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We carry out astrophysical inference for compact binary merger events in LIGO-Virgo’s first
gravitational-wave transient catalog (GWTC-1) using a physically motivated calibration model. We
demonstrate that importance sampling can be used to reduce the cost of what would otherwise be a
computationally challenging analysis for signal-to-noise ratios of current gravitational-wave detections.
We show that including the physical estimate for the calibration error distribution has negligible impact on
the inference of parameters for the events in GWTC-1. Studying a simulated signal with matched filter
signal-to-noise ratio SNR ¼ 200, we project that a calibration error estimate typical of GWTC-1 is likely to
be negligible for the current generation of gravitational-wave detectors. We argue that other sources
of systematic error—from waveforms, prior distributions, and noise modeling—are likely to be more
important. Finally, using the events in GWTC-1 as standard sirens, we infer an astrophysically informed
improvement on the estimate of the calibration error in the LIGO interferometers.
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I. INTRODUCTION

The burgeoning field of gravitational-wave astronomy
[1–3] is advancing our understanding in multiple fields of
astrophysics, including cosmology [4], galactic and stellar
evolution [5], and strong-field gravity [6]. As the sensitivity
of observatories improve, and gravitational waves are
observed with increasingly large signal-to-noise ratios
(SNRs) [7–9], an understanding of systematic effects will
become ever more important. Sources of systematic biases
include errors associated with gravitational waveforms
[10], imperfect prior distributions, incorrect estimates for
the noise power-spectral density [11–13], and errors asso-
ciated with the calibration of the detectors [14]. Here, we
focus on errors associated with calibration.
Calibration is defined as the process of converting the

detector’s primary control system error signal due to
differences in the lengths of the interferometer’s arms to
an estimate of strain on the detector [15–18]. Imperfect
knowledge of the interferometer’s control system and the
response to differential arm length changes leads to
systematic error in the amplitude and phase of the calibra-
tion. This error is estimated by conducting a vast suite of
measurements of the control system, and propagating the
results of those measurements into a physically informed
model. The resulting error estimation is represented by a
frequency-dependent probability distribution. In order to

avoid bias, the estimated probability distribution of cali-
bration errors must be taken into account when inferring
the astrophysical parameters of gravitational-wave signals
[14]. Unfortunately, marginalizing over calibration error
distributions can dramatically increase the number of
parameters used in astrophysical inference: from the 15
required to describe a binary black hole to >50 [19]. This
increase in parameter space can lead to a significant
increase in computational cost and convergence issues,
which has somewhat limited efforts to carry out astro-
physical inference that include an estimate of calibration
errors up to this point.
In this work, we demonstrate a computationally efficient

implementation of the original physical calibration model
[16,18, see Sec. II] for astrophysical inference. Following
[20], we first evaluate the posterior distribution of astro-
physical parameters without any estimated calibration error
distribution, and then employ importance sampling to
reweight approximate results to include this contribution.
Importance sampling [21,22] is the technique of construct-
ing weights for individual samples which determine each
sample’s contribution to the inferred probability distribu-
tion. Having verified the analysis procedure, we carry out a
study of gravitational-wave signals from the first LIGO-
Virgo Gravitational-Wave Transient Catalog (GWTC-1) [3]
using estimates of the calibration error at the time of those
events. Combining data from multiple events, we infer an
astrophysically informed calibration error estimate [23],
showing that it is possible to learn about the Advanced*ethan.payne@ligo.org
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LIGO interferometers [24] using gravitational waves as
standard sirens.
With the assumption that the estimated systematic

error present in GWTC-1 will be typical in the future,
we demonstrate the effect of the calibration error estimate
on a simulation of an SNR ¼ 200 binary black hole
merger—approximately the loudest event that will be
observed by the second-generation interferometer network
during its operational lifetime [7,25]. In this regime, naive
application of our importance sampling algorithm becomes
inefficient. However, we find that the calibration error
estimate still has only a marginal effect on the posterior
distributions of the intrinsic astrophysical parameters. The
localization parameters are the most affected by the
inclusion of the calibration error distribution; the sky
map credible region approximately doubles in size for a
SNR ¼ 200 event. We conclude that the impact of cali-
bration error estimates will likely be small compared to
other previously mentioned sources of systematic error in
astrophysical parameter estimation.
The remainder of this paper is organized as follows. In

Sec. II, we summarize the physically motivated calibration
model, its parameters, and the collective error estimate
from [16,18]. In Sec. III, we describe our methodology for
efficiently marginalizing over the probability distribution
of calibration errors with importance sampling. In Sec. IV,
we demonstrate our implementation using simulated data
while in Sec. V, we analyze data from GWTC-1. We end
with concluding remarks in Sec. VI.

II. CALIBRATION MODEL

In this section, we summarize the physical calibration
model for the LIGO detectors described in [16,18]. Though
the Virgo detector [26] is similar to the LIGO detectors, the
systematic error probability distribution used in this study
is informed by the 68% confidence interval bounds on the
systematic error described in Ref. [17].

A. The physical model

The LIGO detectors are dual-recycled, kilometer-
scale Fabry-Pérot Michelson interferometers, most sensi-
tive between 10 and 2000 Hz [24]. The passage of a
gravitational-wave signal induces differential displacement
between the two arms of the interferometer. This differ-
ential arm displacement is measured at the output of the
detector, where interfering laser light reflected from the
resonant arm cavities is incident on a set of photodiodes
[27]. The photodiode signals are summed and digitized to
form a signal which includes both detector noise and
gravitational waves. The digitized signal also serves as
the residual error signal of the feedback control system
for the changes in differential arm length. This, among
other control loops in the detector, ensures that external
noise sources do not force the interferometer cavities

off-resonance. This is achieved through differentially
actuating on the arm cavity mirrors, or test masses, and
their suspension systems [28–30]. Below ∼100 Hz, the
control systems actuation forces suppress the interferom-
eter’s response to differential arm displacement. Above this
frequency, the response is free of control system influence
and depends on both the interferometric response to dif-
ferential arm displacement as well as the signal processing
electronics of the photodiodes. Thus, in order to recon-
struct the measured strain from the digitized photodiode
signal over the entire sensitive frequency band, a physically
motivated model of the response and control system are
required.
The model is divided into two conceptual components.

The first component, the sensing function, is an optome-
chanical description of the interferometer if it were free of
control forces, photodiode signal processing electronics
and the digital acquisition system. The second component,
the actuation function, describes how the control system
splits the single, digitally filtered, error signal among three
stages of cascading actuators on the test mass quadruple
suspension systems; incorporating those actuators’ digital
to analog converters and signal processing electronics. The
actuation function also includes the complex displacement
response of the test mass for those forces from each stage
[28–30]. Both model components are frequency-dependent
complex transfer functions that are mostly static in time,
but each have slowly time-varying correction factor param-
eters to account for natural drifts in their behavior. The
actuation function dominates the interferometer’s response
below ∼200 Hz, whereas the sensing function dominates
elsewhere [18].
The calibrated strain signal h is related to the differential

arm error signal derr (in the frequency domain) by the
response function R,

h ¼ 1

L
Rderr ¼

1

L

�
1þ CDA

C

�
derr: ð1Þ

Here, C is the sensing function while A is the actuation
function. The variable D describes the set of digital filters
responsible for converting the error signal to the single
differential arm control signal. The variable L is the length
of the interferometer arms. Equation (1) illustrates how
systematic errors in C and A lead to an error in h.

Following [16,18], we employ the following model for
the sensing function:

CðfjΛÞ ¼ κCðtÞHC

1þ if=fCCðtÞ
CRðfÞe−2πifτC

×
f2

f2 þ f2S − iffS=Q
: ð2Þ

Here, f is frequency, and fHC; fCC; τC; fS; Qg are the
parameters describing the optomechanical response (sum-
marized in Table I), which are part of a larger set of
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calibration model parameters Λ. The parameters κCðtÞ and
fCCðtÞ represent the time-dependent corrections needed to
account for alignment drift in the suspended cavities.
Detuning between the signal recycling cavity and arm
cavities [31] is modeled as an optical spring with a
characteristic frequency, fS, and associated quality factor,
Q. Finally, CRðfÞ is the digital acquisition response, which
is measured a priori with high precision. The probability
distributions for the time-independent parameters of the
sensing function, Λ, are determined by fitting measure-
ments from a single, representative reference time with the
model outlined in Eq. (2) using Markov chain Monte Carlo
(MCMC) sampling [32]. The probability distribution for
the parameter fCC is determined both by an MCMC fit
from the reference time measurement, and, as κCðtÞ,
by the continuous high-precision tracking of its time
dependence [33].
The actuation function is modeled as follows:

AðfjΛÞ ¼ κUðtÞFUðfÞHUAUðfÞe−2πifτU
þ κPðtÞFPðfÞHPAPðfÞe−2πifτP
þ κTðtÞFTðfÞHTATðfÞe−2πifτT : ð3Þ

Here, fHU; τU;HP; τP;HT; τTg are the actuation calibra-
tion parameters summarized in Table II. The subscripts
refer to the stage of the suspension system where actuation
force is applied. These are the “upper-intermediate,” U,
“penultimate,” P, and “test mass,” T. The force-to-
displacement response and the response of actuator elec-
tronics are incorporated in AiðfÞ. The digital distribution
filters, FiðfÞ, and the scalar time-varying correction fac-
tors, κiðtÞ, are precisely known, and so do not appear in
Table II. Again, the prior distributions for the actuation
parameters are determined by MCMC sampling with data
from single measurements of each stage’s response. The
values and uncertainties associated with time-dependent

quantities are computed at a 1 hr cadence over the duration
of an observing run.
The final parameter within the physical calibration

model is an overall scalar magnitude factor, ηPCAL, whose
probability distribution is derived from any systematic error
and uncertainty in the photon calibrator systems (PCALs).
The photon calibrator systems are used as fiducial dis-
placement references for each detector [34,35]. Typically,
the systematic error is negligibly different from unity, and
only adds an overall magnitude uncertainty: coincidentally
0.79% for both LIGO detectors during the second observ-
ing run. This additional correction is applied as a multi-
plicative factor to the response function.
While each detector’s fiducial reference has its own

systematic error and associated uncertainty, the collection
of references for the entire network are seeded from a single
global reference calibrated at the National Institute of
Standards and Technology (NIST). This common error
on the global reference, ηNIST, is included in the uncertainty
for each detector [35] and excluded as an independent error
from this analysis as it is degenerate with the luminosity
distance of a gravitational-wave source. The overall ampli-
tude of the gravitational-wave strain scales as ηNIST=dL
and so no conclusions can be drawn about the absolute
reference from gravitational waves because of degeneracy
with the distance. This is contrary to the results from
Ref. [36], where the luminosity distance is fixed—
motivated by the detection of electromagnetic counterparts.
The challenge we see with this proposal is that the
uncertainty on redshift and cosmological parameters is likely
to be large compared to the very small uncertainty on ηNIST.

B. The phenomenological model

While the physical model of the response function,
RðΛÞ, produces an approximately correct response, inspec-
tion of an ensemble of frequency-dependent residuals
Rmeasured=RðΛÞ, constructed from sensing and actuation
function measurements, shows that the model is incom-
plete, i.e., the residuals are not consistent with unity; see
Fig. 11 from [18]. The authors of [18] build an additional
phenomenological model for C and each stage of A on top
of the physical model in order to estimate the residuals,

TABLE I. Sensing parameters. The optical gain describes the
overall magnitude of the sensing function. The coupled cavity
pole frequency describes the bandwidth of the interferometer arm
and signal recycling cavity system. The time delay compensates
for light travel time within the arms and computational delay in
the photodiode analog-to-digital conversion process. The optical
spring parameters describe the characteristic frequency and
amount of detuning between the arm and signal recycling
cavities.

Symbol Name Units

HC Optical gain cts=m
fCC Coupled cavity pole frequency Hz
τC Time delay μs
fS Optical spring frequency Hz
Q Optical spring quality factor � � �

TABLE II. Actuation parameters. The scalar gains applied to
each of the stages calibrate the overall magnitude of the actuation.
The time delays arise from computational delays in the digital-to-
analog system.

Symbol Name Units

HU Upper intermediate stage gain N=cts
τU Upper intermediate stage delay μs
HP Penultimate stage gain N=cts
τP Penultimate stage delay μs
HT Test mass stage gain N=cts
τU Test mass stage delay μs
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completing the error estimate with new phenomenological
parameters.
The phenomenological model employs Gaussian pro-

cess regression of the residuals, interpolating between
128 frequency points [37,38] and optimization of several
hyperparameters constraining the covariance kernel
between each frequency point. The correlation lengths
between frequencies in the Gaussian process are frequency
dependent [18], scaling as ∼5f. Therefore, any information
learned about the Gaussian process at a particular fre-
quency, fi, informs the distribution within a region ∼10fi.
The corrected sensing and actuation functions are given by

C0ðΛÞ ¼ ηCðΛÞCðΛÞ; ð4Þ

A0ðΛÞ ¼ ηAðΛÞAðΛÞ: ð5Þ

Here, ðC;AÞ are the physical sensing and actuation models
while ðC0; A0Þ are the phenomenologically corrected mod-
els. They are included as a part of the frequency-dependent
estimated distribution of calibration error. Since ηC and ηA
for each stage are complex-valued functions described by a
magnitude and phase, the phenomenological model intro-
duces an additional 256 × 4 calibration parameters to Λ.
After applying both physical and phenomenological mod-

els toLIGOdata, the authors of [18] find that thedistributionof
errors in the response R completely explains Rmeasured=RðΛÞ,
and is dominated—in most frequency regions—by uncer-
tainty from the Gaussian process fit. That is, the systematic
error from imperfect design of the physical model is large
compared to the uncertainty in its parameters. However,
by introducing such a high-dimensional phenomenological
model, the systematic error of the physical model is converted
almost entirely into statistical uncertainty. With so many free
parameters, we expect it should be possible to fit nearly any
measured form of R.

III. METHOD

Our goal is to estimate astrophysical parameters θ
describing the gravitational waveform of a compact binary
merger given strain data h and marginalizing over the
unknown calibration parameters, Λ. We follow style con-
ventions from [39]. Assuming Gaussian noise, the like-
lihood is given by

Lðhjjθ;ΛÞ ¼
1

2πPj
exp

�
−2Δf

jhj − λjðΛÞμjðθÞj2
Pj

�
: ð6Þ

Here, μjðθÞ denotes the gravitational-wave model. In
this manuscript, we utilize IMRPhenomPv2 [40,41] for
our source model of binary black hole systems, and
IMRPhenomPv2NRTidal [42] for binary neutron star mergers.
The parameters of the compact binary coalescence, θ,
include intrinsic properties such as the masses and spins

of the individual compact objects, and extrinsic parameters
informing the orientation and location of the binary system.
The calibration error is described by

λðΛÞ ¼ RðΛÞ
R∅

; ð7Þ

the ratio of the model for the true response function RðΛÞ,
which depends on calibration parameters Λ, to the theo-
retical response function used to calibrate the data R∅. The
calibration err, λðΛÞ, is denoted as ηR in Ref. [18]. Note that
the calibration error is applied directly to the gravitational-
wave model [43]. The subscript j refers to a single
frequency bin, which is spaced by Δf. Since the noise
in each bin is approximately independent, the combined
likelihood is then simply

Lðhjθ;ΛÞ ¼
Y
j

Lðhjjθ;ΛÞ: ð8Þ

The product over frequency bins is implied in subsequent
equations.
Our target distribution, the one for which we want to

generate posterior samples, is Eq. (8) marginalized over Λ:

LΛðhjθÞ ¼
Z

dΛLðhjθ;ΛÞπðΛÞ: ð9Þ

Here πðΛÞ is our prior on the calibration parameters. The
target distribution can be computationally expensive to
sample from owing to the extra dimensionality associated
with Λ. However, if the original calibration R∅ is at least
approximately correct, and if the SNR of the event is not
too large (we quantify how large momentarily), then we can
employ importance sampling to avoid sampling in Λ.
Following [20], we define our proposal distribution,

L∅ðhjjθÞ ¼
1

2πPj
exp

�
−2Δf

jhj − μjðθÞj2
Pj

�
; ð10Þ

corresponding to the likelihood we would use if we
believed the original response function R∅ was perfectly
accurate. We use the proposal distribution to generate
samples in θ using the Bilby [44,45] implementation of
Dynesty [46], a nested sampling algorithm [47]. Since we are
not sampling in Λ, the proposal samples are computation-
ally cheap to generate.
Next, for each posterior sample of the binary model

parameters, drawn from the proposal distribution, θi, we
calculate a weight, which requires marginalizing over
calibration parameters. Following [18], we carry out this
calculation using a predetermined set of N ¼ 104 calibra-
tion response curves, generated with random draws from
the prior distribution fΛkg ∼ πðΛÞ. We define a doubly
indexed weight relating the proposal likelihood to the target
likelihood:
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wik ¼
Lðhjθi;ΛkÞ
L∅ðhjθiÞ

: ð11Þ

Here, i indexes binary posterior samples for the parameter θ
while k indexes calibration prior samples for Λ. The
calibration-marginalized weight is simply

wi ¼
1

N

XN
k

wik ¼
LΛðhjθiÞ
L∅ðhjθiÞ

: ð12Þ

Alternatively, we can marginalize over the gravitational-
wave model parameters in order to obtain weights useful
for constructing posteriors for the calibration parameters:

wk ¼
1

n

Xn
i

wik ¼
LθðhjΛkÞ
Z∅ðhÞ

; ð13Þ

where Z∅ðhÞ is the normalization coefficient of the
proposal posterior distribution, known as the Bayesian
evidence. This procedure is similar to approaches for
estimating neutron-star equations of state with Gaussian
processes [48].
The weights quantify the relative importance of each

sample in light of the fact that we are actually interested in
the target distribution, not the proposal distribution. The
weights can be input directly into routines for constructing
corner plots. They may also be used to calculate the
Bayesian evidence for the target distribution, ZΛðhÞ, from
the evidence for the proposal distribution. The ratio of the
two evidences is simply the average weight,

BΛ
∅ ¼ w̄ ¼ ZΛðhÞ

Z∅ðhÞ
; ð14Þ

known as the Bayes factor which provides a measure of the
preference for the calibrationmodel in comparison to the null
hypothesis ∅ that the data are already correctly calibrated.
The process of constructing these weights is known as
importance sampling [21,22]. This approach is not confined
to the calibration model outlined in Sec. II, and allows for the
application of improved models in the future. Furthermore,
the method can equivalently be applied with other spline
models [14,19] used for analyses in GWTC-1 [3].
The efficacy of importance sampling can be measured

using an efficiency [20,49,50]:

ϵ ¼ neff
n

¼ 1

n
ðPn

i wiÞ2P
n
i w

2
i

: ð15Þ

Here, n is the number of astrophysical samples generated
using the proposal distribution while neff < n is the number
of effective samples created from importance sampling. If
the proposal distribution is close to the target distribution,
the efficiency will be high. As a rule of thumb, ϵ > 50% is
“excellent” (providing a fast, reliable answer) while ϵ ≈
1%–50% is “good,” providing adequate efficiency to make

importance sampling clearly useful. Efficiencies ≲1%
indicate that the proposal distribution is not necessarily a
good approximation for the target distribution, and so
reweighting begins to become inefficient, requiring a large
number of initial samples and many evaluations of the
target likelihood in order to obtain a reliable answer. The
efficiency falls with increasing SNR, since louder events
are characterized by progressively peaked likelihood func-
tions. We verify that the efficiency is above 10% when
SNR≲ 40. Noting that the distribution of network SNR
approximately scales as SNR−4 [7], ∼97% of all GWevents
are expected to lie within this regime. One can judge the
convergence of the importance sampled result by consid-
ering the number of effective samples. The efficiency can
also be used as a measure of the overall effect of the
inclusion of a physical calibration model, though there are
better measures. Pathological cases, where importance
sampling fails due to multimodality, are unlikely to apply
to our present application; see [20] for additional details.
One benefit of likelihood reweighting is its low computa-

tional cost. By directly executing Bayesian inference
with the calibration-marginalized likelihood, the number
of evaluations of the more computationally expensive
model is orders of magnitude larger than the number of
posterior samples produced. By utilizing likelihood
reweighting, the proposal distribution is found with a cheap
likelihood function before the expensive likelihood is used
sparingly in postprocessing.
We can also use the astrophysical parameter-

marginalized weights to construct posterior distributions
for the calibration hyperparameters informed by an ensem-
ble of events. We construct weights for the kth set of
calibration curves informed by M events as

wtot
k ¼

YM
ν

wν
k ¼

YM
ν

LθðhνjΛkÞ
Z∅ðhνÞ

; ð16Þ

where ν indexes the different events, not to be confused
with the additional implied product over frequency bins in
Eq. (6). The average combined weight, w̄tot, is the Bayes
factor for the calibration error distribution compared to the
null hypothesis that the calibration error is zero. Of course,
in order to combine multiple events, we must take care
to ensure that the interferometer is in the same state.
Otherwise, the calibration parameters can be different for
different events. Thus, one must ensure that events are only
combined for a period during which the interferometer is
maintained in a steady configuration.

IV. SIMULATED EVENTS

We validate our method using simulated signals injected
into Gaussian noise colored to match the Advanced LIGO
design sensitivity noise curve [24]. We analyze two signals,
both with properties consistent with GW150914 [1]. We
focus on high-SNR events where calibration errors are
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relatively more important. In one case, we adjust the
distance to achieve an optimal SNR ¼ 30, which is
comparable to the loudest observed gravitational-wave
signal, GW170817 [2] with SNR ≈ 32. In the second case,
we set the distance to achieve SNR ¼ 200. We use
calibration envelopes equivalent to the calibration estimate
at the time of GW170817 [51].
Starting with the SNR ¼ 30 event, we compare the

posterior distributions for binary parameters θ obtained
three different ways: ignoring the calibration error, mar-
ginalizing over calibration error estimates with the impor-
tance sampling method described above, and with “direct
sampling,” in which we marginalize over the calibration
with the N ¼ 104 response curves at every step using
Eq. (9) as the nested sampler explores the astrophysical
parameter space. The direct sampling method is relatively
slow compared to importance sampling (by a factor of
∼250) requiring the use of pBilby [52], a parallelized
implementation of Dynesty [46].
All three methods produce nearly identical posterior

distributions, which are difficult to distinguish by eye,
illustrating that calibration error distribution has only a very
small effect on our inferences about astrophysical param-
eters. This is also verified in Sec. V when analyzing all
events from GWTC-1. In Table III, we present the
maximum one-dimensional JensenShannon (JS) diver-
gence [53] comparing the similarity of the posterior
distributions obtained using each method. The JS diver-
gence is a symmetric extension of the Kullback-Liebler
(KL) divergence [54] which measures the divergence
between 0 bit (no divergence) to 1 bit (maximal diver-
gence). We obtain JS divergence values ≲6 × 10−3 which
are similar to those obtained from comparing the results
obtained using different stochastic sampling codes to
sample the same likelihood [44,45,55].
The SNR ¼ 200 event allows us to study what is likely

to be the maximum-SNR regime for second-generation
gravitational-wave detectors. The Advanced LIGO/Virgo
network at design sensitivity is expected to observeOð104Þ
events over its operational lifetime. Assuming that the
distribution of network SNR scales as SNR−4 [7], the
number of events with a signal-to-noise ratio greater than
200 will be Oð1Þ (see also [25]).

The posterior distributions for the astrophysical param-
eters are presented in the top panels of Fig. 1. We see the
largest differences in the extrinsic parameters (right panel).
In particular, we highlight that the credible regions on the
sky are approximately twice as large when marginalizing
over calibration error estimates than when assuming no
calibration error is present. Quantitatively, this difference
corresponds to a JS divergence of 0.105 for right ascension.
More modest changes are seen for the remaining param-
eters: with JS divergences ≤ 3.04 × 10−2, qualitative astro-
physical results are unchanged. The mean and 95% credible
regions for the prior and posterior on the calibration error
distribution are shown in the lower panels. We note that the
widths of the posterior credible regions are approximately
half that of the prior credible regions.
A GW150914-like event only has gravitational-wave

signal content up to ∼350 Hz [1]. However, we see that our
simulated event informs our model of the LIGO detectors’
calibration error distributions up to 1000 Hz. This is
because the physical calibration model has correlations
encoded between lower and higher frequencies due to the
Gaussian process (see Sec. II B). Once the signal can
inform properties of the sensing function model, i.e., the
signal frequency surpasses ∼200 Hz, then the correlation
length of the calibration model exceeds ∼2000 Hz.
Therefore any information gained about the calibration
model at these frequencies will inform the remainder of the
frequency domain. In contrast, as the spline calibration
model was used for Virgo’s calibration, we learn signifi-
cantly less information about its calibration at the same
higher frequencies.
The Bayes factor for the SNR ¼ 200 injection is

BΛ
∅ ¼ 2.04 × 10−4, indicating a preference for the null

hypothesis that there is no calibration error. We expect
that the Bayes factor prefers the null hypothesis as no
calibration error has been applied to the simulated data.
However, this result also tells us something interesting
about the calibration model. No calibration error (λ ¼ 1)
should be allowed as one possible realization of the
calibration envelope. What does it mean, therefore, that
the data so strongly prefer the null hypothesis for this
injection? We suspect there are two factors at play. First,
some of the preference is likely coming from a large
physical calibration model parameter space. This results in
a penalty known as an Occam factor, where simplified
models with a smaller prior volume are preferred to models
with a larger prior volume, provided the data are fit accu-
rately. However, we suspect that there is a more important
factor at play: the 104 realizations of the calibration
envelope may not be sufficient to adequately fit the
zero-error data. If this is the case, it could be highlighting
the limitations that arise when we represent a continuous
response function with some finite number of curves.
Additional work beyond our present scope would be useful
to investigate these hypotheses.

TABLE III. The largest one-dimensional JensenShannon (JS)
divergence (bit) comparing the similarity of the posterior dis-
tributions obtained using different methods for a simulated
SNR ¼ 30 binary black hole signal. The small value in each
cell indicates that the three methods produce similar distributions,
which implies that calibration error distribution does not have a
significant effect on astrophysical inference.

Direct Importance

No error JSRA ¼ 8.07 × 10−3 JSRA ¼ 5.16 × 10−3

Importance JSa1 ¼ 3.94 × 10−3
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FIG. 1. Posterior distributions for an SNR ¼ 200 GW150914-like event. The top panels show astrophysical parameters. The different
shaded regions are 1σ, 2σ, and 3σ credible intervals. The red contours include the calibration error estimate while the blue contours do
not. The black lines correspond to the injected properties of the source. The bottom panels show the reconstructed response function R.
The red curves show the response curves averaged over calibration hyperparameters. The green curves show the response functions
averaged over prior samples. The 95% credible intervals are indicated with translucent shading. The inclusion of the calibration envelope
broadens the majority of astrophysical parameters by a modest amount. The sky localization of the event broadens noticeably with the
inclusion of calibration error distribution, expanding by a factor of ≈2 in a solid angle. This indicates the possibility that even for the
loudest events observed, the calibration error estimate may not play a major role in the inferences made about the intrinsic properties of
the source. It is interesting to note that constraining calibration model parameters at lower frequencies where the gravitational-wave
signal is detected can inform the calibration model at higher frequencies where no signal is present.
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V. RESULTS FROM GWTC-1

We analyze the 11 binary merger events identified in
GWTC-1 [3,56] using the method described in Sec. III.
Strain data are utilized from the open data release [56],
while noise power-spectral densities are used from

Ref. [57] produced with BayesWave [58,59]. Calibration
error distributions are estimated for LIGO detectors in
the first observing run and Virgo using the spline method
[19,60]. Observations during the second observing run
directly utilize the physical calibration model presented in

FIG. 2. Posterior distributions for GW170608. The top panels show astrophysical parameters. The different shaded regions are 1σ; 2σ,
and 3σ credible intervals. The red contours include the calibration error estimate while the blue contours do not. The inclusion of
uncertainty in the calibration error leads to only marginal changes. The bottom panels show the reconstructed response function R. The
red curves show the response curves averaged over calibration hyperparameters. The green curves show the response functions averaged
over prior samples. The 95% credible intervals are indicated with translucent shading. The data are marginally informative about the
calibration parameters.
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Sec. II. To illustrate the typical effect of the inclusion of the
physical calibration model, we first consider GW170608.
In the top panels of Fig. 2, we show the posterior distri-
butions for the astrophysical parameters for GW170608.
The red contours include marginalization over calibration
error estimates while the blue contours do not. While there

are small differences between the red and blue contours—
we encourage the reader to squint at the posterior distri-
butions for declination, DEC, and inclination, ι—it is clear
that the inclusion of uncertainty in the calibration error has
a very small effect on the size and shape of the astro-
physical posterior distributions. In the bottom panels of

TABLE IV. Summary of results from GWTC-1 and the two injections described in Sec. IV. The efficiency, ϵ, is defined in Eq. (15).
The Bayes factor, BΛ

∅, compares the likelihood obtained marginalizing over the calibration envelope to the marginal likelihood obtained
ignoring any calibration error estimates. The Jensen-Shannon (JS) divergence measures the change in the posterior distribution when we
include the calibration error estimate. For the SNR ¼ 200 injection, no efficiency is given as the results were obtained via direct
sampling of the marginalized likelihood.

Event ϵ [%] BΛ
∅ Max. JS divergence (bit)

GW150914 78.2 0.97 JStc ¼ 1.55 × 10−3

GW151012 99.7 0.97 JSM ¼ 5.05 × 10−5

GW151226 99.4 0.96 JSM ¼ 1.71 × 10−4

GW170104 98.7 0.96 JSϕJL
¼ 2.87 × 10−5

GW170608 97.4 1.12 JSDEC ¼ 2.98 × 10−4

GW170729 99.2 0.93 JSM ¼ 1.12 × 10−4

GW170809 99.3 0.91 JStc ¼ 1.28 × 10−4

GW170814 98.0 1.08 JSRA ¼ 2.93 × 10−4

GW170817 64.9 1.93 JSdL ¼ 8.90 × 10−4

GW170818 98.9 1.06 JSϕJL
¼ 2.88 × 10−4

GW170823 98.9 0.97 JSRA ¼ 2.89 × 10−5

SNR ¼ 30 inj 90.3 0.78 JSRA ¼ 5.16 × 10−3

SNR ¼ 200 inj � � � 2.04 × 10−4 JSRA ¼ 1.05 × 10−1

FIG. 3. Calibration response curve posterior distributions for both LIGO detectors informed by all events during the second observing
run evaluated at the time of GW170729. Marginal shifts in the calibration error distributions are observed. The Bayes factor marginally
favors the inclusion of the calibration error distribution over the zero-error hypothesis by 2.33.
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Fig. 2 we show the reconstructed calibration response
function. The thick red curve is averaged over draws from
the calibration parameter posterior distribution while the
green curve is averaged over draws from the prior. The
slight difference between the red and green credible
intervals shows a (small) change in the mean and 95% con-
fidence intervals of the calibration envelope.
We also present the efficiencies and JS divergences for

all events in GWTC-1 in Table IV. The efficiency for
obtaining calibration-marginalized samples is ϵ ¼ 78.2%
for GW150914, and ϵ ¼ 64.9% for GW170817. The
nonunity efficiency for these two events is due to their
larger network SNR. For other events in GWTC-1, we
obtain efficiencies of ϵ ¼ 97.4%–99.7%. Visual inspection
of the posterior distributions for the other events in
GWTC-1 confirm that the effect of uncertainty in the
calibration error is negligible for events in GWTC-1. This is
further verified by JS divergences ≲1.5 × 10−3, which are
comparable to values found between different implemen-
tations of stochastic sampling algorithms [45] and smaller
than differences due to differences in waveform models [3].
The full analysis of GWTC-1 results are available for
download [61].
Finally, we conclude by determining the calibration

envelope using events from the second observing run
(O2) as standard sirens. We only use events from O2 to
ensure that the time-independent calibration parameters are
identical. We compute the combined weights for the
calibration response curves following Eq. (16). With eight
events in O2, the combined calibration envelope is only
marginally informed by the gravitational-wave signals.
The reconstructed envelope, evaluated at the time of
GW170729, is presented in Fig. 3. We observe only a
modest change from the prior. The total Bayes factor
comparing the calibration error distribution hypothesis to
the zero-error hypothesis is likewise modest: BΛ

∅ ¼ 2.33.
More events are required to meaningfully inform the
calibration error estimate. However, with the requirement
to periodically update the calibration model parameters as
improvements to the detectors are made [18], the required
number of events may not be achievable in the foreseeable
future. This is also concluded within Ref. [23], where they
comment that due to the periodic model updates, astro-
physical calibration may never be competitive.

VI. CONCLUSIONS

We have presented a calibration-marginalized likelihood
for astrophysical parameters employing a physically
informed model for the calibration error as presented in

[16,18]. Within the signal-to-noise ratio regime of previ-
ously observed events and estimates of calibration errors at
the levels reported in GWTC-1, we find the effect of
calibration error is at the same level as the effect of
stochastic sampling errors and less than other known
systematics. Recent work from Ref. [36] has also inves-
tigated similar marginalization using direct sampling of the
calibration error curve index, instead of importance sam-
pling. The conclusions drawn within Ref. [36] are con-
sistent with those drawn here. We also demonstrated that, if
calibration errors remain as low as in GWTC-1, even future
loud events will incur only modest changes in the estimates
of astrophysical parameters, with the potential exception of
increased uncertainty in the sky location. We also demon-
strated the improved inference of calibration parameters
using the collection of events from GWTC-1 as standard
sirens. Our findings are consistent with [23], where it is
found that using gravitational-wave events to improve the
estimate of calibration errors beyond that determined from
in situ measurements requires thousands of detections.
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