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Koopman decomposition is a nonlinear generalization of eigen-decomposition, and is
being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known
techniques such as the dynamic mode decomposition (DMD) and its linear variants
provide approximations to the Koopman operator, and have been applied extensively
in many fluid dynamic problems. Despite being endowed with a richer dictionary of
nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic
mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems
primarily due to the difficulty of discerning the Koopman-invariant subspace from
thousands of resulting Koopman eigenmodes. To address this issue, we propose a
framework based on a multi-task feature learning to extract the most informative
Koopman-invariant subspace by removing redundant and spurious Koopman triplets. In
particular, we develop a pruning procedure that penalizes departure from linear evolution.
These algorithms can be viewed as sparsity-promoting extensions of EDMD/KDMD.
Furthermore, we extend KDMD to a continuous-time setting and show a relationship
between the present algorithm, sparsity-promoting DMD and an empirical criterion
from the viewpoint of non-convex optimization. The effectiveness of our algorithm is
demonstrated on examples ranging from simple dynamical systems to two-dimensional
cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent
ship-airwake flow. The latter two problems are designed such that very strong nonlinear
transients are present, thus requiring an accurate approximation of the Koopman operator.
Underlying physical mechanisms are analysed, with an emphasis on characterizing
transient dynamics. The results are compared with existing theoretical expositions and
numerical approximations.
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1. Introduction

Complex unsteady flow phenomena such as turbulence (Pope 2001), flow instability
(Drazin & Reid 2004; Lietz, Johnsen & Kushner 2017) and fluid–structure interactions
(Dowell & Hall 2001) are prevalent in many physical systems. To analyse and understand
such phenomena, it is useful to extract coherent modes associated with important
dynamical mechanisms and track their evolution. Koopman operator theory (Budišić,
Mohr & Mezić 2012) offers an elegant framework to reduce spatio-temporal fields
associated with nonlinear dynamics as a linear combination of time evolving modes
ordered by frequency and growth rates (Rowley et al. 2009).
Consider a general continuous nonlinear dynamical system ẋ = F (x), where the system

state x evolves on a manifold M ⊂ RN . Here F : M �→ TM is a vector-valued smooth
function and TM is the tangent bundle, i.e. ∀ p ∈ M,F ( p) ∈ TpM. The aforementioned
task of decomposition is equivalent to finding a set of L observables associated with the
system, {gi}Li=1 (gi : M �→ C), that evolve linearly in time while spanning the system state
x. The significance of the above statement is that it represents a global linearization of the
nonlinear dynamical system (Budišić et al. 2012; Brunton et al. 2016a).
Formally, this idea can be traced back to Koopman operator theory for Hamiltonian

dynamical systems introduced by Koopman (1931) to study the evolution of observables
g on L2(M), which is a vector space of square integrable functions defined on the
manifold M. More generally, for a certain vector space of observable functions F
defined on the manifold M and t > 0, the Koopman semigroup (parameterized by t)
is the set {Kt}t∈R+ : Kt : F �→ F that governs the dynamics of observables in the form
Ktg(x(0)) � g(S(t, x0)) = g(x(t)), where S(t, ·) is the flow map of the dynamical system
(Mezić 2013). (Note that for a discrete dynamical system resulting from the discretization
(with time step Δt) of a continuous dynamical system, the corresponding discrete-time
Koopman operator is an element of this semigroup: KΔt.) Here K = limt→0(Kt f − f )/t
is referred to as the continuous-time Koopman operator, i.e. Koopman generator. While
the Koopman operator is linear over the space of observables, F is most often infinite
dimensional, e.g. L2(M), which makes the approximation of the Koopman operator a
difficult problem. Throughout this work, we assume that F = L2(M). Readers interested
in a detailed discussion of the choice of F are referred to Bruce, Zeidan & Bernstein
(2019).
A special subspace of F , referred to as a minimal Koopman-invariant subspace G, has

the following property: for any φ ∈ G, for any t ∈ R+, Ktφ ∈ G and x ∈ G. Existing
techniques such as the extended dynamic mode decomposition (Williams, Kevrekidis
& Rowley 2015) are capable of approximating Koopman operators, but typically yield
high-dimensional spaces (L-dimensional space in figure 1). In this work we are interested
in accurately approximating such a subspace – but with the minimal possible dimension
and Koopman invariance – using learning techniques, as illustrated in figure 1. This can
yield useful coordinates for a multitude of applications including modal analysis and
control (Arbabi, Korda & Mezic 2018).
In general, physical systems governed by partial differential equations, e.g. fluid

dynamics, are infinite dimensional. From a numerical viewpoint, the number of degrees
of freedom can be related to the spatial discretization (for example, the number of
grid points). Although a finite-dimensional manifold can be extracted (Holmes et al.
2012), e.g. O(10)–O(103) dimensions via proper orthogonal decomposition (POD),
finding a Koopman-invariant subspace on such manifolds is still challenging. Currently,
the most popular method to approximate the Koopman operator is the dynamic
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M
x(t2)

x(t1)

x(tM+1)

ψ1(x)

ψL(x)

ψ2(x)
Ψ (x(t2))

Ψ (x(tM+1))

Ψ (x(t1))

A set of nonlinear mappings Ψ

Linear dynamics on a minimal

dimension hyperplane
Nonlinear dynamics

Figure 1. Schematic of transformation of a nonlinear system to a linear L-dimensional space and the
extraction of a minimal Koopman-invariant subspace.

mode decomposition (DMD) (Schmid 2010; Rowley & Dawson 2017) mainly for
two reasons. First, it is straightforward and computationally efficient compared with
nonlinear counterparts such as extended DMD (EDMD) (Williams et al. 2015) and
kernel DMD (KDMD) (Williams, Rowley & Kevrekidis 2014). Second, the essence of
DMD is to decompose a spatio-temporal field into several temporally growing/decaying
travelling/stationary harmonic waves, which are prevalent in fluid mechanics. However,
the accuracy of DMD is limited by the assumption that the Koopman-invariant subspace
lies in the space spanned by snapshots of the state x. Thus, DMD is used to mainly identify
and visualize coherent structures. Indeed, DMD can be interpreted as an L2 projection of
the action of the Koopman operator on the linear space spanned by snapshots of the system
state (Korda & Mezić 2018b).
To overcome the above limitations, it is natural to augment the observable space with

either the history of the state (Arbabi & Mezić 2017a; Brunton et al. 2017; Le Clainche
& Vega 2017; Kamb et al. 2018) or nonlinear observables of the state (Williams et al.
2014, 2015). Time-delay embedding can be very useful in reduced-order modelling of
systems for which sparse measurements can be easily obtained, assuming the inputs and
outputs are not high dimensional (Korda &Mezić 2018a). Although time-delay embedding
is simple to implement and has strong connections to Takens’ embedding (Kamb et al.
2018; Pan & Duraisamy 2019), the main practical issue arises in reduced-order modelling
of high-fidelity simulations in a predictive setting due to the requirement of a large
number of snapshots of the full-order model. Furthermore, if one is only interested in
the post-transient dynamics of the system state on an attractor, linear observables with
time delays are sufficient to extract an informative Koopman-invariant subspace (Mezić
2005; Arbabi & Mezić 2017a,b; Brunton et al. 2017; Röjsel 2017; Pan & Duraisamy
2019). However, if one is interested in the strongly nonlinear transient dynamics leading to
an attractor or reduced-order modelling for high-fidelity numerical simulations (Carlberg
et al. 2013; Huang, Duraisamy & Merkle 2018; Xu & Duraisamy 2019; Parish, Wentland
& Duraisamy 2020; Xu, Huang & Duraisamy 2020), time-delay embedding may become
less appropriate as several delay snapshots of the full-order model are required to initialize
the model. In that case, nonlinear observables may be more appropriate.
Driven by the interest in modal analysis and control of transient flow phenomena, we

consider augmentation of the observable space with nonlinear functions of the state,
e.g. EDMD (Williams et al. 2015)/KDMD (Williams et al. 2014). Although it has
been reported that KDMD allows for a set of more interpretable Koopman eigenvalues
(Williams et al. 2014) and better accuracy (Röjsel 2017), issues such as mode selection,
spurious modes (Kaiser, Kutz & Brunton 2017; Zhang et al. 2017) and choice of

917 A18-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

04
 A

ug
 2

02
1 

at
 0

4:
09

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.271
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


S. Pan, N. Arnold-Medabalimi and K. Duraisamy

dictionary/kernel in EDMD/KDMD remain open. In fact, the choice of kernel type
and hyperparameter can significantly affect the resulting eigenmodes, distribution of
eigenvalues (Kutz et al. 2016) and the accuracy of predictions (Zhang et al. 2017).
Searching for an accurate and informative Koopman-invariant subspace has long been

a pursuit in the DMD community. Rowley et al. (2009) and Schmid, Violato & Scarano
(2012) considered selecting dominant DMD modes in order of their amplitudes. However,
following such a criterion (Tu et al. 2013; Kou & Zhang 2017) may result in the selection
of irrelevant modes that may have large amplitudes, but decay rapidly. As a result, Tu et al.
(2013) considered weighting the loss term by the magnitude of eigenvalues to penalize
the retention of fast decaying modes. Sparsity-promoting DMD (referred to as ‘spDMD’
throughout the paper) developed by Jovanović, Schmid & Nichols (2014) recasts mode
selection in DMD as an optimization problemwith a �1 penalty. With a preference of stable
modes over fast decaying ones, Tissot et al. (2014) proposed a simpler criterion based
on time-averaged-eigenvalue-weighted amplitude. This was followed by Kou & Zhang
(2017) who used a similar criterion but computed the ‘energy’ of each mode, yielding
similar performance to spDMD at a lower computational cost. Based on the orthonormal
property of pseudo-inverse, Hua et al. (2017) proposed an ordering of Koopman modes by
defining a new ‘energy’. Compared with previous empirical criteria, the ‘energy’ for each
mode involves a pseudo-inverse which combines the influence from all eigenmodes, and,
therefore, the contribution from each mode cannot be isolated. Instead of selecting modes
from a ‘reconstruction’ perspective, Zhang et al. (2017) studied the issue of spurious modes
by evaluating the deviation of the identified eigenfunctions from linear evolution in an a
priori sense. Furthermore, optimized DMD (Chen, Tu & Rowley 2012; Askham & Kutz
2018) combines DMD with mode selection simultaneously, which is the forerunner of
recently proposed neural network-based models for Koopman eigenfunctions in spirit (Li
et al. 2017; Takeishi, Kawahara & Yairi 2017; Lusch, Kutz & Brunton 2018; Otto & Rowley
2019; Yeung, Kundu & Hodas 2019; Pan & Duraisamy 2020). Regardless of the above
issues related to non-convex optimization (Dawson et al. 2016), extension of optimized
DMD to EDMD/KDMD is not straightforward. Further, neural network-based models
require large amounts of data, are prone to local minima and lack interpretability. There
have been a few attempts towards mode selection in EDMD/KDMD. Brunton et al. (2016a)
present an iterative method that augments the dictionary of EDMD until a convergence
criterion is reached for the subspace. This is effectively a recursive implementation of
EDMD. Recently, Haseli & Cortés (2019) showed that given a sufficient amount of
data, if there is any accurate Koopman eigenfunction spanned by the dictionary, it must
correspond to one of the obtained eigenvectors. Moreover, they proposed the idea of
mode selection by checking if the reciprocal of identified eigenvalue also appears when
the temporal sequence of data is reversed, which is similar to the idea of comparing
eigenvalues on the complex plane from different trajectories, as proposed by Hua et al.
(2017). In contrast to the ‘bottom-up’ method of Brunton et al. (2016a) with subspace
augmentation, Hua et al. (2017) proposed a ‘top-down’ subspace subtraction method
relying on iteratively projecting the features onto the null space. A similar idea can be
traced back to Kaiser et al. (2017) who propose a search for the sparsest vector in the null
space.
As the main contribution of this work, we propose a novel EDMD/KDMD framework

equipped with the following strategy to extract an accurate yet minimal Koopman-invariant
subspace.

(i) We first evaluate the normalized maximal deviation of the evolution of each
eigenfunction from linear evolution in a posteriori fashion.
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(ii) Using the above criteria, we select a user-defined number of accurate EDMD/KDMD
modes.

(iii) Among the accurate EDMD/KDMD modes obtained above, informative modes are
selected using multi-task feature learning (Argyriou, Evgeniou & Pontil 2008a; Bach
et al. 2012).

To the best of our knowledge, this is the first model agnostic attempt to address sparse
identification of an accurate minimal Koopman-invariant subspace. Our contribution also
extends the classical spDMD (Jovanović et al. 2014) in a more general setting that includes
EDMD/KDMD. The applications are focused on strongly transient flows, and new classes
of stable Koopman modes are identified.
The organization of the paper is as follows: In § 2 we provide a review of EDMD/KDMD

in discrete time and present corresponding extensions to continuous time. Following
this, we discuss current challenges in standard EDMD/KDMD. In § 3 we propose
the framework of sparse identification of informative Koopman-invariant subspaces for
EDMD/KDMD with hyperparameter selection and provide implementation details. A
novel optimization procedure that penalizes departure from linear evolution is detailed
in §§ 3.1 and 3.2. Differences and connections between spDMD, Kou’s empirical criterion
and our proposed framework is shown from the viewpoint of optimization. In § 4 numerical
verification and modal analysis on examples from a fixed point attractor to a transient
cylinder wake flow, and a transient ship airwake are provided. In § 5 conclusions are drawn.

2. Review of EDMD/KDMD

In this section we provide a summary of our framework to extract the Koopman operator
using EDMD/KDMD in both discrete time and continuous time. Although the original
EDMD is seldom used for data-driven Koopman analysis in fluid flows due to its poor
scaling, it has recently been reported that a scalable version of EDMD can be applied to
high-dimensional systems (DeGennaro & Urban 2019). Since our algorithm to extract the
Koopman-invariant subspace is agnostic to the type of technique to compute the original
set of Koopman modes, we include both EDMD and KDMD for completeness.

2.1. Extended DMD

2.1.1. Discrete-time formulation
For simplicity, consider M sequential snapshots sampled uniformly in time with Δt on a
trajectory, {xi}Mi=1. The EDMD algorithm (Williams et al. 2015) assumes a dictionary of L
linearly independent functions i = 1, . . . , L, ψi(x) : M �→ C that approximately spans a
Koopman-invariant subspace FL,

FL = span{ψ1(x), . . . , ψL(x)}. (2.1)

Thus, we can write for any g ∈ FL, as g(x) = Ψ (x)a with a ∈ CL, where the feature
vector Ψ (x) is

Ψ (x) = [
ψ1(x) . . . ψL(x)

]
. (2.2)

Consider a set of L
′
observables as {gl}L

′
l=1 = {Ψ al}L

′
l=1, where al ∈ CL is arbitrary. After

the discrete-time Koopman operatorKΔt is applied on each gl, given data {xi}Mi=1, we have
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the following for l = 1, . . . , L′, and i = 1, . . . ,M − 1,

KΔtgl(xi) = gl(xi+1) = Ψ (xi+1)al = Ψ (xi)Kal + ri,l, (2.3)

where ri,l is simply the residual for the lth function on the ith data point. The standard
EDMD algorithm seeks a constant matrix K ∈ CL×L that governs the linear dynamics in
the observable space such that the sum of the square of the residuals ri,l from (2.3) over
all samples and functions,

J(K , {al}L
′

l=1) =
L

′∑
l=1

M−1∑
m=1

|(Ψ (xm+1) − Ψ (xm)K)al|2 = ‖(Ψ x′ − Ψ xK)A
′‖2F, (2.4)

is minimized over {xi}M+1
i=1 . In the above equation,

Ψ x =
⎡
⎣ ψ1(x1) . . . ψL(x1)

...
...

...

ψ1(xM−1) . . . ψL(xM−1)

⎤
⎦ , Ψ x′ =

⎡
⎣ψ1(x2) . . . ψL(x2)

...
...

...

ψ1(xM) . . . ψL(xM)

⎤
⎦ , (2.5a,b)

A
′ = [

a1 . . . aL′
]
. (2.6)

Considering ∂J/∂K = 0, we obtain Ψ H
x Ψ x′A

′
A

′H = Ψ H
x Ψ xKA

′
A

′H. Thus, the
corresponding minimizer Kopt is

Kopt = G+A(A
′
A

′H)(A
′
A

′H)+, (2.7)

where + denotes the pseudo-inverse and

G =
M−1∑
m=1

Ψ (xm)HΨ (xm) = Ψ H
x Ψ x, (2.8)

A =
M−1∑
m=1

Ψ (xm)HΨ (xm+1) = Ψ H
x Ψ x′ , (2.9)

where H denotes conjugate transpose. Note that when the set of observables fully spanFL,
i.e. A

′
is full rank, (A

′
A

′H)(A
′
A

′H)+ reduces to identity. Then we have the more familiar
KEDMD as

KEDMD = G+A, (2.10)

which is independent of the choice of {al}L
′

l=1.
Assuming that all eigenvalues of KEDMD are simple (this is an immediate consequence

for ergodic system Parry 2004), for i = 1, . . . , L, the corresponding Koopman
eigenfunctions ϕi associated with Koopman eigenvalues λi are

ϕi(x) = Ψ (x)vi, (2.11)

where KEDMDvi = λivi. Finally, the Koopman modes of a vector-valued Q-dimensional
observable function g : M �→ CQ are the vectors of weights {bi}Li=1 associated with the
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expansion in terms of eigenfunctions {ϕi}Li=1 as

g(x) =
L∑
i=1

ϕi(x)bi, (2.12)

where bi is often numerically determined in practice by ordinary least squares,

B =
⎡
⎣b1

...

bL

⎤
⎦ = (Ψ xV )+

⎡
⎣g(x1)

...

g(xM)

⎤
⎦ , (2.13)

with V = [v1 . . . vL].

2.1.2. Continuous-time formulation
Consider M data snapshots of the dynamical system with state x sampled over M
as {xi, ẋi}Mi=1, where ẋi = F (xi). Recall the generator of the semigroup of Koopman
operators K : D(K) �→ F ,K = limt→0(Kt f − f )/t, where D(K) is the domain in which
the aforementioned limit is well defined and the closure of D(K) is F . One can have the
evolution of any observable g = Ψ a ∈ FL as

Kg = ġ = F · ∇xΨ a = ΨKa + r, (2.14)

where r is the residual. Similarly, one can find a K that minimizes the sum of the square
of residual r minimized solution,

KEDMD = G+A, (2.15)

where

G =
M∑

m=1

Ψ (xm)HΨ (xm), (2.16)

A =
M∑

m=1

Ψ (xm)H(F · ∇x)Ψ (xm) =
M∑

m=1

Ψ (xm)H(ẋm · ∇x)Ψ (xm). (2.17)

Consider eigenvalues {μi}Li=1 and eigenvectors {vi}Li=1 of KEDMD. Koopman
eigenfunctions are in the same form as that in discrete-time formulations while
continuous-time Koopman eigenvalues μi can be converted to the aforementioned
discrete-time sense as λi = eμiΔt.

2.2. Kernel DMD

2.2.1. Discrete-time formulation
Instead of explicitly expressing a dictionary of candidate functions, one can instead
implicitly define a dictionary of candidate functions via the kernel trick, which is
essentially the dual form of EDMD (Williams et al. 2014). Note that, from the EDMD
formulation in (2.4), any vector in the range of K orthogonal to the range of Ψ H

x is
annihilated, and, therefore, cannot be inferred (Williams et al. 2014). Assuming Ψ x is
of rank r, we can obtain a full singular value decomposition (SVD) Ψ x = QΣZH and
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the corresponding economical-SVD asQrΣ rZH
r . With the aforementioned definitions, we

have K = Z rK̂ZH
r without loss (Otto & Rowley 2019).

Since the multiplication by a unitary matrix preserves the Frobenius norm, we have

J(K , {al}L
′

l=1) = ‖(Ψ x′ − Ψ xK)A
′‖2F (2.18)

= ‖(QHΨ x′ − QHQrΣ rK̂ZH
r )A

′‖2F (2.19)

= ‖(QH
r Ψ x′ − Σ rK̂ZH

r )A
′‖2F + ‖QH

r,⊥Ψ x′A
′‖2F, (2.20)

where QH
r,⊥ are the last m − r rows of QH. By taking derivatives with respect to K̂ , one

can obtain the minimal-norm minimizer as

K̂opt = Σ+
r Q

H
r Ψ x′A

′
A

′HZ r(ZH
r A

′
A

′HZ r)
+. (2.21)

Note that, since any column in the span of A
′
that is orthogonal to the span of Z r will be

annihilated by ZH
r and, thus, cannot be utilized to determine K̂ , it is reasonable to restrict

al within the column space of Z r. Assuming L
′
is sufficiently large such that the column

space of A
′
fully spans Z r, (2.22) can be proved (details in Appendix A),

A
′
A

′HZ r(ZH
r A

′
A

′HZ r)
+ = Z r. (2.22)

With (2.22), we can rewrite (2.21) as the familiar KDMD formulation,

K̂KDMD = Σ+
r Q

H
r Ψ x′Z r = Σ+

r Q
H
r Ψ x′ Ψ H

x QrΣ
+
r , (2.23)

where Ψ xΨ
H
x = QrΣ

2
rQ

H
r with (Ψ xΨ

H
x )ij = k(xi, xj), (Ψ x′ Ψ H

x )ij = k(xi+1, xj) for 1 ≤
i, j ≤ M − 1. Again, such a minimizer is independent of the choice of A

′
.

Note that, to compute Koopman eigenvalues and eigenfunctions, one would only need
access to Ψ x′ Ψ H

x and Ψ xΨ
H
x , i.e. the inner product among features on all data points.

Fortunately, on a compact domain M, it is well known from Mercer’s theorem (Mercer
1909) that once a suitable non-negative kernel function k(·, ·) : M × M �→ R is defined,
k(x, y) is the inner product among a potentially infinite-dimensional feature vector Ψ
evaluated at x, y ∈ M. Note that the choice of such a feature vector might not be unique
but the corresponding reproducing kernel Hilbert space (RKHS) is (Aronszajn 1950).
In the case of a Gaussian kernel, one can choose the canonical feature vector k(·, x)
which are ‘bumps’ of a certain bandwidth distributed on M. From the view point
of kernel PCA (Williams et al. 2014), Qr resulting from the finite-dimensional rank
truncation on the GrammatrixΨ xΨ

H
x is a numerical approximation to the rmost dominant

variance-explained mode shapes in the RKHS evaluated on the data points (Rasmussen
2003), and Z r represents the r dominant variance-explaining directions in terms of the
feature vector in the RKHS.
Similar to EDMD, given K̂KDMD = V̂ Λ̂V̂

−1
, V̂ = [v̂1 . . . v̂r], for i = 1, . . . , r, the

corresponding ith Koopman eigenfunctions ϕi and Koopman modes for a vector
observable g are

ϕi(x) = Ψ (x)Ψ H
x QrΣ

+
r v̂i, (2.24)

B = (Ψ xΨ
H
x QrΣ

+
r V̂ )+

⎡
⎣g(x1)

...

g(xM)

⎤
⎦ . (2.25)
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Kernel type k(x, x′) ∇xk(x, x′) Hyperparameter

Linear xx′H x′H
Polynomial (1 + xx′H)α α(1 + xx′H)α−1x′H α

Isotropic Gaussian exp(−‖x − x′‖2/σ 2) −2(x−x′)H
σ 2 exp(−‖x − x′‖2/σ 2) σ

Table 1. Common choice of differentiable kernel functions.

2.2.2. Continuous-time formulation
To the best of our knowledge, continuous-time KDMD has not been previously reported
in the literature. This can be helpful when non-uniform multi-scale samples are collected.
For the kernel trick to be applied in the continuous formulation, we write Ψ x′ as

Ψ x′ =
⎡
⎣ F (x1) · ∇xΨ (x1)

...

F (xM) · ∇xΨ (xM)

⎤
⎦ =

⎡
⎣ ẋ1 · ∇xΨ (x1)

...

ẋM · ∇xΨ (xM)

⎤
⎦ . (2.26)

To compute Ψ x′ Ψ H
x , denoting the qth component of F as fq,

(Ψ x′ Ψ H
x )ij = F (xi) · ∇xΨ (xi)Ψ H(xj)

=
L∑

l=1

N∑
q=1

(
fq(x)

∂ψl(x)
∂xq

)∣∣∣∣∣∣
x=xi

�ψl(x)|x=xj

=
N∑

q=1

fq(xi)
∂

∂xq

L∑
l=1

(ψl(x) �ψl(x′))

∣∣∣∣∣∣
x=xi,x′=xj

= F (xi) · ∇xk(x, x′)|x=xi,x′=xj

= ẋi · ∇xk(x, x′)|x=xi,x′=xj, (2.27)

where the overline symbol is the complex-conjugate operator, and the appearance of
Jacobian indicates that a differentiable kernel function is required for the extension to
continuous time. For common kernels used in Koopman analysis, the kernel function,
Jacobian and hyperparameters are listed in table 1.

2.3. Challenges in EDMD/KDMD
In this section we briefly discuss two broad challenges in the use of EDMD and KDMD
for Koopman analysis.

2.3.1. Mode selection
The number of approximated Koopman tuples (eigenfunction, eigenvalue, modes) from
EDMD grows with the dictionary size, whereas the KDMD grows with the number of
snapshots. However, in most cases, a significant number of the eigenfunctions fail to evolve
linearly, or are redundant in contribution to the reconstruction of the state x. For example,
as shown by Budišić et al. (2012), the Koopman eigenfunctions that vanish nowhere form
an Abelian group under pointwise products of functions, while polynomial observables
evolve linearly for a general linear system. These eigenfunctions, associated with the
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polynomial observables, are redundant in terms of providing an intrinsic coordinate for
the linear dynamics.
When the number of features is larger than the number of data snapshots, EDMD

eigenvalues can be misleading (Otto & Rowley 2019) and often plagued with spurious
eigenfunctions that do not evolve linearly even when the number of data snapshots is
sufficient. Analytically, it is clear that a Koopman eigenfunction in the span of the
dictionary will be associated with one of the eigenvectors obtained from EDMD, given
Ψ x is full rank, and contains sufficient snapshots M (Haseli & Cortés 2019). Indeed, the
EDMD is an L2 projection of the Koopman operator under the empirical measure (Korda &
Mezić 2018b). As a result, we seek a Koopman-invariant subspace following the standard
EDMD/KDMD. Since KDMD can be viewed as an efficient way of populating a dictionary
of nonlinear features in high-dimensional spaces, the above arguments apply to KDMD as
well. It should be noted that numerical conditioning can play a critical role since full rank
matrices can be ill-conditioned.

2.3.2. Choice of dictionary (for EDMD) or kernel (for KDMD)
Although the use of a kernel defines an infinite-dimensional feature space, the resulting
finite number of effective features can still be affected by both the type of kernel and
the hyperparameters in the kernel, as clearly shown by Kutz et al. (2016). Compared
with EDMD/KDMD, which are based on a fixed dictionary of features, neural network
approaches (Lusch et al. 2018; Otto & Rowley 2019; Pan & Duraisamy 2020) have the
potential to be more expressive in searching for a larger Koopman-invariant subspace.
From a kernel viewpoint (Cho & Saul 2009), feedforward neural networks enable
adaptation of the kernel function to the data. Such a characteristic could become
significant when the underlying Koopman eigenfunction is discontinuous. From an
efficiency standpoint, a kernel-guided scalable EDMD (DeGennaro &Urban 2019) may be
pursued. This can be achieved by generating kernel-consistent random Fourier features or
approximating a few components of the feature vector constructed fromMercer’s theorem,
i.e. the eigenfunctions of the Hilbert–Schmidt integral operator on the RKHS.

3. Sparse identification of informative Koopman-invariant subspace

To address the challenges described in § 2.3, we develop a novel framework that uses
EDMD/KDMD modes to identify a sparse, accurate and informative Koopman-invariant
subspace. Our framework first prunes spurious, inaccurate eigenmodes and second
determines a sparse representation of the system state x from the accurate eigenmodes. In
addition to the training data, as required in standard EDMD/KDMD, a validation trajectory
data set is required to avoid overfitting on training data. The terms spEDMD/spKDMDwill
refer to filtered mode selections of EDMD and KDMD, respectively.

3.1. Pruning spurious modes by a posteriori error analysis
Given a validation trajectory x(t)where t ∈ [0, T] associated with the nonlinear dynamical
system, for i = 1, . . . , L, we define the goodness of ith eigenfunctions in a posteriori way
as the maximal normalized deviation from linear evolution conditioned on trajectory x(t)
as Qi in the form

ei,x(0)(t) = |ϕi(x(t)) − eλitϕi(x(0))|
‖ϕi(x)‖2 , (3.1)

Qi � emaxi,x(0) = max
t

ei,x(0)(t), (3.2)

917 A18-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

04
 A

ug
 2

02
1 

at
 0

4:
09

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.271
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Extraction of informative Koopman-invariant subspaces

where ‖ϕi(x)‖2 �
√

(1/T)
∫ T
0 ϕ∗

i (x(t))ϕi(x(t)) dt. In practice, we evaluate the above
integral terms discretely in time. A similar a priori and less restrictive method has
been previously proposed (Zhang et al. 2017). In contrast, in the proposed method, the
maximal error is evaluated in an a posteriori way to better differentiate spurious modes
from accurate ones. For any 1 ≤ L̂ ≤ L, we can always select top L̂ accurate eigenmodes
out of L eigenmodes denoting their index in eigen-decomposition as {i1, i2, . . . , iL̂}, i.e.
Qi1 ≤ . . . ≤ QiL̂ ≤ . . . ≤ QiL . Then, for the next sparse reconstruction step, we simply use
ϕ defined as follows to reconstruct the state x,

ϕL̂(x(t)) �
[
ϕi1(x(t)) . . . ϕiL̂(x(t))

] ∈ C
L̂. (3.3)

To choose an appropriate L̂ to linearly reconstruct the system state x, we monitor the
normalized reconstruction error for the aforementioned set of top L̂ accurate eigenmodes
in the form

RL̂ �
‖(I − Ψ L̂Ψ

+
L̂
)X‖F

‖X‖F , (3.4)

where I is the identity matrix, and

X =
⎡
⎣x1

...

xM

⎤
⎦ , Ψ L̂ =

⎡
⎢⎣

ϕL̂(x1)
...

ϕL̂(xM)

⎤
⎥⎦ . (3.5a,b)

As a result, the evaluation of (3.4) for each L̂ is of similar expense to least-square
regression. For an increasing number of selected eigenfunctions L̂, the reconstruction error
RL̂ decreases, while the largest linear evolution error QiL̂ increases. Then, a truncation
L̂ can be defined by the user to strike a balance between linear evolution error QiL̂
and reconstruction error RL̂. In the next subsection we will further select a subset of
eigenmodes for spanning the minimal Koopman-invariant subspace.

3.2. Sparse reconstruction via multi-task feature learning

Numerical experiments revealed that, in the selected set of L̂most accurate eigenfunctions,
two types of redundant eigenfunctions were found:

(i) nearly constant eigenfunctions with eigenvalues close to zero;
(ii) pointwise products of Koopman eigenfunctions introduced by nonlinear observables,

not useful in linear reconstruction.

To filter the above modes, we consider sparse regression with L̂ most accurate
eigenfunctions as features and the system state x as target. Note that, since we have
guaranteed the accuracy of selected eigenmodes, one can either choose features a priori
ϕi(x(t)) or a posteriori (multi-step prediction) eλitϕi(x(0)). Here we choose the latter since
it is directly related to prediction, and can actually be reused from the previous step without
additional computational cost. We denote the corresponding multi-step prediction feature
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matrix as Ψ̂ L̂ ,

Ψ̂ L̂ =

⎡
⎢⎢⎢⎣

ϕL̂(x1)
ϕL̂(x1)e

ΔtΛL̂

...

ϕL̂(x1)e
(M−1)ΔtΛL̂

⎤
⎥⎥⎥⎦ ∈ C

M×L̂, (3.6)

where ΛL̂ = diag(λi1, . . . , λiL̂). Note that similar features Ψ̂ L̂ were also considered in
spDMD (Jovanović et al. 2014) and optimized DMD (Chen et al. 2012). Finally, the
fact that there is no control over the magnitudes of the implicitly defined features in
the standard KDMD may cause unequal weighting between different features. Thus, we
consider scaling the initial value of all eigenfunctions to be unity in (3.7),

Ψ̂ L̂,scaled = Ψ̂ L̂Λ
−1
ini =

⎡
⎢⎢⎢⎣

1 . . . 1
eΔtλi1 . . . eΔtλiL̂

...
...

...

e(M−1)Δtλi1 . . . e(M−1)ΔtλiL̂

⎤
⎥⎥⎥⎦ , (3.7)

where
Λini = diag(

[
ϕi1(x1) . . . ϕiL̂(x1)

]
). (3.8)

Since x is finite dimensional, searching for a sparse combination of Ψ̂ L̂ to reconstruct
x is equivalent to the solution of a multi-task feature learning problem with preference
over a relatively small size of features. Note that this type of problem has been studied
extensively in the machine learning community (Argyriou et al. 2008a, ; Zhao et al. 2015).
In this work, given X and Ψ̂ L̂,scaled, we leverage the multi-task ElasticNet (Pedregosa et al.

2011) to search for a row-wise sparse B
′
, which solves the following convex optimization

problem:

B
′∗ = argmin

B
′∈CL̂×N

1
2M

‖X − Ψ̂ L̂,scaledB
′‖2F + αρ‖B′‖2,1 + α(1 − ρ)

2
‖B′‖2F (3.9)

and
B = Λ−1

ini B
′∗. (3.10)

Here ‖·‖2,1 defined in (3.11) is the so-called �1/�2 norm for a matrix W ,

‖W‖2,1 �
∑
i

√∑
j

W 2
ij =

∑
i

‖wi‖2, (3.11)

and W i is ith row of W . This norm is special in that it controls the number of shared
features learned across all tasks, i.e. ith Koopman mode bi is either driven to a zero
vector or not while the standard �1 only controls the number of features for each task
independently.
As a simple illustration, the �1/�2 norm for three different N × N square matrices (here

N = 5) with 0-1 binary entries is displayed in figure 2. Since
√
N ≤ 1 + √

N − 1 ≤ N,
minimizing the �1/�2 norm leads to a penalty on the number of rows. As shown in the
second term on the right-hand side of (3.9), minimizing the �1/�2 norm penalizes the
number of Koopman eigenmodes.
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�1/�2 loss = �N
–

�1/�2 loss = N�1/�2 loss = 1 + �N–1
–

Figure 2. Illustration of �1/�2 norm (defined in (3.11)) for different N × N 0-1 binary matrices.

The above procedure not only serves the purpose of selecting modes that explain the
behaviour of all components in the state, but is also particularly natural for EDMD/KDMD
since Koopman modes are obtained via regression. Here α is a penalty coefficient that
controls the amount of total regularization in the �1/�2 and �2 norms, while ρ is the
ElasticNet mixing parameter (Zou & Hastie 2005) that ensures uniqueness of the solution
when highly correlated features exist. In our case, we choose ρ = 0.99 and sweep α over
a certain range with Lr non-zero features denoted as Ψ̂ Lr for each α, while monitoring
the normalized residual minB‖X − Ψ̂ LrB‖F/‖X‖F to choose an appropriate α. It has to
be mentioned that sometimes the sparsest solution from a multi-task ElasticNet was found
to shrink to a small number instead of zero. This is a consequence of the insufficiency
of the current optimization algorithm which employs coordinate descent (Pedregosa et al.
2011). Hence, for each target component, we consider an additional hard-thresholding step
by setting the corresponding magnitude of the coefficient, i.e. contribution of any mode,
to zero if it is smaller than a certain threshold ε ∈ [10−2, 10−3].
Finally, we refit the Koopman modes as BLr = Ψ̂

+
LrX which avoids the bias introduced

by the penalty term (spDMD does not refit B) in (3.9). To summarize, the general idea of
the framework is illustrated in figure 3. As a side note for interested readers, if one only
performs multi-task feature learning without hard thresholding and refitting, one would
obtain a smooth ElasticNet path instead of a discontinuous one with hard thresholding
and refitting. However, the smooth ElasticNet can lead to difficulties in choosing the
proper α visually, especially when the given dictionary of EDMD/KDMD is not rich
enough to cover an informative Koopman-invariant subspace. Further discussion on the
computational complexity of our framework is presented in appendix B.
Thus far, we have presented our main contribution: a novel optimization-based

framework to search for an accurate and minimal Koopman-invariant subspace from data.
An appealing aspect of our framework is the model agnostic property, which makes
the extension easy from the standard EDMD/KDMD to more advanced approximation
methods (Azencot, Yin & Bertozzi 2019; Jungers & Tabuada 2019; Mamakoukas et al.
2019). In the following subsection we present two mathematical insights: 1) multi-task
feature learning generalizes spDMD under a specific constraint; 2) a popular empirical
criterion can be viewed as a single step of proximal gradient descent.

3.2.1. Relationship between spDMD, Kou’s criterion and multi-task feature learning
For simplicity, neglecting the ElasticNet part (i.e. using ρ = 1), (3.9) with L modes leads
to a multi-task Lasso problem,

min
B

′∈CL×N

1
2M

‖X − Ψ̂ L,scaledB
′‖2F + α‖B′‖2,1. (3.12)
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Figure 3. Schematic illustrating the idea of sparse identification of Koopman-invariant subspaces for EDMD
and KDMD.
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Recall that in spDMD (Jovanović et al. 2014), DMD modes φ1, . . . , φL with ‖φi‖2 = 1
remain the same as standard DMD. Similarly, if we posit a structural constraint on B

′
in

(3.12) by enforcing the modes as those from DMD, then there exist α1, . . . , αL such that

B
′ =

⎡
⎣α1

. . .

αL

⎤
⎦

⎡
⎢⎣

φT
1
...

φT
L

⎤
⎥⎦ . (3.13)

Note the fact that ‖B′‖2,1 = ∑L
i |αi|. Hence, we recover the �1 optimization step in the

spDMD (Jovanović et al. 2014) from (3.12) as

min
α1,...,αL∈C

1
2M

∥∥∥∥∥∥∥X −

⎡
⎢⎣

1 . . . 1
...

...
...

e(M−1)Δtλi1 . . . e(M−1)ΔtλiL

⎤
⎥⎦

⎡
⎢⎣

α1
. . .

αL

⎤
⎥⎦

⎡
⎢⎣

φT
1
...

φT
L

⎤
⎥⎦

∥∥∥∥∥∥∥
2

F

+ α

L∑
i=1

|αi|,

(3.14)

where φ1, . . . , φL are the DMDmodes corresponding to eigenvalues as λ1, . . . , λL. Hence,
multi-task feature learning solves a less constrained optimization than spDMD in the
context of DMD.
Kou & Zhang (2017) proposed an empirical criterion for mode selection by ordering

modes with ‘energy’ Ii defined as

Ii =
M∑
j=1

|αie(j−1)Δtλi | =
⎧⎨
⎩

|αi|(1 − |eΔtλi |M)

1 − |eΔtλi | if |eΔtλi | /= 1,

M|αi| otherwise.
(3.15)

From an optimization viewpoint, consider a posteriori prediction matrix XDMD from
DMD,

X ≈ XDMD =

⎡
⎢⎣

1 . . . 1
...

...
...

e(M−1)Δtλ1 . . . e(M−1)ΔtλL

⎤
⎥⎦

⎡
⎣α1

. . .

αL

⎤
⎦

⎡
⎢⎣

φT
1
...

φT
L

⎤
⎥⎦ , (3.16)

where XDMD is determined from DMD using the snapshot pair (X ,X
′
). Here XDMD is a

rank-1 summation of contributions from different modes (Schmid 2010). Hence, a general
mode selection technique with a user-defined preference weighting w is the following
weighted �0 non-convex optimization problem:

min
a∈CL

∥∥∥∥∥∥∥XDMD −

⎡
⎢⎣

1 . . . 1
...

...
...

e(M−1)Δtλ1 . . . e(M−1)ΔtλL

⎤
⎥⎦ diag(a)

⎡
⎢⎣

φT
1
...

φT
L

⎤
⎥⎦

∥∥∥∥∥∥∥
2

F

+ λ‖a‖w,0. (3.17)

Here ‖a‖w,0 �
∑

i wi|ai|0, |ai|0 is one if ai /= 0 and zero otherwise. Note that this
pseudo-norm can be viewed as a limiting case of a weighted composite sine function
smoothed �0 regularization (Wang et al. 2019).
To solve this non-convex optimization problem, compared with the popular �1 relaxation

method such as the one in spDMD, a less known but rather efficient way is iterative
least-squares hard thresholding. This has been used in sparse identification of dynamical
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systems (SINDy) (Brunton, Proctor & Kutz 2016b), and convergence to a local minimum
has been proved (Zhang & Schaeffer 2019). Indeed, a more rigorous framework that
generalizes such an algorithm is the proximal gradient method (Parikh & Boyd 2014).
Much like Newton’s method is a standard tool for unconstrained smooth optimization, the
proximal gradient method is the standard tool for constrained non-smooth optimization.
Here, it is straightforward to derive the iterative algorithm that extends to the weighted �0
norm from step k to step k + 1 as

ak+1 = prox(λ/2)ηk‖·‖w,0
(ak − ηk∇aQ(ak)), (3.18)

where

Q(a) = 1
2

∥∥∥∥∥∥∥XDMD −

⎡
⎢⎣

1 . . . 1
...

...
...

e(M−1)Δtλ1 . . . e(M−1)ΔtλL

⎤
⎥⎦ diag(a)

⎡
⎢⎣

φT
1
...

φT
L

⎤
⎥⎦

∥∥∥∥∥∥∥
2

F

, (3.19)

and ηk is the step size at step k. Note that the weighted �0 norm is a separable sum of ai.
After some algebra, we have the proximal operator as

prox(λ/2)ηk‖·‖w,0
(a) = [H√

ληk
(a1/

√
w1) . . . H√

ληk
(aL/

√
wL)

]T
, (3.20)

whereH√
ληk

(a) is an element-wise hard-thresholding operator defined as a if |a| <
√
ληk

and zero otherwise.
Particularly if one considers the initial step size to be extremely small η1 � 1 then

the second term in (3.18) can be neglected. Thus, for i = 1, . . . , L, with the following
weighting scheme that penalizes fast decaying modes,

wi = 1/β2
i , βi =

⎧⎪⎨
⎪⎩
1 − |eΔtλi |M
1 − |eΔtλi | if |eΔtλi | /= 1,

M otherwise,

(3.21a,b)

one immediately realizes the thresholding criterion for ith entry of a becomes√
ληk > |αi/

√
wi| = |αiβi|. (3.22)

Then plugging (3.21a,b) in (3.18), the first iteration in (3.18) reduces to mode selection
with Kou’s criterion in (3.15). Normally, βi is very large for unstable modes and small
for decaying modes. It is important to note that (a) such a choice of w preferring
unstable/long-lasting modes over decaying modes is still user defined; (b) optimization is
in an a priori sense to obtain DMD. Thus, the insufficiency of the a priori formulation to
account for temporal evolution is indeed compensated by this criterion, while DMD in an a
posteriori formulation (e.g. spDMD) includes such an effect implicitly in the optimization.
Hence, it is possible that in some circumstances spDMD and Kou’s criterion could achieve
similar performance (Kou & Zhang 2017).
Lastly, as summarized in figure 4, it is important to mention the similarities and

differences between spKDMD and spDMD: (1) spKDMDwill refit Koopman modes while
spDMD does not; and (2) the amplitude for all the modes in spKDMD is fixed as unity
while it has to be determined in spDMD.
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Figure 4. Differences and similarities among existing mode selection methods.

3.3. Hyperparameter selection
For simplicity, hyperparameter selection for KDMD is only discussed in this section. To
fully determine a kernel in KDMD, one would have to choose the following:

(i) kernel type;
(ii) kernel parameters, e.g. scale parameters σ ;
(iii) rank truncation r.

In this work, for simplicity, we fix the kernel type to be an isotropic Gaussian. Motivated
by previous work on error evaluation in Koopman modes by Zhang et al. (2017), we
consider evaluation with cross-validation on a priori mean normalized accuracy defined
in (3.23) and (3.24) for the ith eigenfunction,

discrete form: Qa
i = 1

M − 1

M−1∑
j=1

|ϕi(xj+1) − λiϕi(xj)|√√√√ 1
M

M∑
k=1

ϕ∗
i (xk)ϕi(xk)

, (3.23)

continuous form: Qa
i = 1

M

M∑
j=1

|ẋj · ∇xϕi(xj) − λiϕi(xj)|√√√√ 1
M

M∑
k=1

ϕ∗
i (xk)ϕi(xk)

, (3.24)

on validation data for a different number of rank truncation and kernel parameters.
Note that evaluation on maximal instead of mean normalized accuracy would lead to

the error metric to be strongly dependent on the local sparsity of training data in the
feature space. This is particularly true for when a single trajectory for a high-dimensional
dynamical system is used, and random shuffled cross-validation is performed (Pan &
Duraisamy 2018).
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For each set of hyperparameters, we first compute the number of eigenfunctions of
which the error defined in (3.23) and (3.24) is below a certain threshold on both training
and validation data for each fold of cross-validation. Then we compute the average number
of such eigenfunctions over all folds which indicates the quality of the corresponding
subspace. Finally, we plot the average number vs rank truncation r and kernel scale
parameters σ to select hyperparameters.

3.4. Implementation
We implement the described framework in Python with moderate parallelism in each
module. We use scipy.special.hermitenorm (Jones, Oliphant & Peterson 2001) to generate
normalized Hermite polynomials and MultiTaskElasticNet in the scikit-learn (Pedregosa
et al. 2011) for multi-task feature learning where we set the maximal iteration as 105 and
tolerance as 10−12. Message passing interface parallelism usingmpi4py (Dalcin et al. 2011)
is used for the grid search in hyperparameter selection. To prepare data with hundreds
of gigabytes collected from high-fidelity simulations, a distributed SVD written in C++
named the parallel data processing (PDP) tool is developed for dimension reduction. A
brief description of this tool is given in appendix D.

4. Results and discussion

4.1. Two-dimensional fixed point attractor with the known finite Koopman-invariant
subspace

We first consider a simple fixed point nonlinear dynamical system which has an
analytically determined, finite-dimensional non-trivial Koopman-invariant subspace
(Brunton et al. 2016a; Kaiser et al. 2017) to show the effectiveness of the proposed method.
We consider a continuous-time formulation. The governing equation for the dynamical
system is given as

ẋ1 = μx1, (4.1)

ẋ2 = λ(x2 − x21), (4.2)

where μ = −0.05, λ = −1. One natural choice of the minimal Koopman eigenfunctions
that linearly reconstructs the state is (Brunton et al. 2016a)

ϕ1(x) = x2 − λx21/(λ− 2μ), ϕ2(x) = x1, ϕ3(x) = x21, (4.3a–c)

with eigenvalues λ = −1, μ = −0.05, 2μ = −0.1, respectively.
The way we generate training, validation and testing data is described below with

distribution of the data shown in figure 5.

(i) Training data: a point cloud with M = 1600 pairs of {x(i), ẋ(i)}Mi=1 is generated by
Latin hypercube sampling (Baudin 2015) within the domain x1, x2 ∈ [−0.5, 0.5].

(ii) Validation data: a single trajectory with initial condition as x1(0) = x2(0) = 0.4,
sampling time interval Δt = 0.03754 from t = 0 to t = 30.

(iii) Testing data: a single trajectory with initial condition as x1(0) = x2(0) = −0.3,
sampling time interval Δt = 0.06677 from t = 0 to t = 40.

As an illustration, we consider two models to approximate the Koopman operator from
training data:
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Figure 5. Data distribution for a 2-D fixed point attractor.
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Figure 6. Error analysis of 36 eigenmodes from continuous-time EDMD for the 2-D fixed point attractor. (a)
Trends of linearly evolving error Q and reconstruction error R. (b) Temporal evolution of relative error for top
L̂ = 10 accurate eigenmodes.

(i) a continuous-time EDMD with normalized Hermite polynomials up to fifth-order
with L = 36 features;

(ii) a continuous-time KDMD with isotropic Gaussian kernel σ = 2 with reduced rank
r = L = 36.

Details of the above choices based on the steps of hyperparameter selection in § 3.3 are
given in §C.1.

4.1.1. Results for continuous-time EDMD with mode selection
As displayed in figure 6, we begin with an error analysis of all of the eigenmodes
on validation data in figure 5 according to linearly evolving error Q defined in (3.2)
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and R defined in (3.4). From figure 6(a), considering both the linearly evolving error
and the quality of the reconstruction, we choose the cut-off threshold at L̂ = 10. We
observe a sharp cut-off in figure 6(a) around the number of selected eigenmodes L̂ = 8.
This is a reasonable choice, since from the eigenvalues in figure 6(b), we notice the
analytic Koopman eigenmodes are not covered until first eight accurate eigenmodes
are selected. Note that the legend in figure 6(a) is ordered by the maximal deviation
from linear evolution, e.g. the second most accurate mode is the 34th mode with zero
eigenvalue. Indeed, the first four eigenfunctions (index = 1, 34, 35, 36) are redundant in
terms of reconstruction in this problem (this could be interesting if the system is instead
Hamiltonian). The fifth (index = 29) and sixth (index = 33) eigenmodes correspond to
two of the analytic eigenfunctions that span the system, and the seventh (index = 32)
eigenmode is indeed the product of the fifth and sixth eigenfunctions. Similarly, the ninth
and tenth eigenfunctions (index = 31, 28) also appear to be the polynomial combination
of the true eigenfunctions.
According to (3.9), to further remove redundant modes, we perform multi-task feature

learning on the L̂ = 10 eigenmodes. The corresponding ElasticNet path is shown in
figure 7. Note that each α corresponds to a minimizer of (3.9). To choose a proper α

so as to find a proper Koopman-invariant subspace, it is advisable to check the trend of the
normalized reconstruction error and number of non-zero features. Given the dictionary,
for simple problems for which there exists an exact Koopman-invariant subspace that also
spans system state, a proper model can be obtained by selecting α ≈ 10−6 which ends up
with only three eigenfunctions, as shown in figure 7. Moreover, as is common for EDMD
with polynomial basis (Williams et al. 2014, 2015), a pyramid of eigenvalues appears in
figure 7.
As shown in figure 8, both the identified eigenvalues, and contour of the phase angle and

magnitude of selected eigenfunctions from spEDMD match the analytic eigenfunctions
given in (4.3a–c) very well. As expected, the prediction on unseen testing data is also
excellent. Note that the indices of true eigenfunctions ϕ1, ϕ2 and ϕ3 ordered by Kou’s
criterion in (3.15) are 8, 5 and 6. In this case, all of the true eigenfunctions are missing
in the top three modes chosen by Kou’s criterion. Indeed, the top three modes chosen by
Kou’s criterion have nearly zero eigenvalues.

4.1.2. Results of continuous-time KDMD with mode selection
The mode selection algorithm presented above can be applied in precisely the same form
to KDMD, given a set of eigenfunctions and eigenvalues. Error analysis of eigenfunctions
is shown in figure 9, from which we choose L̂ = 10 as well. As before, eigenvalues ordered
by maximal deviation from linear evolution are shown in the legend in figure 9(a). Again,
in figure 9(a), we observe a sharp decrease in the reconstruction error after the four most
accurate modes are included. This is expected, as the second to fourth most accurate
modes are analytically exact from the figure 9(b). As shown in figures 10 and 11, it is
confirmed that both spEDMD and spKDMD arrive at the same analytic eigenfunctions
with difference up to a constant factor. It should be noted that, although polynomials are
not analytically in the RKHS (Minh 2010), good approximations can still be achieved
conditioned on the data we have, i.e. x1, x2 ∈ [−0.5, 0.5]. Again, the indices of true
eigenfunctions ϕ1 to ϕ3 ordered by Kou’s criterion are 8, 2 and 3. Hence, ϕ1 is missing in
the top three modes chosen by Kou’s criterion. Similarly, the first mode chosen by Kou’s
criterion has a zero eigenvalue.
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Figure 7. Result of multi-task feature learning on top L̂ = 10 accurate eigenmodes from continuous-time
EDMD for the 2-D fixed point attractor. (a) ElasticNet path for x1. (b) ElasticNet path for x2. (c) Trends of
normalized reconstruction error and number of non-zero terms vs α. (d) Selected continuous-time eigenvalues.

4.1.3. Effect of SVD regularization
Singular value decomposition truncation is a standard regularization technique in the
solution of a potentially ill-conditioned linear system. In the standard EDMD in (2.7),
for example, G could be potentially ill-conditioned, leading to spurious eigenvalues in
K . Hence, Williams et al. (2014) recommend SVD truncation in (2.8) to obtain a robust
solution of K . Effectively, it shrinks the number of EDMD/KDMD modes. It has to be
recognized, however, that the mode reduction from SVD truncation is not the same as
mode selection. Most importantly, one should not confuse numerical spuriousness from
poor numerical conditioning with functional spuriousness from the orthogonal projection
error of the Koopman operator (Korda & Mezić 2018b). Indeed, SVD truncation does not
always lead to better approximation of a Koopman-invariant subspace. It is rather a linear
dimension reduction that optimally preserves the variance in the feature space conditioned
on the training data without knowing the linear evolution property of each feature.
For demonstration, we take the above fixed point attractor system where we use the

same data and standard EDMD algorithm with the same order of Hermite polynomials.
The results of prediction on the unseen testing data shown in figure 12 indicate that even
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Figure 8. Sparsely selected eigenfunctions and eigenvalues from continuous-time EDMD for the 2-D fixed
point attractor with the corresponding prediction on testing data with an unseen initial condition x1(0) =
x2(0) = −0.3. From left to right, the top three figures show contours of magnitude of eigenfunctions, while
the bottom three figures are those of the phase angle of eigenfunctions. Last column: comparison between
prediction and ground truth for an unseen testing trajectory.
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L̂ = 10 accurate eigenmodes.

though only three eigenfunctions (indeed three features in the Hermite polynomial) are
required, standard EDMD fails to identify the correct eigenfunctions with 26 SVD modes
while the results improve with 31 modes retained. The sensitivity of standard EDMD with
respect to SVD truncation is likely a result of the use of normalized Hermite polynomials
where SVD truncation would lead to a strong preference over the subspace spanned by the
higher-order polynomials. We did not observe such a sensitivity for KDMD, unless the
subspace is truncated below 10 modes.
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Figure 10. Result of multi-task feature learning on top L̂ = 10 accurate eigenmodes from continuous-time
KDMD for the 2-D fixed point attractor. (a) ElasticNet path for x1. (b) ElasticNet path for x2. (c) Trends of
normalized reconstruction error and number of non-zero terms vs α. (d) Selected continuous-time eigenvalues.

4.2. Two-dimensional, transient flow past a cylinder
As a classical example for Koopman analysis in fluid dynamics (Bagheri 2013; Williams
et al. 2014; Otto & Rowley 2019), transient two-dimensional flow past a cylinder
(figure 13) is considered at different Reynolds numbers (Re = U∞D/ν), where U∞ =
1 is the free streamvelocity, D = 2 is the diameter of the cylinder and ν is the
kinematic viscosity. The two-dimensional incompressible Navier–Stokes equations govern
the dynamics with far-field boundary conditions for pressure and velocity and no-slip
velocity on the cylinder surface. Numerical simulations are performed using the icoFoam
solver in OpenFOAM (Jasak, Jemcov & Tukovic 2007) solving the two-dimensional
incompressible Navier–Stokes equations. We explore Re = 70, 100, 130 by changing the
viscosity. The pressure field is initialized with independent and identically distributed
(i.i.d.) Gaussian noise N (0, 0.32). The velocity is initialized with a uniform free stream
velocity superimposed with i.i.d. Gaussian noise N (0, 0.32). It should be noted that the
noise is generated on the coarsest mesh shown in figure 13, and interpolated to the finer
meshes. Grid convergence with increasing mesh resolution is assessed by comparing the
temporal evolution of the drag coefficient CD and lift coefficient CL.
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Figure 11. Sparsely selected eigenfunctions and eigenvalues from continuous-time KDMD for the 2-D fixed
point attractor with corresponding prediction on testing data with an unseen initial condition x1(0) = x2(0) =
−0.3. From left to right, the top three figures show contours of the magnitude of eigenfunctions, while
the bottom three figures are those of the phase angle of eigenfunctions. Last column: comparison between
predictions and ground truth for an unseen testing trajectory.

Note that the dynamics of a cylinder wake involves four regimes: near-equilibrium
linear dynamics, nonlinear algebraic interaction between equilibrium and the limit cycle,
exponential relaxation rate to the limit cycle and periodic limit cycle dynamics (Chen
et al. 2012; Bagheri 2013). Instead of considering data only from each of these regimes
separately (Chen et al. 2012; Taira et al. 2019) or with only the last two regimes
where exponential linear dynamics is expected (Bagheri 2013), we start collecting data
immediately after the flow field becomes unstable, and stop after the flow field experiences
several limit cycles. Note that the regime with algebraic interaction is non-modal (Schmid
2007) and, therefore, cannot be expressed as individual exponential terms (Bagheri 2013).
This becomes a challenging problem for DMD (Chen et al. 2012). The sampling time
interval is Δt = 0.1tref , where tref = D/U∞.
For each Re, 891 snapshots of full velocity field U and V with sampling time

interval Δt are collected as two matrices of size Ngrid × Nsnapshots. Following this, each
velocity component is shifted and scaled (normalized) between [−1, 1]. Since space-filling
sampling in any high-dimensional space would be extremely difficult, we split the
trajectory into training, validation and testing data by sampling with strides similar to the
‘even-odd’ sampling scheme previously proposed by Otto & Rowley (2019). As illustrated
in figure 14, given index i, if i mod 3 = 0, the ith point belongs to training set while i
mod 3 = 1 corresponds to validation, and i mod 3 = 2 for testing data. Consequently, the
time interval in the training, testing, validation trajectory is tripled as 3Δt = 0.3tref . Thus,
training, validation and testing data are split into 297 snapshots each. Finally, we stack
data matrices along the first axis corresponding to the number of grid points, and perform a
distributed SVD described in § 3.4. For all three cases, the top 20 PODmodes are retained,
corresponding to 99% of kinetic energy. Next, we apply our algorithm to discrete-time
KDMDwith isotropic Gaussian kernel on this reduced-order nonlinear system. We choose
the hyperparameters σ = 3 and r = 180. Further details are given in §C.2.
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Figure 12. Standard EDMD prediction on an unseen trajectory with different SVD truncations for a fixed
point attractor.

4.2.1. Results of discrete-time KDMD with mode selection
For all three Reynolds numbers, a posteriori error analysis is shown in figure 15. A good
choice of the number of accurate modes L̂ retained for reconstruction is around 60 since
the corresponding maximal deviation from linear evolution is still around 5% while the
reconstruction error reaches a plateau after L̂ > 60.
After the mode selection on validation data, a α-family of solutions is obtained

with corresponding reconstruction error and the number of non-zero terms as shown
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Figure 13. (a) Illustration of computational mesh for a two-dimensional cylinder wake problem (coarsest).
(b) Contour of vorticity ωz for Re = 70 when vortex shedding is fully developed (t = 175).
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Figure 14. Illustration of splitting a uniformly sampled single trajectory in high-dimensional phase space into
training, validation and testing sets.
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Figure 15. Trend of linear evolution error Q and reconstruction error R from discrete-time KDMD for the
two-dimensional cylinder wake flow case; (a) Re = 70, (b) Re = 100, (c) Re = 130.

in figure 16. Note that the chosen solution is highlighted as blue circles. As shown in
table 2, nearly half of the accurate KDMD eigenmodes identified are removed with the
proposed sparse feature selection. Note that for all three cases, the number of selected
modes (around 32 to 34) is still larger than that required in neural network models (around
10) (Otto & Rowley 2019; Pan & Duraisamy 2020). This is because the subspace spanned
by KDMD/EDMD relies on a predetermined dictionary rather than being data-adaptive
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Figure 16. Variation of reconstruction error R and number of non-zero terms for the two-dimensional
cylinder wake flow; (a) Re = 70, (b) Re = 100, (c) Re = 130. The blue circle corresponds to selected α.

Re = 70 Re = 100 Re = 130

αselect 7.19 × 10−4 7.19 × 10−4 1.39 × 10−3

Number of selected modes 34 32 33
Number of total modes 297 297 297
Normalized reconstruction error R 0.075 0.105 0.113

Table 2. Summary of mode selection for discrete-time KDMD on two-dimensional cylinder wake flow.

like neural network models. Nevertheless, due to the additional expressiveness from
nonlinearity, we will see in § 4.2.3 that spKDMD performs significantly better than DMD
(Schmid 2010) and spDMD (Jovanović et al. 2014), while enjoying the property of convex
optimization at a much lower computational cost than the inherently non-convex and
computationally intensive neural network counterparts.
The predictions of the top eight POD coefficients (denoted as x1 to x8) on testing data

are displayed in figures 17–19. The results match very well with ground truth for all three
cases. Figure 21 shows that there appear to be five clusters of selected eigenvalues while
most of the modes are removed by the proposed algorithm. Similar observations were
also made in Bagheri (2013) when DMD is applied to the full transient dynamics. This
pattern consisting of a stable eigenvalue on the unit circle surrounded by several decaying
eigenvalues is observed for all clusters. The stable eigenvalue contributes to limit cycle
behaviour, while the decaying eigenvalues account for the transient phenomenon. Due to
symmetry, only eigenvalues in the first quadrant are shown in the bottom row of figure 21.
It is observed that the frequency associated with the type-II cluster is approximately twice
that of type-I. This is in good agreement with previous analytical results from the weakly
nonlinear theory (Bagheri 2013). The frequency f is normalized as St = fD/U∞, where St
is the Strouhal number.
Recall that in the laminar parallel shedding region (47 < Re < 180), the characteristic

Strouhal number St scales with −1/
√
Re (Fey, König & Eckelmann 1998). Therefore, it

is expected that St of both types tend toward higher frequency as Re increases from 70
to 130. Furthermore, it is interesting to note that the corresponding Strouhal numbers for
lift and drag when the system is on the limit cycle, StL and StD (we observe that each lift
and drag coefficient exhibits only one frequency at the limit cycle regime for the range of
Re studied in this work.), coincide with the stable frequency of type-I and II, respectively,
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Figure 17. A posteriori prediction of testing trajectory for Re = 70 in terms of the top eight POD coefficients
with spKDMD.

as indicated in figure 21. This is due to the anti-symmetrical/symmetrical structure of the
velocity field of type-I/II Koopman mode, respectively, as can be inferred from figure 22.
A schematic is also shown in figure 20.
The higher frequency mode is symmetrical (along the free stream direction) in U and

anti-symmetrical in V . As a consequence, this only contributes to the oscillation of drag.
The lower frequency mode is anti-symmetrical in U and symmetrical in V , and only
contributes to the oscillation of lift. Thus, the fluctuation in the lift mostly results from
the stable mode in type-I, while that for drag results from the stable mode in type-II with
twice the frequency.
Finally, several representative Koopman modes from spKDMD for three Re are shown

in figures 22–24. For a better comparison of mode shapes, contributions from the stable
modes of type-I and II with a threshold of 0.001 at t = 0 is displayed in the top left
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Figure 18. A posteriori prediction of testing trajectory for Re = 100 in terms of the top eight POD
coefficients with spKDMD.

of figure 25. To remove the effect of time, the ‘envelope’ of the mode shape, i.e. time
average of the isocontours is shown in the top right of figure 25. From these results, we
observe the following interesting phenomena.

• The minimal dimension of the Koopman-invariant subspace that approximately
captures the limit cycle attractor for all three Re that fall into laminar vortex
shedding regime (White & Corfield 2006) is five, which is consistent with previous
multi-scale expansion analysis near the critical Re (Bagheri 2013).

• The lobes of stable Koopman modes in the type-I cluster show an approximately
50% larger width than those in a type-II cluster.

• Similarity/colinearity among Koopman modes within each cluster is observed.
Such a finding is previously reported in the theoretical analysis by Bagheri (2013).
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Figure 19. A posteriori prediction of testing trajectory for Re = 130 in terms of the top eight POD
coefficients with spKDMD.

Lower St

Higher St

Figure 20. Illustration of the structure of velocity field for the lower (top) and higher frequency (bottom)
Koopman modes. The arrow roughly indicates the velocity direction.
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Figure 21. Discrete-time eigenvalue distribution of full KDMD and spKDMD; (a) Re = 70, (b) Re = 100, (c)
Re = 130. Blue dot: full KDMD eigenvalues. Red dot: spKDMD eigenvalues. Bottom row: zoomed image.
Roman numerals I and II correspond to two types of eigenvalue clusters of distinct frequencies, with each of
them enclosed by cyan dashed circles. The green/cyan solid line corresponds to StD/StL.

A similarity in spatial structure exists among the Koopman modes belonging to the
same family, even though the structures are clearly phase lagged.

• As Re increases from 70 to 130, mode shapes flatten downstream while expanding
upstream.

• At Re = 70, the shear layer in the stable Koopman modes continues to grow
within the computational domain. However, at Re = 100, 130, the shear layer stops
growing after a certain distance that is negatively correlated with Re.

4.2.2. Net contribution of clustered Koopman modes
By examining figures 22–24, we observe that the colinearity of the spatial structures
among each cluster can cause cancellations. A famous example of such non-oscillatory
cancellation is the ‘shift mode’ defined by Noack et al. (2003), in conjunction with two
oscillating modes. As the ‘shift mode’ decays, the stationary component of the flow
transitions from the unstable equilibrium to the time-averaged mean. The existence of such
non-oscillatory decaying Koopman modes is also confirmed by weakly nonlinear analysis
(Bagheri 2013). Interestingly, our algorithm is able to identify not only the non-oscillatory
cancellation (from the ‘shift mode’) but also oscillatory cancellations from two clusters
with distinct frequencies. Such cancellations elegantly explain why no unstable Koopman
eigenvalues appear in this flow given the coexistence of an attracting limit cycle and an
unstable equilibrium. These modes could be understood as ‘oscillatory shift modes’, as a
generalization of the model proposed by Noack et al. (2003).
Since modes within each cluster appear to be colinear to each other, it is intriguing

to investigate the net contribution from each cluster. For the above Re = 70 case, effects
from different clusters at different times in the transient regime are shown in figure 26. We
note the following interesting observations throughout the transient period from t = 80 to
t = 200.
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Figure 22. Contours of Koopman modes of Re = 70 cylinder wake flow at t = 0. Red squares indicate stable
modes.

• The net contribution from ‘cluster 0’ does not exhibit strong oscillations. For the
contribution from ‘cluster 0’, the U component shows a decrease in the length of
the reverse flow region behind the cylinder with an increase in the low speed wake
layer thickness while the V component remains unchanged. This is similar to the
effect of ‘shift mode’ which also characterizes the decay of recirculation behind the
cylinder.

• Initially at t = 80, the net contribution from ‘cluster I’ is rather weak primarily
due to the ‘cancellation’ from the lagged phase. Furthermore, the development of
vortex shedding downstream from the top and bottom surfaces of the cylinder is
nearly parallel. This corresponds to the initial wiggling of the low speed wake flow
downstream. As time increases, the pattern of corresponding vortices develops away
from the centreline.
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Figure 23. Contours of Koopman modes of Re = 100 cylinder wake flow at t = 0. Red squares indicate
stable modes.

• Although the net contribution from ‘cluster 0+I’ captures most of the flow features
from ‘full modes’ throughout the transient regime, with increasing time, the net
contribution from ‘cluster II’ becomes more important and contributes to the
strength of vortex shedding downstream.

4.2.3. Comparison with DMD and spDMD at Re = 70
To confirm the advantage of spKDMD over DMD (Schmid 2010) and spDMD (Jovanović
et al. 2014), we compare the following three models on the unsteady cylinder wake flow at
Re = 70:

(i) spKDMD on the top 20 POD coefficients with 34 modes selected;
(ii) DMD on the top 20 POD coefficients;
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Figure 24. Contours of Koopman modes of Re = 130 cylinder wake flow at t = 0. Red squares indicate
stable modes.

(iii) spDMD (we used the original Matlab code from http://people.ece.umn.edu/users/
mihailo/) on the top 200 POD coefficients with α chosen carefully such that only 34
modes are selected.

Note that DMD with the top 200 POD coefficients, i.e. r = 200 in SVD-DMD (Schmid
2010), contains 10 times stable/decaying harmonics as DMD on the top 20 modes. Hence,
it is not surprising to expect that the corresponding prediction of the evolution of the top
20 POD coefficients to be very good (not shown for clarity). However, to make a fair
comparison against spKDMD, we consider spDMD (Jovanović et al. 2014) on the top
200 POD coefficients with 34 modes selected. (Although there are 200 POD coefficients
used for spDMD and 20 for KDMD, it is not an unfair comparison given that the same
number of spatial modes are selected. Furthermore, these are reduced-order models of
the same full-order dynamical system.) As shown in figure 27, given the same number
of eigenmodes, spKDMD performs remarkably better than spDMD, especially in the
transient regime. This is likely due to the inability of DMD in capturing nonlinear algebraic
growth in the transient regime (Bagheri 2013). Sparsity-promoting DMD overestimates the
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Figure 25. Top left: contribution of stable Koopman modes corresponding to type-I and type-II clusters for
Re = 70, 100, 130 at t = 0 visualized with threshold 0.001. Top right: time-averaged isocontour of top left plot.
Bottom: tendency of ‘envelope’ of type-I and II modes as Re increases. Separation lines in U component of
type-I are drawn for Re = 70 (black), Re = 100 (red) and Re = 130 (blue).
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Figure 26. Contribution of Koopman modes at cluster level in the transient regime of Re = 70 case. Here
‘cluster 0’ denotes the cluster near the real axis in figure 21; ‘cluster I’ and ‘cluster II’ take the effect of a
mirror cluster in the fourth quadrant into account; ‘full modes’ denotes the aggregated contribution of Koopman
modes.

growth in x1 and x2 while ignoring a turnaround near the onset of the transient regime in x5
and x8. As expected, DMD with 20 POD coefficients performs the worst especially for the
modes where transient effects are dominant. Given the results in figure 27, among all of the
top eight POD coefficients, x6 and x7 appear to be most challenging to model: DMD and
spDMD cannot match the limit cycle while spKDMD performs very well. Notice that the
frequency in x6 and x7 corresponds to StD. Hence, there will be a difference in predicting
the fluctuation of CD between spDMD and spKDMD.
Finally, comparison of the identified Koopman eigenvalues between DMD, spDMD

and spKDMD is shown in figure 28. On one hand, both spDMD and spKDMD exactly
capture the stable eigenmodes that correspond to StD and StL. This is expected since
DMD with 200 POD coefficients represents the dynamics very well, and deviation
from limit cycle behaviour would be penalized in spDMD. On the other hand, several
erroneous stable DMD modes are obtained by DMD. This explains the deviation of a
posteriori prediction from the ground truth limit cycle in figure 27. For those decaying
modes, similarity/colinearity is observed between two clusters of eigenvalue from spDMD
and spKDMD. However, spKDMD contains more high-frequency modes than spDMD.
Finally, it is interesting to note that, although the correct stable eigenvalues are captured
accurately by both spDMD and spKDMD, the former does not capture accurate amplitudes
for stable eigenvalues of type-II as seen in figure 27.
As a side note, when the temporal mean was used instead of maximal error in the

definition of Q in (3.2), spKDMD with the above setting was found to not find a stable
eigenvalue corresponding to STD.

4.3. Three-dimensional transient turbulent ship airwake
Understanding unsteady ship-airwake flows is critical to design safe shipboard operations,
such as takeoff and landing of fixed or rotary wing aircraft (Forrest & Owen 2010),
especially when the wind direction becomes stochastic. Here we obtain snapshots from
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Figure 27. Comparison of a posteriori prediction on the top eight POD coefficients of the testing trajectory
between spKDMD, DMD (Schmid 2010) and spDMD (Jovanović et al. 2014) for the two-dimensional cylinder
flow at Re = 70. Here xi denotes the ith POD coefficient.
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Figure 28. Comparison of identified eigenvalues between spKDMD, DMD (Schmid 2010) and spDMD
(Jovanović et al. 2014) for the two-dimensional cylinder flow at Re = 70.
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Figure 29. (a) Geometry of the ship (SFS2). (b) Generated computational mesh.

an unsteady Reynolds averaged Navier–Stokes (URANS) simulation of a ship airwake
using FLUENT (Ansys 2016) with the shear layer corrected k–ω two-equation turbulence
model. Unsteadiness arises from both bluff-body separation, and an abrupt change in
wind direction. We consider a conceptual ship geometry called simple frigate shape 2
(SFS2). For the details of the geometry, readers are referred to Yuan, Wall & Lee (2018).
Configuration of the simulation set-up is shown in figure 29, where α∞ denotes the angle
of side wind.
To prepare a proper initial condition, a URANS simulation for U∞ = 15 m s−1 with

α∞ = 0◦, i.e. no side wind, is conducted to reach a physical initial condition. Following
this, the last snapshot is used as the initial condition for a new run with an impulsive change
in the wind direction from α∞ = 0◦ to α∞ = α0 = 5◦. The boundary conditions for
outlet/input is pressure outlet/velocity inlet while the top and bottom are set as symmetry
for simplicity. No-slip conditions are used at the surface of the ship. Further details on the
simulation set-up are provided in Sharma et al. (2019).
The sampling time interval is Δt = 0.1 s with 500 consecutive samples of the three

velocity components. This corresponds to several flow through times over the ship length.
The domain of interest is a Cartesian region of mesh size 24 × 40 × 176 starting on the
rear landing deck. For dimension reduction, the trajectory of the top 40 POD coefficients
(temporal mean subtracted) are collected, yielding >99% kinetic energy preservation.
Discrete-time KDMD with an isotropic Gaussian kernel is employed to perform nonlinear
Koopman analysis where σ = 200, r = 135 is chosen. Details of hyperparameter selection
are provided in §C.3.

4.3.1. Results of discrete-time KDMD with mode selection
First, the error analysis of eigenfunctions is shown in figure 30, where we choose L̂ ≈ 60
for good reconstruction. However, the level of deviation from linear evolution is around
10%. This error will be reflected later as deviation in a posteriori prediction on the
testing trajectory. (This implies difficulties in finding an accurate yet informative Koopman
operator with isotropic Gaussian kernels. However, choosing an optimal kernel type is
beyond the scope of this work.)
Second, the result of mode selection is summarized in table 3. Note that nearly 2/3 of the

modes are removed. Furthermore, model performance in terms of a posteriori prediction
on the testing trajectory is evaluated. Comparison between KDMD and the ground truth
on contours of velocity components on a special z-plane (1.2m above the landing deck)
is shown in figure 31. Effects of an impulse change in wind direction in the following are
observed from t = 1.5s to t = 30s and well captured by spKDMD:

• growth of a large shear layer in U on the rear (left) side of the superstructure on the
ship;

917 A18-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

27
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
v 

of
 M

ic
hi

ga
n 

La
w

 L
ib

ra
ry

, o
n 

04
 A

ug
 2

02
1 

at
 0

4:
09

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.271
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Extraction of informative Koopman-invariant subspaces

0

10–3

10–2

10–1

10–1

100

100

101
(a) (b)

0.300

20 40 60

Number of selected eigenmodes L̂

N
u
m

b
er

 o
f 

se
le

ct
ed

 f
ea

tu
re

s

–log10 (α)

N
o
rm

al
iz

ed
 r

ec
o
n
st

ru
ct

io
n
 M

S
E

 R
ec

o
n
st

ru
ct

io
n
 n

o
rm

al
iz

ed
 e

rr
o
r

M
ax

 l
in

ea
r 

ev
o
lv

in
g
 n

o
rm

al
iz

ed
 e

rr
o
r

80 100 120 140 161412108642

0.275

0.250

0.225

0.200

0.175

0.150

0.125 35

60

55

50

45

40

Figure 30. (a) Trend of linearly evolving error Q and reconstruction error R from discrete-time KDMD for
the ship airwake. (b) Trend of linearly evolving error Q and reconstruction error R from discrete-time KDMD.

αselect 7.19 × 10−4

Number of selected modes 55
Number of total modes 167
Normalized reconstruction error R 0.133

Table 3. Summary of mode selection for discrete-time KDMD on ship airwake.

• a strong side wind sweep in V above the landing deck propagating downstream;
• development of a vortex on the upwind (right) downstream side of the ship.

Furthermore, three velocity components of the Koopman mode decomposition on the
previously mentioned z-plane is shown in figure 32 together with the isocontour of
vorticity coloured by the velocity magnitude for the two stable harmonics. Note that the
frequency is normalized using U∞ as the reference velocity and funnel width of the ship
L = 3.048 m as the characteristic length scale (Forrest & Owen 2010). As expected, the
spKDMD yields a large number of decaying modes with only three non-trivial stable
harmonics, since significant transient effects are present in the data. From the Koopman
mode decomposition in figure 32, we observe the following:

• modes with eigenvalues close to each other exhibit a similar spatial structure;
• modes associated with higher frequency are dominated by smaller scales;
• the stable harmonic mode near St = 0.09 associated with a strong cone-shape vortex

originating from the upwind (right) rear edge of the superstructure on the ship;
• the stable harmonic mode near St = 0.068 corresponds to vortex shedding induced

by the funnel;
• the slowly decaying mode near St = 0.022 shows unsteady circulation directly

behind the superstructure;
• the steady mode (St = 0) is consistent with the large circulation behind the

superstructure, the roll-up wind on the side of the landing deck, and vertical suction
towards the floor on the landing deck.
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Figure 31. Contour of velocity components near the ship on the z-plane slice at t = 1.5s, 3.9s, 9.0s, 30s. For
each subfigure, (a) prediction from KDMD; (b) ground truth.

4.3.2. Comparison with spDMD
We again repeat the comparison between our spKDMD and spDMD (Jovanović et al.
2014). Note that DMD on the first 40 POD modes performs poorly similar to § 4.2.3 and,
therefore, is not shown here. To make a fair comparison against the spKDMD from the
previous subsection, however, we collect the first 200 POD coefficients for spDMD to
ensure that a sufficient number of modes are used to fit the trajectory well. We then
carefully choose the penalty coefficient in spDMD to ensure that the same number of
modes are retained as in spKDMD. As shown in figure 33, within the time horizon t < 50,
a posteriori evaluation shows that spKDMD offers much improved predictions compared
with spDMD (Jovanović et al. 2014) on the testing trajectory.
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Figure 32. Contours of Koopman modes of ship airwake on the z-plane at t = 0. For each subfigure, left: U,
middle: V , right: W. Red squares indicate stable modes. Bottom: isocontour of vorticity coloured by velocity
magnitude zoomed in near the landing deck.

Moreover, as further illustrated in figure 34(a), eigenvalues identified from spKDMD
only contain two stable modes while nearly all eigenvalues from spDMD are located
near the unit circle, among which there are 30 out of 56 slightly unstable modes.
These unstable modes inevitably lead to the identified system being numerically unstable
when predicting beyond the current training time horizon, whereas spKDMD predicts a
‘physically consistent’ limit cycle behaviour. As indicated in figure 34(b), such instability
is related to the inability of the (linear) features to approximate the Koopman-invariant
subspace, where only eight modes are within 10% of maximal deviation from linear
evolution, compared with 60 modes in KDMD. We note that similar observations of the
drastically different eigenvalue distribution were reported in the original KDMD paper
(Williams et al. 2014).
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5. Conclusions

Two classical nonlinear approaches for the approximation of Koopman operator: EDMD
and KDMD are revisited. From an algorithmic perspective, the main contributions of this
work are (a) sparsity-promoting techniques based on a posteriori error analysis, and (b)
multi-task learning techniques for mode selection as an extension of spDMD into the
nonlinear variants. Furthermore, analytical relationships between spDMD, Kou’s criterion
and the proposed method are derived from the viewpoint of optimization. The algorithm
(code available at https://github.com/pswpswpsw/SKDMD) is first evaluated in detail on
a simple two-state dynamical system, for which the Koopman decomposition is known
analytically.
If one is only interested in the post-transient dynamics of the system on an

attractor, linear observables with time delays are sufficient to extract an informative
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Koopman-invariant subspace. Thus, the present techniques are evaluated on two fluid
flows which involve strong transients: two-dimensional flow over a cylinder at different
Reynolds numbers, and a three-dimensional (3-D) ship airwake. We demonstrate the
effectiveness of discovering accurate and informative Koopman-invariant subspaces
from data and constructing accurate reduced-order models from the viewpoint of
Koopman theory. Furthermore, with the proposed algorithm, the parametric dependency
of Koopman mode shapes on the Reynolds number is investigated for the cylinder
flows. In this case, as Re increases from 70 to 130, the shape of stable modes
becomes flatter downstream and larger upstream. Moreover, the similarity of mode shapes
between Koopman modes with similar eigenvalues is observed in both fluid flows.
Specifically, five clusters of eigenvalues are observed in the case of a two-dimensional
cylinder wake flow which is confirmed with weakly nonlinear theoretical analysis from
Bagheri (2013). Type-I, II clusters are found to correspond to fluctuations in lift and
drag, respectively. We identify non-oscillatory as well as oscillatory cancellations from
the above two clusters with distinct frequencies. These modes could be understood
as ‘oscillatory shift modes’, as a generalization of the model proposed by Noack
et al. (2003). For the 3-D ship-airwake case, two stable modes, and one slowly
decaying mode with distinct frequencies and mode shapes resulting from vortex
shedding are extracted, and accurate predictive performance is observed in the transient
regime.
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Appendix A. Proof for the identity for (2.22)

Consider the economy SVD of A
′ = USVH. Since the column space of A

′
spans the

column space of Z r, there exists an invertible matrix P such that Z rP = U . Hence,

A
′
Z r = VSUHZ r = VSPHZH

r Z r = VSPH, (A1)

and ((A
′
Z r)

HA
′
Z r)

+ = (P−1)HS−2P−1. Thus,

A
′
A

′HZ r(ZH
r A

′
A

′HZ r)
+ = (USVH)(VSPH)(P−1)HS−2P−1 = UP−1 = Z r. (A2)

Appendix B. Computational complexity

Computational cost of the proposed framework can be divided in three parts:

(i) distributed SVD;
(ii) KDMD/EDMD algorithms;
(iii) multi-task feature learning with the parameter sweep (solving (3.9) with different

values of α).
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Step Computational complexity

SVD (QR iteration with vectors) O(Mn2) (Dongarra et al. 2018)
KDMD O(M3)

Error evaluation & pruning O(M2n)
Multi-task ElasticNet with a fixed penalty coef. α O(NiterL̂2r)
Multi-task ElasticNet with Nα coefs. (worst case) O(NαNiterL̂2r)

Table 4. Computational complexity of each step in the proposed sparsity-promoting framework.

The computational complexity for each step in the algorithm is summarized in table 4,
where n is the dimension of the system state,M is the number of snapshots in the training
(for conciseness, we assume that the number of training snapshots equals the number of
validation snapshots.), r is the rank of the reduced system after SVD, L̂ is the user-defined
cut-off for ‘accurate’ features and Niter is the maximal number of iterations user defined to
achieve a residual threshold, e.g. 10−12.
As shown in table 4, the theoretical computational complexity for multi-task ElasticNet

with an α sweep is O(NαNiterL̂2r). Note that this is a worst case simply because – except
for the first α – we reuse the previous optimal solution as the initial condition for the new
objective function to start the iterative optimization process. Also, thanks to SVD-based
dimension reduction, the cost scales linearly with the reduced system rank r. Moreover,
the user-defined linearly evolving error truncation L̂ helps reduce that complexity as well
instead of scaling with the number of snapshots M. Lastly, there is a cubic theoretical
complexity associated with the number of snapshots when applying KDMD. The number
of snapshots in a typical high-fidelity simulation is O(103). That is to say, r < 103 and
L̂ < 103. We note that computational efficiency can be further improved, but this will be
left for future work.

Appendix C. Hyperparameter selection

C.1. Two-dimensional fixed point attractor
We perform grid search in parallel for the selection of σ and the truncated rank r over
the range σ ∈ [10−1, 10] with 80 points uniformly distributed in the log sense and r =
36, 50, 70 to find a proper combination of r and σ . As shown in figure 35, the higher rank
r leads to a larger number of linearly evolving eigenfunctions. Thus, it is more crucial to
choose a proper scale σ than r from figure 35. However, considering the simplicity of this
problem, σ = 2 and r = 36 would suffice.

C.2. Cylinder flow case
As the flow is not turbulent, we choose hyperparameters for the Re = 70 case and fix them
for all the other cases. We sweep σ from [1, 105] with 30 points uniformly distributed in
the log sense and r = 120, 140, 160, 180, 200, as shown in figure 36. From the plot we
choose r = 180 and σ = 3 for an approximate choice of the hyperparameter. Again, we
observe that the number of accurate eigenfunctions first increases then decreases with σ

increasing and the saturation of rank truncation at higher σ which is related to the variation
in the characteristic scale of the features with respect to σ .
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Figure 35. Hyperparameter search for isotropic Gaussian KDMD on the 2-D fixed point attractor.
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Figure 36. Hyperparameter search for isotropic Gaussian KDMD on transient cylinder wake flows.

C.3. Turbulent ship-airwake case
Grid search in parallel for the selection of σ and r is performed over the range σ ∈ [1, 105]
with 50 points uniformly distributed in the log sense, r = 40, 80, 120, 130. As shown
in figure 37, a good choice of σ can be 200 for the case of α∞ = 5◦. Note that since
the hyperparameter selection is performed with a five-fold cross-validation on the training
data, we only have up to 166 × 0.8 ≈ 132 data points, i.e. maximal possible rank is 132.
While in the actual training, we have maximal rank up to 166. Note that as long as the
system is well conditioned, the higher the rank, the richer the subspace. Here we take
σ = 200 and r = 135.

Appendix D. Parallel data processing tool

The application of data-driven methodologies to increasingly large data sets has
exposed the need for scalable tools. Method development is easily achieved in scripting
environments, but for application to large multidimensional problems, memory and
data I/O becomes a limiting factor. To illustrate this, consider a state-of-the art 3-D
computation. Given the fact that there are multiple variables associated with each grid cell,
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Figure 37. Hyperparameter search for isotropic Gaussian KDMD on a transient ship airwake.

and that reasonable meshes can be expected to contain millions to hundreds of millions of
cells, work-space memory requirements of terabytes may be required. Utilizing available
distributed tools and I/O strategies a generalized toolset, PDP, has been developed for
application of complex methods to arbitrarily large data sets. Originally developed for
use in reduced-order modelling, the generality of the toolset allows for a range of
complex methodologies to be applied. This was leveraged for use in this work for the
application of methods, as the problem size is intractable on desktop machines. The
toolset leverages commonly available packages in the form of ScaLAPACK, PBLAS
and PBLACS (Blackford et al. 1997) routines. ScaLAPACK is widely available on most
computing resources where the original simulations are run.
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ARBABI, H. & MEZIĆ, I. 2017a Ergodic theory, dynamic mode decomposition, and computation of spectral

properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16 (4), 2096–2126.
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NOACK, B.R., AFANASIEV, K., MORZYŃSKI, M., TADMOR, G. & THIELE, F. 2003 A hierarchy of
low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363.

OTTO, S.E. & ROWLEY, C.W. 2019 Linearly recurrent autoencoder networks for learning dynamics. SIAM J.
Appl. Dyn. Syst. 18 (1), 558–593.

PAN, S. & DURAISAMY, K. 2018 Long-time predictive modeling of nonlinear dynamical systems using neural
networks. Complexity 2018, 4801012.

PAN, S. & DURAISAMY, K. 2019 On the structure of time-delay embedding in linear models of non-linear
dynamical systems. arXiv:1902.05198.

PAN, S. & DURAISAMY, K. 2020 Physics-informed probabilistic learning of linear embeddings of nonlinear
dynamics with guaranteed stability. SIAM J. Appl. Dyn. Syst. 19 (1), 480–509.

PARIKH, N. & BOYD, S. 2014 Proximal algorithms. Found. Trends® Optim. 1 (3), 127–239.
PARISH, E.J., WENTLAND, C.R. & DURAISAMY, K. 2020 The adjoint Petrov–Galerkin method for

non-linear model reduction. Comput. Meth. Appl. Mech. Engng 365, 112991.
PARRY, W. 2004 Topics in Ergodic Theory, vol. 75. Cambridge University Press.
PEDREGOSA, F., et al. 2011 Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
POPE, S.B. 2001 Turbulent Flows. Cambridge University Press.
RASMUSSEN, C.E. 2003 Gaussian processes in machine learning. In Summer School on Machine Learning,

pp. 63–71. Springer.
RÖJSEL, J. 2017 Koopman mode analysis of the side-by-side cylinder wake. Tech. Rep. Royal Institute of

Technology, Department of Mechanics.
ROWLEY, C.W. & DAWSON, S.T.M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid.

Mech. 49, 387–417.
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