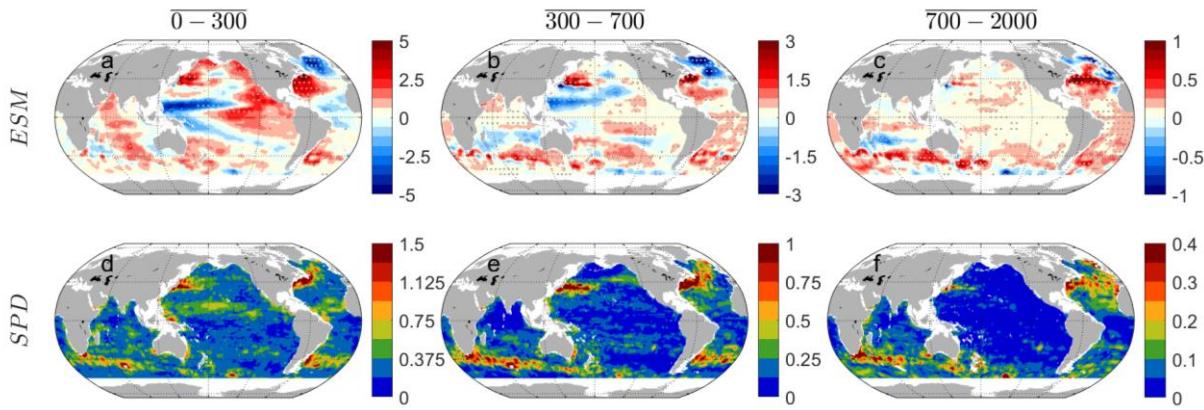

593

594 **Fig. 2** Difference of time means of depth-averaged OHC between each product and the ensemble
 595 mean. (Unit: 10^6 J m^{-2})

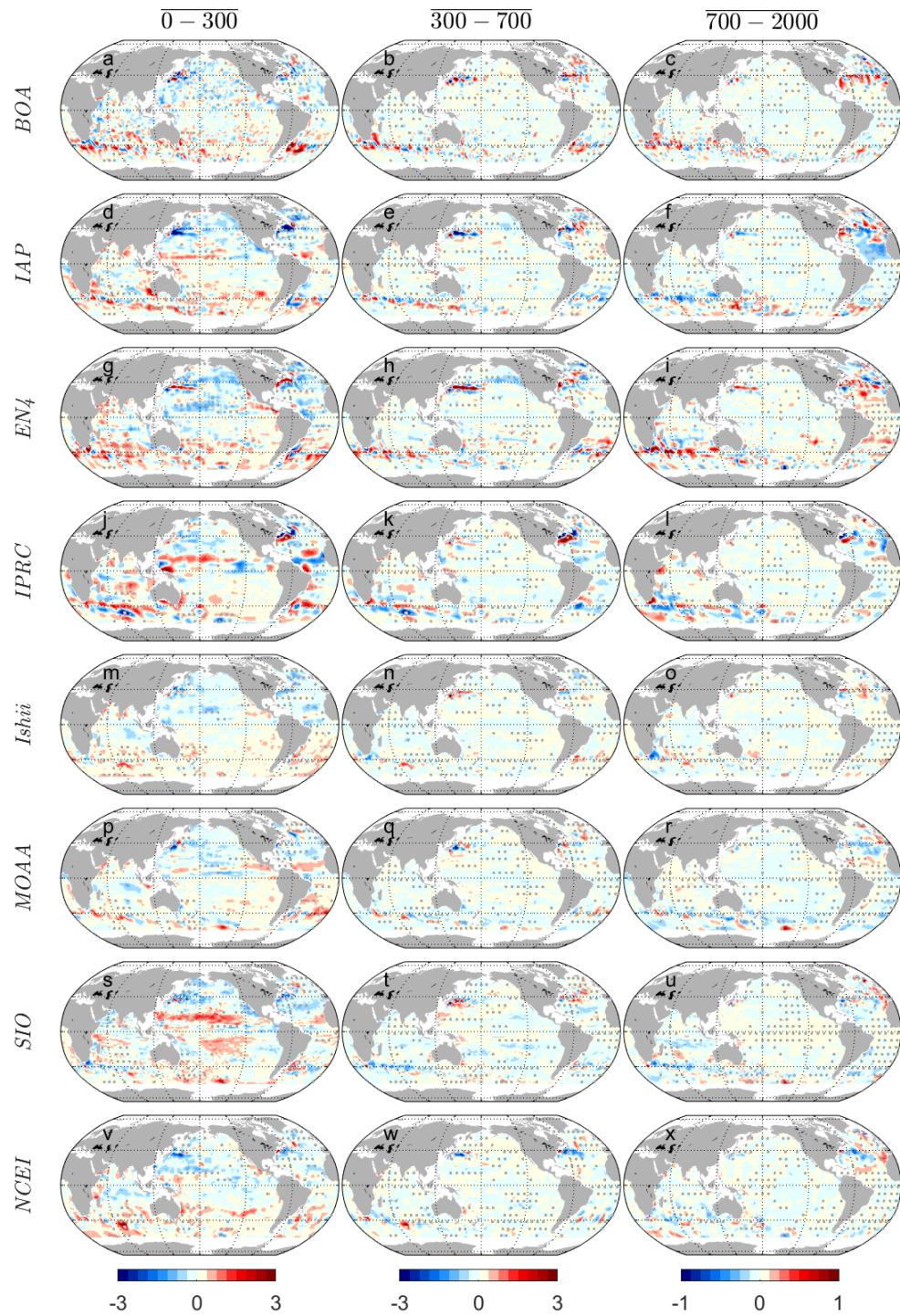
596


597 **Fig. 3** Ensemble mean (ESM), ensemble spread (SPD), and the spread/mean ratio (SPD/ESM) of
 598 the amplitude of interannual variability in the depth-averaged OHC for the period 2005-2019.
 599 For panels a-f, the unit is 10^6 J m^{-2} .

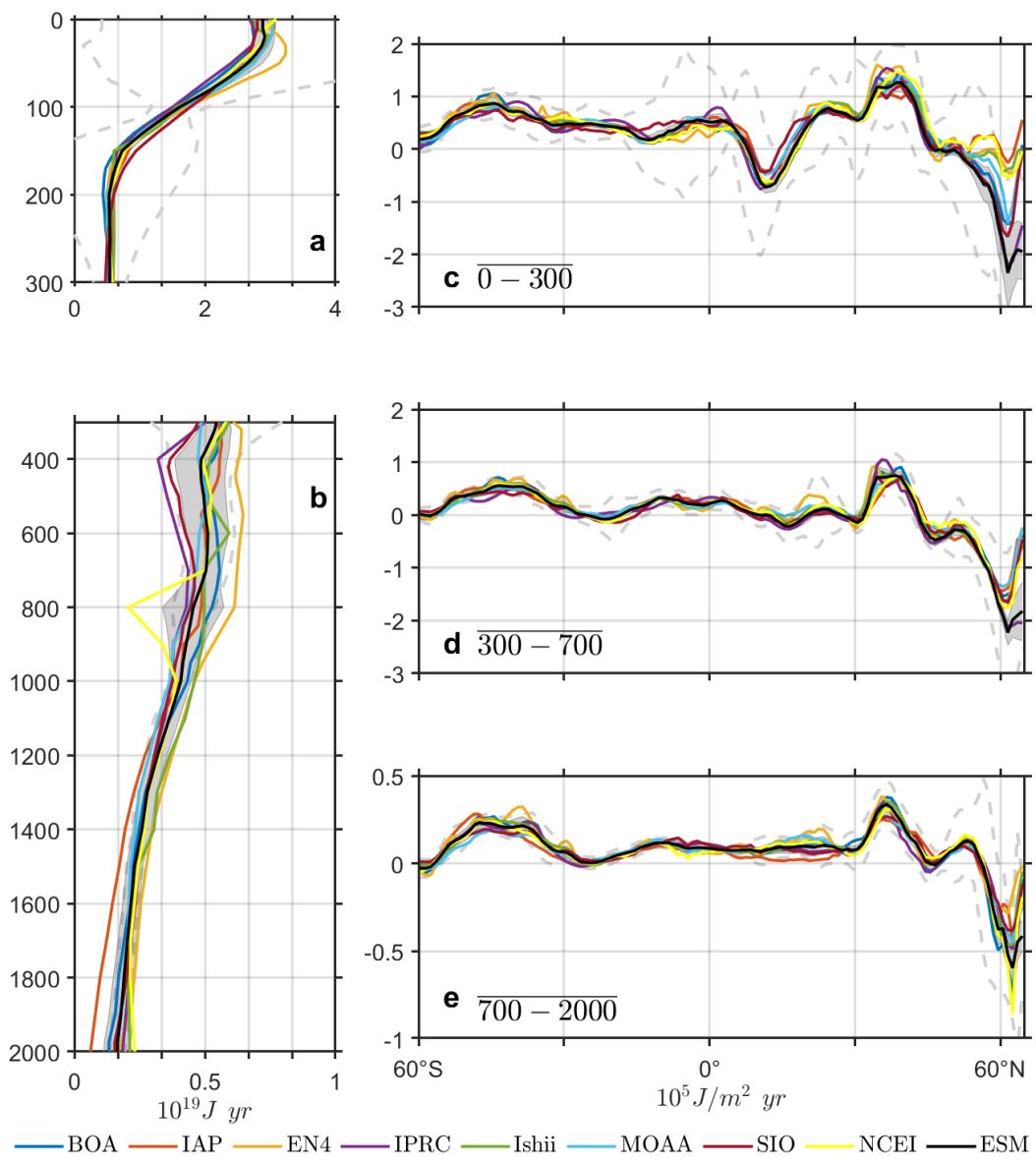
600

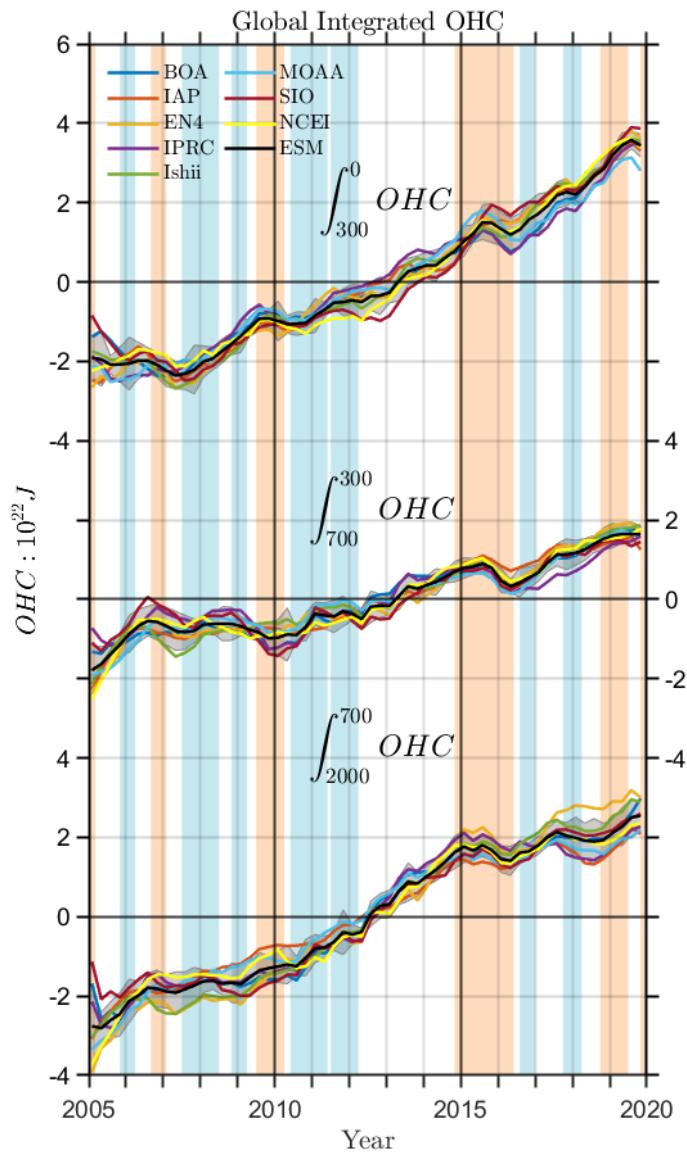

601 **Fig. 4** Difference of interannual variability of depth-averaged OHC between each product and
 602 the ensemble mean. (Unit: 10^6 J m^{-2})

603

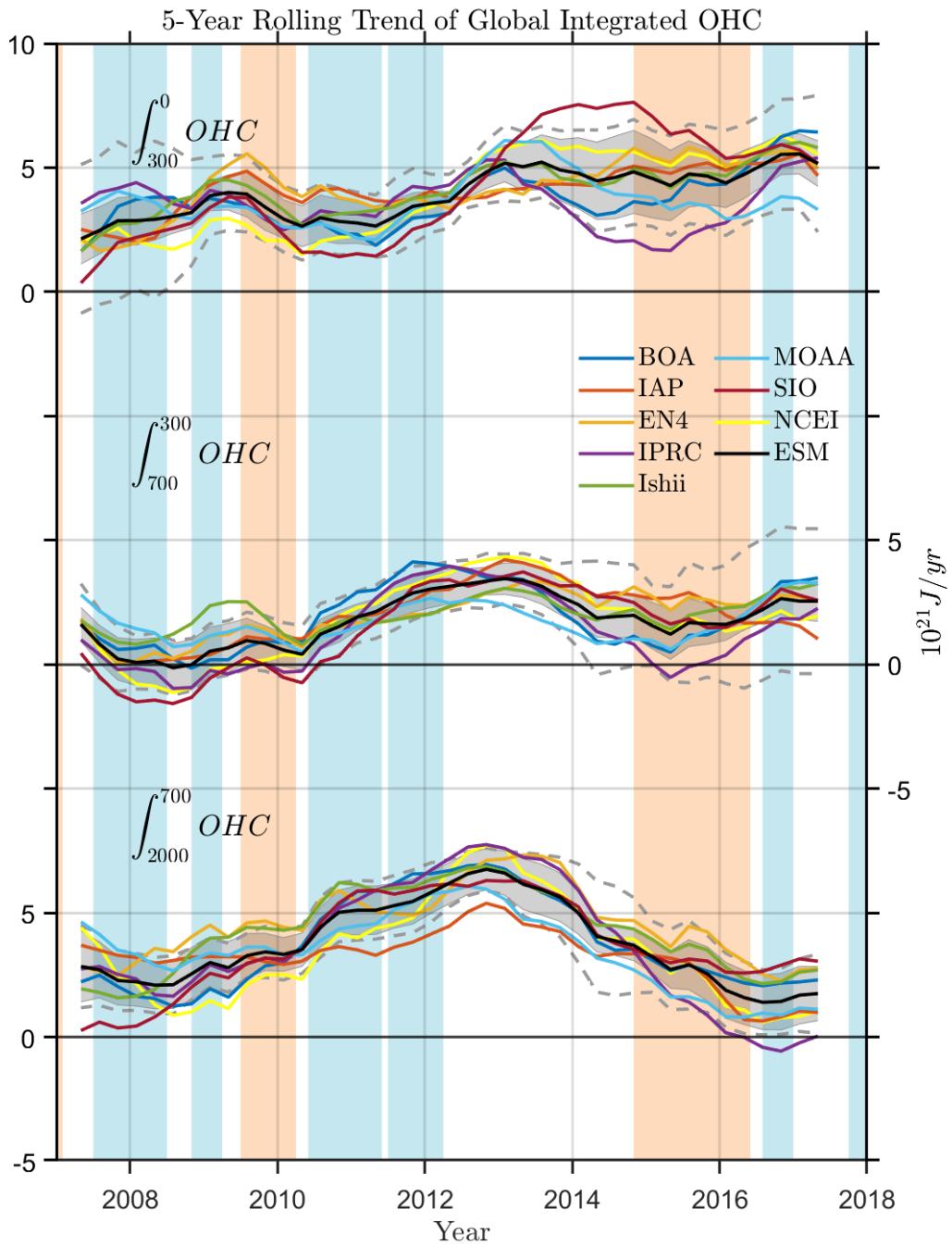

604

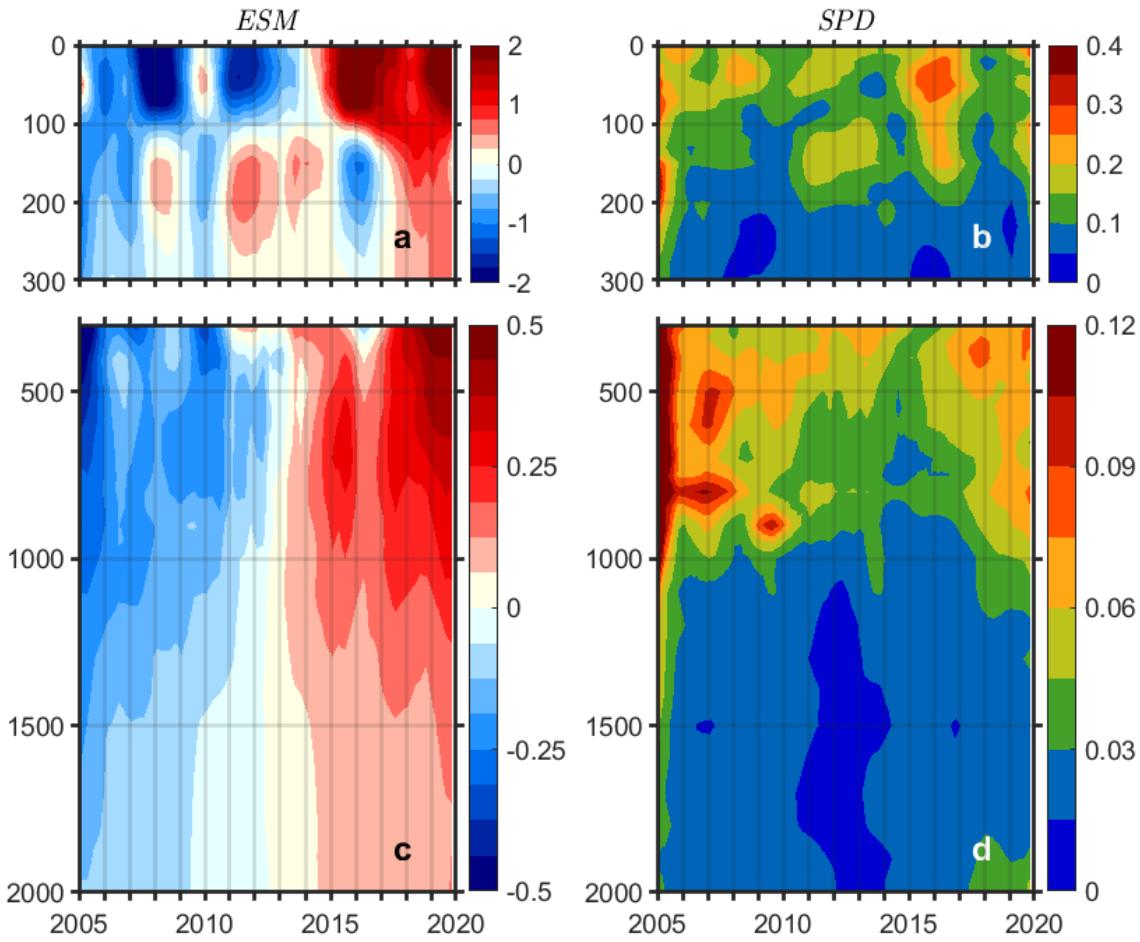
605 **Fig. 5** Linear trend of the global and regional integrated OHC. The error-bar shows the
 606 uncertainty ($\pm 2\sigma$). (Unit: 10^{21}J yr^{-1})


607

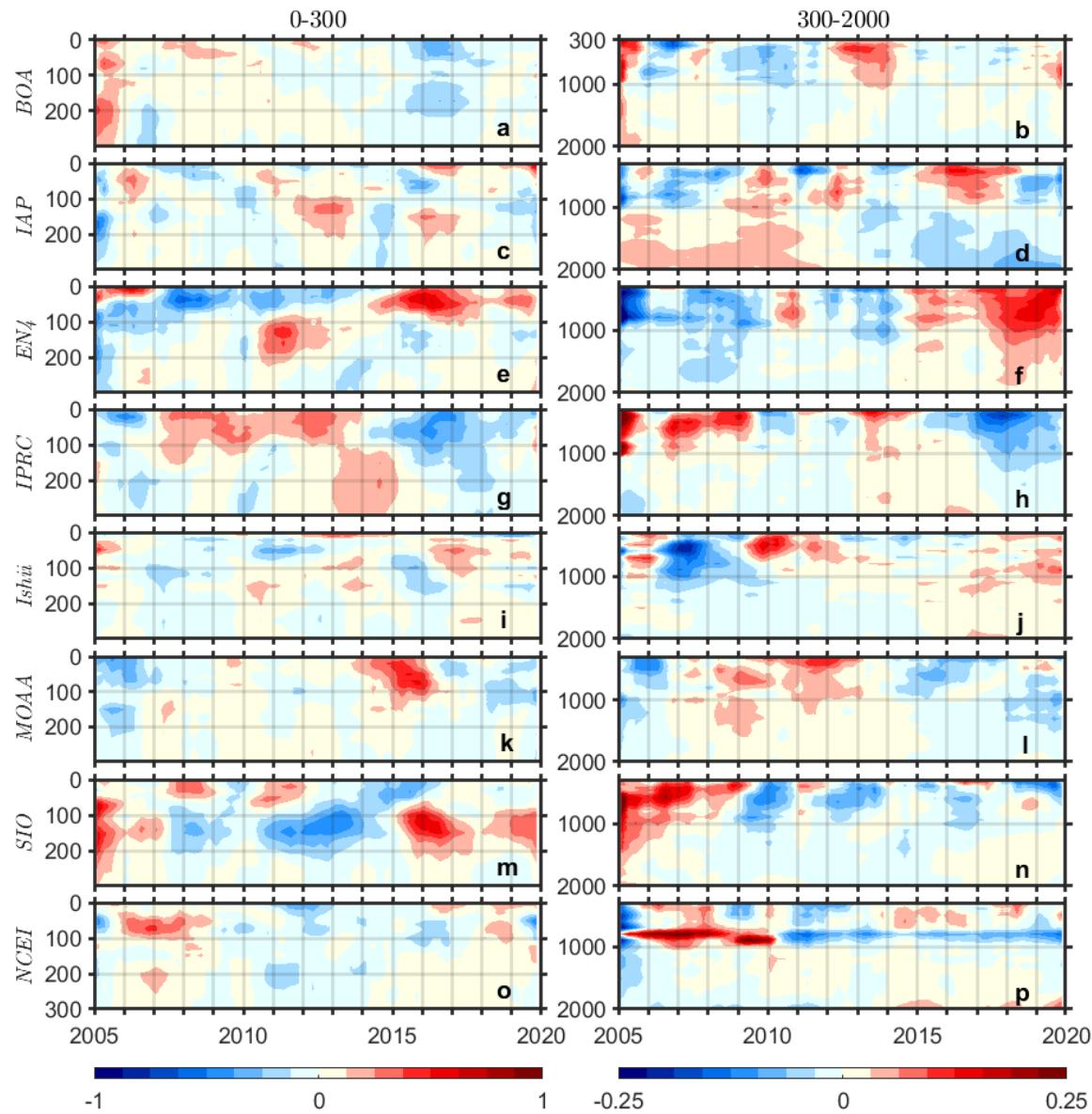

608 **Fig. 6** OHC trends of the ensemble mean of depth-averaged OHC for the period 2005-2019. The
 609 statistically significant trends at 95% confidence level are highlighted by stippling. The
 610 corresponding spread is also given. (Unit: $10^5 \text{ J m}^{-2} \text{ yr}^{-1}$)

611

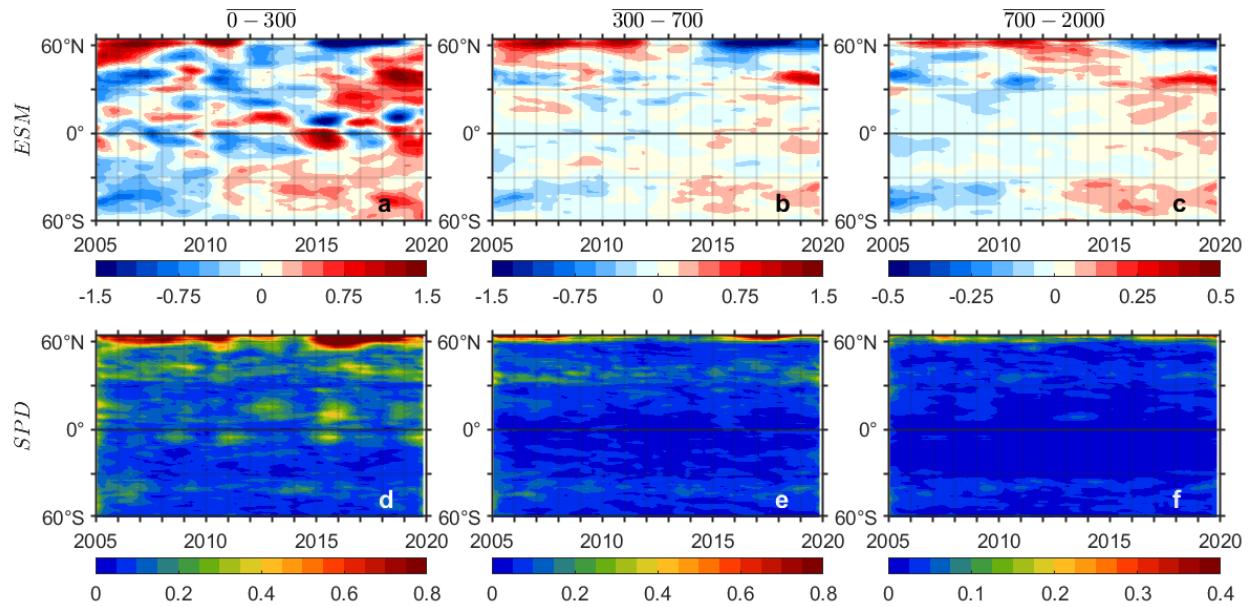

612 **Fig. 7** Difference of OHC trends between each product and the ensemble mean. For each
 613 product, the statistically significant trends at 95% confidence level are highlighted by stippling.
 614 (Unit: $10^5 \text{ J m}^{-2} \text{ yr}^{-1}$)



620


621 **Fig. 9** Monthly OHC anomaly time series globally and vertically integrated over the selected
 622 layers. Grey shading is the ensemble spread. Warm (tan) and cool (blue) ENSO events are
 623 marked based on a threshold of $\pm 0.5^{\circ}\text{C}$ for the Oceanic Niño Index (ONI). (Unit: 10^{22} J)

629

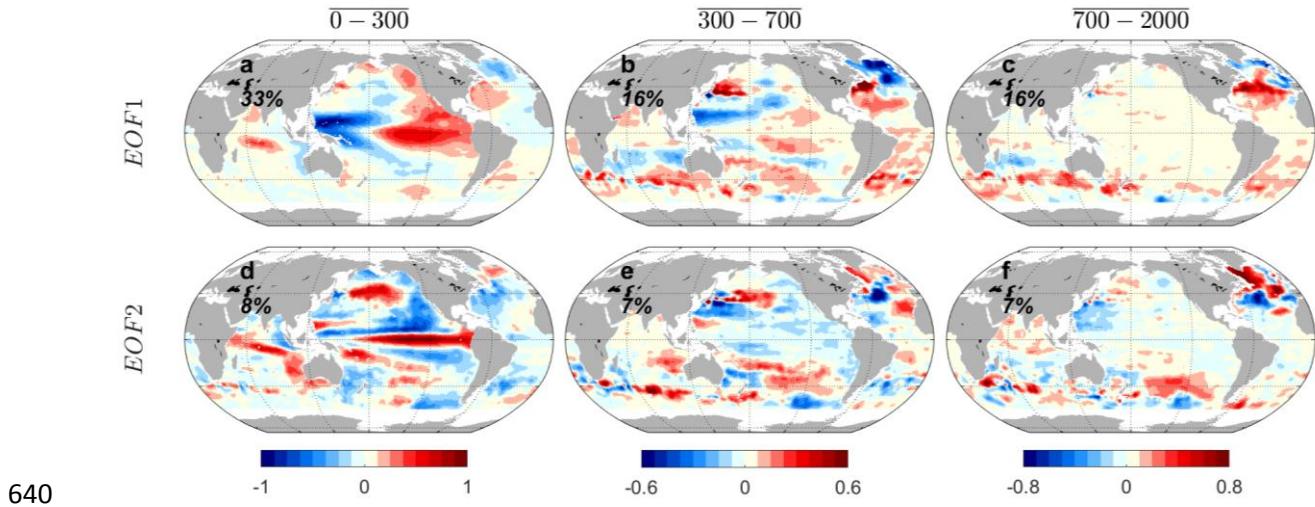

630 **Fig. 11** Ensemble mean and ensemble spread of monthly evolution of the globally integrated
 631 OHC anomaly (Unit: 10^{20} J)

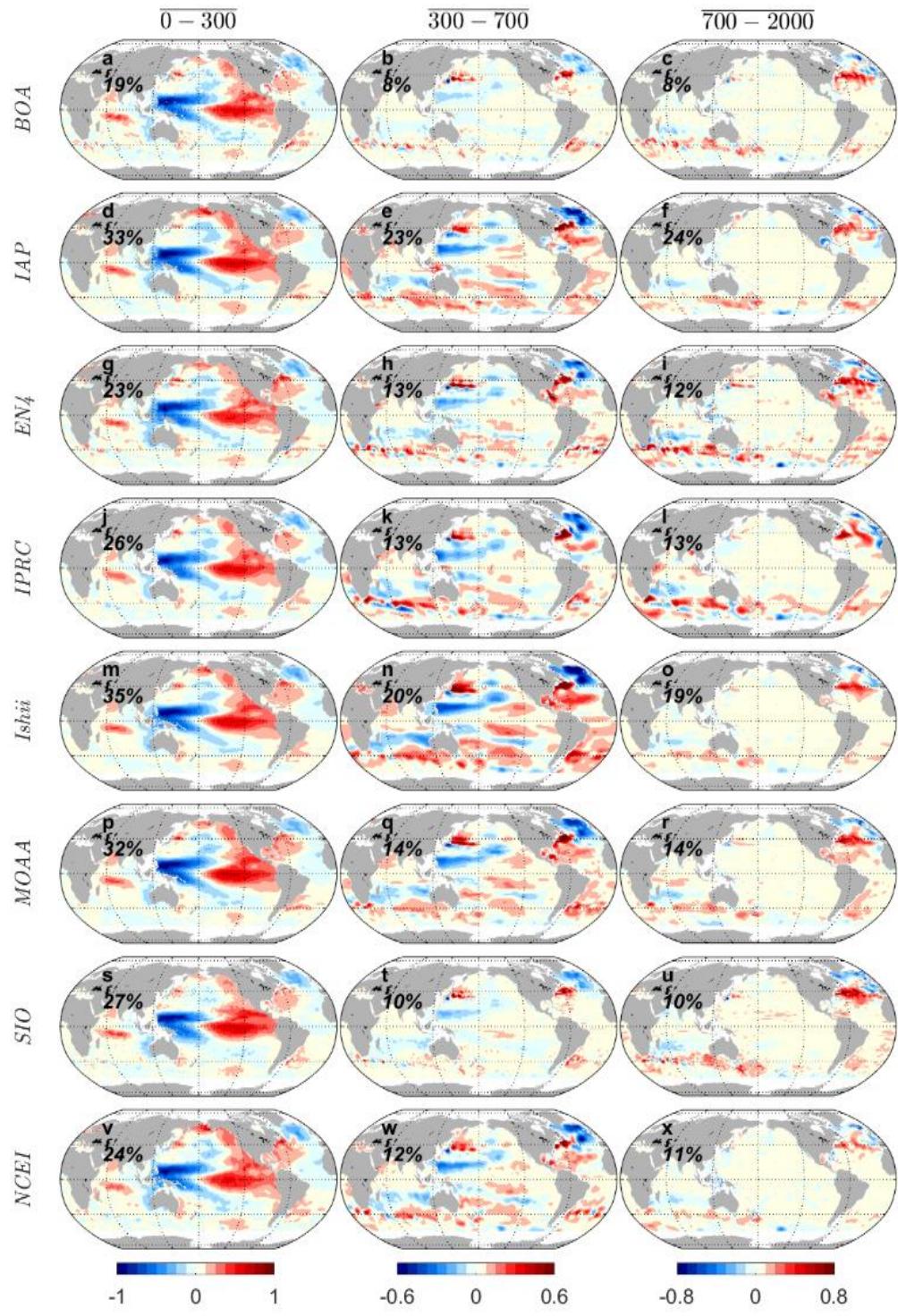
632


633 **Fig. 12** Difference of monthly evolution of OHC anomaly between each product and the

634 ensemble mean. (Unit: 10^{20} J)

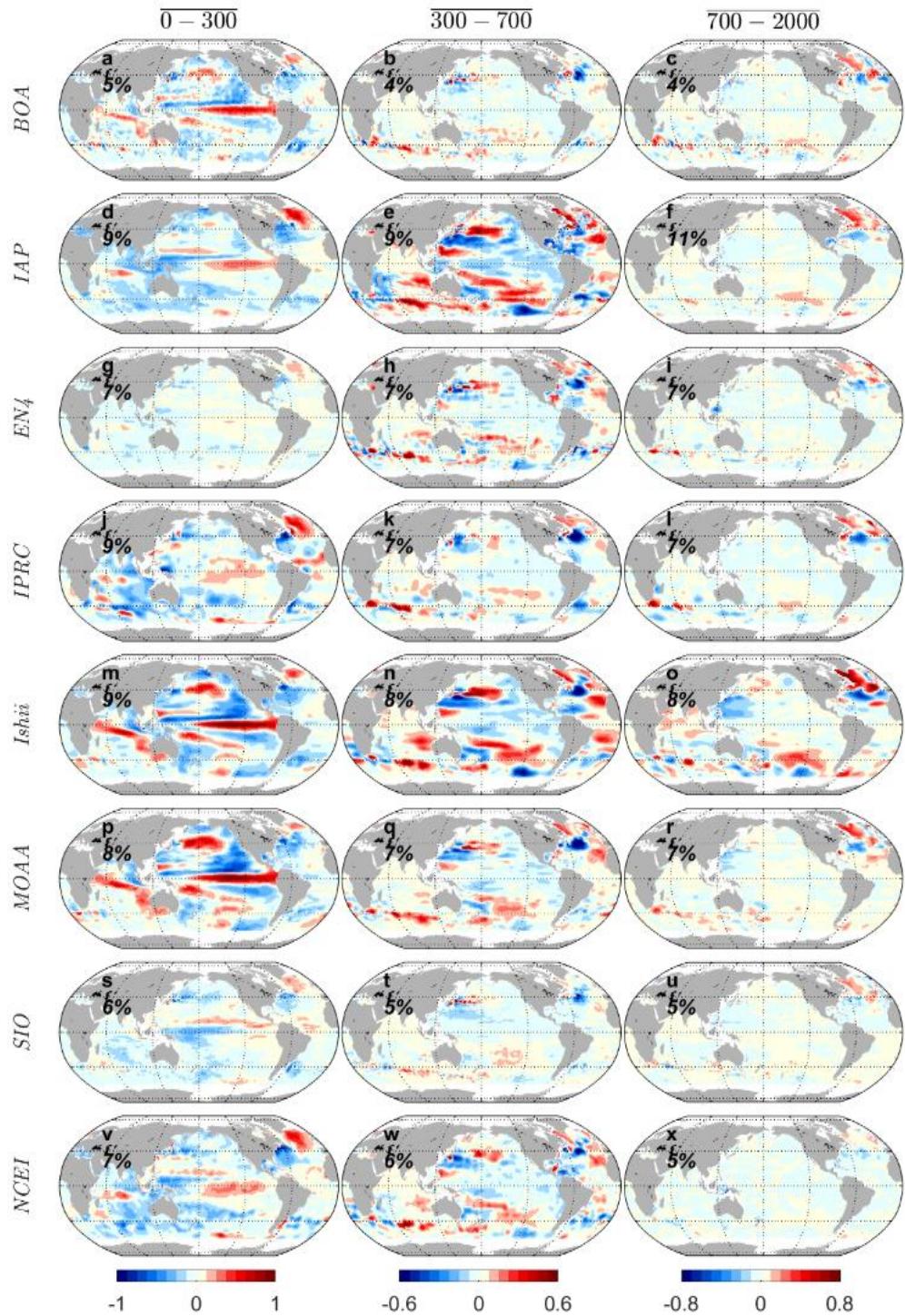
635


636 **Fig. 13** Ensemble mean and ensemble spread of the zonal mean OHC anomaly. (Unit: 10^6 J m^{-2})

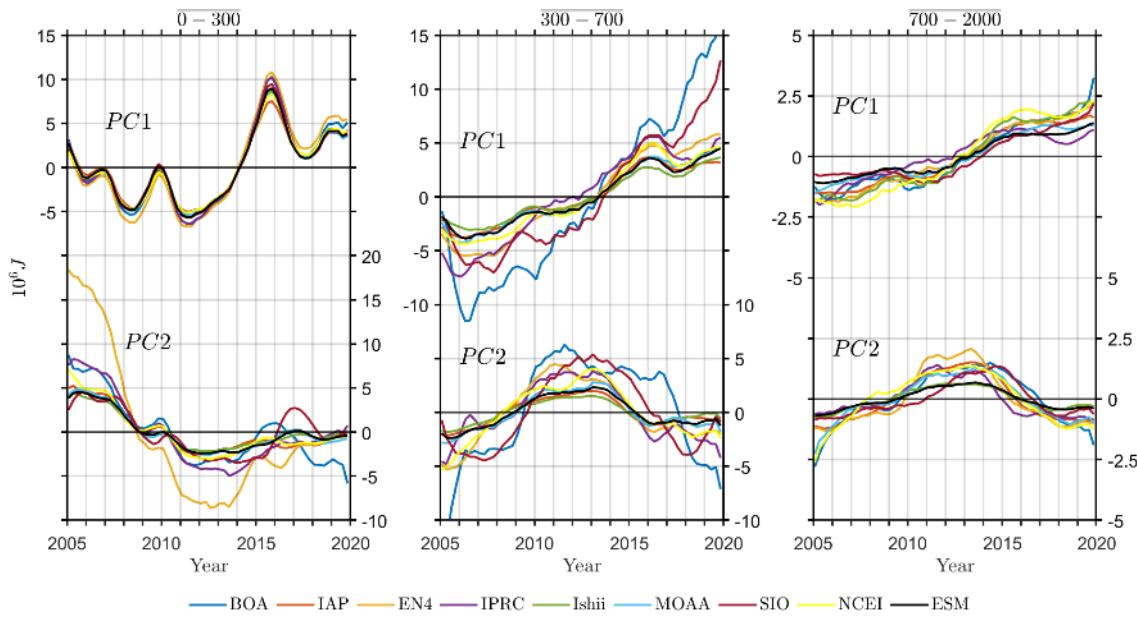

637

638 **Fig. 14** Difference of zonal mean OHC anomaly between each product and the ensemble mean.

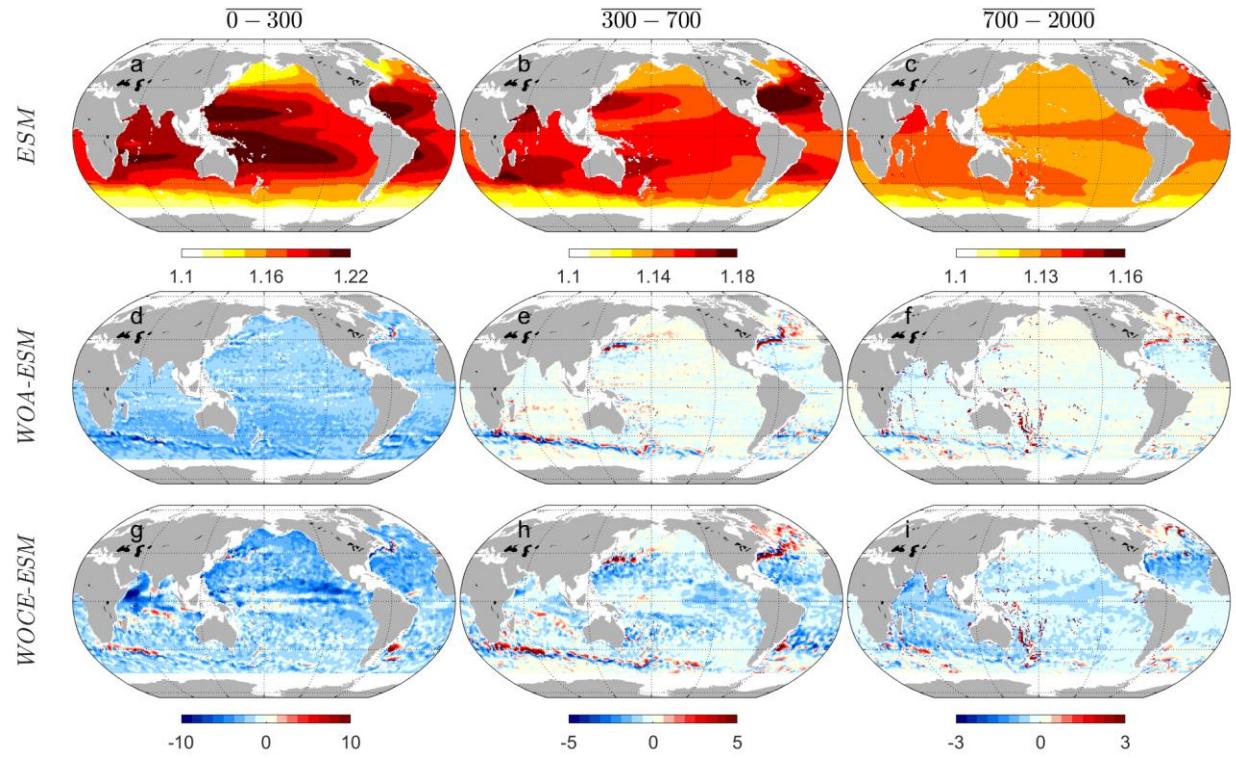
639 (Unit: 10^6 J m^{-2})



640
641 **Fig. 15** Normalized first two EOF modes of depth-averaged OHC from the ensemble mean for
642 the examined layers. The percentage of total variance explained by each EOF mode is provided.
643 (Unit: m^{-2}).


644

645 **Fig.16** Normalized first EOF mode of depth-averaged OHC from the
 646 in-situ products for the examined layers. The percentage of total variance explained by each EOF mode is also provided.


647

648 **Fig.17** Normalized second EOF mode of depth-averaged OHC from the in-situ products for the
 649 examined layers. The percentage of total variance explained by each EOF mode is also provided.

650

651 **Fig. 18** Principal Components (PC) corresponding to the first three EOF modes for the examined
 652 layers from the in-situ products and the ensemble mean. (Unit: 10⁶ J).

653

654 **Fig. 19** (a-c) OHC Climatology from ensemble mean of the eight OA products (same as **Fig. 1**,
 655 a-c), and (d-i) difference in OHC climatology between high resolution products (WOA18 and
 656 WOCE-Argo, both of which were interpolated and subsampled at 1 degree) and the ensemble
 657 mean. (Unit: 10^9 J m^{-2} for the ensemble mean climatology, 10^6 J m^{-2} for the difference).