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We extend the definition of asymptotic multiparticle states of the S-matrix beyond the tensor products of
one-particle states. We identify new quantum numbers called pairwise helicities, or g;;, associated with

asymptotically separated pairs of particles. We first treat all single particles and particle pairs
independently, allowing us to generalize the Wigner construction, and ultimately projecting onto the
physical states. Our states reduce to tensor product states for vanishing g;;, while for vanishing spins they
reproduce Zwanziger’s scalar dyon states. This construction yields the correct asymptotic states for the
scattering of electric and magnetic charges, with pairwise helicity identified as g;; = ¢;g; — €;g;.
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Representations of the Poincaré group form the founda-
tion of particle physics, most notably in the construction
of the S-matrix for quantum-relativistic scattering. The
S-matrix is the overlap between quantum states representing
“free particles” in the asymptotic past and future. This is
usually taken to mean that the in and out states of the
S-matrix approach products of one-particle representations
of the Poincaré group as t — +o0o0. Wigner used the method
of induced representations to classify the one-particle
representations of the Poincaré group [1] by two properties:
their mass and their “little group” representation. The little
group is the subgroup of Lorentz transformations that leaves
a particular reference momentum for a given particle
invariant. For massive particles, one can choose the rest
frame of the particle, and the little group is the SU(2) double
cover of the SO(3) rotations that simply leave the particle at
rest. The 25 + 1 dimensional representation of the SU(2)
little group is fixed by the spin s of the particle. For massless
particles there is no rest frame, but one can always choose the
reference momentum to point in the z direction. Hence, in
this case, the little group is U(1) C 1SO(2), which corre-
sponds to rotations around the z axis [2]. While one-particle
representations have been textbook material for many years,
surprisingly little attention has been paid to multiparticle
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representations. In the standard construction of the S-matrix,
the multiparticle scattering states are simply assumed to be
tensor products of one-particle states, i.e., for a two-particle
state, one simply needs to specify two masses and two spins.
Note that multiparticle states are always reducible as
representations of the Poincaré group, and that all irreduc-
ible representations (irreps) are accounted for by Wigner’s
method. Nevertheless, their decomposition into irreps is not
very useful; for example the decomposition of a two-particle
state into irreps assigns a different irrep to each value of
the Mandelstam s = (p, + p,)? variable. To construct the
S-matrix, one has to properly identify the asymptotic
multiparticle states, which are usually assumed to be tensor
products of one-particle states (with the exception of the
scattering of particles charged under long-range mediators;
we discuss this in more detail later in the Letter). However, in
1972 Zwanziger [3] pointed out that, for the scattering of
electric and magnetic charges, these quantum numbers are
not sufficient and that an additional quantum number is
needed to characterize the relative transformation of the
two-particle state with respect to the simple tensor prod-
uct state.

In this Letter, we present a systematic method to
construct the general class of multiparticle states, which
automatically include the simple tensor product states but
in addition also contain the generalization of Zwanziger’s
states. The key insight is the realization that for multi-
particle states, in addition to the little groups of each
individual particle one also needs to consider the “pairwise
little groups” corresponding to transformations that leave a
pair of momenta invariant [4]. Since one can always go into
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the center of momentum (COM) frame (for massless
particles we can always find a frame where the momenta
are collinear) of two massive particles, this pairwise little
group is also an SO(2) =~ U(1) rotation. The corresponding
U(1) charge, g,;, which we will refer to as pairwise helicity,
is required to fully describe the additional phase picked up
by a two-particle state under little group transformations.
Since there is no Lorentz transformation that leaves three
general momenta invariant, the three-particle and higher
little groups are all trivial, which implies that the most
general multiparticle state is of the form

[P1s oo Pui Oy s 01 510 oo G ) (1)

The aim of this Letter is to explain the essence of this
construction and establish the main properties of these
novel representations.

The Hilbert space for a single particle is spanned by
momentum eigenstates | p; o) satisfying P| p; 6) = p#|p; o)
where P* is the momentum operator and o is a collective
index denoting all other quantum numbers besides momen-
tum. To define the precise meaning of these extra quantum
numbers, we first have to choose a common reference
momentum k for every particle with momentum p and
p* = m?. For massive particles we choose k = (m,0,0,0),
while for massless particles we choose k = (E, 0,0, E). The
little group is then defined as the subgroup of Lorentz
transformations that leaves k invariant—which is U(1) [or
more precisely /SO(2)] for massless particles and SU(2) for
massive ones. The label ¢ then serves to fix the trans-
formation of |k, ) under the little group. For example, for
massive particles, o stands for both total spin s and the z
component of the spin s, and so for all W € SU(2),

u(w)

kys,s.) = Dic.y,(W)

kis,s2), (2)

where Dj, (W) is the spin s representation of the SU(2) little

group. For massless particles, ¢ stands for helicity 4, and the
little group transformation is just a phase ¢’"?, where ¢ is the
U(1) rotation angle. To obtain the quantum states in a
different reference frame, we first define a Lorentz trans-
formation L, such that p = L k. The corresponding quan-
tum state is then defined as |p;o) = U(L,)|k;o). The
transformation rule for |p; o) is then completely fixed by
o as follows,

U(A)p; o) = U(L,)U(W)K; o), (3)

where W = L,‘\},AL,, takes k — k and so is always a little
group transformation. Consequently,

U(A)|p;0) = Dgs(W)|Ap; o), (4)
where D, stands for either D, for massive particles or ¢?
for massless particles. Once the one-particle states are

obtained, one can clearly form multiparticle states by con-
sidering the tensor product of these states. Surprisingly, these
are neither the most general asymptotic multiparticle repre-
sentations of the Poincaré group, nor are they the only ones
useful for particle physics. To construct more general
n-particle representations, we first consider products of
2" — 1 Poincaré groups and only later focus on their diagonal
subgroup, which is the physical Poincaré group. Our con-
struction is inspired by the little group approach to forming
on-shell scattering amplitudes, where one initially assigns
independent helicity or spin quantum numbers for each
spinor-helicity variable, and only the final step requires that
all of these helicities actually describe the transformation
under a common (diagonal) Lorentz group.

For simplicity, we first focus on the construction of two-
particle states, later generalizing to an arbitrary number of
particles. For a pair of particles 1 and 2, we consider
representations of the product group P; x P, x P, where
each of these P’s is a separate copy of the Poincaré group.
While P; and P, correspond to Poincaré groups of one-
particle states with momenta p, and p,, respectively, Py, is
the group of Poincaré transformations acting on a pair of
momenta (P, p,). At this stage, p; and p, should be
thought of as distinct from p; and p,. Moreover, a
momentum pair (P, p,) is not a two-particle state, rather
it is simply a tool to define the representations of the
Poincaré group. We first define a generalized two-particle
state as a tensor product of two one-particle states and a
pairwise state:

|1, P2 (D1, P2)s0)
= |p1;01) ® |P2302) ® [(P1. P2): q12)- (5)

Here, o,;’s characterize quantum numbers on one-particle
states, while g, is an extra quantum number associated
with the “pairwise helicity,” which we will carefully define
below. To obtain representation on physical two-particle
states, we will eventually restrict P; x P, x Py, to the
diagonal subgroup while projecting onto the physical states
via the identification p; = p;, p, = p,. Note that this
projection allows us to interpret |(py, p»); q1») as a state of
two spinless particles with pairwise helicity charge ¢,
“glued” to spinning particles with momenta p; and p,.

Similar to the single particle case, we can again define
the relevant reference momenta. For the single particle
momenta corresponding to p;, p,, we can choose k;, k,
defined exactly as in the single particle case. To define the
reference momenta (k;,k,) corresponding to the pair
(P1,P2), we go to the pair’s COM frame with the two
particles both moving along the z axis. In this frame, we
have

]}1 = (Elvo’ 0’ ]36)7 ]}2 = (E270707 _ijc>’ (6)
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where E 12 = 4 /m%_2 + p2 and p, is the Lorentz-invariant

COM momentum. The corresponding Lorentz transforma-
tions are then

p1 =L} ki, p2 = L3 ks,
(ﬁlv ﬁZ) = (Z})zl,ﬁzlélv 12;321’132]22) (7)

Note that, unlike the single particle Lorentz transforma-
tions, Z},Z "
1:P2

uniquely determines L} . up to a U(1) rotation. A

generic state is defined by

takes k; — p; and ky = p,. This property

|1, P2. (D1, P2)s 0)
= [U(L},)|ki;01)]
® [U(L2,)k»:02)] & [U(LY 5)I(k1. k2): q12)).

We can now proceed as Wigner did for the one-particle
states by finding the representation of Lorentz transforma-
tions of the form A = (A;,A;,A;) € Py x P, x P}, on
this state:

U(A)‘pl » P2 (i)l ) ﬁZ)ﬁ 0>
= [Dy6,(W1)|A1P1361)] ® [Dgy,(W2)| A2 p2; 05)]
® [U(iﬁlzﬁ].ﬂlzﬁZ)U(le)|(7<1,]}2)QQ12>]7 (8)
where
Wi = <L£\,‘Pi)_1AiL;'7i

Wi = L/t\llzf’h[\]zi’zAlzLi"’[)Z‘ (9)
The W, are just single particle little group transformations,
while W, is a transformation that preserves both k, and k,
defining the “pairwise” little group. Clearly, the pairwise
little group is just an SO(2) ~ U(1) rotation around the z
axis. Note that the pairwise little group is a true U(1)
rotation irrespective of whether the particles are massive or
massless. Even in the massless case, there is no enhance-
ment of the sort seen for the massless single particle little
group since there is no combination of Lorentz generators
that leaves the pair of reference momenta unchanged other
than the rotation around the z axis. Defining a rotation

angle by R,(¢,) = W,, we then have

U(A)|p1. pa. (P1. Pa)i o) = el
Dy o, (Wl)Da’zaz(WZNAlpl’ Aspr. (Aapr, Anpy); o).
(10)
One can clearly see that Eq. (10) furnishes a proper

representation of the product group P, x P, X Py,, satisfy-
ing all the group product relations by construction.

However, at this point we still have three separate copies
of the Poincaré group, and all the momenta p,, p,, P, P2
are independent. We can now perform a projection onto
the physical states, where p; = p;, p» = P,, and restrict
our representation to the diagonal subgroup. Now con-
sider the generators of the diagonal subgroup: P4, =
a(P{ + Py +Pl,) and Jp =Db(J\" +J5 + ;). One
can then easily show that the Lie algebra commutators
[Pp,Pp] and [Jp,Jp] give the correct results for any
choices of a and b. However, the commutator [Pp,Jp]
requires b = 1. This freedom allows us to choose a :%
(corresponding to rescaling positions by a factor of 2) so
that the resulting two-particle state carries the desired
momentum:

P%|P17P2,O'1,627(112>
= (p1 + pP2)"|P1, P2, 01,02, q12)- (11)

The transformation of a physical two-particle state is then
given by

U(A)|p1s p2s 01,02 q12)
= eiq”'ﬁ”Da’,al(Wl)Da;UQ(Wz)\APhAP2§0/1, 65:q12)-
(12)

with W;, W, given by Eq. (9) with A; = A}, = A.

The only remaining task is to check that the action of the
unitary operators U(A) on physical states takes us back to
physical states, that is, the projection is preserved under the
group transformation. This is obvious from the fact that on
the physical states the action of the diagonal Poincaré group
is p1,p2s (P1P2) = Api, Apa, (Apy, Apy); hence, we
clearly remain in the subspace of physical states. Thus,
we have constructed two-particle representations of the
Poincaré group, which reduce to the usual tensor product
states when ¢, = 0. On the other hand, for ¢, =1,
Jj1 = j» =0, we reproduce Zwanziger’s 2-scalar dyon
states. Equation (12) with g, a half-integer provides the
transformation law for the generic two-particle case. The
generalization to n particles is now straightforward. We
start with a tensor product of 2" — 1 copies:

Py x...XP,XxPp,x..xXP, 1,

XPi3X oo X PygyjgX ... X Prps_,  (13)

of the Poincaré group with each factor P; _; represented
on an independent k-tuple of momenta. However, in 4D, all
k-tuple little groups are trivial for k > 2, and so our product
group can be represented on states involving only pairwise
momenta:

|p17 Ry o (i)l’ 132)’ ceey (pn—2’ ﬁn)’ (lbn—l’ i)n);6>' (14)
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After projecting onto the physical states and reducing to the
diagonal subgroup, corresponding to the physical Poincaré
group, the general transformation rule becomes

U<A)|p1’ < Ppi01s 0054125 -0y qn—l.n>

_ HeiQij(/)[/HD”:‘ﬂi (Wz)

i i
X |Ap1, oo APy 30 o O q1as oGy ). (15)

Here is the place to comment on the inequivalence
between our newly defined multiparticle representations
and standard tensor product representations. To see this
inequivalence, note that the projection of the general states
[Eq. (14)] to the physical states [Eq. (15)] is injective:
different choices of one or two-particle representations
under the P;, P;; in Eq. (13) result in different trans-
formation laws in Eq. (15). Consequently, every physical
state in Eq. (15) can be uniquely lifted to a general one in
Eq. (14). The lift is performed by constructing the unique
state in Eq. (14) that projects to Eq. (15). Clearly, tensor
product states are lifted to general states in Eq. (14) with all
g;; = 0. By Schur’s lemma in the two-particle spaces P;;,
there is no nontrivial intertwiner between these states and
states with g;; # 0.

Having defined the multiparticle states [Eq. (15)], we
now wish to know if they are a purely mathematical
curiosity, or if nature might have made good use of them.
To get a hint for this question, we note that these states
possess a unique trait: they involve an extra angular
momentum associated with their “pairwise” part. This
can be read off directly from their definition: the same
way that every one of their single particle components has

J:|kisoi) = olkii0y), (16)
the pairwise parts have
Jz|7<n’~€j§q1'j> = 6]1'/'\7‘[’ ];j;Qij>- (17)

This extra contribution to the angular momentum is unique
in particle physics, as it is associated with particle pairs but
is independent of the distance between the particles. It is
thus a half-integer, asymptotic contribution to the total
angular momentum. As far as we know, there is only one
situation in which this kind of angular momentum is
realized: scattering of electric and magnetic charges.
Classically, this can be seen by calculating the overall
angular momentum stored in the electromagnetic field in
the presence of particles with electric (magnetic) charge e;
(g;)- The result, in the nonrelativistic limit, is given by
AT = > q;;fij, where 7;; is the unit vector between the
particles and g;; = e;g; — e;g; [5,6]. To construct the
relativistic S-matrix for electric-magnetic scattering, all
we have to do is use the multiparticle states [Eq. (1)],

identifying pairwise helicity as the half-integer ¢;; =
e;g; —e;g; [4].

The multiparticle states presented here do not form a
Fock space, which by construction is a product space of
single particle states. However, it has been shown that in 4D
under quite general conditions the scattering of massive
particles is described by multiparticle states in a Fock space
[7]. (This is to be contrasted to lower dimensions, where
anyons and plektons [8,9] form more general multiparticle
states [10].) The way out of this conundrum is to note that
the additional asymptotic angular momentum contained in
states with nonvanishing pairwise helicity necessarily
implies the existence of a massless gauge field under
which our asymptotic particles are charged. This violates
the underlying assumptions of the theorems requiring a
Fock space in 4D, making them nonapplicable in our case.
Indeed the states introduced in this Letter are relevant for
describing the scattering of particles interacting with a
classical field (which should be described [11] by a so
called von-Neumann space [12] constructed from an
infinite product of Hilbert spaces, since the classical field
contains an indefinite number of photons). The traditional
approach to describing the S-matrix of charged particles
sourcing a classical field while avoiding the QED infrared
problem [13—17] is to dress the particles with coherent
photon states [18,19], as done successfully in the Faddeev-
Kulish formalism [20] (see also [21,22] for a recent
generalization). Our construction of multiparticle states
mirrors the Faddeev-Kulish dressing [23] of multiparticle
states for the case when some of the particles are mag-
netically charged, and so the classical field itself carries
asymptotic angular momentum.

Though the formal construction of the electric-magnetic
S-matrix has been discussed elsewhere [4], we wish to
emphasize one unique property. Similar to the standard
construction, the S-matrix is defined as

S = (outlin), (18)

where [in) (Jout)) are eigenstates of the full Hamiltonian
that approach [26] free multiparticle states at ¢ —
—oo(t = o). While for nonmagnetic amplitudes, the
corresponding “free states” are direct-product multiparticle
states, in the electric-magnetic case they are states of the
form Eq. (1). However, there is an added subtlety: as can be
seen both classically [3] and in nonrelativistic quantum
mechanics [27], the angular momentum of the electromag-
netic field flips its sign between the in and out state.
To account for that in the electric-magnetic S-matrix,
the out state has to transform as in Eq. (15) but with
qij = —(e;g; — e;g;). This is clearly an allowed represen-
tation (we simply change how g;; relates to the charges),
and it captures the physics of electric-magnetic scattering
[4]. Tt is also the origin of the well-known violation of
crossing symmetry for electric-magnetic processes.
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This above result can be easily extended to the case of
multiple U(1) gauge groups. There is a well-known
generalization [28-30] of the ‘t Hooft-Polyakov monopole
construction from SU(2) — U(1) to G — U(1)", where G
is a non-Abelian group of rank > n. The electric and
magnetic charges of a particle under each of the unbroken
U(1)s (corresponding to the Cartan generators of G) can be
assembled into vectors ¢ and g, both of length n. Dirac
quantization then requires that g is a linear combination of
the simple co-roots of G with integer coefficients [28],
which guarantees that g-¢ is a half-integer for any ¢
descendant from a representation of G. For every particle
pair, we can now associate pairwise helicity with the Dirac-
quantized

qij = €~ G;— € Gi» (19)

where the subscript is a particle label.

In this Letter, we generalized the construction of multi-
particle states of the Poincaré group beyond the trivial notion
of tensor products of n single particle states. In the process,
we discovered n(n — 1)/2 new quantum numbers, pairwise
helicities denoted by g;;. These pairwise helicities provide
the pairwise little group phase that determines the Lorentz
transformation properties of our multiparticle states with
respect to the tensor product states. Furthermore, we dem-
onstrated how the existence of nonzero pairwise helicity
implies an extra contribution to the total angular momentum
beyond the orbital and single particle spin or helicity
contributions. This new contribution associated with pairs
of particles is quantized and is asymptotically nondecou-
pling. This leads us to identify our newly defined multi-
particle states as the quantum states describing a collection of
electric and magnetic charges. Pairwise helicity, in this case,
is identified as g;; = e;g; — e;g;, which is a half-integer by
virtue of Dirac-Zwanziger-Schwinger quantization.
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