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Abstract 
 
The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a 

multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion 
associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we 
present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive 
mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene 
bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of 
each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the 
composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD 
center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton-
vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that 
slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are 
observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled 
normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton-vibration 
interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the 
electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these 
features through dephasing.  
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Equation Section 1 
I.   Introduction  

 A detailed mechanistic picture of the dynamics that follows electronic excitation of molecular 
aggregates is highly desirable for a comprehensive understanding of excitation energy transfer (EET).1 
Physically motivated analyses of the spatiotemporal evolution of electronic-vibrational (EV) probability 
densities on electronic potential surfaces are essential for the assignment of features in the population 
dynamics, the interpretation of two-dimensional time-resolved spectra and the design of energy-efficient 
materials. A significant majority of theoretical approaches to simulate EET in the past have focused on the 
purely electronic reduced density matrix (RDM), which involves a trace with respect to the vibrational 
degrees of freedom. While the electronic populations and coherences are often the relevant quantities for 
describing the distribution of energy flow in molecular aggregates, the intricate interplays of vibrational 
density evolution, which underlies the specifics of RDM dynamics, remain hidden under the trace.  
 Recent theoretical treatments have explicitly incorporated one or a few vibrational degrees of 
freedom within the target subsystem, leading to several vibronic models, while the remaining vibrational 
modes were either neglected or delegated to a different level of treatment, e.g. as a dissipative continuous 
bath that is coupled to the electronic states and/or the special “system” mode. Unless substantiated by 
accurate electronic structure calculations for specific systems, such designations of a special mode within 
the broad and general framework of EET tend to be ad hoc. Moreover, many of these approaches have used 
a two-state approximation for the special mode, and/or relied on dynamical assumptions for the treatment 
of exciton-vibration coupling and/or the inclusion of finite temperature effects.2-5 
 In this paper we seek to obtain a detailed and thorough understanding of EET driven by the 
following fundamental questions: (i) How does the motion associated with a vibrational mode of a molecule 
modulate the dynamics of energy transfer to and from the molecule? (ii) What is the dynamical effect of 
one vibrational mode on another mode of the same or a neighboring molecule? (iii) How does the overall 
dynamics change when many vibrational modes of non-commensurate frequencies and couplings are 
simultaneously involved?  
 We provide answers to these questions by examining the time evolution of the probability density 
created along chosen vibrational coordinates by electronic excitation and intermolecular energy transfer in 
a Frenkel exciton-coupled homodimer of PBI-1, a bay-substituted perylene bisimide dye,6, 7

 which exhibits 
most of the typical effects of exciton-vibration dynamics. The J-aggregates of this molecule have received 
much attention because of their high fluorescence quantum yield.8-10 We assume that the energy is initially 
localized in one the two monomers, following a Franck-Condon excitation from the ground state. Such a 
localized state is the superposition of the two delocalized exciton eigenstates that are commonly excited 
with an ultrafast laser pulse. We obtain highly accurate results by explicitly treating all vibrations at a fully 
quantum mechanical level within the Hamiltonian at room temperature, without invoking dynamical 
approximations or assumptions. The outcome of this investigation is an intricate analysis of EV motion on 
the molecular potential surfaces and its signatures in the observed electronic population dynamics, which 
reveals the complexity of the nonadiabatic dynamics in reduced-dimension two-mode models of the dimer, 
as well as the cumulative effects on this dynamics from the remaining intramolecular vibrations.   
 We begin with a basic analysis of EV dynamics in a dimer, which provides the theoretical 
framework for understanding the behaviors revealed by our numerical results. In section II we describe the 
Hamiltonian, which involves two electronic states and 28 intramolecular normal mode vibrations in each 
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molecular unit, along with Frenkel exciton interactions between the two molecules. We define two-mode 
electronic-vibrational densities (EVD), where either a particular mode on each of the monomers or two 
distinct modes on the same molecule are probed, either in isolation or in the presence of all remaining 
intramolecular modes. In section III we present some general theoretical considerations regarding the main 
factors that govern the EVD evolution in the dimer. In spite of its simplicity, this analysis highlights some 
of the important differences and subtle physical features that dictate the motion of vibrational modes that 
belong to a single molecule or to the two molecular units. Guided by these ideas, the time scales of 
electronic and vibrational degrees of freedom in PBI-1, and our earlier observations,11, 12 we give at the 
beginning of section IV a summary of the main EV effects that underlie the electronic population dynamics 
in the PBI-1 dimer.  
 The results of our numerical calculations are presented in section IV. In the first part of this section 
we address the question posed in (i) by showing images of the obtained two-mode EVD for the PBI-1 dimer 
at select times, for a single vibrational mode in each molecule whose frequency is lower or higher than the 
frequency associated with the electronic transfer, and also for the near-resonant vibronic mode that is 
characterized by a relatively large Huang-Rhys factor. The EVD evolution provides visual justification for 
the key features of exciton-vibration dynamics identified in section III. Next, we address question (ii) by 
examining the EV motion of two different vibrational modes within the same molecule. Signatures of 
indirect vibrational coupling of uncoupled normal modes are identified for different combinations of 
vibrations. Finally, in the last part of that section we turn to question (iii) and investigate the collective 
effects from all molecular vibrations on the EVD evolution. All our density snapshots are supplemented 
with full animations in the Supporting Information. A summary and some concluding remarks are given in 
section V.   
 
Equation Section (Next) 
II.  Hamiltonian, observables and methods  

 Consider a dimer of two identical molecules A and B, each being treated as a pair of ground and 
excited electronic states denoted by 0 and 1 respectively. The electronic Hamiltonian elH  relevant to EET 
comprises two states, A B1 0  and A B0 1 , which couple through a Frenkel exciton term13 with coupling 
parameter J , 
 

 el A B A B A B A B
ˆ 1 0 0 1 0 1 1 0H J   .                                               (2.1) 

 Each molecule also includes its own set of discrete intramolecular vibrations. We express the 
exciton-vibration coupling of vibrational normal mode i on monomer   to its ground and excited electronic 
states using unshifted and shifted harmonic oscillator terms, 
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where   is either A or B, ip  and iq   are the mass-weighted ( 1m  ) momenta and coordinates, while i

and ic   denote the respective vibrational frequencies and exciton-vibration coupling parameters. The 
displacement min 2

i i iq c m   characterizes the shift between the minima of the ground and excited state 
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potential energy surfaces along mode i due to exciton-vibration coupling and are often obtained from 
measured Huang-Rhys factors.14  The overall Hamiltonian matrix for the dimer, written in the basis of the 

A B1 0  and A B0 1  states, is  
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                                                (2.3) 

 
where Av  and Bv  denote the included number of vibrational normal modes of molecules A and B. In the 
case of PBI-1, our full-space calculations include A B 28    vibrational modes with parameters obtained 
by Kühn and coworkers15 using time-dependent density functional theory. We use the exciton coupling 
value 1514 cmJ  obtained from the same work. However, we also consider the evolution of observables 
obtained with smaller numbers of vibrational modes, in order to distinguish the effects of different modes 
on the dynamics.  
 We assume that at 0t   monomer A undergoes a “vertical” Frank-Condon (FC) electronic 
excitation, which leaves the intramolecular vibrations of both molecules still equilibrated to their respective 
ground electronic states. The initial density matrix is given by 
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where B1/ k T  , and we have again labeled the density operator by the number of vibrational modes in 
each PBI-1 molecule.  
 To formulate a physical picture of the EV dynamics, we investigate the time evolution of select 
electronic-vibrational densities (EVD). Specifically, we define the following intermolecular two-mode 
EVDs for the two electronic states of the dimer: 
 

   

   

1,1 1,1
dimer dimerA B

1,1 1,1
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D q q t q q e e q q
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
                          (2.5) 

 
These functions are obtained from the dimer Hamiltonian where only mode i  is included in each molecule. 
We also define the intermolecular, two-mode projections of the all-mode EVD for the two states of the 
dimer, which are obtained from the dynamics of the full Hamiltonian with A B 28    after tracing with 
respect to all modes besides i, 
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                        (2.6) 

 
 Further, we define the following intramolecular two-mode EVDs for the two states of the dimer, 
where modes i and j are included on monomer A, 
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   

   

2,0 2,0
dimer dimerA B

2,0 2,0
dimer dimerA B

ˆ ˆ/ /1 0 2,0
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ˆ, ; 0 1 ; 0 0 1 ;
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as well as the intramolecular two-mode projection of the all-mode EVDs,   
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The projected EVDs describe the motion of the vibrational components associated with the specific modes 
on the A B1 0  and A B0 1  electronic states as a function of time, averaged with respect to all other vibrational 
degrees of freedom.   
 All calculations are performed through quadrature-based path integral methods, namely the quasi-
adiabatic propagator path integral16-19 (QuAPI), along with its small matrix decomposition20-22 (SMatPI). 
These fully quantum mechanical methods allow us to include the finite-temperature dynamics of all 
vibrational modes in each molecular unit without approximation through analytically evaluated influence 
functional23 factors. A summary of these methods as they pertain to the EV-RDM in these coupled 
chromophore arrays was given in another recent paper.11 The reader is referred to the cited articles for 
detailed presentations of these theoretical tools. 
 

III.  Simple and general considerations governing EVD evolution in a homodimer 

 Consider first a single mode on each of the two molecules, with frequencies Ai  and Bj . Figure 
1 shows a pictorial description of the EV framework for the dimer. The two electronic states define a pair 
of two-dimensional diabatic potential energy surfaces (square frames) coupled by the Frenkel exciton 
coupling parameter J . As shown by the red contours, the potential minimum on the A B1 0  surface (on the 
right) is shifted horizontally (along Aiq ) from the origin to min

Aiq , while the corresponding shift along the 
vertical axis lies at B 0iq  . Similarly, the coordinates of the potential minimum on the A B0 1  surface lie 
at A 0iq  , min

Bjq . At 0t   monomer A is excited, thus creating a Gaussian density (gray ellipse) on the 
A B1 0  surface of widths determined by the two vibrational frequencies and the temperature. Because of 

the FC initial condition, the density is centered at the origin and displaced with respect to the potential 
minima by the amounts min

Aiq  and min
Bjq . 

 At zero temperature the initial density is given by the square of the ground state wavefunction, 
which is a Gaussian function. If the two electronic surfaces are uncoupled and in the absence of other 
vibrational degrees of freedom, one-dimensional, fixed-amplitude harmonic wavepacket oscillations are 
observed on the A B1 0  surface along Aiq , where the center of the wavepacket moves between the two 
classical turning points with coordinates 0 and min

A2 iq , with no loss in total density.24 Conversely, if the 
exciton-vibration coupling ic   is set to zero, energy transfer between the two states creates two-level system 
(TLS) oscillations with a time scale corresponding to the electronic energy gap. This case translates to a 
static Gaussian wavepacket, with periodically growing and diminishing height. When both J and ic   are 
nonzero, along with the initial density motion to the right on the A B1 0  surface, simultaneous state-to-state 
energy transfer leads to the gradual loss of density, creating a new wavepacket on the A B0 1  surface (yellow 
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ellipse). The Landau-Zener model25-27 offers an insightful picture for the dependence of the nonadiabatic 
transfer rate on the local potential slopes, strength of coupling and wavepacket velocity, but the overall 
motion is rather complex28 even in the two-dimensional case considered here. Depending on the relative 
magnitudes of J  and Ai , the peak of this new wavepacket lies somewhere between 0 and min

A2 iq  along the 
Aiq  axis, thus creating displacements from the potential minimum of the A B0 1  surface in both vertical and 

horizontal directions. Therefore, the wavepacket on the A B0 1  state moves along both coordinates. As the 
density on this state grows while the initially excited state begins to be depleted, nonadiabatic back-transfer 
takes place, adding probability density to the A B1 0  state at a different location (green ellipse), in the 
vicinity of the surface crossing region (the seam). This back-transfer leads to motion along both coordinates 
on this state as well, and creates the possibility of interference between the two spatially separated 
wavepackets, one diminishing and the other growing in intensity. This picture shows how the simultaneous 
electronic and exciton-vibration interactions lead to two-dimensional wavepacket dynamics on both 
electronic states. At nonzero temperatures the dynamics can be analyzed in similar ways, but the distinct 
spatial characteristics of excited vibrational wavefunctions lead to modified wavepacket dynamics and 
temperature-dependent EVD evolution. 
 
 

 

 

 
 

Fig. 1.  Simple illustration of vibrational density motion on the two electronic surfaces with a single 
vibrational mode in each monomer.   

 
 
 Using the quantum-classical path integral formulation29 of nonadiabatic dynamics, one can see that 
vibrational motion modifies the exciton transfer dynamics through a phase that depends on the local 
reorganization energy, i.e. the difference between the two diabatic potential values.30 Fig. 1 shows the seam, 
i.e. the line of zero reorganization energy, which is tangent to the potential contours at the point of 
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intersection with the line that connects the two potential minima. The slope of the seam is equal to A B/i jc c . 
The reorganization energy is constant along lines parallel to the seam. As a result, motion in directions 
parallel to the seam does not modify the vibrational phase, thus should not produce EV effects. Note that 
in general the seam is not perpendicular to the line connecting the potential minima. 
 The picture simplifies if the two modes Aiq  and Bjq  have the same frequency and coupling 
coefficient ( j i ), which implies identical displacements of potential minima and circular contours in Fig. 
1. The frequency degeneracy implies that any linear combination of the coordinates maintains the 
separability of the diabatic potentials. It has been shown31, 32 that only the difference linear combination 

A Bi iq q  couples to the pair of electronic states, while the sum coordinate combination is uncoupled and 
thus does not alter the EET dynamics, although the density moves along this coordinate as well. The coupled 
antisymmetric mode combination coincides with the line that connects the potential minima, while the sum 
coordinate is parallel to the seam line.  These two lines are perpendicular in this case. Motion along the 
difference coordinate A Bi iq q  incurs the largest reorganization energy. We thus expect important strongly 
correlated EV dynamics along this direction.33 On the other hand, motion parallel to the seam line does not 
change the vibrational energy, thus does not modify the rate of state-to-state transfer. 

 

 

 
Fig. 2.  Motion of vibrational densities on the two electronic surfaces for two different vibrational modes on the 

same molecule.  
 
 
 Next, we focus on the EV dynamics in the case of two distinct normal modes i and j of different 
frequencies that are coupled to the same molecule. Since both modes are now excited and de-excited 
simultaneously by EET, the arrangement of potential energy surfaces is modified and is shown in Figure 2. 
The minimum on the A B0 1  state is now unshifted (i.e. the potential is centered about the origin), while on 
the A B1 0  state it is shifted along both coordinates. Since the frequencies of the modes are different, the 
diabatic potentials have elliptical shapes and their minima are displaced by different amounts along the two 
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modes. With 0J   the motion at zero temperature is that of a two-dimensional Gaussian wavepacket,24 
whose center executes Lissajous rotations34 within a rectangular region specified by the two displacement 
values. In the presence of nonzero electronic coupling the two-dimensional motion leads to the creation of 
density (yellow ellipse) on the A B0 1  state which is also displaced along both coordinates.  
 In the parameters of the two modes are identical, as in the case of two degenerate intramolecular 
normal modes, the motion simplifies again along the sum and difference linear combinations of the 
vibrational coordinates. In this case the difference coordinate is parallel to the seam and decouples from the 
electronic dynamics, while the symmetric mode A Bi iq q  couples to the electronic states and thus gives rise 
to EV effects. While the individual normal modes Aiq  and Biq  are completely correlated, the wavefunction 
(and density) factorizes along the new sum and difference modes. 
 The specifics of both kinds of motion illustrated in Figures 1 and 2 are the outcome of the complex 
interplay of electronic and vibrational parameters as well as the temperature. Further, the projected 
densities, which result from the complex motion of many vibrational degrees of freedom, incorporate 
dephasing effects that mimic to some extent those in dissipative environments. The detailed dynamics of 
EET in the PBI-1 dimer are described in the next section. 
 

IV.  Evolution of electronic-vibrational densities in the PBI-1 dimer 

 The electronic coupling J in the PBI-1 dimer is 514 1cm , giving rise to an energy gap 
12 1028 cmJ  , which defines the electronic period equal to el 32  fs. The spectral density for the PBI-1 

molecule,15 depicted in Figure 3a, comprises 28 normal modes spread over a large range of vibrational 
frequencies (7-1628 1cm ) with varying exciton-vibration coupling strengths. Mode 25q , with a frequency 

25 1371q 
1cm  (i.e. somewhat higher than the frequency of the electronic system), has the strongest 

coupling to the electronic states. Mode 27q , of a higher frequency, is also strongly coupled.  
 
 

 
Fig. 3.  (a) Spectral density of PBI-1 (from Ref. 15). The vibrational modes whose EVD are analyzed are marked. The 

dashed line indicates the frequency associated with the electronic energy gap. (b) Population of initially 
excited state in the PBI-1 dimer, illustrating the main effects of exciton-vibration dynamics discussed in the 
text. Dashed black line: dynamics in the absence of vibrational modes. Red, blue and green lines: mode 23q , 

25q  and  28q , respectively, included in both molecules. Solid black line: all vibrational modes included.  
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 Figure 3b shows the population of the A B1 0  state in the absence of vibrations, with a particular 
vibrational mode included in each of the two molecules, and also with all modes included. Before presenting 
the detailed EVD evolution we give a brief overview of the main features of population dynamics along 
with their EV origins:  

(i)   Amplitude reduction of population oscillations due to density retention. This feature arises from partial 
population retention along each normal mode coordinate when the density moves sufficiently far from the 
crossing region. The extent of retention ranges from negligible or minor in the weakly coupled modes with 
small diabatic potential displacements and is substantial in the case of the strongly coupled mode 25q . 

(ii)  Damping of oscillatory features due to the collective decohering effects of many vibrational modes. 
This effect is the consequence of dephasing caused by the simultaneous presence of many vibrational modes 
with a significant frequency spread and is more pronounced at longer times and at higher temperatures.   

The combination of effects (i) and (ii) is a smearing of electronic populations. 

(iii) Renormalization of electronic energies by vibrational modes, leading to delayed recurrences of 
population. This effect is primarily due to the five highest frequency vibrations12 and is analogous to the 
well-studied bath-induced renormalization of tunneling splittings.35, 36 

(iv)  Emergence of new oscillatory features characterized by a very weak temperature dependence. These 
features are associated with a vibronic time scale faster than the purely electronic dynamics, although 
indirect coupling to many weakly coupled modes significantly influences such features. 

 We now illustrate these features by presenting the detailed EVD evolution in the PBI-1 dimer. We 
use the length parameter / im , which equals half of the width of the classically accessible region for 
the harmonic oscillator ground state, to quantify the displacement of diabatic potential minima and the 
coordinates of turning points. We examine the features of EVD evolution for combinations of modes 23q , 

25q , 27q  and 28q .  These modes are characterized by the following parameters: 

23q : 23  = 751 1cm , min
23 230.2 /569q m  

25q : 25 = 1371 1cm , min
25 250.6449 /q m  

27q : 27  = 1570 1cm , min
27 270.4074 /q m  

28q : 28 = 1628 1cm , min
28 280.2792 /q m  

In Figures 4-6 we show ten representative frames in the 0-50 fs time window for each case. The detailed 
frame-by-frame motion can be seen in the animations available as Supporting Information to this paper.  
  

A.  EVD evolution with a single vibrational mode in each monomer  

 As depicted in Fig. 1, when both modes have identical parameters, the line that connects the two 
potential minima makes an angle equal to 135o with respect to the horizontal axis and is perpendicular to 
the seam. The two minima and the peak of the initial density form an isosceles right triangle. 
 In Figure 4 (left panel) we show the EVD evolution for mode 23q  (attached to each monomer), 
which has a frequency 23 = 751 1cm  (period 23 44 fs  ) and thus is a relatively slow mode with a small 
displacement value min

23 230.2569 /q m . With these parameters the density on each potential surface 
remains primarily compact and Gaussian-like, although some elongation is observed in several frames.  
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Fig. 4.  EVD evolution on the two electronic states along the two 23q (left) and the two 25q  (right) modes coupled to 

molecules A and B. The first and second column in each panel shows the EVDs on the A B1 0  and  A B0 1  states, 
while the third column shows the total density. The green dots indicate the locations of the potential minima.  
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Further, since the distance between the minima of the two surfaces is much smaller than the spread of the 
density, the sum of the two densities also has the same compact shape. 
 As discussed earlier in the context of Figure 1, the density on the A B1 0  state is initially displaced 
from the minimum and thus starts moving toward the right.  The turning point, when the density is at its 
farthest beyond the potential minimum, would be reached at 1

232 22 fs  . However, because el 32  fs, 
density is transferred from the A B1 0  state to the A B0 1  state (i.e. molecule A is de-excited and molecule 
B is excited) over the initial 16 fs. As a result, the innermost part of the density on the A B1 0  diabatic 
surface is largely depleted before its peak reaches the turning point, leaving behind only a small fraction of 
the density that peaks around 16 fs, which resists electronic transfer because it is located far from the 
crossing region. This minor population retention is observed in the population dynamics of mode 23q  shown 
in Fig. 3b.  
 The motion of the new density formed on the A B0 1  surface is determined by two factors. Due to 
the displacement away from the minimum along Biq , it encounters a upward force, while due to the motion 
of the surviving density on the A B1 0  state to the right, new density is continuously added along Aiq . This 
gives the impression that the density travels toward the right. The combined effect of these two components 
is diagonal motion towards and past the crossing region, until the turning point is reached at 22 fs when we 
observe a reversal of direction. Meanwhile, electronic population is transferred back to the A B1 0  state 
during the time period 16-32 fs, and minor density retention is now observed on the A B0 1  surface. 
Interestingly, this new population that arrives in the A B1 0  state starting at 16 fs is spatially separated from 
the gradually diminishing density that exists on the same state. This leads to a transient split density. 
Overall, for mode 23q , we observe relatively simple EVD evolution, with only minor smearing of the 
electronic peaks and transient low-amplitude split densities due to weak exciton-vibration interaction.  
 Next, we investigate the EVD frames for 25q , the strongest coupled mode in the spectral density 
with a vibrational frequency 25  = 1371 1cm  ( 25 24 fs  ). This is a high frequency mode with the 
strongest coupling and has a moderately large displacement min

25 250.6 /449q m , which leads to a large 
amount of vibrational energy. The higher frequency causes the initial motion to the right to be faster than 
density depletion due to transfer, while the large displacement takes the density farther away from the 
crossing region. As a result, we first observe a pronounced retention of EVD at 16 fs, which prevents the 
electronic population from falling to zero, as seen in Fig. 4b. The emerging EVD on the A B0 1  state moves 
rapidly toward the potential minimum (i.e. left and upward), and the density that continues to emerge near 
the crossing region leads to an elongation along the line connecting the potential minima. After going 
through the outer turning point at 12 fs begins, this EVD begins to accelerate towards the crossing region. 
The high velocity of the density (a consequence of its large kinetic energy as it approaches the crossing 
region), combined with the mostly depleted A B1 0  state, leads to the early back-transfer of population from 
the A B0 1  to the A B1 0  state beginning at 14 fs. Since the remaining density on the A B1 0  state is still 
located far from the crossing region, a split, double-peaked EVD is observed on the A B1 0  state between 
13 and 25 fs.  
 A large displacement along the vibrational coordinate leads to considerable overlaps of the initial 
density with several (at least five in this specific case) vibronic eigenstates. Newer timescales are thereby 
introduced, some of which are faster than both the electronic and vibrational motions, causing premature 
transfer, which manifests itself as vibronic peaks in the population dynamics with a very weak temperature 
dependence.  
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Fig. 5.  EVD evolution along mode 25q (on the horizontal axis) and a second mode of molecule A. Left: 23q  vs. 
25q . Middle: 28q  vs. 25q . Right: 27q  vs. 25q . The time evolution of the density for 0J   is shown with 

blue contours on the far right. The green dots indicate the locations of the potential minima.  
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 The faster vibrational motion effectively slows down the transfer of electronic population between 
the two states. This occurs because the rapid motion of EVD away from the crossing region leads to 
depletion, which decreases the efficiency of population transfer. The resulting delay of electronic recurrence 
peaks is the dynamical manifestation of tunneling splitting renormalization35, 36 whereby the energy 
difference between the two lowest electronic eigenstates is reduced due to coupling to a high frequency 
vibration.  
 As discussed in section III, the dimer Hamiltonian simplifies in the case where the same vibrational 
mode is coupled to each molecule, leading to a TLS coupled only to the difference coordinate. Thus the 
dimer Hamiltonian is separable in the sum and difference coordinates, implying factorization of 
wavefunctions and thus of the EVD as well. The consequence of this separability is evident in all the frames 
of Fig. 4. In particular, density retention, nodal lines and EVD elongation develop along the line connecting 
the potential minima, while only simple oscillatory motion is observed along the spectator coordinate 
parallel to the seam. We emphasize that the perfect correlation of these two vibrational modes is a symmetry 
effect, i.e. the manifestation of frequency degeneracy, and should be distinguished from effects due to 
indirect coupling among different normal modes discussed later. 

 
B.  EVD evolution with two vibrational modes in one monomer 

 The discussion in the previous subsection focused on the dynamics of two identical vibrational 
modes, one on each monomer, on the two electronic states of the dimer. Even though the density was a 
two-dimensional function, its evolution was governed by a single vibrational time scale. To explore the 
interplay of two vibrational time scales in the EET dynamics, along with the different geometrical features 
of the diabatic potentials with respect to the initial vibrational density, we present in Figure 5 the evolution 
of the EVD for two vibrational modes of the same molecule. As before, we show ten time frames and refer 
the reader to the animations available as Supporting Information for the full EVD dynamics on a 1 fs time 
grid. We present results for the following three pairs of normal modes:  (i) 25q  and 23q , (ii) 25q  and 28q , 
and (iii) 25q  and 27q . 
 Unlike in the previous case, the seam now makes an angle with the horizontal axis that exceeds 
90o, while the line that connects the two potential minima makes an acute angle. Because the coordinate of 
mode 25q  (which has the largest displacement) is placed on the horizontal axis, this angle is smaller than 
45o in all cases. As described in the context of Fig. 2, the initial motion is primarily along this angled line, 
but because the two modes now reach their turning points at different times, Lissajous rotations34 of the 
EVD are observed. In the absence of electronic coupling, the EVD maintains a fixed elliptical shape and its 
center undergoes Lissajous motion (see the rightmost panel of Figure 5), the trajectory of which depends 
on the ratio of the frequency of the two modes. However, when 0J  , state-to-state population transfer 
creates complex patterns, such as crescent-shaped densities and in some frames even internal holes in the 
density. These patterns carry information about how the dynamics of one vibrational mode is affected by 
other modes, to which it is coupled only indirectly. 
 The dynamics related to the vibronic features attributed to mode 25q  (16-24 fs and 55-60 fs) is 
particularly interesting. Even though mode 25q  is entirely responsible for the premature back-transfer of 
population that leads to the vibronic feature, Fig. 5 shows that the formed density is split along the angled 
line that connects the potential minima. This is so because the surviving EVD on the A B1 0  state lies near 
or beyond the outer turning point in this two-dimensional space, while the back-transferred density emerges 
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close to the crossing region. Therefore, contrary to what one might expect, effectively the vibronic motion 
is not only along 25q  but also along the weakly coupled non-vibronic mode.  
 Although the normal modes are not explicitly coupled in the Hamiltonian, their individual exciton-
vibration interactions affect the motion of the EVB on the diabatic potential surfaces, which in turn 
determines the probability of nonadiabatic transfer at any given time. The complex interplay of these effects 
leads to behaviors that we describe as manifestations of indirect coupling among vibrational modes.  
 To obtain an alternative perspective and additional insights into the observed EVD evolution, we 
recall that since the parameters of the two modes are not identical, the EVD is not expected to be symmetric 
with respect to the line that connects the potential minima. Remnants of this symmetry can be discerned in 
Fig. 5, in particular in the case of modes 25q  and 27q  whose parameters differ less than those of the other 
pairs. Thus the shapes observed in Fig. 5 indicate two different types of indirect coupling to other modes: 
Departures from symmetry with respect to the 45o line indicate imperfect symmetry-induced mode 
correlation (i.e. the sum coordinate 25 27q q  is not the only one coupled to the electronic states, but 25 27q q  
also contributes to the EV dynamics), while deviations from simple elliptical shapes suggest indirect mode-
mode coupling enabled by the pair of electronic states.  

 
C.  EVD evolution in the presence of all vibrational modes 

 With an understanding of the EV effects caused by the simultaneous coupling to vibrational modes 
of different frequencies, we now proceed to analyze the full EVD dynamics etched with multiple vibrational 
time scales from all intramolecular vibrations. In Figure 6 we show the time evolution of the full EVD 
projected along the 23q  or the 25q  coordinate on both molecules. In both cases, the most prominent effect 
of the remaining vibrational modes is the smoothing of the density.  
 In the case of 23q  there are five higher frequency modes in the spectral density with sufficiently 
large displacements. Therefore, we first note that the projected density in Fig. 6 shows considerable 
population retention on the A B1 0  state, consistent with the similar effect observed in the electronic 
population. This is a cumulative effect of the population that remains not transferred during the first half of 
the electronic period along each of the 56 normal mode coordinates of the two molecules. Further, the 
vibronic feature of mode 25q  also contributes to this projection along 23q  as a peak in intensity, which in 
the presence of all the other modes occurs at 16 fs. Owing to both effects, we see a farther migration of the 
projected density away from the initially excited region along 23q , compared to the two-mode case. This 
suggests that the strongly coupled high-frequency vibrations cause this lower frequency mode to be 
effectively coupled more strongly to the electronic degree of freedom. Larger density displacements are 
also seen on the A B0 1  state during the second half of the electronic period, now to the left of the minimum, 
which eventually lead to a delayed electronic recurrence.  
 In contrast to the effects on mode 23q , the same EVD projected onto the most strongly coupled 
mode 25q  exhibits distinct features. Now the remaining modes are relatively weakly coupled, thus the 
resulting smoothing of the density is less pronounced. Interestingly however, the vibronic peak at 20 fs  is 
now shifted to 16 fs in the presence of several other high-frequency modes of intermediate coupling 
strengths, in particular 26 27,q q  and 28q , none of which alone have sufficiently strong exciton-vibration 
coupling to induce such vibronic features. This seemingly peculiar effect appears to be a manifestation of 
indirect coupling (through the electronic degree of freedom) among vibrational normal modes.    
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Fig. 6.   Reduced same-mode, two-molecule EVD evolution on the two electronic states in the PBI-1 dimer. Left: 
mode 23q . Right: mode 25q . The three columns in each set show the densities on the states A B1 0  and  

A B0 1  and the total density. The green dots indicate the locations of the potential minima.  
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 Nevertheless, due to the dephasing effects coming from other normal modes, the vibronic transfer 
no longer creates a split density. Rather, a continuous density is seen to go through a maximum at 16 fs. As 
before, the density reaches its turning points at 24 fs and 36 fs on the  A B0 1  state before showing a 
population transfer to the A B1 0  state up to 40 fs. Effects of high frequency vibrational modes on the 
dynamics of low frequency modes were recently reported in an electron transfer reaction involving a PBI 
molecule as the donor.37 Such inter-mode correlations, if strong enough, could lead to distinct vibrational 
signatures in EET and have important implications for inter-mode energy exchange.   
   
 
V.  Concluding Remarks 

 By examining the EVD evolution on electronic surfaces, we have presented a detailed mechanistic 
picture of EET in molecular aggregates. For a given vibrational initial state, the coupling between electronic 
and vibrational degrees of freedom, along with the vibrational frequencies, dictate the wavepacket motion 
on each electronic state, while the nonadiabatic coupling modifies this dynamics by adding or removing 
density. These two factors combine to give rise to highly nontrivial EVD dynamics, particularly in the case 
of strong exciton-vibration interaction. Thermal averaging further complicates the dynamics of the evolving 
density, as the spatial characteristics and temporal features associated with the wavepackets formed from 
different initial conditions do not coincide. Probability densities that split up, form crescents and even 
exhibit internal holes, were seen to frequently emerge through the complex interplay of electronic and 
vibrational time scales that form the backbone of EET processes.  
 Using the parameters of the PBI-1 dimer, we have shown how the simultaneous presence of 
identical or distinct vibrational modes shape the different dynamical trends of energy transfer. We have 
identified EV signatures in the electronic population dynamics for specific normal modes that lie in different 
parameter regimes. Coupling to vibrations was seen to cause retention of population due to motion away 
from the crossing region of electronic surfaces. Similarly, strong coupling to faster vibrational modes slows 
down energy transfer due to tunneling renormalization, which manifests itself as repeated and cumulative 
density retention that leads to a slower return of population to the initially excited state. In a particular case, 
we showed how strong coupling also leads to premature transfer of vibronic origin due to an elongation of 
the probability density around the crossing region. We argued that while the motion of the density involves 
all vibrational coordinates, strong EV effects arise from the motion perpendicular to the seam, during which 
the vibrational reorganization energy is maximized. The dephasing effect of a multitude of non-
commensurate vibrational timescales on one mode was quantified by investigating the evolution of 
projected densities.  
 Overall, separable vibrational modes were found to be indirectly coupled due to their interactions 
with the common electronic degrees of freedom. When identical modes exist within the same or in 
neighboring molecules, the two modes are maximally correlated by symmetry. In this case the correlated 
mode is perpendicular to the seam between the diabatic potentials, thus all EV effects, such as density 
splitting and retention, take place along this coordinate. In the absence of such symmetries, i.e. when the 
parameters or two modes differ, the degree of this correlation depends on the promixity of the mode 
frequencies. Depending on the relation between parameters, indirect mode correlation effects can be 
characterized as deviations from Gaussian-like EVD shapes, or departures from factorizable EVD evolution 
along the line that connects the diabatic potential minima. Moreover, symmetry-induced correlations 
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efficiently modulate the electronic population dynamics by driving the EET in the direction perpendicular 
to the potential seam, where EV phase effects are most prominent. Therefore, indirect mode coupling and 
its related signatures are fundamental to EET processes. 
 On the short-to-intermediate time interval for which results were presented, the smearing induced 
by the intramolecular vibrations of the two molecules resembles dissipative effects on the dynamics of the 
one or two tagged modes. Clearly, the finite-dimensional normal mode baths of the PBI dimer cannot 
generate true dissipative dynamics at long times. The addition of a dissipative bath to an EV Hamiltonian 
leads to further smoothing of the EVD, which eventually evolves toward an equilibrium distribution. 38 
Further, even though we observed indirect coupling of different normal modes through their interaction 
with the electronic degree of freedom, our Hamiltonian did not include anharmonic potential terms, which 
would introduce direct mode coupling to the dynamics on each diabatic potential, along with the intricate 
signatures of nonlinear dynamics frequently observed in intramolecular vibrational energy redistribution.  
 In conclusion, we believe that the EVD effects that were delineated in this paper are sufficiently 
general enough to help in forming an intuitive picture of EET in terms of EV probability density dynamics. 
Besides facilitating the rationalization of theoretical and experimental results, the behaviors revealed 
through these calculations will aid in the quest for the design of materials with targeted function.   
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