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Abstract. We consider the d-dimensional Boussinesq system defined on a
sufficiently smooth bounded domain, with homogeneous boundary conditions,

and subject to external sources, assumed to cause instability. The initial con-
ditions for both fluid and heat equations are taken of low regularity. We then

seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable

equilibrium pair, in the critical setting of correspondingly low regularity spaces,
by means of explicitly constructed, feedback controls, which are localized on

an arbitrarily small interior subdomain. In addition, they will be minimal in

number, and of reduced dimension: more precisely, they will be of dimension
(d − 1) for the fluid component and of dimension 1 for the heat component.

The resulting space of well-posedness and stabilization is a suitable, tight Besov

space for the fluid velocity component (close to L3(Ω) for d = 3) and the space
Lq(Ω) for the thermal component, q > d. Thus, this paper may be viewed
as an extension of [63], where the same interior localized uniform stabilization

outcome was achieved by use of finite dimensional feedback controls for the
Navier-Stokes equations, in the same Besov setting.

1. Introduction.

1.1. Controlled dynamic Boussinesq equations. In this paper, we consider
the following Boussinesq approximation equations in a bounded connected region Ω
in Rd with sufficiently smooth boundary Γ = ∂Ω. More specific requirements will be
given below. Let Q ≡ (0, T )×Ω and Σ ≡ (0, T )×∂Ω where T > 0. Further, let ω be
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an arbitrary small open smooth subdomain of the region Ω, ω ⊂ Ω, thus of positive
measure. Let m denote the characteristic function of ω: m(ω) ≡ 1, m(Ω/ω) ≡ 0.

Notation. Vector-valued functions and corresponding function spaces will be bold-
faced. Thus, for instance, for the vector valued (d-valued) velocity field or external
force, we shall write say y, f ∈ Lq(Ω) rather than y, f ∈ (Lq(Ω))d.

The Boussinesq system under the action of two localized interior controls m(x)
u(t, x) and m(x)v(t, x) supported on Qω ≡ (0,∞)× ω is then

yt − ν∆y + (y · ∇)y − γ(θ − θ̄)ed +∇π = m(x)u(t, x) + f(x) in Q (1.1a)

θt − κ∆θ + y · ∇θ = m(x)v(t, x) + g(x) in Q (1.1b)


div y = 0 in Q (1.1c)

y = 0, θ = 0 on Σ (1.1d)

y(0, x) = y0, θ(0, x) = θ0 on Ω. (1.1e)

In the Boussinesq approximation system, y = {y1, . . . , yd} represents the fluid ve-
locity, θ the scalar temperature of the fluid, ν the kinematic viscosity coefficient, κ
the thermal conductivity. The scalar function π is the unknown pressure. The term
ed denotes the vector (0, . . . , 0, 1). Moreover γ = ḡ/θ̄ where ḡ is the acceleration due
to gravity and θ̄ is the reference temperature. The d-vector valued function f(x)
and scalar function g(x) correspond to an external force acting on the Navier-Stokes
equations and a heat source density acting on the heat equation, respectively. They
are given along with the I.C.s y0 and θ0. Note that y · ∇θ = div(θy).

The Boussinesq system models heat transfer in a viscous incompressible heat
conducting fluid. It consists of the Navier-Stokes equations (in the vector veloc-
ity y) coupled with the convection-diffusion equation (for the scalar temperature
θ). The external body force f(x) and the heat source density g(x) may render
the overall system unstable in the technical sense described below by (1.33). The
goal of the paper is to exploit the localized controls u and v, sought to be finite
dimensional and in feedback form, in order to stabilize the overall system. As an
additional benefit of our investigation, the feedback fluid component of u will be of
reduced dimension (d − 1) rather than d, while the feedback heat component of u
will be of 1-dimensional. This is a consequence of the Unique Continuation Prop-
erty expressed by Theorem 1.4 for the adjoint static problem. As far as practical
applications are concerned, one may consider the situation of controlling the tem-
perature and humidity in a bounded restricted environment - see [15], [16] for an
eloquent description of the physical phenomenon. Due to the physical significance
of the Boussinesq system, the problem of its stabilization has been considered in
the literature - with both localized and boundary controls - following of course prior
developments concerning the Navier-Stokes model alone. See subsection 2.4 for a
view of the literature.

Motivation: why studying uniform stabilization of the Boussinesq prob-
lem (1.1) in the Besov functional setting (in the fluid component) of the
present paper?

In short: Stimulated by recent research achievements [63], [64] on the uniform stabi-
lization of the Navier-Stokes equations - to be elaborated below - the present paper
sets the stage as a preliminary, needed step toward the authors’ final goal of solv-
ing the Boussinesq uniform stabilization problem with finite dimensional feedback
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controls acting tangentially on a part of the boundary in dimension d = 3. We next
illustrate the above assertion. While several results have been obtained in 2 and 3
dimensional cases, the main open question after 20 years or so - in both the Navier-
Stokes as well as the Boussinesq systems - is whether it is possible at all to uniformly
stabilize the 3− d equations with finite dimensional feedback controls acting on the
boundary. Indeed, the main obstacle in this 3− d case is due to compatibility con-
ditions between boundary terms and initial conditions, resulting from the necessity
of using sufficiently regular [differentiable] solutions for d = 3. As it was originally
the case with the Navier-Stokes equations, the Boussinesq case in the literature con-
siders until now [7], [65], [74], [92] the problem within the Hilbert framework. Due
to the Stokes non-linearity in 3−d, this necessitates in the Navier-Stokes equations
- whether alone or as a component of the Boussinesq system - the need of working
with sufficiently high order Sobolev spaces which recognize boundary conditions,
and thus impose compatibility conditions. This has so far prevented the goal of
achieving in the 3−d case the desired result of finite-dimensionality of the tangential
boundary feedback stabilizing control in full generality, beyond the special case of
[12], [57], where the initial conditions are compactly supported. See also [7, be-
low (4.122)]. For Navier-Stokes equations, this 3d-recognized long-standing open
problem on the finite dimensionality of the localized tangential boundary feedback
stabilizing control in full generality, was recently settled in the affirmative in [64].
Its treatment strongly benefited - technically and conceptually - from the prelimi-
nary successful analysis of the test case on uniform stabilization of the (d = 2 and)
d = 3 - Navier-Stokes equations, by means of finite dimensional feedback stabilizing
controls localized on an arbitrarily subset ω of the interior Ω, precisely in the same
Besov setting [63]. To this end, it was necessary to introduce a radically different
functional setting. It is based on Besov spaces of tight indices, which do not recog-
nize boundary conditions, see Remark 1.1, “close” to the well-known critical space
L3 in space and L1 in time for d = 3. As said, it has the virtue of not recognizing
boundary conditions, see Remark 1.1, while still being adequate for handling the
N-S nonlinearity in 3 − d. Circumventing the obstacle of compatibility conditions
on the boundary, which prevents (for d ≥ 3) finite dimensionality of stabilizing
boundary controls in all prior Hilbert-based treatments, has been a major predica-
ment in 3d-boundary feedback stabilization of N-S flows. In contrast the Besov
setting develops a theory within non-Hilbertian structures, where solutions under
considerations have higher integrability but almost no differentiability. Thus, such
Besov space setting, which has already been used for well-posedness of systems
of incompressible flows, eg [25], [70], is here a forced necessity introduced by the
authors in order to solve the uniform stabilization problem of the Navier-Stokes
equations with a localized tangential boundary feedback control which moreover is
finite dimensional also for d = 3. Though the jump from localized interior to lo-
calized boundary (tangential) stabilizing finite dimensional (d = 3) controls offers
serious additional challenges - conceptual as well as technical - the solution in [63]
of the former case proved very useful in achieving the solution of the latter case in
[64]. Accordingly, the present paper is the generalization to the Boussinesq system
of the local interior stabilization problem of the Navier-Stokes problem in [63]. It
is intended to be equally enlightening and useful toward the final goal, which is
the uniform stabilization problem of the Boussinesq system by finite dimensional
localized tangential boundary controls; that is, the direct counterpart of the Navier-
Stokes result in [64].
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Accordingly, in seeking a 3d extension of such tangential boundary stabilization
problem from the 3d-Navier-Stokes equations to the 3d-Boussinesq system, in the
present paper we first consider the new Besov-setting in the context of interior
localized controls.

As in these references, the analysis of seeking stabilizing finite dimensional con-
trols is spectral based [14], [56], [57], unlike the Riccati-based Hilbert approaches
originally used in the Navier-Stokes equations [11], [12], [13] and also in the Boussi-
nesq case [16], following [58].

1.2. Stationary Boussinesq equations. Our starting point is the following re-
sult.

Theorem 1.1. Consider the following steady-state Boussinesq system in Ω

−ν∆ye + (ye · ∇)ye − γ(θe − θ̄)ed +∇πe = f(x) in Ω (1.2a)

−κ∆θe + ye · ∇θe = g(x) in Ω (1.2b)

 div ye = 0 in Ω (1.2c)

ye = 0, θe = 0 on ∂Ω. (1.2d)

Let 1 < q <∞. For any f , g ∈ Lq(Ω), Lq(Ω), there exists a solution (not necessarily

unique) (ye, θe, πe) ∈ (W2,q(Ω)∩W1,q
0 (Ω))× (W 2,q(Ω)∩W 1,q

0 (Ω))× (W 1,q(Ω)/R).

See [3], [4], [5] for q 6= 2. In the Hilbert space setting, see [19], [32], [77], [90],
[50].

1.3. A first quantitative description of the main goal of the present paper.
The starting point of the present paper is the following: that under a given external
force f(x) for the fluid equations, a given heat source g(x) for the thermal equation,
and given viscosity coefficient ν and thermal conductivity κ, the equilibrium solution
{ye, θe} is unstable, in a quantitative sense to be made more precise in sub-section
1.7, specifically in (1.33). This will mean that the free dynamics linear operator Aq
defined in (1.27) - which has compact resolvent, and is the generator of a s.c. analytic
semigroup in the appropriate functional setting - has N unstable eigenvalues.

The main goal of the present paper is then - at first qualitatively - to feedback
stabilize the non-linear Boussinesq model (1.1) subject to rough (non-smooth) initial
conditions {y0, θ0}, in the vicinity of an (unstable) equilibrium solution {ye, θe} in
(1.2), by means of a finite dimensional localized feedback control pair {mu,mv}.
Thus this paper pertains to the general issue of “turbulence suppression or atten-
uation” in fluids. The general topic of turbulence suppression (or attenuation) in
fluids has been the object of many studies over the years, mostly in the engineering
literature through experimental studies and via numerical simulation - and under
different geometrical and dynamical settings. The references cited in the present
paper by necessity pertain mostly to the mathematical literature, and most specif-
ically on the localized interior control setting of problem (1.1) [65], [92]. A more
precise description thereof is as follows: establish interior localized exponential sta-
bilization of problem (1.1) near an unstable equilibrium solution {ye, θe} by means
of a finite dimensional localized, spectral-based feedback control pair {mu,mv}, in
the important case of initial condition y0 of low regularity, as technically expressed
by y0 being in a suitable Besov space with tight indices, and θ0 being in a cor-
responding Lq-space q > d. More precisely, the resulting state space for the pair
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{y, θ}, where uniform stabilization will be achieved is the space

Vq,p(Ω) ≡ B̃2−2/p
q,p (Ω)× Lq(Ω), 1 < p <

2q

2q − 1
; q > d, d = 2, 3, (1.3)

where B̃
2−2/p
q,p (Ω) is a suitable subspace, see below in (1.11b), of the Besov space.(

Lq(Ω),W2,q(Ω)
)

1−1/p,p
= B2−2/p

q,p (Ω), 1 < p <
2q

2q − 1
; q > d, d = 2, 3, (1.4)

as a real interpolation space between Lq(Ω) and W2,q(Ω). This setting will be fur-
ther elaborated after introducing the Helmhotz decomposition below. In particular,
local exponential stability for the velocity field y near an equilibrium solution ye

will be achieved in the topology of the Besov subspace B̃
2−2/p
q,p (Ω) in (1.11b). Note

the tight index: 1 < p < 6/5 for q > d = 3, and 1 < p < 4/3 for d = 2. It will
be documented below in Remark 1.1 that in such setting, the compatibility con-
ditions on the boundary of the initial conditions are not recognized. This feature
is precisely our key objective within the stabilization problem. The fundamental
reason is that such feature will play a critical role in our aforementioned research
project which consists in showing local uniform stabilization of the Boussinesq sys-
tem, by means of finite dimensional, localized tangential boundary controls also in
dimension dimΩ = d = 3; the perfect counterpart of [64]. In the case of the Navier-
Stokes equations, uniform stabilization in the vicinity of a steady state solution by
means of a localized tangential boundary feedback control which in addition is also
finite dimensional for d = 3 was a recognized open problem. It was recently settled

in the affirmative in [64] precisely in the Besov subspace B̃
2−2/p
q,p (Ω), 1 < p < 6/5

for q > d = 3. For d = 3, such space is ‘close’ to L3. Thus this departure from
the Hilbert space theory - the latter present in all other publications related to the
stabilization of Navier-Stokes or Boussinesq systems - allows one to trade differen-
tiability with integrability. This then avoids the obstacle of compatibility conditions
while preserving just enough regularity in order to carry-out the nonlinear analysis
in 3− d.

Criticality of the space L3 for d = 3: We now expand on the issue regarding
the ‘criticality’ of the space L3(Ω). In the case of the uncontrolled N-S equations
defined on the full space R3, extensive research efforts have recently lead to the
discovery that the space L3(R3) is a ‘critical’ space for the issue of well-posedness.
Assuming that some divergence free initial data in L3(R3) would produce finite time
singularity, then there exists a so-called minimal blow-up initial data in L3(R3) [39],
[46], [28]. More details in the context of the controlled 3-d Navier-Stokes equations
are given in [63], [64].

Thus, these latter two references manage to solve the uniform stabilization prob-
lem for the controlled N-S equations in a correspondingly related low-regularity
function space setting. Our present paper is then an extension of [63] to the Boussi-
nesq system (1.1). A further justification of our low-regularity level of the Besov
space in (1.4) is provided by the final goal of our line of research. Based critically
on said low-regularity level of the Besov space (1.11b), which does not recognize
compatibility conditions on the boundary of the initial conditions, Remark 1.1- we
shall seek to solve in the affirmative a presently open problem by showing that uni-
form stabilization of the Boussinesq system is possible by localized tangential bound-
ary feedback controls which moreover are finite dimensional also in dim Ω = d = 3.
This result will be an extension of [64] in the case of the 3 − d N-S equations.
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1.4. Helmholtz decomposition. A first difficulty one faces in extending the local
exponential stabilization result for the interior localized problem (1.1) from the
Hilbert-space setting in [65], [92] to the Lq-based setting is the question of the
existence of a Helmholtz (Leray) projection for the domain Ω in Rd. More precisely:
Given an open set Ω ⊂ Rd, the Helmholtz decomposition answers the question as to
whether Lq(Ω) can be decomposed into a direct sum of the solenoidal vector space
Lqσ(Ω) and the space Gq(Ω) of gradient fields. Here,

Lqσ(Ω) = {y ∈ C∞c (Ω) : div y = 0 in Ω}
‖·‖q

= {g ∈ Lq(Ω) : div g = 0; g · ν = 0 on ∂Ω},

for any locally Lipschitz domain Ω ⊂ Rd, d ≥ 2

Gq(Ω) = {y ∈ Lq(Ω) : y = ∇p, p ∈W 1,q
loc (Ω)} where 1 ≤ q <∞.

(1.5)

Both of these are closed subspaces of Lq.

Definition 1.1. Let 1 < q < ∞ and Ω ⊂ Rn be an open set. We say that the
Helmholtz decomposition for Lq(Ω) exists whenever Lq(Ω) can be decomposed into
the direct sum (non-orthogonal)

Lq(Ω) = Lqσ(Ω)⊕Gq(Ω). (1.6)

The unique linear, bounded and idempotent (i.e. P 2
q = Pq) projection operator

Pq : Lq(Ω) −→ Lqσ(Ω) having Lqσ(Ω) as its range and Gq(Ω) as its null space is
called the Helmholtz projection. Additional information of use in the present paper
is given in Appendix B below, say Proposition B.1.

This is an important property in order to handle the incompressibility condition
div y ≡ 0. For instance, if such decomposition exists, the Stokes equation (say
the linear version of (1.1a) with control u ≡ 0 and no coupling, thus θ ≡ 0) can
be formulated as an equation in the Lq setting. Here below we collect a subset
of known results about Helmholtz decomposition. We refer to [45, Section 2.2],
in particular to the comprehensive Theorem 2.2.5 in this reference, which collects
domains for which the Helmholtz decomposition is known to exist. These include
the following cases:

(i) any open set Ω ⊂ Rd for q = 2, i.e. with respect to the space L2(Ω); more
precisely, for q = 2, we obtain the well-known orthogonal decomposition (in
the standard notation, where ν = unit outward normal vector on Γ) [19, Prop
1.9, p 8]

L2(Ω) = H⊕H⊥ (1.7a)

H = {φ ∈ L2(Ω) : div φ ≡ 0 in Ω; φ · ν ≡ 0 on Γ} (1.7b)

H⊥ = {ψ ∈ L2(Ω) : ψ = ∇h, h ∈ H1(Ω)}; (1.7c)

(ii) a bounded C1-domain in Rd [29], 1 < q <∞ [38, Theorem 1.1 p 107, Theorem
1.2 p 114] for C2-boundary

(iii) a bounded Lipschitz domain Ω ⊂ Rd (d = 3) and for 3
2 − ε < q < 3 + ε sharp

range [29];
(iv) a bounded convex domain Ω ⊂ Rd, d ≥ 2, 1 < q <∞ [29].
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On the other hand, on the negative side, it is known that there exist domains
Ω ⊂ Rd such that the Helmholtz decomposition does not hold for some q 6= 2 [67].

Assumption (H-D). Henceforth in this paper, we assume that the bounded domain
Ω ⊂ Rd under consideration admits a Helmholtz decomposition for the values of
q, 1 < q < ∞, here considered at first, for the linearized problem (1.28) or (1.29)
below. The final results Theorem 2.2 through 2.4 for the non-linear problem (1.1)
will require q > d, see (5.24), in the case of interest d = 2, 3.

We can now provide further critical information on the Besov space B̃
2−2/p
q,p (Ω)

which is the fluid component of the state space (1.3) where uniform stabilization
takes place.

Definition of Besov spaces Bs
q,p on domains of class C1 as real interpola-

tion of Sobolev spaces: Let m be a positive integer, m ∈ N, 0 < s < m, 1 ≤ q <
∞, 1 ≤ p ≤ ∞, then we define [40, p 1398] the Besov space

Bs
q,p(Ω) = (Lq(Ω),Wm,q(Ω)) s

m ,p
(1.8)

as a real interpolation space between Lq(Ω) and Wm,q(Ω).This definition does not
depend on m ∈ N [91, p xx]. This clearly gives

Wm,q(Ω) ⊂ Bs
q,p(Ω) ⊂ Lq(Ω) and ‖y‖Lq(Ω) ≤ C ‖y‖Bsq,p(Ω) . (1.9)

We shall be particularly interested in the following special real interpolation space

of the Lq and W2,q spaces
(
m = 2, s = 2− 2

p

)
:

B
2− 2

p
q,p (Ω) =

(
Lq(Ω),W2,q(Ω)

)
1− 1

p ,p
. (1.10)

Our interest in (1.10) is due to the following characterization [2, Thm 3.4], [40, p
1399]: if Aq denotes the Stokes operator to be introduced in (1.14) below, then(

Lqσ(Ω),D(Aq)
)

1− 1
p ,p

=
{

g ∈ B2−2/p
q,p (Ω) : div g = 0, g|Γ = 0

}
if

1

q
< 2− 2

p
< 2

(1.11a)(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
=
{

g ∈ B2−2/p
q,p (Ω) : div g = 0, g · ν|Γ = 0

}
≡ B̃2−2/p

q,p (Ω)

(1.11b)

if 0 < 2− 2

p
<

1

q
; or 1 < p <

2q

2q − 1
.

Remark 1.1. Notice that, in (1.11b), the condition g · ν|Γ = 0 is an intrinsic
condition of the space Lqσ(Ω) in (1.5), not an extra boundary condition as g|Γ = 0
in (1.11a).

Orientation. As already noted,ultimately, we shall seek to obtain uniform feedback

stabilization of the fluid component y in the Besov subspace B̃
2−2/p
q,p (Ω), dim Ω =

d < q < ∞, 1 < p < 2q/2q−1, defined by real interpolation in (1.4), (1.11b); The
reason being that such a space does not recognize boundary conditions, as noted
above in Remark 1.1. Analyticity and maximal regularity of the Stokes problem will
require p > 1.

By way of orientation, we state at the outset two main points. For the linearized
w-problem (1.28) below in the feedback form (2.2) or (4.12), the corresponding well-
posedness and global feedback uniform stabilization result, Theorem 2.1 or Theorem
4.1, holds in general for 1 < q < ∞. Instead, the final, main well-posedness and
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feedback uniform, local stabilization results, Theorems 2.2 through 2.4, the latter
for the nonlinear feedback problem (2.17) or (2.18) corresponding to the original
problem (1.1), will require q > 3 to obtain the embedding W1,q(Ω) ↪→ L∞(Ω) in our
case of interest d = 3, see (5.24), hence 1 < p < 6/5; and q > 2, in the d = 2-case,
hence 1 < p < 4/3.

1.5. Translated nonlinear Boussinesq problem and its abstract model.
PDE Model: We return to Theorem 1.1 which provides an equilibrium triplet
{ye, θe, πe}. Then, we translate by {ye, θe, πe} the original Boussinesq problem
(1.1). Thus we introduce new variables

z = y − ye (a d-vector), h = θ − θe (a scalar), χ = π − πe (a scalar) (1.12)

and obtain the translated problem

zt − ν∆z + (ye · ∇)z + (z · ∇)ye + (z · ∇)z− γhed +∇χ = mu in Q (1.13a)

ht − κ∆h+ ye · ∇h+ z · ∇h+ z · ∇θe = mv in Q (1.13b)


div z = 0 in Q (1.13c)

z = 0, h = 0 on Σ (1.13d)

z(0, x) = z0 = y0 − ye, h(0, x) = h0 = θ − θe on Ω (1.13e)

Le(z) = (ye · ∇)z + (z · ∇)ye (Oseen perturbation). (1.13f)

Abstract Nonlinear Translated Model. First, for 1 < q <∞ fixed, the Stokes
operator Aq in Lqσ(Ω) with Dirichlet boundary conditions is defined by

Aqz = −Pq∆z, D(Aq) = W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω). (1.14)

The operator Aq has a compact inverse A−1
q on Lqσ(Ω), hence Aq has a compact

resolvent on Lqσ(Ω).
Next, we define the heat operator Bq in Lq(Ω) with homogeneous Dirichlet

boundary conditions

Bqh = −∆h, D(Bq) = W 2,q(Ω) ∩W 1,q
0 (Ω). (1.15)

Next, we introduce the first order operator Ao,q,

Ao,qz = Pq[(ye · ∇)z + (z · ∇)ye], D(Ao,q) = D(A
1/2
q ) ⊂ Lqσ(Ω), (1.16)

where the D(A
1/2
q ) is defined explicitly by complex interpolation

[D(Aq),L
q
σ(Ω)]1−α = D(Aαq ), 0 < α < 1, 1 < q <∞; (1.17a)

[D(Aq),L
q
σ(Ω)] 1

2
= D(A

1/2
q ) ≡W1,q

0 (Ω) ∩ Lqσ(Ω). (1.17b)

Thus, Ao,qA
−1/2
q is a bounded operator on Lqσ(Ω), and thus Ao,q is bounded on

D(A
1/2
q )

‖Ao,qf‖ =
∥∥∥Ao,qA−1/2

q A−
1/2

q Aqf
∥∥∥ ≤ Cq ∥∥∥A1/2

q f
∥∥∥ , f ∈ D(A

1/2
q ).

This leads to the definition of the Oseen operator for the fluid

Aq = −(νAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω). (1.18)

Next, we introduce the first order operator Bo,q, corresponding to Bq:

Bo,qh = ye · ∇h, D(Bo,q) = D(B
1/2
q ) ⊂ Lq(Ω). (1.19)
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Thus, Bo,qB
−1/2
q is a bounded operator on Lq(Ω), and thus Bo,q is bounded on

D(B
1/2
q )

‖Bo,qf‖ =
∥∥∥Bo,qB−1/2

q B−
1/2

q Bqf
∥∥∥ ≤ Cq ∥∥∥B1/2

q f
∥∥∥ , f ∈ D(B

1/2
q ).

This leads to the definition of the following operator for the heat

Bq = −(κBq +Bo,q), D(Bq) = D(Bq) ⊂ Lq(Ω). (1.20)

Then, we define the projection of the nonlinear portion of the fluid operator in
(1.13a)

Nq(z) = Pq[(z · ∇)z], D(Nq) = W1,q(Ω) ∩ L∞(Ω) ∩ Lqσ(Ω). (1.21)

(Recall that W 1,q(Ω) ↪→ L∞(Ω) for q > d = dim Ω [49, p. 74]).
Then, we define the nonlinear coupled term of the heat equation as

Mq[z](h) = z · ∇h, D(Mq[z]) = W 1,q(Ω) ∩ L∞(Ω). (1.22)

Finally, we define the coupling linear terms as bounded operators on Lq(Ω),Lqσ(Ω)
respectively, q > d:

[from the NS equation] Cγh = −γPq(hed), Cγ ∈ L(Lq(Ω),Lqσ(Ω)), (1.23)

[from the heat equation] Cθez = z · ∇θe, Cθe ∈ L(Lqσ(Ω), Lq(Ω)). (1.24)

Next we apply the Helmholtz projector Pq on the coupled N-S equation (1.13a),
invoke the operators introduced above and obtain the following abstract version of
the controlled Boussinesq system

dz

dt
−Aqz +Nqz + Cγh = Pq(mu) in Lqσ(Ω) (1.25a)

dh

dt
− Bqh+Mq[z]h+ Cθez = mv in Lq(Ω) (1.25b)

 z(x, 0) = z0(x) in Lqσ(Ω) (1.25c)

h(x, 0) = h0(x) in Lq(Ω). (1.25d)

or in matrix form in Lqσ(Ω)× Lq(Ω) ≡Wq
σ(Ω)

d

dt

[
z
h

]
=

[
Aq −Cγ
−Cθe Bq

] [
z
h

]
−
[
Nq 0
0 Mq[z]

] [
z
h

]
+

[
Pq(mu)
mv

]
(1.26a)


[
z(0)
h(0)

]
=

[
z0

h0

]
∈Wq

σ(Ω) (1.26b)

Aq =

[
Aq −Cγ
−Cθe Bq

]
: Wq

σ(Ω) = Lqσ(Ω)× Lq(Ω) ⊃ D(Aq) = D(Aq)×D(Bq)

= (W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω))× (W 2,q(Ω) ∩W 1,q

0 (Ω)) −→Wq
σ(Ω). (1.27)

Properties of the operator Aq will be given in the next Section 1.7.
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1.6. The linearized w-problem of the translated z-model. Next, still for
1 < q < ∞, we introduce the linearized controlled system of the translated model
(1.13), or (1.25), (1.26) in the variable w = {wf , wh} ∈ Lqσ(Ω)× Lq(Ω) ≡Wq

σ(Ω):

d

dt

[
wf

wh

]
= Aq

[
wf

wh

]
+

[
Pq(mu)
mv

]
in Wq

σ(Ω), (1.28)

with I.C. {wf (0), wh(0)} ∈Wq
σ(Ω) = Lqσ(Ω)× Lq(Ω). Its PDE version is, recalling

(1.13)

d

dt
wf − ν∆wf + Le(wf )− γwhed +∇χ = mu in Q (1.29a)

d

dt
wh − κ∆wh + ye · ∇wh + wf · ∇wh + wf · ∇θe = mv in Q (1.29b)


div wf = 0 in Q (1.29c)

wf ≡ 0, wh ≡ 0 on Σ (1.29d)

wf (0, ·) = wf,0; wh(0, ·) = wh,0 on Ω. (1.29e)

1.7. Properties of the operator Aq in (1.27). We shall use throughout the
following notation (recall (1.5), (1.27) and (1.3))

Wq
σ(Ω) ≡ Lqσ(Ω)× Lq(Ω) Vq,p(Ω) ≡ B̃2−2/p

q,p (Ω)× Lq(Ω). (1.30)

Remark 1.2. By using the maximal regularity of the heat equation, instead of
the state space Vq,p(Ω) in (1.3), (1.30) we could take the state space Vq,p

b to be

the product of two Besov spaces, i.e. Vq,p
b (Ω) ≡ B̃

2−2/p
q,p × B2−2/p

q,p (Ω). Here, the
second Besov component is the real interpolation between Lq(Ω) and D(Bq), see
[73]. This remark applies to all results involving V q,p, but it will not necessarily be
noted explicitly case by case, in order not to overload the notation.

Accordingly, we shall look at the operator Aq in (1.27) as defined on either space

Aq : Wq
σ(Ω) ⊃ D(Aq)→Wq

σ(Ω) or Aq : Vq,p(Ω) ⊃ D(Aq)→ Vq,p(Ω).
(1.31)

In Section 3, we shall omit specification of Ω and simply write Wq
σ. The following

result collects basic properties of the operator Aq. It is essentially a corollary of
Theorems A.3 and A.4 in Appendix A for the Oseen operator Aq, as similar results
hold for the operator Bq, while the operator Cγ and Cθe in the definition (1.27) of
Aq are bounded operators, see (1.23), (1.24).

Theorem 1.2. With reference to the Operator Aq in (1.27), (1.31), the following
properties hold true:

(i) Aq is the generator of strongly continuous analytic semigroup on either Wq
σ(Ω)

or Vq,p(Ω) for t > 0;
(ii) Aq possesses the Lp-maximal regularity property on either Wq

σ(Ω) or Vq,p(Ω)
over a finite interval:

Aq ∈MRegp(L
p(0, T ; ∗)), 0 < T <∞, (∗) = Wq

σ(Ω) or Vq,p(Ω). (1.32)

(iii) Aq has compact resolvent on either Wq
σ(Ω) or Vq,p(Ω).

Analyticity of eAqt (resp. eBqt) in Lqσ(Ω) (resp. Lq(Ω)) implies analyticity of
eAqt (resp. eBqt) on D(Aq) = D(Aq) (resp. D(Bq) = D(Bq)), hence analyticity of

eAqt (resp. eBqt) on the interpolation space B̃2−2/p
q,p (Ω) in (1.11b). (or in B2−2/p

q,p (Ω))
in (1.10) (resp. (1.4) in the scalar case).
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For the notation of, and the results on, maximal regularity, see [1], [27], [40],
[45], [52], [53], [72], [93], [91], etc. In particular, we recall that on a Banach space,
maximal regularity implies analyticity of the semigroup, [26] but not conversely.We
refer to Appendix A.

Basic assumption: By Theorem 1.2, the operator Aq in (1.27) has the eigenva-
lues (spectrum) located in a triangular sector of well-known type. Then our basic
assumption - which justifies the present paper - is that such operator Aq is unsta-
ble: that is Aq has a finite number, say N , of eigenvalues λ1, λ2, λ3, . . . , λN on the
complex half plane {λ ∈ C : Re λ ≥ 0} which we then order according to their real
parts, so that

. . . ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ1, (1.33)

each λi, i = 1, . . . , N , being an unstable eigenvalue repeated according to its geo-
metric multiplicity `i. Let M denote the number of distinct unstable eigenvalues λi
of Aq, so that `i is equal to the dimension of the eigenspace corresponding to λi.

Instead, N =
M∑
i=1

Ni is the sum of the corresponding algebraic multiplicity Ni of λi,

where Ni is the dimension of the corresponding generalized eigenspace.

Remark 1.3. This remark is inserted upon request of a referee. Condition (1.33)
is intrinsic to the notion of ‘stabilization’, whereby then one seeks to construct a
feedback control that transforms an original unstable problem (with no control)
into a stable one. However, as is well-known, the same entire procedure can be
employed to enhance at will the stability of an originally stable system (Re λ1 < 0)
by feedback control. Regarding the issue of multiplicity of the eigenvalues, we recall
the well-known classical result [68], [89] that the eigenvalues of the Laplacian are
simple generically with respect to the domain.

The ability to stabilize the Boussinesq system (1.1) in the vicinity of the (un-
stable) equilibrium solution {ye, θe}, by means of a finite dimensional feedback
control pair {u, v} localized on the arbitrarily small sub-domain ω, depends (non-
surprisingly, according to past experience [12], [56], [57], [85]–[87]) on an appropriate
Unique Continuation Property. To this end, we quote two results. They are part
of several UCP proved in [88].

Theorem 1.3. Let Φ =

[
ϕ
ψ

]
∈ [W2,q(Ω) ∩ Lqσ(Ω)] × W 2,q(Ω), π ∈ W 1,q(Ω),

ϕ = [ϕ1, . . . , ϕd], ψ = scalar, satisfy the following overdetermined problem

−ν∆ϕ+ Le(ϕ) +∇π − γψed = λϕ in Ω (1.34a)

−κ∆ψ + ye · ∇ψ +ϕ · ∇θe = λψ in Ω (1.34b)

 div ϕ = 0 in Ω (1.34c)

ϕ = 0, ψ = 0 on ω. (1.34d)

Then
ϕ = 0, ψ = 0, π = const in Ω. (1.35)

We point out that the B.C

ϕ|Γ = 0, ψ|Γ = 0 on Γ (1.36)

are not needed. [If included, the resulting problem would be an eigenproblem for
the Boussinesq operator with over/determination as in (1.34d)]. However, the UCP
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required in Section 4 to establish the controllability of the finite dimensional pro-
jected problem (3.6a) via verification of the Kalman rank condition (4.11) involves
the following adjoint problem.

Theorem 1.4. (The required UCP). In the same notation {ϕ, ψ, π} of Theorem
1.3 with the same assumed regularity,let

−ν∆ϕ+ L∗e(ϕ) +∇π + ψ∇θe = λϕ in Ω (1.37a)

−κ∆ψ + ye · ∇ψ − γϕ · ed = λψ in Ω (1.37b)

 div ϕ = 0 in Ω (1.37c)

ψ = 0, {ϕ1, ..., ϕd−1} = 0, on ω. (1.37d)

Then

ϕ = 0, ψ = 0, π = const in Ω. (1.38)

Remark 1.4. Again, for problem (1.37a-b-c), the B.Cs such as (1.36) are not
needed. We note that in (1.37a) the definition of the adjoint of Le(z) = (ye · ∇)z +
(z · ∇)ye in (1.13f) is L∗e(ϕ) ≡ (ye · ∇)ϕ +∇⊥ye · ϕ. We also note that in taking
the adjoint of the operator Aq in (1.27) the coupling operators Cγ and Cθe switch
places into their adjoints. See A∗q in (B.16) of Appendix B. This fact is critical in
obtaining in the adjoint UCP of Theorem 1.4 that only the first d− 1 components
{ϕ1, ..., ϕd−1} of ϕ need to be assumed as vanishing in ω in (1.37d). See Appendix
B for more details. Notice, in fact, that if condition ψ = 0 in ω is used in (1.37b), it
then follows that the last component ϕd = 0 in ω because of the form of the vector
e = (0, 0..., 1). This along with (1.37d) yield the same overdetermined conditions
on ω as in (1.34d). In this sense, Theorem 1.4 is essentially a corollary of the
proof of Theorem 1.3 and this justifies the insertion of Theorem 1.3 here. See [88]
for proofs via Carleman type estimates. Here, moreover it is shown that for the
case where the subset ω is in particular subtended by an arbitrary portion of the
boundary Γ and satisfies some additional geometrical conditions, then only (d − 2)
components of the vector ϕ need to be assumed to vanish on ω, thus further relaxing
condition (1.37d). In these cases, however we also need a boundary condition weaker
than ϕ|Γ = 0. Details are given in [88, Theorems 1.6 and 1.7]. These results for
the adjoint Boussinesq static problem are in line with the open-loop controllability
results in [23], [43], [17] [24].

Remark 1.5. References [34], [33] provide a UCP for the Stokes problem with
implications on approximate controllability. The UCP property of Theorem 1.3 in
the case ψ ≡ 0 [i.e. Oseen’s operator in ϕ] has been shown via Carleman’s estimates
in [11] by first transforming Ω in a “bent” half-space with a parabolic boundary,
next selecting the Melrose-Sjostrand form for the Laplacian, and finally applying
the Carleman estimates in integral form from [44]. A different proof, directly on Ω,
and this time with no use of the condition ϕ ≡ 0 on Γ, was later given in [87], also
via use of (different) Carleman-type estimates for the Laplacian. The direct (on
Ω) Carlemann-type estimate proof in [87], with additional technical modification,
can be made to work and establish both Theorem 1.3 and Theorem 1.4 ([88]). In
effect, such reference [88] provides two additional UCPs, say for the original problem
(1.34 a-b-c) with over determination this time on a small subdomain ω subtended
by an arbitrary portion of the boundary. A proof yielding, say Theorem 1.3 with
d = 2 and with limited regularity of the solution was given in [74]. Theorem 1.4
is in line with an “observability inequality” for the time dependent problem (1.1)
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needed in the study of local controllability to the origin or to a trajectory given
in [30]. It improves on the prior observability inequality in [43]. We shall invoke
Theorem 1.4 in Section 4, to verify the Kalman rank condition (4.11). The proof of
the implication: Theorem 1.4 =⇒ (4.11) is given Appendix B. We can now state
the main results of the present paper.

Recall that the vector {ϕ, ψ} = {ϕ1, ϕ2, ..., ϕd, ψ} in Lqσ(Ω) has (d + 1) coordi-
nates, the first d co-ordinates correspond to the fluid space, while the last coordinate
corresponds to the heat space. Motivated by the UCP of Theorem 1.4, we shall in-

troduce the space L̂qσ(Ω)

L̂qσ(Ω) ≡ the space obtained from Lqσ(Ω) after omitting the

d-coordinate from the vectors of Lqσ(Ω). (1.39)

2. Main results.

As in our past work [11], [12], [57], [58], [63], [64], we shall henceforth let Lqσ(Ω)
denote the complexified space Lqσ(Ω) + iLqσ(Ω), and similarly for Lq(Ω), whereby
then we consider the extension of the linearized problem (1.28) to such complexified
space Lqσ(Ω)×Lq(Ω). Thus, henceforth, w will mean w+iw̃, u will mean u+iũ, w0

will mean w0 + iw̃0. Our results would be given in this complexified setting. How
to return to real-valued formulation of the results was done in these past reference
(see e.g. [11], [12], [57], [63, Section 2.7]). Because of space constraints, such real-
valued statements will not be explicitly listed on the present paper. We refer to the
above references. A main additional feature of the results below is that the feedback
control u1

k corresponding to the fluid equation is of reduced dimension: that is, of
dimension (d− 1) rather than of dimension d. This is due to the UCP of Theorem
1.4, as noted in Remark 1.4.

2.1. Global well-posedness and uniform exponential stabilization of the
linearized w-problem (1.28) on either the space Wq

σ(Ω) ≡ Lqσ(Ω)×Lq(Ω) or

the space Vq,p(Ω) ≡ B̃
2−2/p
q,p × Lq(Ω), 1 < q <∞, 1 < p < 2q

2q−1 .

See also Remark 1.2.

Theorem 2.1. Let the operator Aq in (1.27) have N possibly repeated unstable

eigenvalues {λj}Nj=1 as in (1.33), of which M are distinct. Let `i denote the geo-
metric multiplicity of λi. Set K = sup{`i; i = 1, · · · ,M}. Let (Wq

σ)uN be the

N -dimensional subspace of Wq
σ(Ω) defined in (3.2) below. Recall the space L̂qσ(Ω)

from (1.39) and let likewise (Ŵq
σ)uN be the space obtained from (Wq

σ)uN by omit-
ting the d coordinate from the vectors of (Wq

σ)uN . Then, one may construct a finite
dimensional feedback operator F , such that, with w = {wf , wh},wN = PNw and[

u

v

]
=

[
F 1(w)

F 2(w)

]
, F (w) =

[
Pq(mF

1(w))

mF 2(w)

]
=

Pq(m(∑K
k=1(wN ,pk)ωu1

k

))
m
(∑K

k=1(wN ,pk)ωu
2
k

)
 ,
(2.1)

with vectors [u1
k, u

2
k] ∈ (Ŵq

σ)uN ⊂ L̂qσ(Ω) × Lq(Ω), and pk ∈ ((Wq
σ)uN )∗ ⊂ Lq

′

σ (Ω) ×
Lq
′
(Ω) (Remark B.1), then the w-problem (1.28) can be rewritten in feedback form

on Wq
σ(Ω) as follows
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dw

dt
=

d

dt

[
wf

wh

]
= Aqw +F (w) = Aqw +

Pq(m(∑K
k=1(wN ,pk)ωu1

k

))
m
(∑K

k=1(wN ,pk)ωu
2
k

)
 = AF,qw;

w(0) = w0, (2.2)

with D(AF,q) = D(Aq) where the operator AF,q in (2.2) has the following properties:

(i) It is the generator of a s.c. analytic semigroup eAF,qt in the space Wq
σ(Ω) ≡

Lqσ(Ω) × Lq(Ω) as well as in the space Vq,p(Ω) ≡ B̃
2−2/p
q,p × Lq(Ω), see also

Remark 1.2.
(ii) It is uniformly (exponentially) stable in either of these spaces∥∥eAF,qtw0

∥∥
(·) ≤ Cγ0e

−γ0t ‖w0‖(·) (2.3)

where (·) denotes either Lqσ(Ω)×Lq(Ω) ≡Wq
σ(Ω) or else B̃2−2/p

q,p (Ω)×Lq(Ω) ≡
Vq,p(Ω). In (2.3), γ0 is any positive number such that Re λN+1 < −γ0 < 0.

(iii) Finally, AF,q has maximal Lp-regularity up to T =∞ on either of these spaces:

AF,q ∈MRegp(L
p(0,∞; · )), where (·) denotes{ (2.4)

either Lqσ(Ω)×Lq(Ω) ≡Wq
σ(Ω) or else B̃2−2/p

q,p (Ω)×Lq(Ω) ≡ Vq,p(Ω).

Remark 2.1. We note explicitly that the vector u1
k acting on the fluid d−dimen-

sional component u is of reduced dimension (d − 1), rather than d.

The proof of Theorem 2.1 begins in Section 3 and proceed through Section 4.

2.2. Local well-posedness and uniform (exponential) null stabilization of
the translated nonlinear {z, h}-problem (1.13) or (1.25) by means of a
finite dimensional explicit, spectral based feedback control pair localized
on ω.

Starting with the present subsection, the nonlinearity of problem (1.1) will impose
for d = 3 the requirement q > 3, see (5.24) below. As our deliberate goal is

to obtain the stabilization result for the fluid component y in the space B̃2−2/p
q,p (Ω)

which does not recognize boundary conditions, Remark 1.1, then the limitation p <
2q/2q−1 of this space applies, see (1.11b). In conclusion, our well-posedness and
stabilization results will hold under the restriction q > 3, 1 < p < 6/5 for d = 3, and
q > 2, 1 < p < 4/3 for d = 2.

Theorem 2.2. Let d = 2, 3, q > d, 1 < p <
2q

2q − 1
. Consider the nonlinear

{z, h}-problem (1.25) in the following feedback form

d

dt

[
z

h

]
= AF,q

[
z

h

]
−

[
Nq 0

0 Mq[z]

][
z

h

]
; AF,q =

[
Aq −Cγ
−Cθe Bq

]
+ F = Aq + F

(2.5)
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see (2.2). Specifically,

dz

dt
−Aqz + Cγh+Nqz = Pq

(
m

( K∑
k=1

(
PN

[
z
h

]
,pk

)
ω

u1
k

))
(2.6a)

 dh

dt
− Bqh+ Cθez +Mq[z]h = m

( K∑
k=1

(
PN

[
z
h

]
,pk

)
ω

u2
k

)
(2.6b)

i.e. subject to a feedback control of the same structure as in the linear w = {wf , wh}-
dynamics (2.2). Here, pk,uk = [u1

k, u
2
k] are the same vectors as those constructed

in Theorem 2.1 and appearing in (2.2).In particular u1
k has (d − 1) components.

There exists a positive constant r1 > 0 (identified in the proof below in (5.31)) such
that if

‖{z0, h0}‖
B̃

2−2/p
q,p (Ω)×Lq(Ω)

< r1, (2.7)

then problem (2.6) defines a unique (fixed point) non-linear semigroup solution in
the space

{z, h} ∈ X∞p,q,σ×X∞p,q ≡ Lp(0,∞;D(AF,q) = D(Aq)×D(Bq))∩W 1,p(0,∞; Wq
σ(Ω)),

(2.8)

Where we have set, via (1.18), (1.14) for Aq and (1.20), (1.15) for Bq:
z ∈ X∞p,q,σ ≡ Lp(0,∞;D(Aq) ∩W 1,p(0,∞; Lqσ(Ω)) (2.9)

≡ Lp(0,∞; W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)) ∩W 1,p(0,∞; Lqσ(Ω))

h ∈ X∞p,q ≡ Lp(0,∞;D(Bq) ∩W 1,p(0,∞;Lq(Ω)) (2.10)

≡ Lp(0,∞;W 2,q(Ω) ∩W 1,q
0 (Ω)) ∩W 1,p(0,∞;Lq(Ω)).

Moreover, we have

X∞p,q,σ ↪→ C([0,∞]; B2−2/p
q,p (Ω)) (2.11)

X∞p,q ↪→ C([0,∞];Lq(Ω)) (2.12)

so that
X∞p,q,σ ×X∞p,q ↪→ C([0,∞]; Vq,p(Ω)), (2.13)

recalling the embedding, called trace theorem [2, Theorem 4.10.2, p 180, BUC for
T =∞], [72], as in [63, Eq. (1.30)]. See also (A.14) in Appendix A.

The space X∞p,q,σ × X∞p,q defined above is the space of Lp-maximal regularity
for the generator AF,q. X∞p,q,σ is the space of Lp-maximal regularity of the Stokes
operator, Aq in (1.14), see (A.12) and also (A.14) in Appendix A. X∞p,q is the space
of Lp-maximal regularity of the generator Bq in (1.15). The proof of Theorem 2.2
is given in Section 5.

Theorem 2.3. In the situation of Theorem 2.2, we have that such solution is

uniformly stable in the space Vq,p(Ω) ≡ B̃
2−2/p
q,p (Ω) × Lq(Ω), see also Remark 1.2:

there exists γ̃ > 0,Mγ̃ > 0 such that said solution satisfies∥∥∥∥[zh
]

(t)

∥∥∥∥
Vq,p(Ω)

≤Mγ̃e
−γ̃t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

, t ≥ 0. (2.14)

The proof of Theorem 2.3 is given in Section 6.
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2.3. Local well-posedness and uniform (exponential) stabilization of the
original nonlinear {y, θ}-problem (1.1) in a neighborhood of an unstable
equilibrium solution {ye, θe}, by means of a finite dimensional explicit,
spectral based feedback control pair localized on ω.

The result of this subsection is an immediate corollary of sub-section 2.2.

Theorem 2.4. Let 1 < p < 6/5, q > 3, d = 3; and 1 < p < 4/3, q > 2, d = 2.
Consider the original Boussinesq problem (1.1). Let {ye, θe} be a given unstable
equilibrium solution pair as guaranteed by Theorem 1.1 for the steady state prob-
lem (1.2). For a constant ρ > 0, let the initial condition {y0, θ0} in (1.1e) be in

Vq,p(Ω) ≡ B̃
2−2/p
q,p (Ω)× Lq(Ω), see also Remark 1.2, and satisfy

Vρ ≡
{
{y0, θ0} ∈ Vq,p(Ω) : ‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+ ‖θ0 − θe‖Lq(Ω) ≤ ρ
}
, ρ > 0.

(2.15)
If ρ > 0 is sufficiently small, then

(i) for each {y0, θ0} ∈ Vρ, there exists an interior finite dimensional feedback
control pair

u

v

 =

F
1

([
y − ye
θ − θe

])
F 2

([
y − ye
θ − θe

])
 = F

([
y − ye
θ − θe

])
=

K∑
k=1

(
PN

[
y − ye
θ − θe

]
,pk

)
ω

uk

(2.16)
that is, of the same structure as in the translated {z, h}-problem (2.6), with the
same vectors pk,uk in (2.2), such that the closed loop problem corresponding
to (1.1)

yt − ν∆y + (y · ∇)y − γ(θ − θ̄)ed +∇π = m

(
F 1

([
y − ye
θ − θe

]))
+ f(x) in Q

(2.17a)

θt − κ∆θ + y · ∇θ = m

(
F 2

([
y − ye
θ − θe

]))
+ g(x) in Q

(2.17b)

div y = 0 in Q (2.17c)

 y = 0, θ = 0 on Σ (2.17d)

y|t=0 = y0, θ|t=0 = θ0 in Ω, (2.17e)
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rewritten abstractly after application of the Helmholtz projection Pq as

yt + νAqy +Nqy + Cγ(θ − θ̄) = Pq

[
m

(
F 1

([
y − ye
θ − θe

]))
+ f(x)

]
(2.18a)



= Pq

[
m

(
K∑
k=1

(
PN

[
y − ye
θ − θe

]
,pk

)
ω

u1
k

)
+ f(x)

]
(2.18b)

θt − κBqθ +Mq[y]θ = m

(
K∑
k=1

(
PN

[
y − ye
θ − θe

]
,pk

)
ω

u2
k

)
+ g(x)

(2.18c)

{y(0) = y0, θ(0) = θ0} ∈ B̃2−2/p
q,p (Ω)× Lq(Ω) ≡ Vq,p(Ω) (2.18d)

has a unique solution {y, θ} ∈ C
(
[0,∞); Vq,p(Ω) ≡ B̃

2−2/p
q,p (Ω) × Lq(Ω)

)
. See

also Remark 1.2. Thus, here as in the proceeding Theorem 2.1 through Theo-
rem 2.3, we have

K = sup{`i; i = 1, · · · ,M},uk = [u1
k, u

2
k] (2.19)


u1
k = [u

(1)
k , u

(2)
k , ..., u

(d−1)
k ].

(ii) Moreover, such solution exponentially stabilizes the equilibrium solution {ye, θe}
in the space B̃

2−2/p
q,p (Ω) × Lq(Ω) ≡ Vq,p(Ω): there exist constants γ̃ > 0 and

Mγ̃ ≥ 1 such that said solution satisfies

‖y(t)− ye‖
B̃

2−2/p
q,p (Ω)

+ ‖θ(t)− θe‖Lq(Ω) ≤Mγ̃e
−γ̃t

(
‖y0 − ye‖

B̃
2−2/p
q,p (Ω)

+

‖θ0 − θe‖Lq(Ω)

)
, (2.20)

t ≥ 0, {y0, θ0} ∈ Vρ. Once the neighborhood Vρ is obtained to ensure the
well-posedness, then the values of Mγ̃ and γ̃ do not depend on Vρ and γ̃ can
be made arbitrarily large through a suitable selection of the feedback operator
F .

See Remark 6.1 comparing γ̃ in (2.20) with γ0 in (2.3).

2.4. Comparison with the literature.

1. With reference to both the “Motivation” of Subsection 1.1 as well as Sub-
section 1.3, it was already emphasized that all prior literature on the problem of
feedback stabilization of either the Navier-Stokes equations or, subsequently, the
Boussinesq system is carried out in a Hilbert-Sobolev setting. As already noted,
this treatment is inadequate to obtain finite dimensionality in full generality of the
localized tangential boundary feedback control for the 3d-Navier-Stokes equations.
This obstacle then motivated the introduction of the Lq-Sobolev/Besov setting in
[64] with tight indices, see (1.4), (1.11b), that does not recognize boundary con-
ditions, see Remark 1.1 , in order to solve affirmatively such open problem on
the finite dimensionality in 3d-Navier-Stokes tangential boundary feedback stabi-
lization. Reference [63] on localized interior controls sets the preparatory stage for
the more demanding boundary control case in [64].
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2. In the present contribution, following [63, 64], the analysis of the original non-
linear problem is carried out in the context of the property of maximal regularity of
the linearized feedback w-problem (2.2) or (4.12); that is, of the operator AF,q in
(4.12). This applies to both well-posedness (in Section 5) as well as stabilization (in
Section 6) of the nonlinear feedback problem. This is in contrast with prior treat-
ments, such as [11], [8], which often rely on chopping the nonlinearity and carrying
out a limit process. The maximal regularity approach introduced for stabilization
problems in [63] is cleaner and more desirable both technically and conceptually. On
the other hand, applicability of Maximal Regularity requires well balanced spaces.
Recent developments in this particular area [93, 78, 76, 72, 52, 53], etc. were critical
for carrying out our analysis.

3. We also point out that, as in [56, 57] and [63, 64] for the Navier-Stokes equa-
tions, in the case of the Boussinesq system, the number of needed controls will be
related to the more desirable geometric multiplicity, not the larger algebraic multi-
plicity as in prior treatments, [11], [8, p 276] of the unstable eigenvalues, by using
the classical test for controllability of a system in Jordan form [18], [10, p 464].
This allows one also to obtain constructively an explicit form of the finite dimen-
sional feedback control; and, moreover, to show that the feedback control acting on
the fluid may be taken of reduced dimension: one unit less, i.e. d − 1, than the
fluid component of dimension d. This is due to the Unique Continuation Property
of the adjoint problem, as stated in Theorem 1.4, Remark 1.4. This an additional
contribution of the present paper. This dimension reduction in the closed-loop feed-
back stabilizing fluid control is in line with the open-loop controllability results in
[23], [43], [17] [24]. The authors thank a referee for suggesting to investigate this
possibility, which turned out to be successful. Such investigation also led to paper
[88].

4. We now review the literature on the feedback stabilization of the Boussinesq
system. The first contribution is due to [92] via internal feedback controls in the
Hilbert setting H×L2(Ω), where H is defined in (1.17b). The feedback controllers
are both infinite-dimensional of the type: u = −k(y − ye) and v = −k(θ − θe), for
large k, under technical assumptions on the localization of the controls. Paper [65]
also studies the feedback stabilization problem with, eventually, localized controls,
which again are infinite dimensional; eg defined in terms of a sub-differential. These
results are in stark contrast with the present work, where - as noted in point 3 above
- first, we establish that the stabilizing control is finite dimensional; and, second,
we show that its fluid component is of reduced dimension, as expressed only by
means of (d− 1)-components. Finally paper [74] studies the feedback stabilization
problem with, this time, mixed boundary and claims to provide a rigorous treatment
of problems studied in [15].

5. We now comment on the additional technical and conceptual difficulties in
extending the uniform stabilization problem of [63] for the Navier-Stokes equations
to the present Boussinesq system. First, the general strategy to attack the prob-
lem of feedback stabilization for parabolic-like dynamics with feedback controllers
of any type was introduced in [83]. It has since become a standard approach in
the literature, which was followed in a variety of parabolic problems [54], [55]. In
its implementation, however, this general strategy encounters an array of techni-
cal challenges that are highly feedback-dependent: the most demanding cases are
when the feedback controllers are based on the boundary and even with boundary
actuator, subject perhaps to additional requirements (arbitrarily small portion of
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the boundary, etc). This general strategy is used in [63] as well as in the present

paper, with the space B̃
2−2/p
q,p (Ω) in (1.11b) being the space of the fluid compo-

nent where the stabilization is established. Such Besov space with tight indices has
the critical property of being ’under the radar of compatibility conditions’. The
presence of fluid-thermal coupling produces two level of problems: at the finite di-
mensional level, based an a UCP with special features; at the infinite dimensional
level, based on establishing maximal regularity on a non-Hilbert setting, therefore
stronger than analyticity of the underlying semigroup. As described below in point
6, the mathematical machinery used in the present paper could handle an array of
other settings: first, a variety of different Boundary Conditions rather than just the
non-slip Dirichlet boundary conditions (1.1d); second, much more demanding ’seri-
ously unbounded’ coupling operators between the fluid and the thermal equations
than the bounded coupling operators - Cγ and Cθe in (1.23), (1.24) - which are of-
fered by the physically based Boussinesq model (1.1). A key feedback - and problem
- dependent source of difficulty encountered in the present Boussinesq model over
the Navier-Stokes case of [63] arises, as usual, at the level of testing and establishing
controllability of the finite dimensional projected wN - equation in (3.6a); that is, in
verifying the full rank condition (4.10). It took some time in the literature to realize
that in the cases of “challenging” feedbacks such as the localized feedback of [11] for
the Navier-Stokes equation or else boundary feedback (with sensors and/actuators
imposed as being boundary traces), a natural way of checking the resulting Kalman
rank condition is to fall into an appropriate Unique Continuation Property for an
adjoint problem. In doing so, as noted in Remark 1.4, we extract the benefit of
obtaining the closed-loop feedback control acting on the fluid equation of reduced
dimension: (d − 1) rather than d. As noted in point 3 above, this conclusion is in
line with the open-loop controllability results in [23], [43], [17], [24]. It was a referee
who suggested that we carry out such a study.

6. In response to a referee’s suggestion, we address the following Question: Can
our mathematical treatment cover other boundary conditions and more general
coupled terms between the fluid and the thermal equations?

The answer is in the affirmative. We may e.g. cover all the B.C.s listed in the
2016 Birkhäuser treatise [72], page 338. They refer to a very general Stokes problem
(Laplacian replaced by normally strongly elliptic differential operator on a bounded
domain, in fact even with a domain with compact boundary, say of class C3). They
are referred to as (mathematical definitions are given in [72] page 338): (i) no-slip
(the ones in our present treatment); (ii) pure slip; (iii) outflow; (iv) free. We now
justify our assertion. Whatever the boundary conditions and the coupling terms,
one ends up with the 2 × 2 operator matrix of the type of AF,q in (2.5): the two
operators Aq and Bq on the main diagonal are the free dynamic operators of each
equation, while the two operators Cγ and Cθe on the secondary diagonal are the
coupling terms. What does our mathematical treatment need? What it needs
is that the resulting 2 × 2 operator matrix possess the Lp maximal regularity on
the desired functional setting [(fluid space) × (heat space)]; eventually, Vq,p(Ω) ≡
B̃

2−2/p
q,p (Ω) × Lq(Ω) in (1.3). Hence, a-fortiori, be the generator of a s.c. analytic

semigroup on such setting. Thus, as a first point, we need the statement of Theorem
4.2. In the present setting of problem (1.1), the conclusion of Theorem 4.2 is
obtained in the basis of the following reasons:



4090 IRENA LASIECKA, BUDDHIKA PRIYASAD AND ROBERTO TRIGGIANI

1a) The operators Aq and Bq on the main diagonal have Lp maximal regularity
on each appropriate functional setting, on the basis of, ultimately, Solonnikov’s
old result for the Stokes problem for the fluid and also the corresponding known
property for the heat operator. Thus the corresponding diagonal 2 × 2 operator
matrix has such Lp maximal regularity on the desired cross functional setting.

1b) Moreover, in the present physical model (1.1), the two coupling operators
Cγ and Cθe on the secondary diagonal are bounded operators, see (1.23), (1.24),
But boundedness of these two coupling operators is much more than it is needed
mathematically.
Conclusion: We can take other homogeneous boundary conditions for the fluid
and the heat equations as long as they produce the required Lp maximal regularity

properties, on the space Vq,p(Ω) ≡ B̃
2−2/p
q,p (Ω)×Lq(Ω) in (1.3). Regarding the fluid

equation, each of the above B.C.s (i), (ii), (iii), (iv) does yield Lp maximal regular-
ity of the Stokes problem and even for much more general elliptic operators than
the Laplacian. See [72, Theorem 7.3.1, p339].The Stokes operator is enough as the
Lp maximal regularity can then be transferred to the Oseen operator. As to the
thermal equation, other B.C.s such as Neumann or Robin, beside the Dirichlet B.C.,
will likewise yield Lp maximal regularity for the thermal Laplacian. Moreover, the
coupling operators Cγ and Cθe may be much worse than bounded perturbations as
in (1.23), (1.24).It is well known [27], [52] that if an operator enjoys Lp maximal
regularity, then adding a perturbation up to the same level minus epsilon preserve
Lp maximal regularity (same as for analyticity). This will allow to greatly ex-
tend the model, purely in mathematical grounds, not necessarily based on physical
grounds. Our model 1.1 is the one which we found in many PDE-papers, beyond
the control/stabilization areas.

7. Question: With boundary conditions leading to global controllability, is it pos-
sible - a referee asked - to get global stabilization with controls as in this paper? It
is not easy to answer this question in full generality. First, there are several works
on local exact controllability to the origin or to trajectories, see [17], [20], [21],
[22], [23], [30], [31], [35], [43] for an incomplete sample of recent works, using radi-
cally different techniques from those of the present paper (save for the underlying
UCP of Theorem 1.4, such as Carleman type inequalities for both Navier-Stokes
or Boussinesq equations. On the other hand, the issue of deducing stabilization
from controllability in the case of finite dimensional non linear ODE was much in-
vestigated in the 70-80’s. As is well known, there is a revealing, simple counter
example of Brockett: a system of dimension n = 3 with m = 2 controls that is
locally controllable, (though its linearization is not controllable), symmetric, yet it
violates the condition of asymptotic stability [9], [94, p 88]. We also point out that
there is extensive work at the PDE-level (or infinite-dimensional level) which shows
that controllability implies stabilization under an additional condition (which is of-
ten true in many PDE-problems but it is challenging to check) [59], [60], [61], [62].
However these works refer to hyperbolic or hyperbolic-like dynamics (such as wave
equations, dynamic system of elasticity, Schrödinger equations or plate equations).

3. Beginning with the proof of Theorem 2.1, Spectral decomposition of
the linearized w-problem (1.28) or (1.29).

We return to the assumed starting point of the present paper, which is that
the free dynamics operator Aq in the open-loop controlled linear system (1.28) is
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unstable. Its properties are collected in Theorem 1.2. Accordingly, its eigenvalues
satisfy the statement which includes their location in (1.33). Denote by PN and P ∗N
(which actually depend on q) the projections given explicitly by [48, p 178], [11],
[12]

PN = − 1

2πi

∫
Γ

(λI − Aq)−1
dλ : Wq

σ onto (Wq
σ)uN ⊂ Lqσ(Ω)× Lq(Ω) (3.1a)

P ∗N = − 1

2πi

∫
Γ̄

(
λI − A∗q

)−1
dλ : (Wq

σ)∗ onto [(Wq
σ)uN ]∗ ⊂ Lq

′

σ (Ω)× Lq
′
(Ω),

(3.1b)

where, here Γ (respectively, its conjugate counterpart Γ̄) is a smooth closed curve
that separates the unstable spectrum from the stable spectrum of Aq (respectively,
A∗q). As in [12, Sect 3.4, p 37], following [83], [84], we decompose the space
Wq

σ = Wq
σ(Ω) ≡ Lqσ(Ω) × Lq(Ω) into the sum of two complementary subspaces

(not necessarily orthogonal):

Wq
σ = (Wq

σ)uN ⊕ (Wq
σ)sN ; (Wq

σ)uN ≡ PNWq
σ; (Wq

σ)sN ≡ (I − PN )Wq
σ;

dim (Wq
σ)uN = N (3.2)

where each of the spaces (Wq
σ)uN and (Wq

σ)sN (which depend on q, but we suppress
such dependence) is invariant under Aq, and let

Auq,N = PNAq = Aq|(Wq
σ)uN

; Asq,N = (I − PN )Aq = Aq|(Wq
σ)sN

(3.3)

be the restrictions of Aq to (Wq
σ)uN and (Wq

σ)sN respectively. The original point
spectrum (eigenvalues) {λj}∞j=1 of Aq is then split into two sets

σ(Auq,N ) = {λj}Nj=1; σ(Asq,N ) = {λj}∞j=N+1, (3.4)

and (Wq
σ)uN is the generalized eigenspace of Auq,N in (3.3). The system (1.28) on

Wq
σ ≡ Lqσ(Ω)× Lq(Ω) can accordingly be decomposed as

w = wN + ζN , wN = PNw, ζN = (I − PN )w. (3.5)

After applying PN and (I−PN ) (which commute with Aq) on (1.28), we obtain via
(3.3)

on (Wq
σ)uN : w′N − Auq,NwN = PN

[
Pq(mu)
mv

]
; wN (0) = PN

[
wf (0)
wh(0)

]
(3.6a)

on (Wq
σ)sN : ζ′N − Asq,NζN = (I − PN )

[
Pq(mu)
mv

]
; ζN (0) = (I − PN )

[
wf (0)
wh(0)

]
(3.6b)

respectively.

4. Proof of Theorem 2.1. Global well-posedness and uniform exponen-
tial stabilization of the linearized w-problem (1.28) on the space Wq

σ(Ω) ≡
Lqσ(Ω)× Lq(Ω) or the space Vq,p(Ω) ≡ B̃

2−2/p
q,p (Ω)× Lq(Ω).

Orientation: We shall appeal to several technical developments in [63], where
the case of N-S equations has been studied. We will have to adopt and transfer
some of its procedures to the case of the Boussinesq system. Thus, properties such
as maximal regularity and the entire development for uniform stabilization of the
linearized Boussinesq dynamics need to be established. It is worth noticing that
while analyticity and maximal regularity are equivalent properties in the Hilbert
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setting [26] this is not so in the Banach setting where maximal regularity is a more
general and more delicate property. Moreover, it is only after we establish uniform
stabilization that we can claim maximal regularity up to infinity. This needs to
be asserted by direct analysis of singular integrals. To proceed, we recall the state
space Wq

σ(Ω) = Lqσ(Ω) × Lq(Ω) ≡ (Wq
σ)uN ⊕ (Wq

σ)sN . The unstable uncontrolled
operator is Aq in (1.27).

The same strategy employed in [63] leading to the linearized w-dynamics of the
translated non-linear z-problem in terms of finite dimensional feedback controls can
be followed now, where w and z are augmented vectors consisting of a fluid vector
component and a scalar thermal component. Thus we first seek to establish that the
finite dimensional projection - the wN -equation presently in (3.6a) is controllable
on (Wq

σ)uN , hence exponentially stabilizable with an arbitrarily large decay rate
[94, p. 44]. Next, one then examines the corresponding ζN -equation, presently
(3.6b), where the arbitrarily large decay rate of the feedback wN -equation combined

with the exponential stability on (Wq
σ)sN of the s.c. analytic semigroup eA

s
q,N t

yields the desired result. All this works thanks to the present corresponding Unique
Continuation Property, this time of the Boussinesq system, that is Theorem 1.4.
This implies the Kalman algebraic condition (4.10). A proof is given in Appendix
B. Such condition (4.10) is equivalent to linear independence of certain vectors
occurring in (4.10) below, so that the finite dimensional projected wN -dynamics
satisfies the controllability condition of Kalman or Hautus. See corresponding cases
in [85], [86]. More precisely, the counterpart of the analysis of [63, Section 3 and
4] has now some novel aspects which account for the present additional property
that the UCP of Theorem 1.4 involves only the first (d − 1) components of the
fluid vector. This conceptual advantage will be responsible for heavier notation as
described below.

For each i = 1, . . . ,M , we denote by {Φij}`ij=1, {Φ
∗
ij}

`i
j=1 the normalized, linearly

independent eigenfunctions of Aq, respectively A∗q , say, on

Wq
σ(Ω) ≡ Lqσ(Ω)× Lq(Ω) and

(Wq
σ(Ω))∗ ≡ (Lqσ(Ω))′ × (Lq(Ω))′ = Lq

′

σ (Ω)× Lq
′
(Ω),

1

q
+

1

q′
= 1, (4.1)

(where in the last equality we have invoked Remark B.1 in Appendix B) correspond-
ing to the M distinct unstable eigenvalues λ1, . . . , λM of Aq and λ1, . . . , λM of A∗q
respectively, either on Wq

σ or on Vq,p:

AqΦij = λiΦij ∈ D(Aq) = [W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)]× [W 2,q(Ω) ∩W 1,q

0 (Ω)] (4.2)

A∗qΦ∗ij = λ̄iΦ
∗
ij ∈ D(A∗q) = [W2,q′(Ω) ∩W1,q′

0 (Ω) ∩ Lq
′
σ (Ω)]× [W 2,q′(Ω) ∩W 1,q′

0 (Ω)].
(4.3)

We now express the eigenvectors Φ∗
ij in terms of their coordinates, as (d+1) vectors:

Φ∗
ij = {ϕ∗

ij , ψ
∗
ij} = {ϕ∗(1)

ij , ϕ
∗(2)
ij , ..., ϕ

∗(d−1)
ij , ϕ

∗(d)
ij , ψ∗ij} , a (d+ 1)-vector. (4.4)

With reference to (4.4), we introduce the following corresponding d-vector

Φ̂∗
ij = {ϕ̂∗

ij , ψ
∗
ij} = {ϕ∗(1)

ij , ϕ
∗(2)
ij , ...ϕ

∗(d−1)
ij , ψ∗ij} , a d-vector, (4.5)
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obtained from Φ∗
ij by omitting the d-component ϕ

∗(d)
ij of the vector Φ∗

ij . Next,we

construct the following matrix Ui of size `i ×K, K = sup{`i : i = 1, . . . ,M}

Ui =


(u1, Φ̂

∗
i1)ω . . . (uK , Φ̂

∗
i1)ω

(u1, Φ̂
∗
i2)ω . . . (uK , Φ̂

∗
i2)ω

...
. . .

...

(u1, Φ̂
∗
i`i

)ω . . . (uK , Φ̂
∗
i`i

)ω

 : `i ×K. (4.6)

Here we have set

uk = [u1
k, u

2
k] = [(u1

k)(1), (u1
k)(2)...(u1

k)(d−1), u2
k] ∈ (Ŵq

σ)uN ⊂ L̂qσ(Ω)× Lq(Ω) (4.7a)

L̂qσ(Ω) ≡ the space obtained from Lqσ(Ω) after omitting the

d-coordinate from the vectors of L̂qσ(Ω) (4.7b)

(Ŵq
σ)uN ≡ the space obtained from (Wq

σ)uN after omitting the

d-coordinate from the vectors of (Wq
σ)uN . (4.7c)

In (4.6), we have defined the duality pairing over ω as

(uk, Φ̂
∗
ij)ω =

([
u1
k

u2
k

]
,

[
ϕ̂∗ij
ψ∗ij

])
ω

=

∫
ω

[u1
k · ϕ̂

∗
ij + u2

kψ
∗
ij ]dω

= (u1
k, ϕ̂

∗
i1)L̂q(ω),L̂q′ (ω) + (u2

k, ψ
∗
i1)Lq(ω),Lq′ (ω) (4.8)

=

∫
ω


(u1
k)(1)

(u1
k)(2)

...
(u1
k)(d−1)

u2
k

 ·

ϕ
∗(1)
ij

ϕ
∗(2)
ij
...

ϕ
∗(d−1)
ij

ψ∗ij

 dω. (4.9)

The controllability Kalman/Hautus algebraic condition of the finite-dimensional
projected wN -equation in (3.6a) is given by

rank Ui = full = `i, i = 1, . . . ,M. (4.10)

It is proved in Appendix B that the UCP of Theorem 1.4 =⇒ rank condition (4.10).
As a consequence, we obtain the following most critical result counterpart of [63,
Theorem 6.1].

Theorem 4.1. Let the operator Aq have N possibly repeated unstable eigenvalues
{λj}Nj=1 as in (1.33) of which M are distinct. Let `i denote the geometric multi-
plicity of λi. Set K = sup{`i; i = 1, · · · ,M}. Then, one may construct a feedback
operator F

F (w) =

Pq(m(∑K
k=1(wN ,pk)ωu1

k

))
m
(∑K

k=1(wN ,pk)ωu
2
k

)
 (4.11)

with vectors [u1
k, u

2
k] ∈ (Ŵq

σ)uN ⊂ L̂qσ(Ω)×Lq(Ω), (so that u1
k is (d−1) dimensional,

see (4.7c)) and pk ∈ ((Wq
σ)uN )∗ ⊂ Lq

′

σ (Ω)× Lq′(Ω) such that the w-problem (1.28)
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can be rewritten in feedback form on Wq
σ(Ω) or Vq,p(Ω) as follows (wN = PNw):

dw

dt
=

d

dt

[
wf

wh

]
= Aqw +F (w) = Aqw +

Pq(m(∑K
k=1(wN ,pk)ωu1

k

))
m
(∑K

k=1(wN ,pk)ωu
2
k

)
 = AF,qw;

w(0) = w0 (4.12)

with D(AF,q) = D(Aq) where the operator AF,q in (2.2) or (4.12) has the following
properties:

(i) It is the generator of a s.c. analytic semigroup eAF,qt in the space Wq
σ(Ω) =

Lqσ(Ω)× Lq(Ω) as well as in the space Vq,p(Ω) = B̃
2−2/p
q,p (Ω)× Lq(Ω).

(ii) It is uniformly (exponentially) stable in either of these spaces∥∥eAF,qtw0

∥∥
(·) ≤ Cγ0e

−γ0t ‖w0‖(·)
 (4.13)

where (·) denotes either Lqσ(Ω) × Lq(Ω) ≡ Wq
σ(Ω) or else B̃2−2/p

q,p (Ω) ×
Lq(Ω) ≡ Vq,p(Ω).

In (4.13), γ0 is any positive number such that Re λN+1 < −γ0 < 0.
(iii) Finally, AF,q has maximal Lp-regularity up to T =∞ on either of these spaces:

AF,q ∈MReg(Lp(0,∞; · )) where (·) denotes
{

(4.14)

either Lqσ(Ω)×Lq(Ω) ≡Wq
σ(Ω) or else B̃2−2/p

q,p (Ω)×Lq(Ω) ≡ Vq,p(Ω)

The PDE version of the closed-loop abstract model (2.2) or (4.12), is (refer to
the open-loop (1.29))

d

dt
wf − ν∆wf + Le(wf )− γwhed +∇χ = m

( K∑
k=1

(wN ,pk)ωu1
k

)
in Q

(4.15a)

d

dt
wh − κ∆wh + ye · ∇wh + wf · ∇wh + wf · ∇θe = m

( K∑
k=1

(wN ,pk)ωu
2
k

)
in Q

(4.15b)


div wf = 0 in Q (4.15c)

wf ≡ 0, wh ≡ 0 on Σ (4.15d)

wf (0, ·) = wf,0; wh(0, ·) = wh,0 on Ω. (4.15e)

What property (iii) in Theorem 4.1 means explicitly is singled out in the next result.
This result will be critically used in the subsequent non linear analysis of Section 5
and 6.

Theorem 4.2. With respect to the operator AF,q in (2.2) or (4.12) of Theorem
4.1, recall

Wq
σ(Ω) ≡ Lqσ(Ω)×Lq(Ω), Vq,p(Ω) ≡ B̃2−2/p

q,p (Ω)×Lq(Ω), 1 < p <
2q

2q − 1
. (4.16)

Then, the following properties hold true.
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(i)

F −→
∫ t

0

eAF,q(t−τ)F(τ)dτ : continuous

Lp(0,∞; Wq
σ(Ω)) −→ Lp(0,∞;D(AF,q) = D(Aq)×D(Bq)) (4.17)

whereby then automatically from (4.12)

Lp(0,∞; Wq
σ(Ω)) −→W 1,p(0,∞; Wq

σ(Ω)) (4.18)

and ultimately, on the space of maximal regularity for w = {wf , wh} w.r.t.
the operator AF,q, see (2.8)

Lp(0,∞; Wq
σ(Ω)) −→ X∞p,q,σ ×X∞p,q ≡ Lp(0,∞;D(AF,q)) ∩W 1,p(0,∞; Wq

σ(Ω)).
(4.19)

(ii) The s.c. analytic uniformly stable semigroup eAF,qt on the space Vq,p(Ω) ≡
B̃

2−2/p
q,p (Ω)× Lq(Ω) satisfies

eAF,qt : continuous B̃2−2/p
q,p (Ω)× Lq(Ω) ≡ Vq,p(Ω) −→

X∞p,q,σ ×X∞p,q ≡ Lp(0,∞;D(AF,q)) ∩W 1,p(0,∞; Wq
σ(Ω)) (4.20)

or equivalently, recalling D(AF,q) = D(Aq) = D(Aq) × D(Bq) in (1.27), or
(2.9),(2.10):

−→ X∞p,q,σ ×X∞p,q (4.21)

≡ Lp(0,∞, [W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)]×

[W 2,q(Ω) ∩W 1,q
0 (Ω)]) ∩W 1,p(0,∞; Wq

σ(Ω)) ↪→ C([0,∞]; Vq,p(Ω)). (4.22)

see (2.11)-(2.13). Equivalently, in summary, with reference to the w-equation

(2.2), w = {wf , wh} for the following estimates hold true for 1 < p <
2q

2q − 1
:

C0 ‖w‖C(0,∞;Vq,p(Ω)) ≤ ‖w‖X∞p,q,σ×X∞p,q + ‖π‖Y∞p,q
≤ ‖wt‖Lp(0,∞;Wq

σ(Ω)) + ‖AF,qw‖Lp(0,∞;Wq
σ(Ω)) + ‖π‖Y∞p,q

≤ C1

{
‖F‖Lp(0,∞;Wq

σ(Ω)) + ‖w0‖Vq,p(Ω)

}
. (4.23)

where Y∞p,q is defined in (A.13) of Appendix A.

For the first inequality in (4.23) we have recalled the embedding, called trace
theorem [2, Theorem 4.10.2, p. 180, BUC for T = ∞], [72], as in [63, Eq. (1.30)].
See also (5.23) below.

5. Proof of Theorem 2.2. Well-posedness on X∞p,q,σ×X∞p,q of the non-linear[
z
h

]
-dynamics in feedback form.

In this section we return to the translated non-linear

[
z
h

]
-dynamics (1.25) or (1.26)

and apply to it the feedback control pair {u, v}Pqm(u)

m(v)

 =


Pq

(
m

(∑K
k=1

(
PN

[
z
h

]
,pk

)
ω

u1
k

))
m

(∑K
k=1

(
PN

[
z
h

]
,pk

)
ω

u2
k

)
 = F

([
z
h

])
(5.1)
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that is, of the same structure as the feedback F in (4.11) identified on the RHS

of the linearized w =

[
wf

wh

]
-dynamics (4.12). This is the feedback operator which

produced the s.c. analytic, uniformly stable semigroup eAF,qt on Wq
σ(Ω) = Lqσ(Ω)×

Lq(Ω) or on Vq,p(Ω) ≡ B̃
2−2/p
q,p × Lq(Ω), (Theorem 4.1) possessing Lp-maximal

regularity on these spaces up to T = ∞; see (2.4) or (4.14). Thus, returning
to (1.25) or (1.26), in this section we consider the following feedback nonlinear
problem, see (2.5)

d

dt

[
z

h

]
= AF,q

[
z

h

]
−

[
Nq 0

0 Mq[z]

][
z

h

]
; AF,q =

[
Aq −Cγ
−Cθe Bq

]
+ F = Aq + F

(5.2)
specifically

dz

dt
−Aqz + Cγh+Nqz = Pq

(
m

( K∑
k=1

(
PN

[
z
h

]
,pk

)
ω

u1
k

))
(5.3a)

 dh

dt
− Bqh+ Cθez +Mq[z]h = m

( K∑
k=1

(
PN

[
z
h

]
,pk

)
ω

u2
k

)
. (5.3b)

The variation of parameter formula for Eq (5.2) is[
z
h

]
(t) = eAF,qt

[
z0

h0

]
−
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)
Mq[z]h(τ)

]
dτ. (5.4)

We already know from (2.3) or (4.13) that for {z0, h0} ∈ B̃2−2/p
q,p (Ω) × Lq(Ω) ≡

Vq,p(Ω), 1 < p <
2q

2q − 1
, we have: there is Mγ0 > 0 such that

∥∥∥∥eAF,qt [z0

h0

]∥∥∥∥
Vq,p(Ω)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

, t ≥ 0 (5.5)

with Mγ0 possibly depending on p, q. Maximal Lp-regularity properties correspond-
ing to the solution operator formula (5.4) were established in Theorem 4.2. Accord-
ingly, for

b0 ≡ {z0, h0} ∈ B̃2−2/p
q,p (Ω)× Lq(Ω) ≡ Vq,p(Ω) (5.6)

f ≡ {f1, f2} ∈ X∞p,q,σ ×X∞p,q ≡ Lp(0,∞,D(AF,q)) ∩W 1,p(0,∞; Wq
σ(Ω))

(5.7)

D(AF,q) = D(Aq) = D(Aq)×D(Bq) =

[W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)]× [W 2,q(Ω) ∩W 1,q

0 (Ω)] (5.8)

Wq
σ(Ω) = Lqσ(Ω)× Lq(Ω)

X∞p,q,σ ≡ Lp(0,∞; W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)) ∩W 1,p(0,∞; Lqσ(Ω)); (5.9a)

X∞p,q ≡ Lp(0,∞;W 2,q(Ω) ∩W 1,q
0 (Ω)) ∩W 1,q(0,∞;Lq(Ω)), (5.9b)
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as in (2.8)-(2.10) or (4.21), we define the operator

F(b0, f) ≡ eAF,qtb0 −
∫ t

0

eAF,q(t−τ)

[
Nqf1(τ)

Mq[f1]f2(τ)

]
dτ. (5.10)

The main result of this section is Theorem 2.2 restated as

Theorem 5.1. Let d = 2, 3, q > d, 1 < p <
2q

2q − 1
. There exists a positive

constant r1 > 0 (identified in the proof below in (5.31)) such that if

‖b0‖Vq,p(Ω) = ‖{z0, h0}‖
B̃

2−2/p
q,p (Ω)×Lq(Ω)

< r1, (5.11)

then the operator F in (5.10) has a unique fixed point non-linear semigroup solution
in X∞p,q,σ ×X∞p,q, see (2.8)-(2.10) or (4.19)–(4.21) or (5.9a)–(5.9b)

F
([

z0

h0

]
,

[
z
h

])
=

[
z
h

]
, or

[
z
h

]
(t) = eAF,qt

[
z0

h0

]
−
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)
Mq[z]h(τ)

]
dτ,

(5.12)
which therefore is the unique solution of problem (5.2) = (5.3) in X∞p,q,σ × X∞p,q
defined in (2.8)-(2.10) or (4.19)–(4.21) or (5.9a)–(5.9b).

The proof of Theorem 2.2 = Theorem 5.1 is accomplished in two steps.

Step 1.

Theorem 5.2. Let d = 2, 3, q > d and 1 < p <
2q

2q − 1
. There exists a positive

constant r1 > 0 (identified in the proof below (5.31)) and a subsequent constant
r > 0 (identified in the proof below in (5.29)) depending on r1 > 0 and a constant
C in (5.28), such that with ‖b0‖Vq,p(Ω) < r1 as in (5.11), the operator F(b0, f) in

(5.10) maps a ball B(0, r) in X∞p,q,σ ×X∞p,q into itself.

Theorem 5.1 will follow then from Theorem 5.2 after establishing that

Step 2.

Theorem 5.3. Let d = 2, 3, q > d and 1 < p <
2q

2q − 1
. There exists a positive

constant r1 > 0 such that if ‖b0‖Vq,p(Ω) < r1 as in (5.11), there exists a constant

0 < ρ0 < 1 (identified in (5.56)), such that the operator F(b0, f) in (5.10) defines
a contraction in the ball B(0, ρ0) of X∞p,q,σ ×X∞p,q.

The Banach contraction principle then establishes Theorem 5.1, once we prove
Theorems 5.2 and 5.3. These are proved below.

Proof of Theorem 5.2. Step 1. We start from the definition (5.10) of F(b0, f) and
invoke the maximal regularity properties (4.20) for eAF,qt and (4.19) for the integral
term in (5.10). We then obtain from (5.10)

‖F(b0, f)‖X∞p,q,σ×X∞p,q ≤
∥∥eAF,qtb0

∥∥
X∞p,q,σ×X∞p,q

+∥∥∥∥∥
∫ t

0

eAF,q(t−τ)

[
Nqf1(τ)

Mq[f1]f2(τ)

]
dτ

∥∥∥∥∥
X∞p,q,σ×X∞p,q

(5.13)

≤ C
[
‖b0‖Vq,p(Ω) + ‖Nqf1‖

Lp
(

0,∞;Lqσ(Ω)
) + ‖Mq[f1]f2‖

Lp
(

0,∞;Lq(Ω)
) ]. (5.14)



4098 IRENA LASIECKA, BUDDHIKA PRIYASAD AND ROBERTO TRIGGIANI

Step 2. Regarding the term Nqf1 we can invoke [63, Eq (8.19)] to obtain

‖Nqf1‖
Lp
(

0,∞;Lqσ(Ω)
) ≤ C ‖f1‖2X∞p,q,σ , f1 ∈ X∞p,q,σ. (5.15)

Regarding the termMq[f1]f2, we can trace the proof in [63, from (8.10) −→ (8.18)]
(which yielded estimate (5.14)). For the sake of clarity, we shall reproduce the
computations in the present case with Mq[f1]f2 = f1 · ∇f2, see (1.22), mutatis
mutandis. We shall obtain

‖Mq[f1]f2‖
Lp
(

0,∞;Lq(Ω)
) ≤ C ‖f1‖X∞p,q,σ ‖f2‖X∞p,q , f1 ∈ X∞p,q,σ, f2 ∈ X∞p,q. (5.16)

In fact, let us compute

‖Mq[f1]f2‖p
Lp
(

0,∞;Lq(Ω)
) ≤ ∫ ∞

0

‖f1 · ∇f2‖pLq(Ω) dt (5.17)

≤
∫ ∞

0

{∫
Ω

|f1(t, x)|q |∇f2(t, x)|q dΩ

}p/q
dt (5.18)

≤
∫ ∞

0

{[
sup

Ω
|∇f2(t, x)|q

]1/q[ ∫
Ω

|f1(t, x)|q dΩ

]1/q}p
dt

(5.19)

≤
∫ ∞

0

‖∇f2(t, ·)‖pL∞(Ω) ‖f1(t, ·)‖pLqσ(Ω) dt (5.20)

≤ sup
0≤t≤∞

‖f1(t, ·)‖pLqσ(Ω)

∫ ∞
0

‖∇f2(t, ·)‖pL∞(Ω) dt (5.21)

= ‖f1‖pL∞(0,∞;Lqσ(Ω)) ‖∇f2‖pLp(0,∞;L∞(Ω)) . (5.22)

See also [63, Eq (8.14)].
Step 3. The following embeddings hold true (see the stronger Eq (2.11)):

(i) [40, Proposition 4.3, p 1406 with µ = 0, s = ∞, r = q] so that the required
formula reduces to 1 ≥ 1/p, as desired

f1 ∈ X∞p,q,σ ↪→ f1 ∈ L∞(0,∞; Lqσ(Ω)) (5.23a)

so that, ‖f1‖L∞(0,∞;Lqσ(Ω)) ≤ C ‖f1‖X∞p,q,σ ; (5.23b)

(ii) [49, Theorem 2.4.4, p 74 requiring C1-boundary]

W 1,q(Ω) ⊂ L∞(Ω) for q > dim Ω = d, d = 2, 3, (5.24)

so that, with p > 1, q > d:

‖∇f2‖pLp(0,∞;L∞(Ω)) ≤ C ‖∇f2‖pLp(0,∞;W1,q(Ω)) ≤ C ‖f2‖pLp(0,∞;W 2,q(Ω)) (5.25)

≤ C ‖f2‖pX∞p,q . (5.26)

In going from (5.25) to (5.26) we have recalled the definition of f2 ∈ X∞p,q in (5.9b)
or (2.10), as f2 was taken at the outset in D(Bq) ⊂ Lq(Ω). Then the sought-after
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final estimate (5.16) of the nonlinear term Mq[f1]f2 is obtained from substituting
(5.23b) and (5.26) into the RHS of (5.22).

Step 4. Substituting estimates (5.15) and (5.16) on the RHS of (5.14), we finally
obtain

‖F(b0, f‖X∞p,q,σ×X∞p,q ≤ C
{
‖b0‖Vq,p(Ω) + ‖f1‖X∞p,q,σ

(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q

)}
.

(5.27)
See [63, Eqt (8.20)].

Step 5. We now impose restrictions on the data on the RHS of (5.27): b0 is in a

ball of radius r1 > 0 in Vq,p(Ω) = B̃2−2/p
q,p (Ω)×Lq(Ω) and f = {f1, f2} lies in a ball

of radius r > 0 in X∞p,q,σ ×X∞p,q. We further demand that the final result F(b0, f)
shall lie in a ball of radius r > 0 in X∞p,q,σ ×X∞p,q. Thus, we obtain from (5.27)

‖F(b0, f)‖X∞p,q,σ×X∞p,q ≤ C
{
‖b0‖Vq,p(Ω) + ‖f1‖X∞p,q,σ

(
‖f1‖X∞p,q,σ + ‖f2‖X∞p,q

)}
≤ C(r1 + r · r) ≤ r. (5.28)

This implies

Cr2 − r + Cr1 ≤ 0 or
1−
√

1− 4C2r1

2C
≤ r ≤ 1 +

√
1− 4C2r1

2C
(5.29)

whereby {
range of values of r

}
−→ interval

[
0,

1

C

]
, as r1 ↘ 0, (5.30)

a constraint which is guaranteed by taking

r1 ≤
1

4C2
, C being the constant in (5.28)(w.l.o.g C > 1/4). (5.31)

We have thus established that by taking r1 as in (5.31) and subsequently r as in
(5.29), then the map

F(b0, f) takes:

{
ball in Vq,p(Ω)

of radius r1

}
×
{

ball in X∞p,q,σ ×X∞p,q
of radius r

}
into{

ball in X∞p,q,σ ×X∞p,q
of radius r

}
, d < q, 1 < p <

2q

2q − 1
. (5.32)

This establishes Theorem 5.2.

Proof of Theorem 5.3. Step 1. For f = {f1, f2},g = {g1, g2} both in the ball of
X∞p,q,σ × X∞p,q of radius r obtained in the proof of Theorem 5.2, we estimate from
(5.10):

‖F(b0, f)−F(b0,g)‖X∞p,q,σ×X∞p,q =∥∥∥∥∥
∫ t

0

eAF,q(t−τ)

[
Nqf1(τ)−Nqg1(τ)

Mq[f1]f2(τ)−Mq[g1]g2(τ)

]
dτ

∥∥∥∥∥
X∞p,q,σ×X∞p,q

≤ m̃
[
‖Nqf1 −Nqg1‖

Lp
(

0,∞;Lqσ(Ω)
) + ‖Mq[f1]f2 −Mq[g1]g2‖Lp(0,∞;Lq(Ω))

]
(5.33)
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after invoking the maximal regularity property (4.19)–(4.21).

Step 2. As to the first term or the RHS of (5.33), we can invoke [63, Eq (8.41)]
and obtain

‖Nqf1 −Nqg1‖
Lp
(

0,∞;Lqσ(Ω)
) ≤ 2

1/pC
1/p ‖f1 − g1‖X∞p,q,σ

(
‖f1‖X∞p,q,σ + ‖g1‖X∞p,q,σ

)
.

(5.34)
Regarding the second term on the RHS of (5.33) involving Mq, we can track the
proof of [63, from (8.28) to (8.41)] (which yielded estimate (5.34)) mutatis mutandis.
For the sake of clarity, we shall reproduce the computations in the present case,
recalling from (1.22) that Mq[f1]f2 = f1 · ∇f2,Mq[g1]g2 = g1 · ∇g2. We shall
obtain

‖Mq[f1]f2 −Mq[g1]g2‖p
Lp
(

0,∞;Lq(Ω)
) ≤ C{ ‖f1 − g1‖pX∞p,q,σ ‖f2‖pX∞p,q

+ ‖g1‖pX∞p,q,σ ‖f2 − g2‖pX∞p,q
}
. (5.35)

In fact, adding and subtracting

Mq[f1]f2 −Mq[g1]g2 = f1 · ∇f2 − g1 · ∇g2

= f1 · ∇f2 − g1 · ∇f2 + g1 · ∇f2 − g1 · ∇g2

= (f1 − g1) · ∇f2 + g1 · ∇(f2 − g2) = A+B. (5.36)

Thus, using (∗) : |A+B|p ≤ 2p
[
|A|p + |B|p

]
[81, p. 12], we estimate

‖Mq[f1]f2 −Mq[g1]g2‖p
Lp
(

0,∞;Lq(Ω)
) =

∫ ∞
0

{[∫
Ω

|f1 · ∇f2 − g1 · ∇g2|q dΩ

]1/q}p
dt

(5.37)

(by (5.36)) =

∫ ∞
0

[ ∫
Ω

|A+B|q dΩ

]p/q
dt (5.38)

≤ 2p
∫ ∞

0

{∫
Ω

[
|A|q + |B|q

]
dΩ

}p/q
dt (5.39)

= 2p
∫ ∞

0

{[∫
Ω

|A|q dΩ +

∫
Ω

|B|q dΩ
]1/q}p

dt

(5.40)

= 2p
∫ ∞

0

{[
‖A‖qLq(Ω) + ‖B‖qLq(Ω)

]1/q}p
dt (5.41)

(by (∗) with p→ 1

q
) ≤ 2p · 2

p/q

∫ ∞
0

{
‖A‖Lq(Ω) + ‖B‖Lq(Ω)

}p
dt (5.42)

(by (∗)) ≤ 2p+p+
p/q

∫ ∞
0

[
‖A‖pLq(Ω) + ‖B‖pLq(Ω)

]
dt (5.43)

= 2p+p+
p/q

∫ ∞
0

[
‖(f1 − g1) · ∇f2‖pLq(Ω)

+ ‖g1 · ∇(f2 − g2)‖pLq(Ω)

]
dt (5.44)

≤ 2p+p+
p/q

∫ ∞
0

{
‖f1 − g1‖pLqσ(Ω) ‖∇f2‖pLq(Ω)

+ ‖g1‖pLqσ(Ω) ‖∇(f2 − g2)‖pLq(Ω)

}
dt, (5.45)
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recalling the definitions of A and B in (5.36) in passing from (5.43) to (5.44). [63,
This is the counterpart Eq (8.36)]. Next we proceed by majorizing the Lq(Ω)-norm
for ∇f2 and ∇(f2 − g2) by the L∞(Ω)-norm. We obtain

‖Mq[f1]f2 −Mq[g1]g2‖p
Lp
(

0,∞;Lq(Ω)
) ≤ RHS of (5.45)

≤ c2p+p+
p/q

{
sup

0≤t≤∞
‖f1 − g1‖pLqσ(Ω)

∫ ∞
0

‖∇f2‖pL∞(Ω)

+ sup
0≤t≤∞

‖g1‖pLqσ(Ω)

∫ ∞
0

‖∇(f2 − g2)‖pL∞(Ω) dt

}
(5.46)

≤ c2p+p+
p/q
{
‖f1 − g1‖pL∞(0,∞;Lqσ(Ω)) ‖∇f2‖pLp(0,∞;L∞(Ω))

+ ‖g1‖pL∞(0,∞;Lqσ(Ω)) ‖∇(f2 − g2)‖pLp(0,∞;L∞(Ω))

}
(5.47)

by (5.23b) and (5.26)

≤ C
{
‖f1 − g1‖pX∞p,q,σ ‖f2‖pX∞p,q + ‖g1‖pX∞p,q,σ ‖f2 − g2‖pX∞p,q

}
, (5.48)

counterpart of [63, Eq (8.39)].

Step 3. We substitute estimate (5.34) and estimate (5.48) on the RHS of (5.33)
and obtain via (∗)

‖F(b0, f)−F(b0,g)‖pX∞p,q,σ×X∞p,q ≤ 2pm̃p
{
‖Nqf1 −Nqg1‖p

Lp
(

0,∞;Lq(Ω)
)

+ ‖Mq[f1]f2 −Mq[g1]g2‖pLp(0,∞;Lq(Ω))

}
(5.49)

≤ Cpm̃p
{
‖f1 − g1‖pX∞p,q,σ

(
‖f1‖X∞p,q,σ + ‖g1‖X∞p,q,σ

)p
+ ‖f1 − g1‖pX∞p,q,σ ‖f2‖pX∞p,q + ‖g1‖pX∞p,q,σ ‖f2 − g2‖pX∞p,q

}
. (5.50)

This is the counterpart of [63, Eq (8.42)].

Step 4. Next pick the points f = {f1, f2} and g = {g1, g2} in a ball of X∞p,q,σ×X∞p,q
of radius R:

‖f‖X∞p,q,σ×X∞p,q = ‖f1‖X∞p,q,σ + ‖f2‖X∞p,q < R (5.51)

‖g‖X∞p,q,σ×X∞p,q = ‖g1‖X∞p,q,σ + ‖g2‖X∞p,q < R. (5.52)

Then (5.51),(5.52) used (5.50) implies

‖F(b0, f)−F(b0,g)‖pX∞p,q,σ×X∞p,q ≤ Cp
{
‖f1 − g1‖pX∞p,q,σ

[
(2R)p +Rp

]
+ ‖f2 − g2‖pX∞p,q R

p
}

(5.53)

≤ Cp
{
‖f1 − g1‖pX∞p,q,σ

[
(2p + 1)Rp

]
+ ‖f2 − g2‖pX∞p,q R

p
}

(
Kp = Cp(2

p + 1)
)
≤ KpR

p
{
‖f1 − g1‖pX∞p,q,σ + ‖f2 − g2‖pX∞p,q

}
[a > 0, b > 0, ap + bp ≤ (a+ b)p] ≤ KpR

p
{
‖f1 − g1‖X∞p,q,σ + ‖f2 − g2‖X∞p,q

}p
(5.54)
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using Kp = Cp(2
p + 1) and ap + bp ≤ (a+ b)p for a > 0, b > 0. Finally,

‖F(b0, f)−F(b0,g)‖X∞p,q,σ×X∞p,q ≤ K
1/p
p R

{
‖f1 − g1‖X∞p,q,σ + ‖f2 − g2‖X∞p,q

}
= ρ0 ‖f − g‖X∞p,q,σ×X∞p,q (5.55)

and F(b0, f) is a contraction on the space X∞p,q,σ ×X∞p,q as soon as

ρ0 = K
1/p
p R < 1 or R <

1

K
1/p
p

. (5.56)

In this case, the map F(b0, f) defined in (5.10) has a fixed point

[
z
h

]
in X∞p,q,σ×X∞p,q:

F
(

b0,

[
z
h

])
=

[
z
h

]
, or

[
z
h

]
(t) = eAF,qt

[
z0

h0

]
−
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)

Mq[z]h(τ)

]
dτ,

(5.57)

and such point

[
z
h

]
is the unique solution of the translated non-linear system (5.2),

or (5.3), with finite dimensional control

[
u

v

]
=


Pq

(
m

(∑K
k=1

(
PN

[
z
h

]
,pk

)
ω

u1
k

))
m

(∑K
k=1

(
PN

[
z
h

]
,pk

)
ω

u2
k

)


in feedback form, as described by Eq (5.2). Theorem 5.3 and hence Theorem 5.1
are proved.

Remark 5.1. As [u1
k, u

2
k] ∈ (Ŵq

σ)uN ⊂ L̂qσ(Ω) × Lq(Ω), we have that the feedback
control acting on the fluid variable u is of reduced dimension (d − 1), see (4.7c).

6. Proof of Theorem 2.3: Local exponential decay of the non-linear [z, h]
translated dynamics (5.2) = (5.3) with finite dimensional localized feed-
back controls and (d− 1) dimensional u1

k.

In this section we return to the feedback problem (5.2) = (5.3), rewritten equiva-
lently as in (5.4)[

z
h

]
(t) = eAF,qt

[
z0

h0

]
−
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)

Mq[z]h(τ)

]
dτ, (6.1)

For b0 = [z0, h0] in a small ball of Vq,p(Ω) = B̃2−2/p
q,p (Ω) × Lq(Ω), Theorem 5.1(=

Theorem 2.2) provides a unique solution {z, h} in a small ball of X∞p,q,σ ×X∞p,q. We
recall from (4.13)∥∥∥∥eAF,qt [z0

h0

]∥∥∥∥
Vq,p(Ω)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

, t ≥ 0 (6.2)

Vq,p(Ω) = B̃2−2/p
q,p (Ω)× Lq(Ω). Our goal is to show that for [z0, h0] in a small ball

of Vq,p(Ω), problem (6.1) satisfies the exponential decay∥∥∥∥[zh
]

(t)

∥∥∥∥
Vq,p(Ω)

≤ Cae−at
∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

, t ≥ 0, for some constants a > 0, C = Ca ≥ 1.

(6.3)
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Step 1. Starting from (6.1) and using the decay (6.2), we estimate∥∥∥∥[z(t)
h(t)

]∥∥∥∥
Vq,p(Ω)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+

sup
0≤t≤∞

∥∥∥∥∥
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)

Mq[z]h(τ)

]
dτ

∥∥∥∥∥
Vq,p(Ω)

(6.4)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+

C1

∥∥∥∥∥
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)

Mq[z]h(τ)

]
dτ

∥∥∥∥∥
X∞p,q,σ×X∞p,q

(6.5)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ C2

[
‖Nqz‖

Lp
(

0,∞;Lqσ(Ω)
)+

‖Mq[z]h‖
Lp
(

0,∞;Lq(Ω)
) ] (6.6)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ C3

[
‖z‖2X∞p,q,σ + ‖z‖X∞p,q,σ ‖h‖X∞p,q

]
.

(6.7)

In going from (6.4) to (6.5) we have recalled the embedding X∞p,q,σ × X∞p,q ↪→
L∞
(
0,∞; B̃2−2/p

q,p (Ω) × Lq(Ω)
)

from (2.13) or (4.22). Next, in going from (6.5)
to (6.6) we have used the maximal regularity property (4.17)–(4.20). Finally, to go
from (6.6) to (6.7), we have invoked (5.15) for Nqz and (5.16) for Mq[z]h. Thus,
the conclusion of Step 1 is∥∥∥∥[z(t)

h(t)

]∥∥∥∥
Vq,p(Ω)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ C3 ‖z‖X∞p,q,σ

[
‖z‖X∞p,q,σ + ‖h‖X∞p,q

]
(6.8)

= Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ C3 ‖z‖X∞p,q,σ ‖[z, h]‖X∞p,q,σ×X∞p,q .

(6.9)

Step 2. We now return to (6.1) and take the X∞p,q,σ ×X∞p,q norm across:∥∥∥∥[zh
]

(t)

∥∥∥∥
X∞p,q,σ×X∞p,q

≤
∥∥∥∥eAF,qt [z0

h0

]∥∥∥∥
X∞p,q,σ×X∞p,q

+∥∥∥∥∥
∫ t

0

eAF,q(t−τ)

[
Nqz(τ)

Mq[z]h(τ)

]
dτ

∥∥∥∥∥
X∞p,q,σ×X∞p,q

(6.10)

(by (4.20)) ≤M1

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ C3 ‖z‖X∞p,q,σ ‖[z, h]‖X∞p,q,σ×X∞p,q (6.11)

by invoking (4.20) on the first semigroup term in (6.10) and the estimate from (6.5)
to (6.9) on the second integral term in (6.10). Thus (6.11) is established and implies∥∥∥∥[zh

]∥∥∥∥
X∞p,q,σ×X∞p,q

[
1− C3 ‖z‖X∞p,q,σ

]
≤M1

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

. (6.12)
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[This is the counterpart of [63, Eq (9.7)]].

Step 3. The well-posedness Theorem 5.1 says that If

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

≤ r1

for r1 sufficiently small

 =⇒


The solution [z, h] satisfies∥∥∥∥[zh

]∥∥∥∥
X∞p,q,σ×X∞p,q

≤ r

 (6.13)

where the constant r satisfies the constraint (5.29) in terms of the constant r1 and
some constant C in (5.27) or (5.28) or (5.15) or (5.16). We seek to guarantee that
we have

‖z‖X∞p,q,σ ≤
1

2C3
<

1

2C
, hence

1

2
≤
[
1− C3 ‖z‖X∞p,q,σ

]
, (6.14)

where we can always take the constant C3 in (6.11) greater than the constant C
in (5.29), (5.30), (5.31).Then (6.14) can be achieved by choosing r1 > 0 sufficiently
small. In fact, as r1 ↘ 0. Eq. (5.30) shows that the interval rmin ≤ r ≤ rmax of
corresponding values of r tends to the interval [0, 1

C ]. Thus, (6.14) can be achieved

as rmin ↘ 0: 0 < rmin < r < 1
2C . Next (6.14) implies that (6.12) becomes∥∥∥∥[zh

]∥∥∥∥
X∞p,q,σ×X∞p,q

≤ 2M1

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

≤ 2M1r1. (6.15)

by (6.13). Substituting (6.15) in estimate (6.9) then yields∥∥∥∥[z(t)
h(t)

]∥∥∥∥
Vq,p(Ω)

≤Mγ0e
−γ0t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

+ 2M1C3 ‖z‖X∞p,q,σ

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

≤ M̂
[
e−γ0t + 4M̂1C3r1

] ∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

(6.16)

again by (6.15) with M̂ = max{Mγ0 ,M1}. This is the counterpart of [63, Eq (9.16)].

Step 4. We now take T sufficiently large and r1 > 0 sufficiently small so that

β = M̂e−γ0T + 4M̂C3r1 < 1. (6.17)

Then (6.16) implies ∥∥∥∥[z(T )
h(T )

]∥∥∥∥
Vq,p(Ω)

≤ β
∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

(6.18)

Vq,p(Ω) = B̃2−2/p
q,p (Ω)× Lq(Ω), and hence∥∥∥∥[z(nT )

h(nT )

]∥∥∥∥
Vq,p(Ω)

≤ β
∥∥∥∥[z((n− 1)T )
h((n− 1)T )

]∥∥∥∥
Vq,p(Ω)

≤ βn
∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

. (6.19)

Since β < 1, the semigroup property of the evolution implies [6] that there are
constants Mγ̃ ≥ 1, γ̃ > 0 such that∥∥∥∥[z(t)

h(t)

]∥∥∥∥
Vq,p(Ω)

≤Mγ̃e
−γ̃t

∥∥∥∥[z0

h0

]∥∥∥∥
Vq,p(Ω)

(6.20)

with ‖[z0, h0]‖Vq,p(Ω) ≤ r1 = small. This proves (2.14), i.e Theorem 2.3

Remark 6.1. The above computations - (6.17) through (6.19) - can be used to
support qualitatively the intuitive expectation that “the larger the decay rate γ0

in (2.3) =(4.13)= (6.2) of the linearized feedback w-dynamics (2.2), the larger the
decay rate γ̃ in (6.20) of the nonlinear feedback {z, h}-dynamics (2.5) = (2.6) or
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(5.2),(5.3); hence the larger the rate γ̃ in (2.19) of the original {y, θ}-dynamics in
(2.17) = (2.18)”.

The following considerations are somewhat qualitative. Let S(t) denote the non-

linear semigroup in the space Vq,p(Ω) ≡ B̃
2−2/p
q,p (Ω) × Lq(Ω), with infinitesimal

generator
[
A
F,q
− Nq

]
describing the feedback {z, h}-dynamics (2.5) = (2.6), or

(5.2),(5.3) as guaranteed by the well posedness Theorem 2.2 = Theorem 5.1. Thus,[
z(t)
h(t)

]
= S(t)

[
z0

h0

]
on Vq,p(Ω). By (6.17), we can rewrite (6.18) as:

‖S(T )‖
L
(
Vq,p(Ω)

) ≤ β < 1. (6.21)

It follows from [6, p 178] via the semigroup property that

− γ̃ is just below
lnβ

T
< 0. (6.22)

Pick r1 > 0 in (6.17) so small that 4M̂2C3r1 is negligible, so that β is just above

M̂e−γ0T , so lnβ is just above
[

ln M̂ − γ0T
]
, hence

lnβ

T
is just above

[
(−γ0) +

ln M̂

T

]
. (6.23)

Hence, by (6.22), (6.23),

γ̃ ∼ γ0 −
ln M̂

T
(6.24)

and the larger γ0, the larger is γ̃, as desired.

Appendix A. Some auxiliary results for the Stokes and Oseen operators:
analytic semigroup generation, maximal regularity, domains of fractional
powers.

In this section we collect some known results used in the paper. As a prerequisite of
the present Appendix A, we make reference to the paragraph Definition of Besov
spaces Bs

q,p on domains of class C1 as real interpolation of Sobolev spaces,
Eqts (1.8)-(1.11) and Remark 1.1.

(a) The Stokes and Oseen operators generate a strongly continuous an-
alytic semigroup on Lqσ(Ω), 1 < q <∞.

Theorem A.1. Let d ≥ 2, 1 < q <∞ and let Ω be a bounded domain in Rd of
class C3. Then

(i) the Stokes operator −Aq = Pq∆ in (1.14), repeated here as

−Aqψ = Pq∆ψ, ψ ∈ D(Aq) = W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω) (A.1)

generates a s.c. analytic semigroup e−Aqt on Lqσ(Ω). See [41] and the
review paper [45, Theorem 2.8.5 p 17].

(ii) The Oseen operator Aq in (1.18)

Aq = −(νAq +Ao,q), D(Aq) = D(Aq) ⊂ Lqσ(Ω) (A.2)

generates a s.c. analytic semigroup eAqt on Lqσ(Ω). This follows as Ao,q is

relatively bounded with respect to A
1/2
q , see (1.16): thus a standard theorem

on perturbation of an analytic semigroup generator applies [71, Corollary
2.4, p 81].
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(iii)

0 ∈ ρ(Aq) = the resolvent set of the Stokes operator Aq (A.3a)
{

A−1
q : Lqσ(Ω) −→ Lqσ(Ω) is compact (A.3b)

(iv) The s.c. analytic Stokes semigroup e−Aqt is uniformly stable on Lqσ(Ω):
there exist constants M ≥ 1, δ > 0 (possibly depending on q) such that∥∥e−Aqt∥∥L(Lqσ(Ω))

≤Me−δt, t > 0. (A.4)

(b) Domains of fractional powers, D(Aαq ), 0 < α < 1 of the Stokes operator
Aq on Lqσ(Ω), 1 < q <∞. We elaborate on (1.17a-b).

Theorem A.2. For the domains of fractional powers D(Aαq ), 0 < α < 1, of
the Stokes operator Aq in (A.1) = (1.14), the following complex interpolation
relation holds true [42] and [45, Theorem 2.8.5, p 18]

[D(Aq),L
q
σ(Ω)]1−α = D(Aαq ), 0 < α < 1, 1 < q <∞; (A.5)

in particular

[D(Aq),L
q
σ(Ω)] 1

2
= D(A

1/2
q ) ≡W1,q

0 (Ω) ∩ Lqσ(Ω). (A.6)

Thus, on the space D(A
1/2
q ), the norms

‖∇ · ‖Lq(Ω) and ‖ ‖Lq(Ω) (A.7)

are related via Poincaré inequality.

(c) The Stokes operator −Aq and the Oseen operator Aq, 1 < q < ∞ gen-
erate s.c. analytic semigroups on the Besov space, from (1.11)(

Lqσ(Ω),D(Aq)
)

1− 1
p
,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g|Γ = 0

}
if

1

q
< 2− 2

p
< 2;

(A.8a)(
Lqσ(Ω),D(Aq)

)
1− 1

p
,p

=
{

g ∈ B
2−2/p
q,p (Ω) : div g = 0, g · ν|Γ = 0

}
≡ B̃

2−2/p
q,p (Ω) (A.8b)

if 0 < 2− 2

p
<

1

q
.

Theorem A.1 states that the Stokes operator −Aq generates a s.c. analytic
semigroup on the space Lqσ(Ω), 1 < q <∞, hence on the space D(Aq) in (1.14)
= (A.1), with norm ‖ · ‖D(Aq)

= ‖Aq · ‖Lqσ(Ω) as 0 ∈ ρ(Aq). Then, one obtains

that the Stokes operator −Aq generates a s.c. analytic semigroup on the real
interpolation spaces in (A.8). Next, the Oseen operator Aq = −(νAq + Ao,q)

in (A.2) = (1.18) likewise generates a s.c. analytic semigroup eAqt on Lqσ(Ω)

since Ao,q is relatively bounded w.r.t. A
1/2
q , as Ao,qA

−1/2
q is bounded on Lqσ(Ω).

Moreover Aq generates a s.c. analytic semigroup on D(Aq) = D(Aq) (equivalent
norms). Hence Aq generates a s.c. analytic semigroup on the real interpolation
space of (A.8). Here below, however, we shall formally state the result only in

the case 2− 2/p <
1/q. i.e. 1 < p < 2q/2q−1, in the space B̃2−2/p

q,p (Ω), as this does
not contain B.C., Remark 1.1. The objective of the present paper is precisely
to obtain stabilization results on spaces that do not recognize B.C.

Theorem A.3. Let 1 < q <∞, 1 < p < 2q/2q−1
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(i) The Stokes operator −Aq in (A.1) = (1.14) generates a s.c. analytic

semigroup e−Aqt on the space B̃
2−2/p
q,p (Ω) defined in (1.11b) = (A.8b) which

moreover is uniformly stable, as in (A.4),∥∥e−Aqt∥∥
L
(
B̃

2−2/p
q,p (Ω)

) ≤Me−δt, t > 0. (A.9)

(ii) The Oseen operator Aq in (A.2)=(1.18) generates a s.c. analytic semi-

group eAqt on the space B̃
2−2/p
q,p (Ω) in (1.11b) = (A.8).

(d) Space of maximal Lp regularity on Lqσ(Ω) of the Stokes operator
−Aq, 1 < p < ∞, 1 < q < ∞ up to T = ∞. We return to the dynamic
Stokes problem in {ϕ(t, x), π(t, x)}

ϕt −∆ϕ+∇π = F in (0, T ]× Ω ≡ Q (A.10a)

div ϕ ≡ 0 in Q (A.10b)

 ϕ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (A.10c)

ϕ|t=0 = ϕ0 in Ω, (A.10d)

rewritten in abstract form, after applying the Helmholtz projection Pq to (A.10a)
and recalling Aq in (A.1) = (1.14) as

ϕ′ +Aqϕ = Fσ ≡ PqF, ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
. (A.11)

Next, we introduce the space of maximal regularity for {ϕ,ϕ′} as [45, p 2;
Theorem 2.8.5.iii, p 17], [40, p 1404-5], with T up to ∞:

XT
p,q,σ = Lp(0, T ;D(Aq)) ∩W 1,p(0, T ; Lqσ(Ω)) (A.12)

(recall (A.1)= (1.14) for D(Aq)) and the corresponding space for the pressure
as

Y Tp,q = Lp(0, T ; Ŵ 1,q(Ω)), Ŵ 1,q(Ω) = W 1,q(Ω)/R. (A.13)

The following embedding, also called trace theorem, holds true [2, Theorem
4.10.2, p 180, BUC for T =∞], [72].

XT
p,q,σ ⊂ XT

p,q ≡ Lp(0, T ; W2,q(Ω)) ∩W 1,p(0, T ; Lq(Ω))

↪→ C
(

[0, T ]; B2−2/p
q,p (Ω)

)
. (A.14)

For a function g such that div g ≡ 0, g|Γ = 0 we have g ∈ XT
p,q ⇐⇒ g ∈

XT
p,q,σ.
The solution of Eq (A.11) is

ϕ(t) = e−Aqtϕ0 +

∫ t

0

e−Aq(t−s)Fσ(τ)dτ. (A.15)

The following is the celebrated result on maximal regularity on Lqσ(Ω) of the
Stokes problem due originally to Solonnikov [80] reported in [45, Theorem
2.8.5.(iii) and Theorem 2.10.1 p24 for ϕ0 = 0], [76], [40, Proposition 4.1 , p
1405].

Theorem A.4. Let 1 < p, q < ∞, T ≤ ∞. With reference to problem (A.10)
= (A.11), assume

Fσ ∈ Lp(0, T ; Lqσ(Ω)), ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
. (A.16)
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Then there exists a unique solution ϕ ∈ XT
p,q,σ, π ∈ Y Tp,q to the dynamic Stokes

problem (A.10) or (A.11), continuously on the data: there exist constants C0, C1

independent of T,Fσ,ϕ0 such that via (A.14)

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q
≡ ‖ϕ′‖Lp(0,T ;Lqσ(Ω)) + ‖Aqϕ‖Lp(0,T ;Lqσ(Ω)) + ‖π‖Y Tp,q

≤ C1

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p
,p

}
.

(A.17)
In particular,

(i) With reference to the variation of parameters formula (A.15) of problem
(A.11) arising from the Stokes problem (A.10), we have recalling (A.12):
the map

Fσ −→
∫ t

0

e−Aq(t−τ)Fσ(τ)dτ : continuous (A.18)

Lp(0, T ; Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp(0, T ;D(Aq)) ∩W 1,p(0, T ; Lqσ(Ω)). (A.19)

(ii) The s.c. analytic semigroup e−Aqt generated by the Stokes operator −Aq
(see (A.1)= (1.14)) on the space

(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
(see statement

below (A.8)) satisfies

e−Aqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
−→ XT

p,q,σ ≡

Lp(0, T ;D(Aq)) ∩W 1,p(0, T ; Lqσ(Ω)). (A.20a)

In particular via (A.8b), for future use, for 1 < q <∞, 1 < p < 2q
2q−1 , the

s.c. analytic semigroup e−Aqt on the space B̃2−2/p
q,p (Ω), satisfies

e−Aqt : continuous B̃2−2/p
q,p (Ω) −→ XT

p,q,σ. (A.20b)

(iii) Moreover, for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , then (A.17)

specializes to

‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q ≤ C
{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖B̃2−2/p

q,p (Ω)

}
. (A.21)

(e) Maximal Lp regularity on Lqσ(Ω) of the Oseen operator Aq, 1 < p <
∞, 1 < q < ∞, up to T < ∞. We next transfer the maximal regularity of
the Stokes operator (−Aq) on Lqσ(Ω)-asserted in Theorem A.4 into the maximal
regularity of the Oseen operator Aq = −νAq−Ao,q in (A.2) exactly on the same
space XT

p,q,σ defined in (A.12), however only up to T <∞.
Thus, consider the dynamic Oseen problem in {ϕ(t, x), π(t, x)} with equilib-

rium solution ye, see (1.2):

ϕt −∆ϕ+ Le(ϕ) +∇π = F in (0, T ]× Ω ≡ Q (A.22a)

div ϕ ≡ 0 in Q (A.22b)

 ϕ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ (A.22c)

ϕ|t=0 = ϕ0 in Ω, (A.22d)

Le(ϕ) = (ye.∇)ϕ+ (ϕ.∇)ye (A.23)
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rewritten in abstract form, after applying the Helmholtz projector Pq to (A.22a)
and recalling Aq in (A.2), as

ϕt = Aqϕ+ PqF = −νAqϕ−Ao,qϕ+ Fσ, ϕ0 ∈
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
(A.24)

whose solution is

ϕ(t) = eAqtϕ0 +

∫ t

0

eAq(t−τ)Fσ(τ)dτ, (A.25)

ϕ(t) = e−νAqtϕ0 +

∫ t

0

e−νAq(t−τ)Fσ(τ)dτ −
∫ t

0

e−νAq(t−τ)Ao,qϕ(τ)dτ. (A.26)

Theorem A.5. Let 1 < p, q <∞, 0 < T <∞. Assume (as in (A.16))

Fσ ∈ Lp
(
0, T ; Lqσ(Ω)

)
, ϕ0 ∈

(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
(A.27)

where D(Aq) = D(Aq), see (A.2)=(1.18). Then there exists a unique solution
ϕ ∈ XT

p,q,σ, π ∈ Y Tp,q of the dynamic Oseen problem (A.22), continuously on
the data: that is, there exist constants C0, C1 independent of Fσ,ϕ0 such that

C0 ‖ϕ‖
C
(

[0,T ];B
2−2/p
q,p (Ω)

) ≤ ‖ϕ‖XT
p,q,σ

+ ‖π‖Y Tp,q
≡ ‖ϕ′‖Lp(0,T ;Lq(Ω)) + ‖Aqϕ‖Lp(0,T ;Lq(Ω)) + ‖π‖Y Tp,q

(A.28)

≤ CT

{
‖Fσ‖Lp(0,T ;Lqσ(Ω)) + ‖ϕ0‖(Lqσ(Ω),D(Aq)

)
1− 1

p
,p

}
(A.29)

where T <∞. Equivalently, for 1 < p, q <∞
i. The map

Fσ −→
∫ t

0

eAq(t−τ)Fσ(τ)dτ : continuous

Lp(0, T ; Lqσ(Ω)) −→ Lp
(
0, T ;D(Aq) = D(Aq)

) (A.30)

where then automatically, see (A.24)

Lp(0, T ; Lqσ(Ω)) −→W 1,p(0, T ; Lqσ(Ω)) (A.31)

and ultimately via (A.12)

Lp(0, T ; Lqσ(Ω)) −→ XT
p,q,σ ≡ Lp

(
0, T ;D(Aq)

)
∩W 1,p(0, T ; Lqσ(Ω)). (A.32)

ii. The s.c. analytic semigroup eAqt generated by the Oseen operator Aq (see
(A.2)=(1.18)) on the space

(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
satisfies for 1 < p, q <∞

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
−→ Lp

(
0, T ;D(Aq) = D(Aq)

)
(A.33)

and hence automatically by (A.12)

eAqt : continuous
(
Lqσ(Ω),D(Aq)

)
1− 1

p ,p
−→ XT

p,q,σ. (A.34)

In particular, for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , we have that

the s.c. analytic semigroup eAqt on the space B̃2−2/p
q,p (Ω), satisfies

eAqt : continuous B̃2−2/p
q,p (Ω) −→ Lp

(
0, T ;D(Aq) = D(Aq)

)
, T <∞. (A.35)
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and hence automatically

eAqt : continuous B̃2−2/p
q,p (Ω) −→ XT

p,q,σ, T <∞. (A.36)

A proof is given in [63, Appendix B].

Appendix B. The UCP of Theorem 1.4 implies the controllability rank
condition (4.10).

We return to equations (4.2) and (4.3) giving eigenvalues/vectors of the operator
Aq in (1.27) and its adjoint A∗q :

AqΦij = λiΦij ∈ D(Aq) = [W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω)]× [W 2,q(Ω) ∩W 1,q

0 (Ω)] (B.1)

A∗qΦ∗ij = λ̄iΦ
∗
ij ∈ D(A∗q) = [W2,q′(Ω) ∩W1,q′

0 (Ω) ∩ Lq
′
σ (Ω)]× [W 2,q′(Ω) ∩W 1,q′

0 (Ω)].
(B.2)

The operator Aq : We recall from (1.27), (1.23), (1.24) that

Aq =

[
Aq −Cγ
−Cθe Bq

]
: Wq

σ(Ω) = Lqσ(Ω)× Lq(Ω) ⊃ D(Aq) = D(Aq)×D(Bq)

= (W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lqσ(Ω))× (W 2,q(Ω) ∩W 1,q

0 (Ω)) −→Wq
σ(Ω). (B.3)

Cγh = −γPq(hed), Cγ ∈ L(Lq(Ω),Lqσ(Ω)), (B.4)

Cθez = z · ∇θe, Cθe ∈ L(Lqσ(Ω), Lq(Ω)). (B.5)

With Φ = [ϕ, ψ], the PDE-version of AqΦ = λΦ is

−ν∆ϕ+ Le(ϕ) +∇π − γψed = λϕ in Ω (B.6a)

−κ∆ψ + ye · ∇ψ +ϕ · ∇θe = λψ in Ω (B.6b)

 div ϕ = 0 in Ω (B.6c)

ϕ = 0, ψ = 0 on Γ. (B.6d)

The operator A∗q : We return to the Helmholtz decomposition in (1.5), (1.6) and

provide additional information. For M ⊂ Lq(Ω), 1 < q < ∞, we denote the
annihilator of M by

M⊥ =

{
f ∈ Lq

′
(Ω) :

∫
Ω

f · g dΩ = 0, for all g ∈M

}
(B.7)

where q′ is the dual exponent of q : 1/q + 1/q′ = 1.

Proposition B.1. [45, Prop 2.2.2 p6], [38, Ex. 16 p115], [29] Let Ω ⊂ Rd be an
open set and let 1 < q <∞.

a) The Helmholtz decomposition exists for Lq(Ω) if and only if it exists for Lq
′
(Ω),

and we have: (adjoint of Pq) = P ∗q = Pq′ (in particular P2 is orthogonal), where
Pq is viewed as a bounded operator Lq(Ω) −→ Lq(Ω), and P ∗q = Pq′ as a bounded

operator Lq
′
(Ω) −→ Lq

′
(Ω), 1/q + 1/q′ = 1.

b) Then, with reference to (1.6)[
Lqσ(Ω)

]⊥
= Gq′(Ω) and

[
Gq(Ω)

]⊥
= Lq

′

σ (Ω). (B.8a)
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Remark B.1. Throughout the paper we shall use freely that(
Lqσ(Ω)

)′
= Lq

′

σ (Ω),
1

q
+

1

q′
= 1 (B.8b)

This can be established as follows. From (1.6) write Lqσ(Ω) as a factor space
Lqσ(Ω) = Lq(Ω)/Gq(Ω) ≡ X/M so that [81, p 135].(
Lqσ(Ω)

)′
=
(
Lq(Ω)/Gq(Ω)

)′
=
(
X/M

)′
= M⊥ =

[
Gq(Ω)

]⊥
= Lq

′

σ (Ω). (B.8c)

In the last step, we have invoked (B.8a), which is also established in [38, Lemma
2.1, p 116]. Similarly(

Gq(Ω)
)′

=
(
Lq(Ω)/Lqσ(Ω)

)′
=
[
Lqσ(Ω)

]⊥
= Gq′(Ω). (B.8d)

Next, let ϕ∗ ∈ Lq
′

σ (Ω) and h ∈  Lq(Ω). From (B.4), we then compute in the noted
duality pairings, via the above results, omitting at times the symbol Ω:(
Cγh,ϕ∗

)
Lqσ(Ω),Lq

′
σ (Ω)

=
(
− γPq(hed),ϕ

∗)
Lqσ(Ω),Lq

′
σ (Ω)

=
(
(hed),−γ(Pq′ϕ

∗)
)
Lq,Lq′

(B.9)

=
(
h,−γ(Pq′ϕ

∗) · ed)
)
Lq,Lq′

=
(
h, C∗γϕ∗

)
Lq,Lq′

(B.10)

Thus
C∗γϕ∗ = −γ(Pq′ϕ

∗) · ed, C∗γ ∈ L(Lq
′

σ (Ω), Lq
′
(Ω)). (B.11)

Next, let z ∈ Lqσ(Ω), so that div z ≡ 0, z · ν = 0 on Γ by (1.5). Let ψ∗ ∈ Lq′(Ω).
For q > d, recall ∇θe ∈ W1,q(Ω) ↪→ L∞(Ω) from Theorem 1.1. Then, from (B.5)
we compute(
Cθez, ψ∗

)
Lq,Lq′

=
(
z · ∇θe, ψ∗

)
Lq,Lq′

=
(
(Pqz) · ∇θe, ψ∗

)
Lq,Lq′

(B.12)

=

∫
Ω

(Pqz) · (ψ∗∇θe) dΩ =
(
Pqz, ψ

∗∇θe
)
Lq,Lq′

(B.13)

=
(
z, Pq′(ψ

∗∇θe)
)
Lqσ(Ω),Lq

′
σ (Ω)

=
(
z, C∗θeψ

∗)
Lqσ(Ω),Lq

′
σ (Ω)

. (B.14)

Thus,

C∗θeψ
∗ = Pq′(ψ

∗∇θe) ∈ Lq
′

σ (Ω). (B.15)

The adjoint A∗q of Aq in (B.3) is, by virtue of (B.11) and (B.15)

A∗q =

[
A∗q −C∗θe
−C∗γ B∗q

]
: Wq′

σ (Ω) = Lq
′

σ (Ω)× Lq
′
(Ω) ⊃ D(A∗q) = D(A∗q)×D(B∗q )

= (W2,q′(Ω) ∩W1,q′

0 (Ω) ∩ Lq
′

σ (Ω))× (W 2,q′(Ω) ∩W1,q′

0 (Ω)) −→Wq′

σ (Ω). (B.16)

With Φ∗ = [ϕ∗, ψ∗], the PDE-version of A∗qΦ∗ = λΦ∗ is

−ν∆ϕ∗ + L∗e(ϕ
∗) + ψ∗∇θe +∇π = λϕ∗ in Ω (B.17a)

−κ∆ψ∗ + ye · ∇ψ∗ − γϕ∗ · ed = λψ∗ in Ω (B.17b)

 div ϕ∗ = 0 in Ω (B.17c)

ϕ∗ = 0, ψ∗ = 0 on Γ. (B.17d)

Proof that the UCP of Theorem 1.4 implies the controllability rank condition (4.10):
We return to (B.1) and (B.2) and express the eigenvectors in terms of their coordi-
nates, as (d+ 1) vectors.

Φij = {ϕij , ψij} = {ϕ(1)
ij , ϕ

(2)
ij , ..., ϕ

(d−1)
ij , ϕ

(d)
ij , ψij} , a (d+ 1)-vector (B.18)
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Φ∗
ij = {ϕ∗

ij , ψ
∗
ij} = {ϕ∗(1)

ij , ϕ
∗(2)
ij , ..., ϕ

∗(d−1)
ij , ϕ

∗(d)
ij , ψ∗ij} , a (d+ 1)-vector. (B.19)

With reference to (B.19), we introduce the following corresponding d-vector

Φ̂∗
ij = {ϕ̂∗

ij , ψ
∗
ij} = {ϕ∗(1)

ij , ϕ
∗(2)
ij , ..., ϕ

∗(d−1)
ij , ψ∗ij} , a d-vector (B.20)

obtained from Φ∗
ij by omitting the d-component ϕ

∗(d)
ij of the vector Φ∗

ij . Next, with

reference to (4.6), construct the following matrix Ui of size `i × K, K = sup{`i :
i = 1, . . . ,M}

Ui =


(u1, Φ̂

∗
i1)ω . . . (uK , Φ̂

∗
i1)ω

(u1, Φ̂
∗
i2)ω . . . (uK , Φ̂

∗
i2)ω

...
. . .

...

(u1, Φ̂
∗
i`i

)ω . . . (uK , Φ̂
∗
i`i

)ω

 : `i ×K. (B.21)

Here with

uk = [u1
k, u

2
k] = [(u1

k)(1), (u1
k)(2)...(u1

k)(d−1), u2
k] ∈ L̂qσ(Ω)× Lq(Ω) (B.22a)

L̂qσ(Ω) ≡ the space obtained from Lqσ(Ω) after omitting the d-coordinate,
(B.22b)

we have defined the duality pairing over ω as

(uk, Φ̂
∗
ij)ω =

([
u1
k

u2
k

]
,

[
ϕ̂∗ij
ψ∗ij

])
ω

=

∫
ω

[u1
k · ϕ̂

∗
ij + u2

kψ
∗
ij ]dω

= (u1
k, ϕ̂

∗
i1)L̂q(ω),L̂q′ (ω) + (u2

k, ψ
∗
ij)Lq(ω),Lq′ (ω) (B.23)

=

∫
ω


(u1
k)(1)

(u1
k)(2)

...
(u1
k)(d−1)

u2
k

 ·

ϕ
∗(1)
ij

ϕ
∗(2)
ij
...

ϕ
∗(d−1)
ij

ψ∗ij

 dω. (B.24)

The controllability Kalman/Hautus algebraic condition of the finite-dimensional
projected wN -equation in (3.6a) is given by (4.10)

rank Ui = full = `i, i = 1, . . . ,M. (B.25)

M= number of distinct unstable eigenvalues in (1.33). Thus, given the (unstable)
eigenvalues λ̄i of A∗q , i = 1, 2, ...,M we need to show that the corresponding vectors

Φ̂
∗
i1, ..Φ̂

∗
ili (defined in (B.20))

λ̄i

Φ̂∗i1, Φ̂∗i2,
. . . Φ̂∗i`i (B.26)

are linearly independent in L̂q
′
(ω), where `i = geometric multiplicity of λi. Thus,

we seek to establish that

`i∑
j=1

αjΦ̂∗ij ≡ 0 in L̂q
′
(ω)× Lq

′
(ω) =⇒ αj = 0, j = 1, . . . , `i. (B.27)
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To this end, define the vector Φ = [ϕ∗, ψ∗] (we suppress dependence on i) by

Φ∗ =

`i∑
j=1

αjΦ
∗
ij in Lq

′
(Ω)× Lq

′
(Ω) (B.28)

that is, Φ∗ is a linear combination, with the same constants αj as in (B.27), of the
eigenvectors Φ∗i1, ...,Φ

∗
ili

in (B.2). Then Φ∗ = [ϕ∗, ψ∗] is itself an eigenvector of A∗q
corresponding to the eigenvalue λ̄i. Thus we have

A∗qΦ
∗ = λ̄iΦ

∗ in L̂q
′
(Ω)× Lq

′
(Ω); ϕ∗ ∈ Lq

′
(Ω) , ψ∗ ∈ Lq

′
(Ω). (B.29)

along with

Φ̂
∗
≡ 0 in ω by (B.27). (B.30)

Therefore Φ∗ = [ϕ∗, ψ∗], satisfies the eigenvalue problem (B.17a-b-c-d), along with
the over-determined condition in ω, due to (B.30)

ϕ∗ = {ϕ∗(1), ϕ∗(2), ..., ϕ∗(d−1)} ≡ 0 in ω , ψ∗ ≡ 0 in ω. (B.31)

According to Theorem 1.4, then

Φ∗ = [ϕ∗, ψ] ≡ 0 in Ω. (B.32)

Indeed, in order to reach conclusion (B.32), one does not need the B.C. (B.17d) on
Γ, as this is not needed in Theorem 1.4. Going back to (B.28), we have

Φ∗ =

`i∑
j=1

αjΦ
∗
ij ≡ 0 in Ω; hence, α1 = 0, · · · , α`i = 0, i = 1, . . . ,M (B.33)

since the eigenvectors
{

Φ∗ij
}`i
j=1

are linearly independent in Lq
′
(Ω)× Lq′(Ω). Con-

clusion (B.27) is established. (The fact that λ̄i is unstable, is irrelevant in the above
argument.) Due to the just established property (B.27), we then see that the al-
gebraic conditions (B.25) can be satisfied by infinitely many choices of the vectors

u1, . . . ,uK ∈ L̂q
′
(Ω)× Lq′(Ω).
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