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Abstract

The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a
multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion
associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we
present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive
mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene
bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of
each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the
composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD
center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton-
vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that
slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are
observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled
normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton-vibration
interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the
electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these

features through dephasing.
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I. Introduction

A detailed mechanistic picture of the dynamics that follows electronic excitation of molecular
aggregates is highly desirable for a comprehensive understanding of excitation energy transfer (EET).!
Physically motivated analyses of the spatiotemporal evolution of electronic-vibrational (EV) probability
densities on electronic potential surfaces are essential for the assignment of features in the population
dynamics, the interpretation of two-dimensional time-resolved spectra and the design of energy-efficient
materials. A significant majority of theoretical approaches to simulate EET in the past have focused on the
purely electronic reduced density matrix (RDM), which involves a trace with respect to the vibrational
degrees of freedom. While the electronic populations and coherences are often the relevant quantities for
describing the distribution of energy flow in molecular aggregates, the intricate interplays of vibrational
density evolution, which underlies the specifics of RDM dynamics, remain hidden under the trace.

Recent theoretical treatments have explicitly incorporated one or a few vibrational degrees of
freedom within the target subsystem, leading to several vibronic models, while the remaining vibrational
modes were either neglected or delegated to a different level of treatment, e.g. as a dissipative continuous
bath that is coupled to the electronic states and/or the special “system” mode. Unless substantiated by
accurate electronic structure calculations for specific systems, such designations of a special mode within
the broad and general framework of EET tend to be ad hoc. Moreover, many of these approaches have used
a two-state approximation for the special mode, and/or relied on dynamical assumptions for the treatment
of exciton-vibration coupling and/or the inclusion of finite temperature effects.>

In this paper we seek to obtain a detailed and thorough understanding of EET driven by the
following fundamental questions: (i) How does the motion associated with a vibrational mode of a molecule
modulate the dynamics of energy transfer to and from the molecule? (ii)) What is the dynamical effect of
one vibrational mode on another mode of the same or a neighboring molecule? (iii) How does the overall
dynamics change when many vibrational modes of non-commensurate frequencies and couplings are
simultaneously involved?

We provide answers to these questions by examining the time evolution of the probability density
created along chosen vibrational coordinates by electronic excitation and intermolecular energy transfer in
a Frenkel exciton-coupled homodimer of PBI-1, a bay-substituted perylene bisimide dye,*’ which exhibits
most of the typical effects of exciton-vibration dynamics. The J-aggregates of this molecule have received
much attention because of their high fluorescence quantum yield.*!® We assume that the energy is initially
localized in one the two monomers, following a Franck-Condon excitation from the ground state. Such a
localized state is the superposition of the two delocalized exciton eigenstates that are commonly excited
with an ultrafast laser pulse. We obtain highly accurate results by explicitly treating a// vibrations at a fully
quantum mechanical level within the Hamiltonian at room temperature, without invoking dynamical
approximations or assumptions. The outcome of this investigation is an intricate analysis of EV motion on
the molecular potential surfaces and its signatures in the observed electronic population dynamics, which
reveals the complexity of the nonadiabatic dynamics in reduced-dimension two-mode models of the dimer,
as well as the cumulative effects on this dynamics from the remaining intramolecular vibrations.

We begin with a basic analysis of EV dynamics in a dimer, which provides the theoretical
framework for understanding the behaviors revealed by our numerical results. In section Il we describe the
Hamiltonian, which involves two electronic states and 28 intramolecular normal mode vibrations in each



molecular unit, along with Frenkel exciton interactions between the two molecules. We define two-mode
electronic-vibrational densities (EVD), where either a particular mode on each of the monomers or two
distinct modes on the same molecule are probed, either in isolation or in the presence of all remaining
intramolecular modes. In section III we present some general theoretical considerations regarding the main
factors that govern the EVD evolution in the dimer. In spite of its simplicity, this analysis highlights some
of the important differences and subtle physical features that dictate the motion of vibrational modes that
belong to a single molecule or to the two molecular units. Guided by these ideas, the time scales of
electronic and vibrational degrees of freedom in PBI-1, and our earlier observations,'"* 12 we give at the
beginning of section IV a summary of the main EV effects that underlie the electronic population dynamics
in the PBI-1 dimer.

The results of our numerical calculations are presented in section IV. In the first part of this section
we address the question posed in (i) by showing images of the obtained two-mode EVD for the PBI-1 dimer
at select times, for a single vibrational mode in each molecule whose frequency is lower or higher than the
frequency associated with the electronic transfer, and also for the near-resonant vibronic mode that is
characterized by a relatively large Huang-Rhys factor. The EVD evolution provides visual justification for
the key features of exciton-vibration dynamics identified in section III. Next, we address question (ii) by
examining the EV motion of two different vibrational modes within the same molecule. Signatures of
indirect vibrational coupling of uncoupled normal modes are identified for different combinations of
vibrations. Finally, in the last part of that section we turn to question (iii) and investigate the collective
effects from all molecular vibrations on the EVD evolution. All our density snapshots are supplemented
with full animations in the Supporting Information. A summary and some concluding remarks are given in
section V.

II. Hamiltonian, observables and methods

Consider a dimer of two identical molecules A and B, each being treated as a pair of ground and
excited electronic states denoted by 0 and 1 respectively. The electronic Hamiltonian / relevant to EET
comprises two states,

1 AOB> and |O A1B>, which couple through a Frenkel exciton term'* with coupling
parameter J ,

H, ==J(]1,0,)(0,1,]+]0,1,){(1,0,]). (2.1)

Each molecule also includes its own set of discrete intramolecular vibrations. We express the
exciton-vibration coupling of vibrational normal mode i on monomer « to its ground and excited electronic
states using unshifted and shifted harmonic oscillator terms,
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where « is either A or B, p,, and ¢,, are the mass-weighted (m =1) momenta and coordinates, while o,
and c,, denote the respective vibrational frequencies and exciton-vibration coupling parameters. The

displacement ¢™"
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potential energy surfaces along mode i due to exciton-vibration coupling and are often obtained from
measured Huang-Rhys factors.'* The overall Hamiltonian matrix for the dimer, written in the basis of the
1,0;) and |0,1,) states, is

Zh}A + z -J

Hpe =] " ) ) (2.3)
—J Zﬁ& + ZEB
i=1 i=1

where v, and v, denote the included number of vibrational normal modes of molecules A and B. In the
case of PBI-1, our full-space calculations include v, =v, =28 vibrational modes with parameters obtained
by Kiihn and coworkers'® using time-dependent density functional theory. We use the exciton coupling
value J =514 cm ' obtained from the same work. However, we also consider the evolution of observables
obtained with smaller numbers of vibrational modes, in order to distinguish the effects of different modes
on the dynamics.

We assume that at =0 monomer A undergoes a “vertical” Frank-Condon (FC) electronic
excitation, which leaves the intramolecular vibrations of both molecules still equilibrated to their respective
ground electronic states. The initial density matrix is given by
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where [ =1/k,T, and we have again labeled the density operator by the number of vibrational modes in
each PBI-1 molecule.

To formulate a physical picture of the EV dynamics, we investigate the time evolution of select
electronic-vibrational densities (EVD). Specifically, we define the following intermolecular two-mode
EVDs for the two electronic states of the dimer:
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These functions are obtained from the dimer Hamiltonian where only mode i is included in each molecule.
We also define the intermolecular, two-mode projections of the all-mode EVD for the two states of the
dimer, which are obtained from the dynamics of the full Hamiltonian with v, =v, =28 after tracing with
respect to all modes besides i,
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Further, we define the following intramolecular two-mode EVDs for the two states of the dimer,
where modes 7 and j are included on monomer A,
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as well as the intramolecular two-mode projection of the all-mode EVDs,
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The projected EVDs describe the motion of the vibrational components associated with the specific modes
onthe [1,0,) and |0,1,) electronic states as a function of time, averaged with respect to all other vibrational
degrees of freedom.

All calculations are performed through quadrature-based path integral methods, namely the quasi-
adiabatic propagator path integral'!® (QuAPI), along with its small matrix decomposition®*** (SMatPI).
These fully quantum mechanical methods allow us to include the finite-temperature dynamics of all
vibrational modes in each molecular unit without approximation through analytically evaluated influence
functional® factors. A summary of these methods as they pertain to the EV-RDM in these coupled
chromophore arrays was given in another recent paper.!" The reader is referred to the cited articles for
detailed presentations of these theoretical tools.

III. Simple and general considerations governing EVD evolution in a homodimer

Consider first a single mode on each of the two molecules, with frequencies @, and @ . Figure
1 shows a pictorial description of the EV framework for the dimer. The two electronic states define a pair
of two-dimensional diabatic potential energy surfaces (square frames) coupled by the Frenkel exciton
coupling parameter J . As shown by the red contours, the potential minimum on the |1 AOB> surface (on the
right) is shifted horizontally (along g¢,, ) from the origin to g3", while the corresponding shift along the
vertical axis lies at g,; =0 . Similarly, the coordinates of the potential minimum on the |O AIB> surface lie
at ¢, =0, g
|1 AOB> surface of widths determined by the two vibrational frequencies and the temperature. Because of
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. At t=0 monomer A is excited, thus creating a Gaussian density (gray ellipse) on the

the FC initial condition, the density is centered at the origin and displaced with respect to the potential

min

minima by the amounts ¢;," and qm'“.

At zero temperature the initial density is given by the square of the ground state wavefunction,
which is a Gaussian function. If the two electronic surfaces are uncoupled and in the absence of other
vibrational degrees of freedom, one-dimensional, fixed-amplitude harmonic wavepacket oscillations are
observed on the |1 AOB> surface along g,, , where the center of the wavepacket moves between the two
classical turning points with coordinates 0 and 2¢", with no loss in total density.?* Conversely, if the
exciton-vibration coupling c,, is set to zero, energy transfer between the two states creates two-level system
(TLS) oscillations with a time scale corresponding to the electronic energy gap. This case translates to a
static Gaussian wavepacket, with periodically growing and diminishing height. When both J and ¢, are
nonzero, along with the initial density motion to the right on the |1 AOB> surface, simultaneous state-to-state

energy transfer leads to the gradual loss of density, creating a new wavepacket on the |O alg > surface (yellow
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ellipse). The Landau-Zener model*?7 offers an insightful picture for the dependence of the nonadiabatic
transfer rate on the local potential slopes, strength of coupling and wavepacket velocity, but the overall
motion is rather complex?® even in the two-dimensional case considered here. Depending on the relative
magnitudes of J and @, , the peak of this new wavepacket lies somewhere between 0 and 2¢/2" along the
q., axis, thus creating displacements from the potential minimum of the |O AIB> surface in both vertical and
horizontal directions. Therefore, the wavepacket on the |0 Al B> state moves along both coordinates. As the
density on this state grows while the initially excited state begins to be depleted, nonadiabatic back-transfer
takes place, adding probability density to the |1 AOB> state at a different location (green ellipse), in the
vicinity of the surface crossing region (the seam). This back-transfer leads to motion along both coordinates
on this state as well, and creates the possibility of interference between the two spatially separated
wavepackets, one diminishing and the other growing in intensity. This picture shows how the simultaneous
electronic and exciton-vibration interactions lead to two-dimensional wavepacket dynamics on both
electronic states. At nonzero temperatures the dynamics can be analyzed in similar ways, but the distinct
spatial characteristics of excited vibrational wavefunctions lead to modified wavepacket dynamics and
temperature-dependent EVD evolution.
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Fig. 1. Simple illustration of vibrational density motion on the two electronic surfaces with a single
vibrational mode in each monomer.

Using the quantum-classical path integral formulation®” of nonadiabatic dynamics, one can see that
vibrational motion modifies the exciton transfer dynamics through a phase that depends on the local
reorganization energy, i.e. the difference between the two diabatic potential values.** Fig. 1 shows the seam,
i.e. the line of zero reorganization energy, which is tangent to the potential contours at the point of



intersection with the line that connects the two potential minima. The slope of the seam is equal to ¢, /c -
The reorganization energy is constant along lines parallel to the seam. As a result, motion in directions
parallel to the seam does not modify the vibrational phase, thus should not produce EV effects. Note that
in general the seam is not perpendicular to the line connecting the potential minima.

The picture simplifies if the two modes ¢,, and ¢, have the same frequency and coupling
coefficient ( j =), which implies identical displacements of potential minima and circular contours in Fig.
1. The frequency degeneracy implies that any linear combination of the coordinates maintains the
separability of the diabatic potentials. It has been shown?! 32 that only the difference linear combination
q.» — 4 couples to the pair of electronic states, while the sum coordinate combination is uncoupled and
thus does not alter the EET dynamics, although the density moves along this coordinate as well. The coupled
antisymmetric mode combination coincides with the line that connects the potential minima, while the sum
coordinate is parallel to the seam line. These two lines are perpendicular in this case. Motion along the
difference coordinate g,, —q,, incurs the largest reorganization energy. We thus expect important strongly
correlated EV dynamics along this direction.*® On the other hand, motion parallel to the seam line does not
change the vibrational energy, thus does not modify the rate of state-to-state transfer.
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Fig. 2. Motion of vibrational densities on the two electronic surfaces for two different vibrational modes on the
same molecule.

Next, we focus on the EV dynamics in the case of two distinct normal modes 7 and j of different
frequencies that are coupled to the same molecule. Since both modes are now excited and de-excited
simultaneously by EET, the arrangement of potential energy surfaces is modified and is shown in Figure 2.
The minimum on the 0,1, ) state is now unshifted (i.e. the potential is centered about the origin), while on
the [1,0,) state it is shifted along both coordinates. Since the frequencies of the modes are different, the
diabatic potentials have elliptical shapes and their minima are displaced by different amounts along the two
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modes. With J =0 the motion at zero temperature is that of a two-dimensional Gaussian wavepacket,*
whose center executes Lissajous rotations** within a rectangular region specified by the two displacement
values. In the presence of nonzero electronic coupling the two-dimensional motion leads to the creation of
density (yellow ellipse) on the |0 A1B> state which is also displaced along both coordinates.

In the parameters of the two modes are identical, as in the case of two degenerate intramolecular
normal modes, the motion simplifies again along the sum and difference linear combinations of the
vibrational coordinates. In this case the difference coordinate is parallel to the seam and decouples from the
electronic dynamics, while the symmetric mode ¢,, + ¢, couples to the electronic states and thus gives rise
to EV effects. While the individual normal modes ¢,, and ¢, are completely correlated, the wavefunction
(and density) factorizes along the new sum and difference modes.

The specifics of both kinds of motion illustrated in Figures 1 and 2 are the outcome of the complex
interplay of electronic and vibrational parameters as well as the temperature. Further, the projected
densities, which result from the complex motion of many vibrational degrees of freedom, incorporate
dephasing effects that mimic to some extent those in dissipative environments. The detailed dynamics of
EET in the PBI-1 dimer are described in the next section.

IV. Evolution of electronic-vibrational densities in the PBI-1 dimer

The electronic coupling J in the PBI-1 dimer is 514cm™', giving rise to an energy gap
2J =1028 cm™', which defines the electronic period equal to 7, = 32 fs. The spectral density for the PBI-1
molecule,'® depicted in Figure 3a, comprises 28 normal modes spread over a large range of vibrational
frequencies (7-1628 cm™') with varying exciton-vibration coupling strengths. Mode ¢,. , with a frequency
¢, =1371 cm™" (i.e. somewhat higher than the frequency of the electronic system), has the strongest
coupling to the electronic states. Mode g¢,,, of a higher frequency, is also strongly coupled.
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Fig. 3. (a) Spectral density of PBI-1 (from Ref. 1°). The vibrational modes whose EVD are analyzed are marked. The
dashed line indicates the frequency associated with the electronic energy gap. (b) Population of initially
excited state in the PBI-1 dimer, illustrating the main effects of exciton-vibration dynamics discussed in the
text. Dashed black line: dynamics in the absence of vibrational modes. Red, blue and green lines: mode ¢,, ,
q,s and g, , respectively, included in both molecules. Solid black line: all vibrational modes included.



Figure 3b shows the population of the |1,0,) state in the absence of vibrations, with a particular
vibrational mode included in each of the two molecules, and also with all modes included. Before presenting
the detailed EVD evolution we give a brief overview of the main features of population dynamics along
with their EV origins:

(i) Amplitude reduction of population oscillations due to density retention. This feature arises from partial
population retention along each normal mode coordinate when the density moves sufficiently far from the
crossing region. The extent of retention ranges from negligible or minor in the weakly coupled modes with
small diabatic potential displacements and is substantial in the case of the strongly coupled mode ¢,, .

(ii) Damping of oscillatory features due to the collective decohering effects of many vibrational modes.
This effect is the consequence of dephasing caused by the simultaneous presence of many vibrational modes
with a significant frequency spread and is more pronounced at longer times and at higher temperatures.

The combination of effects (i) and (ii) is a smearing of electronic populations.

(iii) Renormalization of electronic energies by vibrational modes, leading to delayed recurrences of
population. This effect is primarily due to the five highest frequency vibrations'? and is analogous to the
well-studied bath-induced renormalization of tunneling splittings.*> 3

(iv) Emergence of new oscillatory features characterized by a very weak temperature dependence. These
features are associated with a vibronic time scale faster than the purely electronic dynamics, although
indirect coupling to many weakly coupled modes significantly influences such features.

We now illustrate these features by presenting the detailed EVD evolution in the PBI-1 dimer. We
use the length parameter /% / ma, , which equals half of the width of the classically accessible region for
the harmonic oscillator ground state, to quantify the displacement of diabatic potential minima and the
coordinates of turning points. We examine the features of EVD evolution for combinations of modes ¢,, ,
45> 45, and g,,. These modes are characterized by the following parameters:

Gyt @ =751 cm™, gt =0.2569.,/h / maw,,
¢rs: @,5= 1371 cm™, gl" =0.6449,/h / me,s
¢y, : @, = 1570 cm™', gt =0.4074,/h / me,,
Gyt 0= 1628 cm™, gi" =0.2792./h/ me,

In Figures 4-6 we show ten representative frames in the 0-50 fs time window for each case. The detailed
frame-by-frame motion can be seen in the animations available as Supporting Information to this paper.

A. EVD evolution with a single vibrational mode in each monomer

As depicted in Fig. 1, when both modes have identical parameters, the line that connects the two
potential minima makes an angle equal to 135° with respect to the horizontal axis and is perpendicular to
the seam. The two minima and the peak of the initial density form an isosceles right triangle.

In Figure 4 (left panel) we show the EVD evolution for mode g,, (attached to each monomer),
which has a frequency @,;=751 cm™" (period 7,, =44 fs ) and thus is a relatively slow mode with a small
displacement value ¢5" =0.2569./7/ maw,, . With these parameters the density on each potential surface
remains primarily compact and Gaussian-like, although some elongation is observed in several frames.
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Fig. 4. EVD evolution on the two electronic states along the two g, (left) and the two ¢,, (right) modes coupled to
molecules A and B. The first and second column in each panel shows the EVDs on the |1,0,) and [0,1,) states,
while the third column shows the total density. The green dots indicate the locations of the potential minima.
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Further, since the distance between the minima of the two surfaces is much smaller than the spread of the
density, the sum of the two densities also has the same compact shape.

As discussed earlier in the context of Figure 1, the density on the |1,0,) state is initially displaced
from the minimum and thus starts moving toward the right. The turning point, when the density is at its
farthest beyond the potential minimum, would be reached at 17,, =22 fs. However, because r, =32 fs,
density is transferred from the |1,0,) state to the |0,1;,) state (i.e. molecule A is de-excited and molecule
B is excited) over the initial 16 fs. As a result, the innermost part of the density on the |1,0,) diabatic
surface is largely depleted before its peak reaches the turning point, leaving behind only a small fraction of
the density that peaks around 16 fs, which resists electronic transfer because it is located far from the
crossing region. This minor population retention is observed in the population dynamics of mode g,, shown
in Fig. 3b.

The motion of the new density formed on the |0,1,) surface is determined by two factors. Due to
the displacement away from the minimum along g, , it encounters a upward force, while due to the motion
of the surviving density on the |1,0,) state to the right, new density is continuously added along ¢, . This
gives the impression that the density travels toward the right. The combined effect of these two components
is diagonal motion towards and past the crossing region, until the turning point is reached at 22 fs when we
observe a reversal of direction. Meanwhile, electronic population is transferred back to the |1,0,) state
during the time period 16-32 fs, and minor density retention is now observed on the [0,1,) surface.
Interestingly, this new population that arrives in the |1,0,) state starting at 16 fs is spatially separated from
the gradually diminishing density that exists on the same state. This leads to a transient split density.
Overall, for mode g¢,,, we observe relatively simple EVD evolution, with only minor smearing of the
electronic peaks and transient low-amplitude split densities due to weak exciton-vibration interaction.

Next, we investigate the EVD frames for ¢,,, the strongest coupled mode in the spectral density
with a vibrational frequency @,; = 1371 ecm™ (r,, =24 fs). This is a high frequency mode with the
strongest coupling and has a moderately large displacement g5i" = 0.6449.// me,; , which leads to a large
amount of vibrational energy. The higher frequency causes the initial motion to the right to be faster than
density depletion due to transfer, while the large displacement takes the density farther away from the
crossing region. As a result, we first observe a pronounced retention of EVD at 16 fs, which prevents the
electronic population from falling to zero, as seen in Fig. 4b. The emerging EVD on the 0,1, ) state moves
rapidly toward the potential minimum (i.e. left and upward), and the density that continues to emerge near
the crossing region leads to an elongation along the line connecting the potential minima. After going
through the outer turning point at 12 fs begins, this EVD begins to accelerate towards the crossing region.
The high velocity of the density (a consequence of its large kinetic energy as it approaches the crossing
region), combined with the mostly depleted |1,0;) state, leads to the early back-transfer of population from
the |0,1,) to the |1,0,) state beginning at 14 fs. Since the remaining density on the |1,0,) state is still
located far from the crossing region, a split, double-peaked EVD is observed on the [1,0,) state between
13 and 25 fs.

A large displacement along the vibrational coordinate leads to considerable overlaps of the initial
density with several (at least five in this specific case) vibronic eigenstates. Newer timescales are thereby
introduced, some of which are faster than both the electronic and vibrational motions, causing premature
transfer, which manifests itself as vibronic peaks in the population dynamics with a very weak temperature
dependence.
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Fig.5. EVD evolution along mode ¢,, (on the horizontal axis) and a second mode of molecule A. Left: ¢,, vs.
¢,s - Middle: g, vs. g,5. Right: g,, vs. g, . The time evolution of the density for J =0 is shown with
blue contours on the far right. The green dots indicate the locations of the potential minima.
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The faster vibrational motion effectively slows down the transfer of electronic population between
the two states. This occurs because the rapid motion of EVD away from the crossing region leads to
depletion, which decreases the efficiency of population transfer. The resulting delay of electronic recurrence
peaks is the dynamical manifestation of tunneling splitting renormalization®> 3¢ whereby the energy
difference between the two lowest electronic eigenstates is reduced due to coupling to a high frequency
vibration.

As discussed in section III, the dimer Hamiltonian simplifies in the case where the same vibrational
mode is coupled to each molecule, leading to a TLS coupled only to the difference coordinate. Thus the
dimer Hamiltonian is separable in the sum and difference coordinates, implying factorization of
wavefunctions and thus of the EVD as well. The consequence of this separability is evident in all the frames
of Fig. 4. In particular, density retention, nodal lines and EVD elongation develop along the line connecting
the potential minima, while only simple oscillatory motion is observed along the spectator coordinate
parallel to the seam. We emphasize that the perfect correlation of these two vibrational modes is a symmetry
effect, i.e. the manifestation of frequency degeneracy, and should be distinguished from effects due to
indirect coupling among different normal modes discussed later.

B. EVD evolution with two vibrational modes in one monomer

The discussion in the previous subsection focused on the dynamics of two identical vibrational
modes, one on each monomer, on the two electronic states of the dimer. Even though the density was a
two-dimensional function, its evolution was governed by a single vibrational time scale. To explore the
interplay of two vibrational time scales in the EET dynamics, along with the different geometrical features
of the diabatic potentials with respect to the initial vibrational density, we present in Figure 5 the evolution
of the EVD for two vibrational modes of the same molecule. As before, we show ten time frames and refer
the reader to the animations available as Supporting Information for the full EVD dynamics on a 1 fs time
grid. We present results for the following three pairs of normal modes: (i) ¢,; and g,,, (ii) ¢,; and g,
and (ii1) ¢,, and g,,.

Unlike in the previous case, the seam now makes an angle with the horizontal axis that exceeds
90°, while the line that connects the two potential minima makes an acute angle. Because the coordinate of
mode ¢g,, (which has the largest displacement) is placed on the horizontal axis, this angle is smaller than
45° in all cases. As described in the context of Fig. 2, the initial motion is primarily along this angled line,
but because the two modes now reach their turning points at different times, Lissajous rotations** of the
EVD are observed. In the absence of electronic coupling, the EVD maintains a fixed elliptical shape and its
center undergoes Lissajous motion (see the rightmost panel of Figure 5), the trajectory of which depends
on the ratio of the frequency of the two modes. However, when J # 0, state-to-state population transfer
creates complex patterns, such as crescent-shaped densities and in some frames even internal holes in the
density. These patterns carry information about how the dynamics of one vibrational mode is affected by
other modes, to which it is coupled only indirectly.

The dynamics related to the vibronic features attributed to mode g,; (16-24 fs and 55-60 f5) is
particularly interesting. Even though mode ¢, is entirely responsible for the premature back-transfer of
population that leads to the vibronic feature, Fig. 5 shows that the formed density is split along the angled
line that connects the potential minima. This is so because the surviving EVD on the [1,0,) state lies near
or beyond the outer turning point in this two-dimensional space, while the back-transferred density emerges
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close to the crossing region. Therefore, contrary to what one might expect, effectively the vibronic motion
is not only along g, but also along the weakly coupled non-vibronic mode.

Although the normal modes are not explicitly coupled in the Hamiltonian, their individual exciton-
vibration interactions affect the motion of the EVB on the diabatic potential surfaces, which in turn
determines the probability of nonadiabatic transfer at any given time. The complex interplay of these effects
leads to behaviors that we describe as manifestations of indirect coupling among vibrational modes.

To obtain an alternative perspective and additional insights into the observed EVD evolution, we
recall that since the parameters of the two modes are not identical, the EVD is not expected to be symmetric
with respect to the line that connects the potential minima. Remnants of this symmetry can be discerned in
Fig. 5, in particular in the case of modes ¢, and g,, whose parameters differ less than those of the other
pairs. Thus the shapes observed in Fig. 5 indicate two different types of indirect coupling to other modes:
Departures from symmetry with respect to the 45° line indicate imperfect symmetry-induced mode
correlation (i.e. the sum coordinate g, +¢g,, is not the only one coupled to the electronic states, but g,; —¢,,
also contributes to the EV dynamics), while deviations from simple elliptical shapes suggest indirect mode-
mode coupling enabled by the pair of electronic states.

C. EVD evolution in the presence of all vibrational modes

With an understanding of the EV effects caused by the simultaneous coupling to vibrational modes
of different frequencies, we now proceed to analyze the full EVD dynamics etched with multiple vibrational
time scales from all intramolecular vibrations. In Figure 6 we show the time evolution of the full EVD
projected along the ¢g,, or the g, coordinate on both molecules. In both cases, the most prominent effect
of the remaining vibrational modes is the smoothing of the density.

In the case of ¢,, there are five higher frequency modes in the spectral density with sufficiently
large displacements. Therefore, we first note that the projected density in Fig. 6 shows considerable
population retention on the |1 AOB> state, consistent with the similar effect observed in the electronic
population. This is a cumulative effect of the population that remains not transferred during the first half of
the electronic period along each of the 56 normal mode coordinates of the two molecules. Further, the
vibronic feature of mode ¢, also contributes to this projection along ¢,, as a peak in intensity, which in
the presence of all the other modes occurs at 16 fs. Owing to both effects, we see a farther migration of the
projected density away from the initially excited region along ¢,,, compared to the two-mode case. This
suggests that the strongly coupled high-frequency vibrations cause this lower frequency mode to be
effectively coupled more strongly to the electronic degree of freedom. Larger density displacements are
also seen on the |0 Al B> state during the second half of the electronic period, now to the left of the minimum,
which eventually lead to a delayed electronic recurrence.

In contrast to the effects on mode g,,, the same EVD projected onto the most strongly coupled
mode ¢,, exhibits distinct features. Now the remaining modes are relatively weakly coupled, thus the
resulting smoothing of the density is less pronounced. Interestingly however, the vibronic peak at 20 fs is
now shifted to 16 fs in the presence of several other high-frequency modes of intermediate coupling
strengths, in particular ¢q,, ¢,, and ¢,,, none of which alone have sufficiently strong exciton-vibration
coupling to induce such vibronic features. This seemingly peculiar effect appears to be a manifestation of
indirect coupling (through the electronic degree of freedom) among vibrational normal modes.
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Fig. 6. Reduced same-mode, two-molecule EVD evolution on the two electronic states in the PBI-1 dimer. Left:
mode g,, . Right: mode g, . The three columns in each set show the densities on the states |1,0,) and
|0 A1B> and the total density. The green dots indicate the locations of the potential minima.
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Nevertheless, due to the dephasing effects coming from other normal modes, the vibronic transfer
no longer creates a split density. Rather, a continuous density is seen to go through a maximum at 16 fs. As
before, the density reaches its turning points at 24 fs and 36 fs on the |0 AIB> state before showing a
population transfer to the |1 AOB> state up to 40 fs. Effects of high frequency vibrational modes on the
dynamics of low frequency modes were recently reported in an electron transfer reaction involving a PBI
molecule as the donor.?” Such inter-mode correlations, if strong enough, could lead to distinct vibrational
signatures in EET and have important implications for inter-mode energy exchange.

V. Concluding Remarks

By examining the EVD evolution on electronic surfaces, we have presented a detailed mechanistic
picture of EET in molecular aggregates. For a given vibrational initial state, the coupling between electronic
and vibrational degrees of freedom, along with the vibrational frequencies, dictate the wavepacket motion
on each electronic state, while the nonadiabatic coupling modifies this dynamics by adding or removing
density. These two factors combine to give rise to highly nontrivial EVD dynamics, particularly in the case
of strong exciton-vibration interaction. Thermal averaging further complicates the dynamics of the evolving
density, as the spatial characteristics and temporal features associated with the wavepackets formed from
different initial conditions do not coincide. Probability densities that split up, form crescents and even
exhibit internal holes, were seen to frequently emerge through the complex interplay of electronic and
vibrational time scales that form the backbone of EET processes.

Using the parameters of the PBI-1 dimer, we have shown how the simultaneous presence of
identical or distinct vibrational modes shape the different dynamical trends of energy transfer. We have
identified EV signatures in the electronic population dynamics for specific normal modes that lie in different
parameter regimes. Coupling to vibrations was seen to cause retention of population due to motion away
from the crossing region of electronic surfaces. Similarly, strong coupling to faster vibrational modes slows
down energy transfer due to tunneling renormalization, which manifests itself as repeated and cumulative
density retention that leads to a slower return of population to the initially excited state. In a particular case,
we showed how strong coupling also leads to premature transfer of vibronic origin due to an elongation of
the probability density around the crossing region. We argued that while the motion of the density involves
all vibrational coordinates, strong EV effects arise from the motion perpendicular to the seam, during which
the vibrational reorganization energy is maximized. The dephasing effect of a multitude of non-
commensurate vibrational timescales on one mode was quantified by investigating the evolution of
projected densities.

Overall, separable vibrational modes were found to be indirectly coupled due to their interactions
with the common electronic degrees of freedom. When identical modes exist within the same or in
neighboring molecules, the two modes are maximally correlated by symmetry. In this case the correlated
mode is perpendicular to the seam between the diabatic potentials, thus all EV effects, such as density
splitting and retention, take place along this coordinate. In the absence of such symmetries, i.e. when the
parameters or two modes differ, the degree of this correlation depends on the promixity of the mode
frequencies. Depending on the relation between parameters, indirect mode correlation effects can be
characterized as deviations from Gaussian-like EVD shapes, or departures from factorizable EVD evolution
along the line that connects the diabatic potential minima. Moreover, symmetry-induced correlations
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efficiently modulate the electronic population dynamics by driving the EET in the direction perpendicular
to the potential seam, where EV phase effects are most prominent. Therefore, indirect mode coupling and
its related signatures are fundamental to EET processes.

On the short-to-intermediate time interval for which results were presented, the smearing induced
by the intramolecular vibrations of the two molecules resembles dissipative effects on the dynamics of the
one or two tagged modes. Clearly, the finite-dimensional normal mode baths of the PBI dimer cannot
generate true dissipative dynamics at long times. The addition of a dissipative bath to an EV Hamiltonian
leads to further smoothing of the EVD, which eventually evolves toward an equilibrium distribution.
Further, even though we observed indirect coupling of different normal modes through their interaction
with the electronic degree of freedom, our Hamiltonian did not include anharmonic potential terms, which
would introduce direct mode coupling to the dynamics on each diabatic potential, along with the intricate
signatures of nonlinear dynamics frequently observed in intramolecular vibrational energy redistribution.

In conclusion, we believe that the EVD effects that were delineated in this paper are sufficiently
general enough to help in forming an intuitive picture of EET in terms of EV probability density dynamics.
Besides facilitating the rationalization of theoretical and experimental results, the behaviors revealed
through these calculations will aid in the quest for the design of materials with targeted function.
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