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ABSTRACT: A molecular-level understanding of lignin structures and bond
dissociation energies could facilitate depolymerization technologies. Still, this
information is currently limited due to the lack of databases and the
simplification of surrogate models. Here, substitution effects on seven common
linkages in lignin polymers are systematically investigated. An automated
reaction network generator is employed to create a database of structures. A
new group additivity (GA) model based on principal component analysis
(PCA) descriptors is introduced and trained on gas-phase density functional
theory data of 4100 species at the M06-2X/6-311++G(d,p) level. Hydrogen
bonds, local steric, and nonaromatic ring contributions are also incorporated.
Finally, we improve the accuracy of the group additivity model to reach the G4
theory by computing a data set of 770 species at this level and using a data
fusion approach.
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■ INTRODUCTION

Lignin accounts for 15%−30% in weight and 40% of the
energy of lignocellulose1 and is responsible for the structural
rigidity of plant cell walls. Utilization of lignin is still
challenging, and only less than 2% of lignin from the pulp
and paper industry is used for high-value chemicals, with most
lignin burned for heat generation.2 Among several depolyme-
rization technologies,3 pyrolysis is widely applied at high
temperatures to break the C−C and C−O bonds and make
bio-oils for further upgrade.4 Bio-oil is the main product in
lignin pyrolysis and contains numerous compounds. However,
the product complexity and low selectivity of pyrolysis limit its
commercial potential.5,6 A fundamental understanding of the
mechanisms in lignin pyrolysis can guide the design of optimal
conditions and simplify the downstream catalytic upgrade. For
this purpose, density functional theory (DFT) calculations can
be used. However, a challenge in modeling lignin is the
combinatorics arising from its amorphous structure that makes
periodic calculations inapplicable and small structures
insufficient.
Lignin is a cross-linked, amorphous polymer formed by

phenolic monomers. Unlike cellulose, whose structure consists
of repeated C6 sugar units, lignin is polydisperse due to the
various linkages, such as α−O−4, β−O−4, 4−O−5, β−1, β−5,
β−β, and 5−5 (Figure 1). The three monolignols, namely, p-
coumaryl (H), coniferyl (G), and sinapyl alcohol (S), can be
linked at different positions (Cα and Cβ at the aliphatic tail and
4 and 5 in the aromatic unit).

The bond dissociation energy (BDE) is the crucial
descriptor for understanding the bond strengths in various
linkages. Previous studies using linear linkage models7−9

suggest that the BDEs follow the order of Aryl(Ar)−Ar >
Ar−Cα > α−O−4 > β−O−4. BDEs for linkages with
intramolecular rings, such as β-1, β-β, and benzodioxane,
have been investigated by Elder and co-workers.10−12

Relatively small dimer structure models are mostly employed
to calculate BDEs by DFT. Due to lignin structures and
conformers’ combinatorial complexity, the BDEs vary widely
even for one specific type of linkage.13 However, the structure
models for different linkages are usually simplified by replacing
the functional groups attached to either the aromatic
(−OCH3) or aliphatic tails (−OH), with H atoms. In Figure
1, the α−O−4, β−O−4, 4−O−5, β−1(5), β−β, and 5−5
linkage models can be represented by benzyl phenyl ether,
phenethoxybenzene, diphenyl ether, 1,2-diphenylethane, 1,4-
diphenylbutane, and biphenyl molecules when all the R groups
are H atoms. A systematic study on the substitution effects is
crucial for understanding how the bond strength is affected by
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various groups and the potential products made from different
lignins.This work fills in this gap.
The computational cost increases significantly with the

complexity of linkage models, and thus, a trade-off balancing
the two is needed. Group additivity (GA), a method pioneered
by Cohen and Benson,14 offers the opportunity to predict the
thermochemical properties of compounds based on groups
whose thermochemistry values are tabulated in a database. As
shown in eq 1, the property y of a target molecule is the sum of
the group additivity values (GAVs) of all the groups in the
molecule. The groups describing the molecular structure are
identified using, for example, graph theory, the one heavy atom
(C, O, N, etc.)-centered substructure from Cohen and
Benson’s scheme and LASSO-based subgraphs.15 Their
GAVs are estimated from a small training data set obtained
from DFT calculations and/or available experimental values.

∑=y nGAV
i

i i
1 (1)

Due to the large abundance of the same groups in the lignin
structures, the GA method is ideal for predicting thermochem-
istry at a low computational cost. Extensive studies on the
application of GA to gaseous hydrocarbons, oxygenates, and
their radicals have been undertaken by Marin and co-
workers.16,17 GA of monocyclic aromatic species with different
substituted functional groups has also been developed.18,19

However, a comprehensive GA method for estimating lignin
thermochemistry is not available due to the lack of a rich
database that describes the structural complexity of lignin.
Given the complexity and large size of the structures, a large
abundance of species is required for constructing such a
database. The effect of steric and weak interactions (e.g.,
hydrogen bonds) becomes progressively more important with
increasing model size and cannot be ignored. Furthermore, the

Figure 1. Structures of monolignols and typical lignin linkages.
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computational cost of DFT calculations, even for gas-phase
molecules, is enormous, limiting the application of high
accuracy methods.
In the present work, DFT calculations at the M06-2X/6-

311++G(d,p) level have been performed to study the steric
and hydrogen bond effects from the substituted groups on the
BDEs and geometry. An automated reaction network generator
was first employed to create a database containing 4100 lignin-
related molecules and radicals. The database was then
transformed using principal component analysis and was
used to train a GA model. The GA model’s accuracy was
further improved by implementing steric and hydrogen bond
effects. Finally, we compute a subset of structures at the G4
theory level20 to enhance the entire data set accuracy using a
data-fusion approach. Combined with the linear relationships,
such as Brønsted−Evans−Polanyi,21,22 thermochemical prop-
erties estimated from the GA model can be used to predict
activation barriers in lignification23,24 and pyrolysis,25,26 and to
expand our understanding of this complex biopolymer.

■ METHODS
DFT calculations were performed using Gaussian 0927 with the M06-
2X hybrid exchange-correlation functional,28 which is suitable for
calculating BDEs of lignin-related species.7,8,29,30 Initial geometries
from the literature7,8 were optimized using the 6-31G(d,p) basis set. A
larger basis set, 6-311++G(d,p), was then used for refining these
structures and verifying their stability via frequency calculations with
ultrafine integration grids. Zero-point energy and thermal corrections
were added to compute the homolytic bond dissociation energies
using eq S1. The thermodynamic properties at different temperatures
were calculated using the Python Multiscale Thermochemistry
Toolbox (pMuTT)31 with a frequency scaling factor of 0.970.32

As shown in Figure 2, we constructed the database containing
aliphatic alkanes, aromatic groups, and their radicals. The database

was automatically populated using the Rule Input Network Generator
(RING), discussed in Section S2.33 In addition, CxHyOz species
reported from the literature7,8,29,30,34,35 were also added. The
simplified molecular input line-entry system (SMILES) notation,36

based on ASCII strings, was used to label the species. The species
generated using RING and taken from the literature were converted
to 1000 initial 3D coordinates using the SMILES-based methods

through Open Babel37 and Rdkit38 and then optimized using the
MMFF39 force field. The one with the lowest energies were chosen
for further optimization. H-bond corrections to the geometries, using
the PM6-D3H4 method40 in the MOPAC2016 package,41 were
employed to correct the H-bond local geometries in the initial
structures. These geometries were then optimized at the M06-2X/6-
311++G(d,p) level and confirmed using frequency calculations at the
same theoretical level. 770 small size species were then taken for G4
calculations.

For the group additivity (GA) model, Cohen and Benson’s
scheme14 was employed, and Python group additivity (pGrAdd)
software42 developed by our group was used to analyze the group
information (molecular substructures and numbers of their
appearances) from the species SMILES and create the configuration
matrix. As shown in eq 2, the ns

m and GAVm stand for the number of
times group m appears in species s and its GAV, respectively, and ys is
the DFT-derived thermal property (e.g., enthalpy of formation) of
species s.
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Due to linearly dependent groups, the configuration matrix16 is
often underdetermined; i.e., the matrix rank is less than the total
number of groups, leading to nonunique regressed GAVs. Collapsing
groups with structural similarity and combining linearly dependent
groups are standard methods to overcome this problem. However,
these methods rely on analyzing the entire set and are impractical
when the database size is enormous. In this work, we employ principal
components analysis (PCA) to reduce the dimensionality and
transform the groups into independent orthogonal PCA vectors via
the Scikit-learn43 Python package. As shown in eq 3, each PC is a
vector that contains the group contributions (coefficient values), ai

1,
ai
2, ai

3, ..., ai
m. For one PC in species s (PCs

i), its number vector can be
obtained via the linear combination of group numbers and their
coefficient values as described in eq 4. The thermal property of species
s (ys) is the sum of the contributions from all PCs.

= a a a aPC , , , ...,i i i i i
m1 2 3 (3)

= × × × ×n a n a n a n a n, , , ...,i s i s i s i
m

s
m

PC
1 1 2 2 3 3

s
i (4)

∑=y n GAVs

i

1
PC PCs

i
i

(5)

The rule of choosing number of PCs (NPC) was established in four
test models using the maximum positive (MPE), minimum negative
(MNE), mean absolute (MAE), and root-mean-square errors
(RMSE) to evaluate the prediction accuracy with different NPC
(Section S4.1). The hydrogen bond and steric corrections to the
thermal properties were then added to the GA model (Section S4.2).
To evaluate the predictive ability of the GA-PCA model, 10-fold
cross-validation based on the bootstrap sampling method was
performed (Figure S8). The data set was shuffled, and 90% of the
data set containing the same number of groups as the whole database
was used for training the GA-PCA model and the rest 10% for
validation. This procedure was repeated 100 times, and the accuracy
was assessed through the average RMSE (Section S4.3).

The substitution effects on the BDEs were investigated by replacing
the R groups (Figure 1) with the corresponding functional groups in
the monolignol structures. To further improve the accuracy of the
GA-PCA model, weak interactions such as hydrogen bonds and local
steric effects were introduced to the group additivity model using the
SMARTS44 description.

A subset calculated by the G4 method was used as a benchmark to
enhance the data accuracy via a linear atomistic data fusion
approach.45,46 As shown in eq 6, the property differences (δHf) of

Figure 2. Computational framework for database generation and
group additivity model training.
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M06-2X and G4 were ascribed to errors stemming from the elements
without considering larger groups.

δ δ δ δ= − = × + × + ×‐H H H H n H n H nf f
G4

f
M06 2X

f
C

C f
H

H f
C

O

(6)

Hf
G4 and Hf

M06‑2X are the enthalpies of formation computed using the
G4 and M06-2X methods, and nC, nH, and nO are the number of
atoms in the species. Here, δHf

C, δHf
H, and δHf

O are the thermal
corrections to the M06-2X data for C, H, O, respectively. Details
about the thermal correction regressions and the accuracy are
described in Section S5.

■ RESULTS AND DISCUSSION

The common linkages in the lignin structures are depicted in
Figure 1. The BDEs for the various bonds in these template
models are summarized in Figure S2 and Table S1 and follow
the sequence of Ar−Ar > (Ar−Cα ∼ Ar−Cβ) ∼ Ar−O (with
the O connecting to Cα or Cβ) > (Cβ−Cβ ∼ Cβ−Cγ ∼ Ar−O)
> (Cβ−O4 ∼ Cα−Cβ) > Cα−O4. The complete list of
substitution functional groups is tabulated in Tables S3−10, as
described in Section S3. The substitutions can be at the ortho,
meta, para, or the aliphatic tail positions. For α−O−4 and β−
O−4, the ortho substitutions (R2 and R3) by −OCH3 have the
most considerable effect on reducing the BDEs for Ar−O4 and
Cα−O4 bonds by 4.0 and 8.0 kcal/mol, respectively. These
values are close to the previously reported values of 6 and 8
kcal/mol by Parthasarathi et al.29 It should be emphasized that
the number of −OCH3 (from 0 to 2) at the R2 and R3
positions represents the lignin source. The −OCH3 sub-
stitutions at the ortho positions also reduce the Ar−O bond
energy in the 4−O−5 linkage by 4.0 kcal/mol per −OCH3
replacement. Substitution effects at R2 and R3 by −OH are
also considered since the −OCH3 can be converted to −OH
via demethylation. The H-bonds formed via −OH and O4

reduce the BDE of the Cα−O4 bond by ∼4.0 kcal/mol per H-
bond. For the aliphatic tail between two aromatic units, R4
substitutions with −CH2OH and −CHOHCH2OH increase
the Cα−O4 bond strength by 3.0−5.6 kcal/mol, while replacing
−H with −OH at R5 can reduce its BDE by 2.0 kcal/mol. The
−OH effect on lowering the adjacent bond strength is also
evident in the β−1(5) and β−β linkages. The 5−5 bond is
robust against substitutions at all meta positions (R1, R3, R4,
and R6) and ortho positions (R2 and R5) by −OCH3,
−OCH2CH3, and −O−Ph groups. The largest BDE (121.7
kcal/mol) of the 5−5 bond occurs when a H-bond forms
between the −OH groups at the R2 and R5 positions. The
substitution effects discussed above are then introduced to the

following additivity method to improve the prediction
accuracy.
The database containing 4100 molecules and radicals was

used to generate the configuration matrix through pGrAdd
(Excel file in SI zipped file). The matrix is underdetermined
with 235 groups and a rank of 216. The PCA method
transforms the data into principal components (PCs) to
overcome this problem. The additivity values of these principal
components (GAVs) for the enthalpy and entropy of
formation of species at room temperature were regressed and
then applied to predict the thermal properties of species in the
database. As shown in Figure S5, in the four tests using data
sets with 500, 1000, 1500, and 2000 species, the accuracy of
the GA-PCA model kept increasing when the number of
principal components, N(PC), is equal to or larger than the
rank of the configuration matrix. Clearly, the system is
undertermined. We have taken 216 PCs for describing the
system with 235 groups (Figure S6). For a new molecule, the
groups and their frequencies can be determined, and its
thermochemistry can be expressed as a linear combination of
of the PCs. Comparison between the DFT and GA-PCA
predicted standard enthalpies of formation at room temper-
ature (ΔfH

298.15) shows a mean absolute error (MAE) and a
root-mean-square error (RMSE) of 1.68 and 2.49 kcal/mol,
respectively.
Despite the low errors of the GA-PCA model, the predicted

values of 342 structures deviate from the DFT results by more
than 4.0 kcal/mol (the substitution and H-bond effects energy
range). The main reason for these deviations could be the lack
of weak interactions, such as H-bonds, strain, and other non-
nearest neighbor interactions.18 As discussed in Section S3.1,
the stronger H bonds between Ar−O* and adjacent Ar−OH
significantly stabilize the radicals by ∼10 kcal/mol. Steric
effects from −OCH3 at the 4 and 5 positions also increase the
system energies. For instance, when three adjacent groups
(−OCH3) are on the same aromatic unit in a sinapyl alcohol
type, the −OCH3 group in the middle is forced to be
perpendicular to the ring due to crowdedness. The strain from
the intramolecular ring structure between two aromatic rings
also impacts the system energies. On the basis of these weak
interactions’ molecular patterns, the number of H bonds, local
steric geometry, and strain from nonaromatic rings in model
compounds are counted, using the SMARTS descriptions, and
added to the configuration matrix (Table S11). The revised
GA-PCA model with the corrected configuration matrix for
these interactions is more acccurate. For ΔfH

298.15, the number
of offset points larger than 4.0 kcal/mol reduces to 147, and
the MAE and RMSE decrease to 1.28 and 1.79 kcal/mol,

Figure 3. DFT and GA-PCA predicted (a) standard enthalpy of formation (ΔfH
298.15), (b) heat capacity (Cp

298.15), and (c) entropy (S298.15).
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respectively (Figure S7). Considering the large size of the
lignin models and the correlation between the predicted GA-
PCA and the DFT values for ΔfH, Cp, and S (Figure 3), the
GA-PCA model can successfully reproduce the DFT-based
data and enables a cheap way to obtain the BDEs and the effect
of substitutions. The predictive ability of the GA-PCA model
was also evaluated via typical cross-validation. The RMSEs are
2.05 kcal/mol (ΔfH), 0.46 cal/mol/K (Cp), and 2.99 cal/mol/
K (S) (Tables S13, S14). In this revised scheme, long-range
interactions, such as the H-bond formed between distant −OH
and O−R groups on aromatic units, are still not accounted for
because of the difficulty in determining their SMARTS
expressions.
The database properties are computed at the M06-2X/6-

311++G(d,p) level. However, intrinsic errors in the
thermochemistry associated with the accuracy of the functional
and basis set exist.47 To improve the GA-PCA model’s
accuracy, a subset containing the smallest 770 species in the
database was computed using the G4 method, which is known
to be the best composite method for CxHyOz species

48 (Figure
4). Then, the differences in properties at the two levels were
assigned to atomic corrections for the C, H, and O atoms,
using a new data fusion method. As shown in Table S15, the
corrections are nearly constant (−1.098, −0.407, and −0.890
kcal/mol per atom for δHf

C, δHf
H, and δHf

O, respectively) with
increasing training data set size, implying that the benchmark
data set is sufficiently large, and more extended range
corrections are not necessary. The corrected GA-PCA method
(eq 6) predicts the formation enthalpies of 770 species with
MAE and RMSE of 1.35 and 2.01 kcal/mol, respectively, while
92% of the predictions are between 0.0 and 3.0 kcal/mol.

■ CONCLUSIONS
The substitution effects at different positions of common
structures for various lignin linkages, such as α−O−4, β−O−4,
4−O−5, β−1, β−5, β−β, and 5−5, on bond dissociation
energies were investigated. A computational framework was
employed to build a database containing 4100 molecules and
radicals using an automatically generated library, via the Rule
Input Network Generator, along with small CxHyOz structures
from the literature. The database was used for generating the
configuration matrix and training a group additivity model. To

resolve the undetermined matrix problem, PCA was intro-
duced to transform the regular groups in the GA method to
new additivity descriptors based on the principal components.
The −OCH3 on the aromatic ring and the −OH on aliphatic
tails reduce the adjacent bond strength. H-bonds and local
steric effects greatly affect the stability of molecules and
radicals and their BDEs. We improved the accuracy of the GA-
PCA model first by including H-bonds and local steric effects
and second via a data fusion approach. In the latter correction,
G4 calculations are performed on a relatively small data set,
and the atomic corrections are estimated as dominant error
contributors and incorporated in the GA scheme. This error
reduction method offers the possibility of correcting the GAVs
in large databases computed at a low DFT level using only a
small set of species computed at a higher level. This work
provides a database of complex lignin structures and GAVs for
accurate prediction of thermochemical properties of lignin
pyrolysis.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856.

Equations for BDE and ΔfH calculations, RING rules to
generate the structure library, calculated BDEs of all
linkage types with different substitution groups and the
associated descriptions, SMARTS expressions for differ-
ent types of H-bonds(PDF)

Brief description of the folder/files in the Supporting
Information, coordinates in xyz format and DFT
calculated thermal properties of species in the database,
RING input file for reaction network generation, Python
scripts for generating the configuration matrix, determin-
ing N(PC), including hydrogen bonds and steric
corrections, conducting G4 benchmark and related
outputs discussed in the main text and Supporting
Information. (ZIP)

Figure 4. Strategy of correcting the GA-PCA model built at the M06-2X level to the G4 level and evaluation of predictions compared to the G4
subset.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Letter

https://dx.doi.org/10.1021/acssuschemeng.0c08856
ACS Sustainable Chem. Eng. 2021, 9, 3043−3049

3047

http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.0c08856/suppl_file/sc0c08856_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.0c08856/suppl_file/sc0c08856_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.0c08856/suppl_file/sc0c08856_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.0c08856/suppl_file/sc0c08856_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.0c08856/suppl_file/sc0c08856_si_002.zip
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08856?fig=fig4&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://dx.doi.org/10.1021/acssuschemeng.0c08856?ref=pdf


■ AUTHOR INFORMATION

Corresponding Author
Dionisios G. Vlachos − Catalysis Center for Energy
Innovation and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware
19716, United States; orcid.org/0000-0002-6795-8403;
Email: vlachos@udel.edu

Authors
Qiang Li − Catalysis Center for Energy Innovation, University
of Delaware, Newark, Delaware 19716, United States;
orcid.org/0000-0001-5568-2334

Gerhard Wittreich − Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark,
Delaware 19716, United States; orcid.org/0000-0002-
3968-7642

Yifan Wang − Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware
19716, United States

Himaghna Bhattacharjee − Department of Chemical and
Biomolecular Engineering, University of Delaware, Newark,
Delaware 19716, United States; orcid.org/0000-0002-
6598-3939

Udit Gupta − Catalysis Center for Energy Innovation,
University of Delaware, Newark, Delaware 19716, United
States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssuschemeng.0c08856

Author Contributions
Q.L. performed all DFT calculations. G.W. contributed to the
group additivity scheme and statistical assessments of the
group additivity scheme. Y.W. contributed to the Python codes
and GA discussions. H.B. contributed to the principal
component regression and error reduction method. U.G.
contributed to the structure generation using RING. D.G.V.
conceptualized the problem and oversaw the work. The
manuscript was written through the contributions of all
authors. All authors have given approval to the final version
of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The work of Q.L. was supported by the Growing Convergence
Research (GCR) program at the National Science Foundation
(NSF) under Award Number NSF GCR CMMI 1934887. The
work of Y.W., G.W., U.G., and H.B. was supported by the U.S.
Department of Energy’s Office of Energy Efficient and
Renewable Energy’s Advanced Manufacturing Office under
Award Number DE-EE0007888-9.5. The Delaware Energy
Institute gratefully acknowledges the support and partnership
of the State of Delaware toward the RAPID projects. We also
appreciate the kind discussions with Mr. Yue Qiu from
Grimwade Centre for Cultural Materials Conservation,
University of Melbourne.

■ REFERENCES
(1) Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic
Transformation of Lignin for the Production of Chemicals and Fuels.
Chem. Rev. 2015, 115, 11559−11624.

(2) Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright
Side of Lignin Depolymerization: Toward New Platform Chemicals.
Chem. Rev. 2018, 118, 614−678.
(3) Chio, C.; Sain, M.; Qin, W. Lignin utilization: A Review of
Lignin Depolymerization from various Aspects. Renewable Sustainable
Energy Rev. 2019, 107, 232−249.
(4) Zakzeski, J.; Bruijnincx, P. C.; Jongerius, A. L.; Weckhuysen, B.
M. The Catalytic Valorization of Lignin for the Production of
Renewable Chemicals. Chem. Rev. 2010, 110, 3552−3599.
(5) Fan, L.; Zhang, Y.; Liu, S.; Zhou, N.; Chen, P.; Cheng, Y.; Addy,
M.; Lu, Q.; Omar, M. M.; Liu, Y.; Wang, Y.; Dai, L.; Anderson, E.;
Peng, P.; Lei, H.; Ruan, R. Bio-oil from Fast Pyrolysis of Lignin:
Effects of Process and Upgrading Parameters. Bioresour. Technol.
2017, 241, 1118−1126.
(6) Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63,
117−132.
(7) Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T.
D.; Paton, R. S.; Beckham, G. T. Computational Study of Bond
Dissociation Enthalpies for A Large Range of Native and Modified
Lignins. J. Phys. Chem. Lett. 2011, 2, 2846−2852.
(8) Younker, J. M.; Beste, A.; Buchanan, A. C., III Computational
Study of Bond Dissociation Enthalpies for Substituted β-O-4 Lignin
Model Compounds. ChemPhysChem 2011, 12, 3556−3565.
(9) Huang, J. B.; Wu, S. B.; Cheng, H.; Lei, M.; Liang, J. J.; Tong, H.
Theoretical Study of Bond Dissociation Energies for Lignin Model
Compounds. J. Fuel Chem. Technol. 2015, 43, 429−436.
(10) Elder, T. Bond Dissociation Enthalpies of A Pinoresinol Lignin
Model Compound. Energy Fuels 2014, 28, 1175−1182.
(11) Elder, T.; Berstis, L.; Beckham, G. T.; Crowley, M. F. Density
Functional Theory Study of Spirodienone Stereoisomers in Lignin.
ACS Sustainable Chem. Eng. 2017, 5, 7188−7194.
(12) Berstis, L.; Elder, T.; Crowley, M.; Beckham, G. T. Radical
Nature of C-lignin. ACS Sustainable Chem. Eng. 2016, 4, 5327−5335.
(13) Questell-Santiago, Y. M.; Galkin, M. V.; Barta, K.; Luterbacher,
J. S. Stabilization Strategies in Biomass Depolymerization Using
Chemical Functionalization. Nat. Rev. Chem. 2020, 4, 311−330.
(14) Cohen, N.; Benson, S. Estimation of Heats of Formation of
Organic Compounds by Additivity Methods. Chem. Rev. 1993, 93,
2419−2438.
(15) Gu, G. H.; Plechac, P.; Vlachos, D. G. Thermochemistry of
Gas-phase and Surface Species via LASSO-assisted Subgraph
Selection. React. Chem. Eng. 2018, 3, 454−466.
(16) Sabbe, M. K.; Saeys, M.; Reyniers, M. F.; Marin, G. B.; Van
Speybroeck, V.; Waroquier, M. Group Additive Values for the Gas
Phase Standard Enthalpy of Formation of Hydrocarbons and
Hydrocarbon Radicals. J. Phys. Chem. A 2005, 109, 7466−7480.
(17) Paraskevas, P. D.; Sabbe, M. K.; Reyniers, M. F.; Papayannakos,
N.; Marin, G. B. Group Additive Values for the Gas-Phase Standard
Enthalpy of Formation, Entropy and Heat Capacity of Oxygenates.
Chem. - Eur. J. 2013, 19, 16431−16452.
(18) Ince, A.; Carstensen, H. H.; Reyniers, M. F.; Marin, G. B. First-
principles Based Group Additivity Values for Thermochemical
Properties of Substituted Aromatic Compounds. AIChE J. 2015, 61,
3858−3870.
(19) Ince, A.; Carstensen, H. H.; Sabbe, M. K.; Reyniers, M. F.;
Marin, G. B. Modeling of Thermodynamics of Substituted Toluene
Derivatives and Benzylic Radicals via Group Additivity. AIChE J.
2018, 64, 3649−3661.
(20) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4
Theory. J. Chem. Phys. 2007, 126, 084108.
(21) Brönsted, J. Acid and Basic Catalysis. Chem. Rev. 1928, 5, 231−
338.
(22) Evans, M.; Polanyi, M. Inertia and Driving Force of Chemical
Reactions. Trans. Faraday Soc. 1938, 34, 11−24.
(23) Gani, T. Z.; Orella, M. J.; Anderson, E. M.; Stone, M. L.;
Brushett, F. R.; Beckham, G. T.; Romań-Leshkov, Y. Computational
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