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Abstract

The dynamical behaviors of a two-level system (TLS) coupled to a harmonic dissipative bath has been
studied extensively using a variety of analytical and numerical methods. The focus of the vast majority of
these studies has been on the properties of the TLS, averaged with respect to the bath degrees of freedom.
In this work we use real-time path integral methods to probe the behavior of select bath degrees of freedom
during the dynamics of a symmetric two-level system (TLS) coupled to a dissipative bath by calculating
system-bath densities (SBD) and coordinate expectation values. Overall, the SBD motion on each diabatic
state is simpler than the motion of the total density. In the weak coupling regime, which characterizes the
parameters of oscillators that comprise such a bath, the SBD on each TLS state remains primarily compact
and Gaussian-like, such that its peak is well characterized by the mode expectation value. In the absence of
a dissipative environment, nonadiabatic density depletion leads to spikes in coordinate expectation values.
The evolution of the SBD peak trajectory for two discrete modes exhibits Lissajous patterns with frequency-
dependent shapes which strongly resemble classical trajectory motion on a torus. These patterns become
more complex when the coupling of the mode to the TLS is increased outside of this regime, leading to
persistent small amplitude oscillations in the TLS populations characterized by very slow decay and SBD
trajectories that exhibit behaviors reminiscent of chaotic classical systems. Indirect coupling to a dissipative
bath has a stabilizing effect on the dynamics, eliminating spikes, synchronizing the SBD motion on the two
diabatic states and regularizing the SBD trajectory to simple rectangular Lissajous-like shapes, regardless
of the mode frequencies.



I. Introduction

The growing interest in engineering nanoscale devices with targeted function, along with the
development of powerful experimental techniques for probing dynamical processes in materials and
biological systems, have spurred intense interest in the direction of advancing the capabilities of quantum
mechanical simulation methods. Many such methods have focused on the system-bath Hamiltonian, which
continues to serve as the paradigm of dissipative phenomena' that generally suppress the quantum
coherence of a small system.? Apart from its use for quantifying the parameter dependence of generic
phenomena such as tunneling® and barrier crossing,* the system-bath form underlies the basic description
of chemical reactions according to the reaction path Hamiltonian® and allows a realistic description of
charge, proton and exciton transfer in a variety of situations.® In many such systems the bath consists of the
normal mode vibrations of a molecular system or crystalline solid, while in other cases harmonic modes
arise from the mapping of an anharmonic environment (e.g. solvent or protein) which is enabled by
Gaussian response.

Wavefunction-based calculations of system-bath dynamics need to treat the bath explicitly and thus
become costly when the number of bath degrees of freedom is large. In addition to the need for explicit
treatment of harmonic bath modes, the calculation of finite temperature properties by wavefunction
methods requires averaging many microcanonical results, which is impractical when the bath includes a
large number of low-frequency modes. An alternative is offered by thermo-field dynamics,” which maps
the finite-temperature density matrix on a wavefunction in an augmented space of entangled subsystems.
The resulting increase of dimensionality, along with the replacement of the Boltzmann factor by its
oscillatory real-time analogue, seem to offset most of the advantages gained by the absence of the thermal
sum. Nevertheless, some recent work®’ has reported successful algorithms based on this approach.

Feynman’s path integral formulation of quantum dynamics'® offers an attractive starting point for
probing the dynamics of system-bath Hamiltonians. The obvious appeal of the path integral is the ability to
obtain observables pertaining to the system of interest by directly evaluating its reduced density matrix
(RDM) through the sum of amplitudes, which do not require the calculation of wavefunctions.!! An
additional advantage in the case of system-bath dynamics is the ability to integrate out harmonic bath
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degrees of freedom analytically, replacing them by an influence functiona
real-time path integral requires summing astronomical number of terms, and Monte Carlo-based sampling
methods fail to converge in the majority of situations because of the highly oscillatory nature of the quantum
mechanical amplitude. The development of the quasi-adiabatic propagator path integral (QuAPI)
methodology'*!7 during the 1990s enabled numerically exact calculations in a variety of situations. The
QuAPI methodology has been employed in the study of a wide range of processes, and a number of further
developments and extensions'®?’ have significantly increased the applicability of the algorithm to more
demanding regimes. Further, the quantum-classical path integral,*® a rigorous and consistent approach for
integrating quantum mechanics with classical trajectory simulations, becomes numerically exact for
system-bath dynamics and offers accelerated convergence in demanding regimes.>!

The QuAPI algorithm circumvents numerical instabilities associated with phase cancellation by
employing compact grid representations, and replaces the full path sum (which requires effort that increases
exponentially with propagation time) by an iterative procedure which is based on the finite span of influence
functional correlations. This span defines the memory length induced by the bath, which becomes a



convergence parameter. The algorithm propagates in time an array of discrete paths that span the memory
length through multiplication by a propagator that includes the influence functional couplings. For a system
of n states and a memory length equal to L time steps, this array is equivalent to a tensor of n** elements.
For many processes of interest, this storage requirement is well within the capabilities of common
computing resources.*? Further, the vast majority of paths make negligible contributions, and a number of
powerful techniques, including path filtering,'®33 coarse graining,” blip*** and SVD-based
decompositions®® have been employed to reduce the storage size of the sparse QuAPI tensor, offering
dramatic savings in some regimes. Nevertheless, storage requirements restrict the practicality of the QuAPI
methodology to small systems.

An efficient methodology is available for model baths described by the Drude spectral density form
(the damped oscillator model), which involves solving hierarchical equations of motion®*® (HEOM). The
method has been extended to situations where the bath spectral density is a sum of Drude terms,*” but the
cost increases steeply with the number of such terms. While not suitable for simulations of systems
interacting with structured environments, the HEOM method is widely used for characterizing parameter
regimes in Drude-type models of chemical processes through low-cost calculations.

A recent development showed that the tensor storage of the QuAPI algorithm can be completely
eliminated. This is possible through the small matrix decomposition of the path integral®®*® (SMatPI),
where all dynamical information is contained in small n”>xn®> matrices. Even though the path integral
variables are fully entangled within the memory length, the SMatPI decomposition recursively shifts the
entanglement to longer time intervals while reducing the magnitude of the entangled contributions, until
they become negligible. Thus the SMatPI algorithm offers a numerically exact approach to system-bath
dynamics that is free of large array storage requirements, thus is applicable to multistate systems and longer
Memory processes.

The vast majority of calculations involving system-bath Hamiltonians have focused on properties
of the system, such as populations and expectation values (which can be obtained from the RDM) or time
correlation functions. While usually the system constitutes the “observable” degree of freedom, bath modes
(e.g. molecular normal modes) play a prominent role in many processes and are frequently used as a probe
for understanding the mechanistic details of complex molecular processes. The charge or excitation energy
transfer processes in molecular frameworks bear rich examples of this, where molecular vibrations actively
participate in modulating dynamical timescales, leaving behind valuable signatures in spectroscopic
measurements.

In this paper we use real-time path integral calculations to interrogate dynamical properties of the
bath itself. Specifically, we focus on a symmetric two-level system (TLS) and choose one or two discrete
bath modes embedded in a continuous spectral density representing a dissipative bath, and investigate their
dynamics. We choose two sets of coupling parameters for these modes: In the first “weak coupling” or
“spin-boson” case the mode couplings are characteristics of the values they would have if the continuous
bath were discretized into an adequate number of harmonic degrees of freedom. In the second case of
“moderate coupling” the coupling coefficients are representative of many vibrational modes in molecular
chromophores. In each of these regimes we augment the TLS RDM with the coordinates of these modes
and study the evolution of system-bath densities and coordinate expectation values. We also examine the
dissipative effects of the bath on such dynamical properties. In the weak coupling case and for the
parameters we study, we find that coordinate expectation values describe the motion of the density peak
almost quantitatively, and that this motion can be surprisingly simple.
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Even with model bath spectral densities, the parameter space that dictates the dynamics of the TLS-
bath Hamiltonian is quite large, and we do not attempt to tackle a systematic study in this paper. Instead,
our goal is to present some dynamical patterns that are representative of behaviors in some parameter
regimes of interest.

In section II we describe the Hamiltonian that describes our model and define the basic dynamical
properties that we follow. In the same section we motivate our choice of parameters, describe the basic
physics of the Hamiltonian, and give a short summary of the methods that we employ to calculate the
dynamics. The results of our calculations are presented in sections III and IV for the weak and moderate
coupling regimes. In section V we summarize our findings and present some concluding remarks.

II. Spin-boson models, observables and methods

Our model consists of a two-level system (TLS) coupled to one or two discrete harmonic oscillator
modes, with coordinates ¢,,q,, frequencies o,,, and coupling coefficients c,,c, , as well as a dissipative
harmonic bath. The Hamiltonian is
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where the two system states are denoted as R and L, §=s, |R><R|+sL|L><L| is the operator (with
eigenvalues s, ,s, ) that specifies the system state, the parameters of the discrete modes are @,,¢, and o,,c,
, and the tunneling splitting of the isolated TLS is 2A€Q) . By setting ¢, =0 we study the dynamics with a
single discrete mode. The TLS states often represent electronic states which may characterize charge or
exciton transfer processes. The discrete modes may represent intramolecular normal mode vibrations, while
the bath, which is often used to represent a solvent or biological environment, describes a large number of
additional degrees of freedom (with a practically continuous frequency distribution) which couple to the
TLS and introduce dissipative interactions.

A bath described by a continuous spectral density is equivalent to an infinite number of harmonic
oscillators whose frequencies and coupling parameters of the dissipative bath are characterized by the
spectral density function®
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In many situations it is convenient to discretize the bath into » harmonic modes. The number n of
oscillators is arbitrary, constrained only by the requirement that the dynamics of the original and discretized
baths must match up to the desired propagation time. This sets a lower bound on the value of »n for a
particular propagation length. In typical situations, propagation over short to intermediate times requires
50-200 discretized modes, while larger values are needed for longer propagation. Based on earlier
theoretical considerations and scaling ideas,*' the coupling coefficients scales as 1/ Jn , and efficient

discretization algorithms are available.***



With these ideas in mind, we consider the choice of coupling constants for the “weak coupling” or
“spin-boson” regime. Our goal is to investigate the dynamical properties of modes that comprise the
dissipative bath under consideration. For the frequency of interest, we consider a sufficiently large value of
the discretization parameter n and choose ¢, by requiring® that the reorganization energy A, of the mode
equals 1/n of the total bath reorganization energy A. We note that different properties have different
convergence characteristics with the number of discretization modes. Once n is sufficiently large we
observe some simple patterns that do not change upon further increasing this parameter.

To investigate the “moderate coupling” or “molecular vibration” regime, we consider larger values
of ¢, which are vaguely consistent with the Huang-Rhys factors* of common intramolecular vibrations.
Such coupling parameters are known to vary over several orders of magnitude,* and we consider values
that characterize vibrations that couple to the electronic states with small to moderate strength. In this paper
we do not consider strongly coupled modes. Strong coupling leads to vibronic dynamics that can lead to
behaviors that are entirely different from those that we describe in this work. Such effects are investigated
in another paper. In all cases the coupling coefficients are chosen to satisfy the relation ¢, = kw, where the
proportionality factor x has the same value for the two discrete modes, ensuring that they make equal
contributions to the reorganization energy.

In most of the calculations presented in sections IV and V we use the standard Ohmic spectral
density function, J(w)=17zh Ewe '™ | to describe the dissipative bath. This form leads to rich dynamical
behaviors® and has been used in countless theoretical studies. However, one might wonder whether the
generic behavior we identify are intimately connected to the broad, unstructured Ohmic function. To clarify
this concern, we also present some results using a structured spectral density obtained by rescaling a
function obtained from molecular dynamics simulations of a biological process, rescaled to a frequency
range and reorganization energy similar to those in our model calculations. We find that the behaviors we
observe remain qualitatively unchanged as long as the spectral density corresponds to dissipative dynamics,
regardless of its detailed appearance.

Each of the two TLS states, along with the discrete and the bath modes, defines a diabatic potential
energy surface. The two surfaces are displaced with respect to the ¢, =0 axes by the amounts
g™ =+c,/mew’. With the chosen parameters this displacement is small compared to the span of
eigenfunctions and the zero-point energy of each diabatic potential lies above the curve crossing point.
Figure 1 shows the diabatic and adiabatic potential curves for the TLS coupled to the first discrete mode.
Also shown are the squares (the densities) of the diabatic wavefunctions, i.e. the projections of the
eigenfunctions on the R and L TLS states. It is seen that the ground state density peaks on the inner side of
q;nin
coupling to the TLS, leads to shifts in the average value of oscillatory observables presented later.

the diabatic potential minima, i.e. |q}°“‘k < . This effective anharmonicity, which arises arising from

At t =0 the TLS is assumed to be in the R state, while the two modes as well as the continuous
bath are described by Boltzmann distributions centered about the coordinates g, =0 and ¢, =0. These
initial conditions characterize the density matrix generated by a “vertical” Franck-Condon transition from
the ground electronic state of a molecular system.

In common system-bath calculations, observables are defined with the respect to the TLS alone and
the reduced density matrix (RDM) is calculated. In this work we probe the dynamics of the TLS and the
discrete modes in the presence of the dissipative bath. In our recent investigations of excitation energy
transfer dynamics in the dimer of a perylene bisimide we defined the one- and two-mode electronic-
vibrational densities*® by partially summing the full density matrix, which was expressed in terms of the
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intramolecular normal mode coordinates of each molecule. These quantities allowed us to explore the
nonadiabatic dynamics in that system at a high level of detail and to elucidate the origins of various features
of the excitation transfer process that stem from the interplay between electronic and vibrational motion.
Here we define analogous one- and two-mode system-bath densities (SBD) for each TLS state,
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Fig. 1. Diabatic (red) and adiabatic (black) potential energy functions for a discrete mode with o =2.7,
¢, =0.5 and Q=1. Blue and green lines show the squares of the four lowest eigenfunctions projected
on the R and L states, respectively. The dashed lines indicate the eigenvalues. The two dots mark the R
diabatic potential minimum and the corresponding density maximum.

From these SBD functions we obtain expectation values of the discrete mode coordinates on each state,
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as appropriate. The normalization coefficients in the denominators are the R- and L-state populations that
are needed to account for the variation in probability density due to population transfer between the two
system states. We also define the total SBD
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and the corresponding mode coordinate expectation values



(¢:(©)=[dg, ¢,D, (¢,,t) and (g, ()= [dg,[dg,q.D;(q.q,t), i=1,2. (2.6)

Calculations for one or two discrete modes coupled to the TLS were performed with a standard
basis set code which uses a direct product of TLS and harmonic oscillator basis functions. The procedure
was described in detail in another paper.*’

All results involving a dissipative bath were obtained using the SMatPI methodology.***° Given an
initial condition, the RDM is obtained from the matrix product

n

p. (NAt)=> UM 5. (0) 2.7)
N ioi o INlp " fo

where i =R,L is the index that specifies the state of the TLS, Ar=¢/N is the path integral time step and
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is the reduced propagator, which is averaged with respect to the bath. Its path integral expression is given
by the sum

n n
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where G. . are short-time forward-backward propagators for the system Hamiltonian and F. . . is

iy i 5=l

the QuAPI-discretized influence functional,*** which contains memory terms that couple the path integral
variables. If the memory spans L path integral time steps, evaluation of the RDM can be performed through

the QuAPI algorithm,'>!® which involves iteration in time and leads to linear scaling with the number of
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time steps. In the case of a system characterized by # states, the QuAPI algorithm™>'® generally requires

the storage of a tensor of n°" path amplitudes and involves n***> operations for each propagation step. In

many situations, the number of paths that must be stored can be dramatically reduced through filtering

183350 or singular value decomposition.?’” Further, under certain conditions characteristic of

35,51

criteria
incoherent dynamics, the blip decomposition”~" reduces the array storage to just the blip configurations.
Nevertheless, the storage requirements of these algorithms can be impractical for treating systems with
multiple states.

The SMatPI algorithm*° is a decomposition of the path integral expression (2.9) that eliminates
the tensor storage requirements of the iterative QuAPI algorithm. The SMatPI decomposition disentangles
the path integral variables, leading to an algorithm that involves only the storage of small matrices.

Propagation of the reduced propagator beyond the memory length is given by the form

U = fM(N’N‘” YT MY N =2, (2.10)

r=1



where MY are n” xn”> matrices that are recursively obtained from the full path integral expression with
the discretized influence functional. The main cost of the algorithm is in the generation of these matrices,
i.e. the cost of the entire calculation is comparable to that of a single QuAPI iteration. Most importantly,
the elimination of large tensor storage allows the inclusion of much longer memory, as well as the treatment
of multistate systems.

III. Spin-boson regime: Dynamics of weakly coupled modes

In this and the next section we set Q =1. With this value the tunneling splitting of the bare TLS is
equal to 2 energy units. We choose the frequencies o, =2.7 and @, =3.2 for the discrete modes. The
dissipative bath has an Ohmic spectral density with a cutoff frequency @, =7.5.

First, we present results with a single discrete mode of @, =2.7 weakly coupled to the TLS with
¢, =0.1, at two temperatures that correspond to =35 and 0.05. Figure 2 shows nine representative frames
(chosen as those that best capture the important dynamical features) of the SBD time evolution on the R
and L states for the two chosen temperatures. At the lower of these temperatures the initial density is that
of a Gaussian with width approximately equal to that of the harmonic oscillator ground state. The small
displacement of the SBD leads to motion reminiscent of Gaussian wavepacket dynamics, i.e. the density
remains compact and Gaussian-like on each of the two diabatic curves, although nonadiabatic effects lead
to density transfer between the two states. The effects of this motion on the TLS population dynamics,
shown in Figure 3, are almost imperceptible. However, we emphasize that the collective effect of many
bath modes in this frequency and coupling range can be very significant.

Several states of the special mode are populated at the higher temperature, resulting in a much
broader SBD and introducing contributions from multiple eigenvalues. The combination with nonadiabatic
effects leads to less trivial SBD evolution, where two and even three small humps are observed in some
low-density frames. The population exhibits quantum beat patterns in this case.

Figures 4 and 5 show the normalized position expectation values of the discrete mode <qu (t)> and
<q1L (t)> on each of the two TLS states, and also <q1 (t)> with respect to the total density, as a function of
time for the TLS coupled to only this mode and also in the presence of the dissipative bath. For comparison,
the coordinate expectation value is also shown for the dissipationless mode in the absence of electronic
coupling. In the Q=0 case the density remains Gaussian at all times and its peak coincides with the
averaged coordinate, thus <qu (t)> oscillates between the inner and outer turning points, which on the R

out min

state are located at ¢" =0 and g™ =2¢™ , respectively.
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Fig. 2. Time evolution of SBD on the two states for @, =2.7 and ¢, =0.1. At each time, the density on the R (red) and L (blue)
state is shown as a function of the mode coordinate ¢, (horizontal axis). Left: # =5 .Right: #=0.05.
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Fig. 3. Population of R state as a function of time for the weakly coupled mode with @ =2.7 and
¢, =0.1. Black and blue lines: £=0 at two temperatures, #=5 and f=0.05. Red line:
£=02,8=5.

Nonadiabatic effects lead to major changes in the evolution of mode observables. When the
continuous bath is present, the averaged mode coordinate exhibits simple oscillatory patterns. However, the
oscillation amplitude on each state is increased significantly relative to the J =0, while the mean value of
<qu (t)> is decreased. The inward shift of the average mode coordinates is a consequence of anharmonicity,
which results in skewed wavefunctions as shown in Fig. 1. The increased oscillation amplitude is a
consequence of SBD depletion and is discussed below. Further, it is worth noting that the oscillations of
the coordinate expectations values (thus the peak densities) on the R and L states are synchronized. The
coordinate expectation value with respect to the total density (right panel of Figure 4) also displays similar
oscillations, although more variability appears at early times.

In the absence of the bath the evolution of the averaged mode coordinate on each TLS state exhibits
spikes that occur at periodic intervals. The pattern around these spikes alternates between two behaviors,
namely spikes where the averaged mode coordinate on the R state exhibits large positive values on both
sides of the spike, and those where the large values have opposite signs on the two sides of the spike. It is
seen that the spikes are less prominent at high temperature. In that case the overall appearance of the mode
expectation value is smoother.

The average mode coordinate with respect to the total density does not display spikes, as the total
density does not get depleted, but the oscillation pattern is not as simple as that observed on each of the two
diabatic states. When two discrete modes are considered, the behavior of the expectation value with respect
to the total density becomes even more complex, while simple, physically meaningful patterns are observed
when the coordinates are averaged with respect to the individual state densities. For this reason we focus
on the single-state expectation values, <q1R (t)> and <qlL (t)> .

We now turn to an explanation for the spikes in the coordinate expectation values. As seen in Fig.
4, the average mode coordinate (and the SBD peak position) on each TLS state extends far beyond the outer
turning point in the case of Q >0. When the population is transferred between the R and L states, SBD
depletion in the region surrounding the crossing point (g, =0) pushes the SBD maximum to very large
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values. In the absence of a bath, the population evolution shown in Fig. 3 shows that depletion is quantitative
at certain times, leading to spikes in the average mode coordinate. This effect is amplified when the mode
coupling is small, implying that the SBD range on each state and the nonadiabatic region where state
crossing is likely>? overlap significantly. As back-transfer takes place, adding SBD density to the R state
from the opposite side (i.e. from density on the L state, whose maximum lies to the left of the curve crossing
point), the mode expectation value spikes with the opposite sign. The opposite effect is observed in the next
half cycle of the electronic dynamics, i.e. during the first recurrence of R population. We note again that
the oscillation of the mode average coordinate is not symmetric with respect to the diabatic potential
minimum. This effect, which is a consequence of diabatic coupling-induced anharmonicity, is seen more
clearly in the case where the TLS is coupled to a dissipative bath, for which the oscillation pattern is simpler.
As the temperature is increased, asynchronous contributions from higher excited states prevent a significant
depletion of the SBD, gradually washing out the spikes. However, we emphasize that the density is not
compact and Gaussian-like at this high temperature, so the coordinate expectation value does not have the
same simple physical interpretation of peak position in this case.

01 —— _ . 0.1 . . . .
0.05 0.05
A A
s E o
k=)
v v
-0.05 -0.05
-0.1 i l- I i o !‘- I I : | ‘ -0.1 I ! 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Qf Qf

Fig. 4. Coordinate expectation value for the discrete mode with @ =2.7 and ¢, =0.1 at two temperatures.
The horizontal lines indicate the turning points on the diabatic potentials. Left: expectation values on
each of the two states. Red and blue: <q1R (t)> and <q1L(t)> , B =5 . Black and magenta: <q1R (t)> and
<q1L(t)> ,$=0.05. The green line shows the coordinate expectation value for Q=0. Right:
coordinate expectation value <q1 (t)> with respect to the total density, when £ =0.05.

In the presence of a dissipative bath, the apparent constant-amplitude oscillation of the coordinate
expectation value do not persist indefinitely. This behavior is a consequence of the dissipative nature of the
dynamics, although the indirect interaction (through the TLS) of the mode with the bath leads to very slow
decay. Figure 5 shows the time evolution of <q1R (t)> for the lower temperature over a long time interval.
This very slow decay of oscillation amplitude is the result of energy exchange between the discrete mode
and the bath, which is mediated by the TLS, as the harmonic modes are not coupled directly in the
Hamiltonian. The dissipative effects of the continuous bath lead both the TLS populations and observables
associated with the discrete mode to equilibrium, albeit equilibration of these properties occurs on very
different time scales.
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Next, we present results for a TLS coupled to both discrete modes. Just as observed in the single-
mode calculations, the density on each state remains compact and Gaussian-like with these parameters,
such that the coordinates obtained from the position expectation values practically coincide with the
location of the SBD peak.
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Fig. 5. Coordinate expectation values for the discrete mode with @ =2.7 and ¢, =0.1 at f=5. Red and
blue lines show <q1R (t)> and <q]L (t)> , respectively, and the black markers show <q1 (t)> . The green
line shows the coordinate expectation value for 2 = 0. The horizontal lines indicate the turning points
on the diabatic potentials. The evolution of the expectation values <q1R (t)> and <q]L (t)> over a much
longer time is shown in the right panel.

Figure 6 shows the “trajectory” of the SBD peak on the R state, i.e. <q§ (t)> Vs. <q1R (t)> , Over a
time period 7 =240 (which corresponds to ~76 TLS periods) for the TLS coupled to two discrete modes
with various frequency ratios, where again color indicates the density value. The spikes observed in Fig. 4,
which correspond to low density regions, show as yellow-tinted loops that surround a region of Lissajous-
type appearance with clear boundaries. These regular patterns resemble the behavior of classical trajectories
in integrable systems, or (more generally) trajectory dynamics on KAM tori, and as is well known,>*-** the
particular shape that is observed depends on the value of the characteristic winding number of the torus
(which is given by the local relation of the classical frequencies and thus depends on anharmonicity effects).
At zero temperature, where the evolving density results from a single initial state, the SBD trajectory is
confined within a two-dimensional region that has the topology of a square, and which is embedded within
the larger energetically available region bounded by the curve V' (g,,q,) = E . These patterns observed in
Fig. 6 are a consequence of the compact, Gaussian-like evolution of the SBD on each diabatic state.

Shown in Figure 7 is the evolution of the SBD peak for the two discrete modes in the presence of
a dissipative bath for one of the parameters of Fig. 6 over the same time length. As observed in the single-
mode dynamics, even weak coupling to a dissipative bath prevents populations from falling to zero, thus
eliminating spikes and outside loops, while further smoothing and regularizing the dynamics. After a short
excursion that reflects early-time transient behavior, the coordinate expectation values settle into a regular
classical-like pattern with a rectangular boundary. Note that the boundary of the SBD trajectory is
rectangular in all cases, regardless of the complexity of the Lissajous pattern observed with different mode
frequency ratios in the absence of a dissipative bath. The change of the SBD trajectory induced by the
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indirect dissipative effects of the bath (which the discrete modes experience exclusively through their
coupling to the TLS) is dramatic for some of the parameters, in particular when the frequencies are close to
a low-order resonance condition, turning twisted, pretzel-shaped trajectories into simple patterns
reminiscent of classical motion with irrational frequency relations.

In line with the shift of the oscillation region discussed in the single-mode case, both axes of the
SBD rectangle are shifted. Further, the size of the rectangular region is decreased, reflecting the amplitude
reduction through dissipative interactions, which lead to energy exchange between discrete mode and the
bath. The amplitude rescaling due to the bath varies for different frequency modes, leading to rectangular
Lissajous-like patterns of varying aspect ratios.
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Fig. 6. Trajectory of SBD peak on the R state, i.e. coordinate expectation values <q§ (t)> (vertical axis) vs.
<qu (t)> (horizontal axis) for the discrete modes on the R state for f =5 in the absence of a
dissipative bath up to ¢ =240. In all cases the parameters of the first discrete mode are w, =2.7,
¢, =0.1. Top left: w, =2.7, ¢, =0.1. Top right: @, =2.9, ¢, =0.1074. Bottom left: @, =3.2,
¢, =0.12 . Bottom right: @, =3.6, ¢, =0.1333 . The color intensity (from white to yellow to red)
indicates the value of the R state population.
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Also shown in Fig. 7 is the SBD trajectory in the presence of the bath over a much longer time
interval. The color intensity in the second panel indicates the time value. As the amplitude of the SBD
motion gradually decreases, the rectangular Lissajous region shrinks. Thus the SBD trajectory displays
resembles regular motion with an attractor™ in this case. However, the dissipative effects depend on the
mode frequency and the strength of indirect coupling to the bath via the TLS, thus the amplitudes of the
two modes decay with different rates. For example, a mode with a larger displacement or strong effective
coupling will show a faster decay of the oscillation amplitude, due to more rapid indirect energy exchange
with other modes. Therefore, this effect leads to a Lissajous boundary with an evolving aspect ratio, where
the long and short sides of the rectangle may eventually switch, as we see in the next section. However, we
emphasize that amplitude decay in the small coupling regime is extremely slow, leading to simpler patterns,
i.e. the SBD trajectory amplitude is practically constant over time intervals much longer than the
characteristic time of TLS RDM dynamics.
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0.01
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Fig. 7. Trajectory of SBD peak on the R state, i.e. coordinate expectation values <q§ (t)> (vertical axis) vs.
<qu (t)> (horizontal axis), for the discrete modes with @, =2.7, ¢, =0.1 and w, =29, ¢, =0.1074
on the R state, in the presence of a dissipative bath with & =0.1. The left panel shows the trajectory
over a time interval 7= 240. The trajectory of the SBD peak is shown in black. No color variation is
used in this case because coupling to the bath eliminates low-density regions. The SBD trajectory for
& =0 is also shown in the background for comparison. The right panel shows the SBD trajectory for
a very long time, Q¢ =400 . The color intensity indicates the time value.

The above results indicate indirect coupling to a dissipative bath leads to profound changes in the
motion of the SBD in the weak coupling regime representative of discrete bath modes characterizing a
continuous spectral density. This indirect interaction leads to the smoothing of the SBD, preventing it from
falling to zero and thus regularizing the peak trajectory, the synchronization of the SBD trajectory on the
two diabatic states, and the destruction of twisted trajectory patterns resulting from low-order resonance
relations by simpler structures reminiscent of irrational tori in classical dynamical systems. If the coupling
of the probed modes is weak, the regular evolution of the SBD trajectory continues for very long times.
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These behaviors pose a new question: Are the regularizing effects of the bath the result of broad
spectral densities with a smooth distribution of coupling parameters? To clarify this, we replace the Ohmic
spectral density by a highly structured form obtained from molecular dynamics simulations of a biological
electron transfer process,® scaled to roughly match the reorganization energy and time scales of our models.
Figure 8 shows the coordinate expectation value on the R and L states for the mode at the second major
peak of the spectral density, which is indicated with an arrow. The coupling constant was obtained by
discretizing the spectral density into #n =500 modes. The mode expectation value exhibits the behaviors
observed with the Ohmic spectral density: the oscillations are smooth, free of the sharp patterns observed
in the absence of a dissipative bath, the mean value of the oscillations are shifted with respect to the diabatic
minima (a consequence of anharmonicity induced by nonadiabatic coupling), and the oscillations on the R
and L states are rapidly synchronized. These behaviors suggest that the stabilizing effects of the bath on the
SBD of a weakly coupled mode are not the result of a broad spectral density in the vicinity of the mode
frequency. Rather, these smoothing effects are a consequence of the overall dissipative dynamics induced
by a bath characterized by a continuous spectral density, which may be broad or structured.
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Fig. 8. Coordinate expectation values for the structured spectral density shown in the inset of the right panel.
The frequency of the chosen mode is indicated with an arrow. Red and blue lines show <qu (t)> and
<q|L(t)> . The green line shows the coordinate expectation value in the absence of nonadiabatic
coupling. The horizontal lines indicate the turning points on the diabatic potentials. The evolution of
the expectation values <q|R (t)> and <q|L(t)> over a much longer time is shown in the right panel.

IV. Molecular vibration regime: Dynamics of modes coupled to the TLS with moderate strength

Figure 9 shows the SBD time evolution on the R and L states for the same frequency used in the
previous section, @, =2.7 , but with a larger coupling value, ¢, =0.5. In the low temperature case the SBD
is again seen to remain compact and Gaussian-like. However, the shape of the SBD is very significantly
modified at the high temperature, where anharmonicity arising from nonadiabatic dynamics introduces
pronounced oscillatory components.
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Fig. 9. Time evolution of SBD on the two states for @ =2.7 and ¢, =0.5. At each time, the density on the R (red) and L (blue)
state is shown as a function of the mode coordinate ¢, . Left: f=5.Right: f=0.05.
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The time evolution of the population of the R TLS state is shown in Figure 10. With this stronger
TLS-mode coupling the population exhibits quantum beat patterns which survive even in the presence of a
dissipative bath. In sharp contrast to the common situation of a TLS coupled only to a dissipative
environment, the TLS population in the present case displays persistent oscillations which do not die out
within the typical time scale associated with RDM dynamics. The magnitude of these oscillations is
moderate at the low temperature and small but not negligible at the high temperature.
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Fig. 10. Population of R state as a function of time for the weakly coupled mode with @ =2.7 and
=0.5. Black and blue lines: £=0,5=5 and f=0.05.Red line: £=0.2,5=5.

Fig. 11. Coordinate expectation value for the discrete mode on the two states with @ =2.7 and ¢, =0.5 for
two temperatures. Red and blue: <q|R (t)> and <q,L(t)>,ﬂ:5 . Black and magenta: <q|R (t)> and
<q,L (t)> , 8 =0.05. The green line shows the coordinate expectation value for Q = 0. The horizontal
lines indicate the turning points on the diabatic potentials.
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Figures 11 and 12 show the normalized position expectation values of the discrete mode, <q1R (t)>
and <q1L (t)> , on each of the two TLS states as a function of time for the TLS coupled to only this mode and
also in the presence of a dissipative bath with £= 0.2, @, =7.5 and g = 5. These figures the analogues
of figures 4 and 5 for stronger coupling. The dynamical patterns in these figures are qualitatively similar to
those observed in the case of a weakly coupled mode. However, the spikes in the average mode coordinate
are not as prominent in the present case, reflecting the absence of very low SBD regions. In turn, the latter
is a consequence of density retention on the diabatic surfaces which was identified in our recent study>® of
nonadiabatic dynamics in the PBI dimer in strong system-bath coupling regimes. Again, the oscillations of
the coordinate expectation values on the R and L states are perfectly synchronized.
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Fig. 12. Coordinate expectation value on the two states for the discrete mode with @ =2.7 and ¢, =0.5 at
£ =5. Red and blue lines show <qu(t)> and <qlL(t)>, respectively. The green line shows the
coordinate expectation value for Q = 0. The horizontal lines indicate the turning points on the diabatic
potentials. The evolution of the expectation values <q,R (t)> and <q,L (t)> over a much longer time is
shown in the right panel.

In the presence of a dissipative bath, Fig. 12 shows a noticeable difference in the motion of the
SBD compared to the weak coupling case. The decay of the oscillation amplitude is now noticeable even
within the short time interval shown in the left panel of Fig. 12. This accelerated decay is the result of faster
energy transfer to the bath, facilitated by the larger coupling strength to the TLS.

Last, in Figures 13 and 14 we show the SBD trajectory in the presence of the bath for two modes
(with the frequency combinations used in section III) for moderately large coupling parameters. These two
figures are the moderate coupling counterparts of Figures 6 and 7. In the absence of coupling to the
dissipative bath, the SBD trajectories exhibit very different dynamics. The regular Lissajous-type patterns
observed in the weak coupling case (Fig. 7) are strongly perturbed and the distinct shapes are now hardly
recognizable. Fig. 13 shows that under strong coupling the SBD trajectories resemble unwound balls of
yarn with no clear trajectory boundaries. The observed patterns are reminiscent of chaotic motion in
classical systems, where trajectories are not confined on tori and can thus explore higher dimensional
regions.
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In spite of the loss of regular trajectory dynamics with increased mode-TLS coupling strength,
interaction with a dissipative bath again simplifies the motion. The resulting SBD trajectory shows again
the simple rectangular Lissajous pattern observed in the weak coupling case. As the two mode oscillation
amplitudes decay faster in this case and with different rates, the long-time evolution of the SBD trajectory
displays a substantial change, where the rectangular region shrinks and eventually changes aspect ratio.
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Fig. 13. Trajectory of SBD peak on the R state, i.e. coordinate expectation values <q§ (t)> (vertical
axis) vs. <qu (t)> (horizontal axis), for the discrete modes on the R state for =5 in the
absence of a dissipative bath up to Q¢ =240. In all cases the parameters of the first discrete
mode are @, =2.7, ¢, =0.3. Top left: @, =27, ¢, =0.3. Top right: @, =2.9, ¢, =0.32
. Bottom left: @, =3.2, ¢, =0.35. Bottom right: @, =3.6, ¢, =0.4 . The color intensity
(from white to yellow to red) indicates the value of the R state population.
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Fig. 14. Trajectory of SBD peak on the R state, i.e. coordinate expectation values <q§ (t)> (vertical axis)
VS. <q1R (t)> (horizontal axis), for two discrete modes with @ =2.7, ¢, =03 and @ =32,
¢, =0.35 on the R state. The colored line shows results in the absence of a bath. The left panel
shows the trajectory over a time interval ¢=240. The color variation (from yellow to red)
indicates the value of the R state population. The black line shows the trajectory of the SBD peak
for £ =0.2. The right panel shows the SBD trajectory for the same bath parameters for a very
long time (¢ =400 ). The color intensity indicates the time value. Note the change in aspect ratio
of the rectangular region (landscape at early times, portrait at long times).

V. Concluding Remarks

In this paper we have explored dynamical behaviors in dissipative two-level systems from the
perspective of the bath. Rather than focusing on properties pertaining to the TLS, such as populations and
coherences, which are encoded in the RDM, we investigated the dynamics of the bath itself. Specifically,
we calculated the time evolution of the SBD functions, i.e. the densities on the two TLS states along the
coordinates of one or two discrete modes of the bath, and the expectation values of these coordinates over
very long times in two coupling regimes.

The first regime characterizes the parameters of bath modes obtained from a very fine discretization
of a continuous spectral density. We argued that one can always choose a sufficiently large number of
discrete modes that reproduce the dynamics of any observable over a chosen time length. Since the coupling
coefficients become smaller as the number of modes increases, each mode of a discretized bath is
characterized by small coupling, and we refer to this situation as the weak coupling or spin-boson regime.
We studied the dynamics of one and two such modes with frequencies larger than the TLS tunneling
parameter.

20



In this weak coupling regime, our calculations showed that at low temperatures the nonadiabatic
dynamics of one or two discrete modes coupled to a TLS is characterized by a Gaussian-like density which
is almost entirely depleted during the state-to-state transfer. The near-Gaussian shape of the density implies
that its peak is well characterized by the coordinate expectation value, which we calculate. As the density
is nearly depleted, its remaining small peak appears to travel far beyond the energetically allowed region,
leading to spikes in the coordinate expectation value. Aside from these spikes, the SBD trajectory exhibits
Lissajous patterns strongly reminiscent of regular classical dynamics, whose specifics reflect the frequency
relation on the particular torus. More complex dynamical effects are observed at high temperatures, where
the density is broadened and no longer Gaussian-like.

The indirect coupling of the chosen discrete modes to a dissipative bath leads to very important
changes in the dynamics. The SBD becomes even smoother and its complete depletion is prevented, leading
to the elimination of spikes in coordinate expectation values. The trajectory of the SBD peak is smoothed,
and the motion on the R and L states is rapidly synchronized. The changes induced through indirect coupling
to a dissipative bath are even more pronounced in the trajectories of two discrete modes. Our calculations
showed that the complex, frequency-specific patterns observed in the absence of the dissipative bath are
entirely eliminated, giving rise to simpler generic Lissajous oscillations within rectangular regions. The
boundaries of these regions shrink over very long time periods, reflecting the slow decrease in oscillation
amplitudes. As noted above, the mode coupling parameters can be made arbitrarily small by increasing the
number of discrete bath oscillators, thus the boundaries of the SBD trajectories can remain stable over
extremely long times. By using a structured spectral density of a shape that was parameterized for a
biological electron transfer reaction, we show that these behaviors are not specific to smooth spectral
densities characteristic of simple models and are not contingent upon the existence of a broad background
around the frequency of the chosen mode.

The moderate coupling regime corresponds to coupling coefficients that are considerably larger
than those in the spin-boson regime. Such parameters are often encountered in molecular vibrations coupled
to two electronic states and are measured through Huang-Rhys factors. Under low-temperature conditions
we observed some significant changes in the dynamics of SBD evolution and coordinate expectation values.
Even though the SBD remains primarily compact and Gaussian-like on each surface, the noticeable density
retention during transfer prevents the SBD peak from traveling far beyond the expected region marked by
the turning points of the harmonic oscillator, leading to smoother expectation values. However, the regular
Lissajous patterns in the two-mode SBD trajectories are severely perturbed and no longer resemble
trajectory motion on a torus. Interestingly, coupling to a dissipative bath restores the regular character of
the SBD dynamics in this regime as well.

In this study we did not attempt to present a systematic exploration of the TLS-bath parameter
space. We chose frequencies larger than the TLS tunneling parameter, for which the resulting dynamics
was somewhat simple, yet very interesting behaviors of bath dynamics emerged from our calculations.
Further, we did not consider strongly coupled modes. Our recent work on excitation energy transfer in
molecular aggregates of bacteriochlorophyll and dyes revealed a host of interesting effects in moderate-to-
strong coupling regimes, which are characterized by significant complexity. Thus, the combination of
studies based on simple models and molecular Hamiltonians yields complementary perspectives and rich
information.
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