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Abstract

In standard genome-wide association studies (GWAS), the standard association test is

underpowered to detect associations between loci with multiple causal variants with

small effect sizes. We propose a statistical method, Model-based Association test

Reflecting causal Status (MARS), that finds associations between variants in risk loci and

a phenotype, considering the causal status of variants, only requiring the existing

summary statistics to detect associated risk loci. Utilizing extensive simulated data and

real data, we show that MARS increases the power of detecting true associated risk loci

compared to previous approaches that consider multiple variants, while controlling the

type I error.
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Background

Over the past decade, genome-wide association studies (GWAS) have successfully iden-

tified many variants significantly associated with diseases and complex traits. Unfortu-

nately, those variants only explain an extremely small proportion of phenotypic variation

[1, 2] and there are many more variants with even smaller effects that we have yet to

identify [1, 3–5]. Detecting all loci that harbor associated risk loci can help elucidate the

biological mechanisms of diseases and complex traits. All biological follow-up studies

have been performed on loci that harbor at least one significant variant. The standard

association test used in GWAS examines one variant at a time to identify associated

variants; we refer to this method as univariate testing.

Previous works have shown that many loci in the genome harbor more than one

causal variant for a given disease or a trait [6–15]. The phenomenon is known as

allelic heterogeneity, which is very common in Mendelian traits [16] and recent works

have demonstrated widespread allelic heterogeneity in expression quantitative trait loci

(eQTLs) and complex traits [17, 18]. The univariate test may be underpowered for a locus

containing multiple causal variants with small effect sizes. Alternatively, an approach
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that considers the effects of multiple causal variants simultaneously may have increased

statistical power to detect signals for the locus by aggregating the effects of causal variants.

In this paper, we propose a new model-based method for identifying the association

between multiple variants in a locus and a trait we call Model-based Association test

Reflecting causal Status (MARS). Our approach builds upon recent progress in fine-

mapping approaches that attempt to identify causal variants in a locus. Causal variants

are responsible for the association signal at a locus; however, each locus often contains

tens to hundreds of variants tightly linked (linkage disequilibrium, LD) to the reported

associated single nucleotide polymorphism (SNP). Therefore, the LD hinders the identifi-

cation of causal variants at the risk locus. CAVIAR [13] is a recent fine-mapping approach

that estimates the probability of each variant being causal, thus allowing an arbitrary

number of causal variants by jointly modeling the association statistics at all variants.

We extend the likelihood model of CAVIAR to explicitly incorporate the LD structure of

data utilizing multivariate normal (MVN) distribution conditional on the causal status of

the variants. MARS computes a likelihood ratio of a null model, where none of the vari-

ants are causal against an alternate model, where at least one variant is causal. Then, an

efficient re-sampling approach is applied for the significance test.

Our method does not require individual-level data, which is often not provided in

GWAS. MARS only requires summary statistics such as Z-scores and the LD of variants

in a locus, which can be obtained from a reference dataset such as HapMap [19, 20] or

the 1000 Genome project [21], and reports a p-value that indicates the significance of

the association between the locus and the corresponding trait. This approach is related

to set-based association tests that examine an association between a set of variants and a

trait [22–24]. MARS outperforms these previous methods because its underlying model,

which builds upon the model of CAVIAR, explicitly models the joint distribution of

observed statistics given multiple signals of associations. Furthermore, MARS uses a sig-

nificance level that corresponds to the standard GWAS significance level, thus facilitating

interpretation.

When applied to several simulated data sets, we show that MARS robustly controls

type I errors and has improved statistical power compared to the univariate test and

widely utilized set-based association tests, a fast and flexible set-Based Association Test

(fastBAT) [25], Deterministic Approximation of Posteriors (DAP-G) [26], and Sequence

Kernel Association Test (SKAT) [27]. In addition, to show the performance of MARS

on both eQTL studies and GWAS, we have applied MARS to representative eQTL and

GWAS datasets; Genotype-Tissue Expression (GTEx) data and Northern Finland Birth

Cohort (NFBC) data, respectively. Applied to the data of 44 tissues provided by the GTEx

consortium [28, 29], MARS identified more eGenes, which are genes with at least one

variant significantly associated with cis compared to those reported by the GTEx consor-

tium in most tissues, e.g., in the Whole Blood data, MARS identified 29% more eGenes

than the consortium; 57% of the extra eGenes that had only been identified by MARS,

i.e., not by consortium, were reported in studies elsewhere. To demonstrate the increased

power of MARS on real data, we followed a strategy of applying MARS to an older data

set and validated the additionally discovered loci using current datasets that have higher

statistical power because they are much larger. Applied to the 2009 NFBC data, we show

that MARS effectively identifies more association loci than the univariate test and show

that many of the new loci have since been discovered in recent GWAS studies.



Hormozdiari et al. Genome Biology          (2021) 22:128 Page 3 of 26

Results

Overview of MARS

Causal variants are those that are responsible for the association signal at a locus. The ulti-

mate goal of the standard association test, which examines the association between each

variant and a trait, is to find causal variants; we refer to this method as univariate testing.

However, multiple causal variants with small effect sizes often exist in a locus. For these

cases, the univariate test may not detect those associations due to its low statistical power.

Alternatively, we can examine the aggregated effect of multiple variants simultaneously

on the trait to increase statistical power.

We developed a novel statistical method referred to as Model-based Association test

Reflecting causal Status (MARS). MARS examines the association between a set of vari-

ants and a trait. MARS requires summary statistics estimated for variants (e.g., z-score)

for a locus of interest and a correlation structure, LD, between the variants, which can

be readily obtained from a reference dataset. To test the association between a set of

variants of a locus and a trait, MARS estimates a likelihood ratio to compute a test

statistic, which is referred to as Likelihood Ratio Test (LRT) statistic; LRTstat . We con-

sider the likelihood of a null model (L0) and the alternative model (L1). Note that we

are computing the likelihood ratio of a null model against the alternative model, not

the full model, which is the standard form of the “Likelihood ratio test” uses. The null

model assumes that there is no causal variant to the trait while the alternative model

assumes that there is at least one causal variant to the trait. Then, we compute the

LRT stat as L1/L0. Suppose that we test the association between m number of variants

and a trait. Given the observed summary statistics, we can compute the LRT stat as

follows:

LRTstat =
∑

C∈ζ p(S|C)p(C)

p(S|C0)p(C0)

Here, S =[ s1, · · · , sm]T indicates summary statistics of m variants and C indicates

the causal status of m variants. C is a binary vector of length m, where 0 indicates

that a variant is non-causal and 1 indicates that a variant is causal. Specifically, C0

indicates the causal status where none of the variants are causal and ζ is a set that con-

tains all possible casual statuses except for C0. Since there are m number of variants,

there are 2m possible causal statuses. In practice, we limited the number of allowed

causal SNPs as well as the number of variants considered for a region to reduce the

running time in experiments throughout the paper. We find that considering up to 3

causal variants and use 50 variants in a region to be reasonable in respect to both the

running time and the accuracy in our experiments. However, a user may increase the

numbers, which is amendable in high computing servers and may provide more accu-

rate results in expense of the running time. For details, see the “Methods” section. To

assess the association significance for a locus, we utilize the re-sampling approach, where

we sample null statistics from a MVN distribution with a corresponding LD and esti-

mate the LRT stats for the null statistics to generate a null panel of LRT stats;LRT
NULL
stats .

From the null panel, we estimate the significance of LRTDATA
stat computed from the

data. Figure 1 shows the basic overall process of MARS. The “Methods” section

describes the details and techniques to make this process computationally feasible for big

genomic data.
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Fig. 1 Overview of MARS. Here, we assume that we are testing an association between a locus ofm variants

and a trait. The leftmost panel shows the input of MARS;m number of summary statistics for the locus and an

n×mmatrix that contains genotypes ofm SNPs for n samples. The next two panels on the bottom show the

re-sampling process in which we sample the null statistics K times from an MVN distribution with a

variance-covariance matrix of � that contains LD of the genotypes X. The rightmost panel shows the process

by which we estimate LRTstats for the null panel from which we can compute a p-value for the data

MARS controls type I error while improving power in simulation studies

We demonstrate that MARS controls type I errors through simulations of null panels

utilizing the GTEx data as a starting point and consider the SNPs ±1Mb around the

transcription start site (TSS) of 10 genes of Whole Blood data from the GTEx consor-

tium [28, 29]. Half of the genes are randomly selected from those reported as eGenes

by the GTEx consortium and the other half are randomly selected from other genes,

i.e., non-eGenes, of the GTEx consortium [28, 29]. For each gene locus, we simulate 107

null summary statistics according to the generative model described in the Materials and

Methods section, which uses the LD structure estimated from the genotypes of the SNPs

in the locus and applies MARS to compute the LRT stats.

To show that MARS controls type I error, the false-positive rates are estimated for dif-

ferent thresholds of α = 5×10−6 to 5×10−2. Half of the simulated data is used to compute

a threshold of LRT stats for the corresponding α; LRT thresholdα and the other half of the

simulated data is used to compute a quantile of LRT stats smaller than the LRT thresholdα .

Figure 2a shows that MARS robustly controls type I error for all examined gene loci as the

false-positive rates for different gene loci are very close to the corresponding α = 5×10−6

to 5 × 10−2, respectively.

To show that MARS increases the statistical power, we performed extensive simulation

studies for various scenarios and compared the power of MARS with those of the univari-

ate test. Here, we defined the univariate test as a set-based association test that uses the

maximum summary statistic among SNPs in the locus we are testing (for details see the

“Methods” section). The same gene loci from the previous section are used for the test

and we estimate power of each gene locus for cases with two causal variants implanted

with different effect sizes of λ = 4, 4.5, 5, 5.5, and 6. For a fair comparison of the powers

between the univariate test andMARS, we utilized the standard GWAS p-value threshold

of 5×10−8. We simulated 108 summary statistics under the null model of no effect to gen-

erate a null panel and 108 summary statistics under the alternative model of effect size λ

for two causal variants to examine the power. To set a threshold for computing the power,

we utilized the concept of the univariate test (see “The standard univariate test, fastBAT,

and DAP-G” sub-section of the “Methods” section). For each null statistic, we selected the

maximum p-value to get 108 maximum p-value from the null panel. Then, we ordered the
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Fig. 2 Comparison of eGenes identified by MARS and eGenes reported by GTEx consortium. a The plot

shows that MARS controls type I error. The points represent 10 different gene loci used for the test where the

five gene loci are from eGenes as reported by the GTEx consortium. b Box plot showing the percentage of

power improvement of MARS over the univariate test for different effect sizes of two causal SNPs that exist in

the data. The X-axis shows five different effect sizes of λ = 4, 4.5, 5, 5.5, and 6 used for the test. The Y-axis

shows the percentage of power improvement. The red and black bars show the power improvement when

loci not reported and reported as eGenes by the GTEx consortium are used for the test, respectively. c Plot

comparing the percentage of power improvement of MARS over the univariate test when two and three

causal variants implanted in the simulation data. Each variant has an effect size of λ = 4.5. d Box plot

showing the power of MARS, DAP-G, and fastBAT for different effect sizes. The X-axis shows the effect sizes of

λ = 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and 6 used for the test. The Y-axis shows the power in percentages. The red,

green, and blue boxplots show the power of MARS, DAP-G, and fastBAT, respectively

maximum p-values to get the quantile, q, where the maximum p-values corresponds to

5×10−8; q is used for setting the LRT thresholds. Then, the power is estimated as a quan-

tile of alternative cases that show LRT stats greater than the LRT threshold. The details of

the whole processes of computing the threshold and estimated the power is described in

the “Power estimation” sub-section of the “Methods” section. The percentage of power

improvement is defined as (power of MARS – power of the univariate test)/(power of the

univariate test) ×100. Figure 2b shows that MARS has increased statistical power com-

pared to the univariate test. While the extent of power improvements differs between

the gene loci as LD structures differ between loci, it is clear for all cases that the pow-

ers are improved over the univariate test. Depending on the effect size λ implanted in the

simulated data, the power has improved from 5.2 to 41.18% in our experiments and as

expected, the smaller the effect size, the better MARS performs over the univariate test.

The results do not show noticeable differences between the loci of the eGenes and of the

non-eGenes used for the simulations.

In addition, we examine the cases where two and three causal variants, each with an

effect size of λ = 4.5, are implanted in the simulated data. As the number of causal vari-

ants increases from two to three, MARS shows a bigger power improvement over the



Hormozdiari et al. Genome Biology          (2021) 22:128 Page 6 of 26

univariate test (Fig. 2c). The result shows that the more causal variants that exist in a

locus, the better MARS performs over the univariate test.

Besides the univariate test, we compared MARS with the widely used set-based asso-

ciation test methods, fastBAT [25], DAP-G [26], and SKAT [27]. Due to the heavy I/O

of fastBAT and DAP-G (an extended version of DAP), we used 105 simulations and a

threshold of 10−5. We computed the power of MARS, DAP-G, and fastBAT for the dif-

ferent effect sizes of λ = 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 and show that MARS outperforms

fastBAT and DAP-G for all cases by improving the power from 0.07 to 23.38% and from

0.6 to 10.61%, respectively, depending on the effect sizes in the experiments (Fig. 2d).

In addition, we compared MARS with SKAT, optimal unified SKAT (SKAT-O) [27] and

Meta-SKAT [30], which is designed for meta-analysis but applicable for a single study as

well. As SKAT does not allow z-scores that we have used for our simulated studies as its

input, we generated phenotypes with a range of effect sizes β for the comparison. The

results show that MARS outperforms SKAT, SKAT-O, and Meta-SKAT. Additional file 1:

Fig. S1 describes the experiments and results in detail.

MARS detects novel eGenes in GTEx data

Recently, a larger number of expression quantitative trait loci (eQTLs) studies have been

reported. In particular, numerous cis-eQTLs, which are eQTLs that map to the approxi-

mate location of their gene-of-origin, have been identified. As part of this effort, the GTEx

consortium reported eGenes, which are genes with at least one cis-eQTL. We applied

MARS to GTEx data to show that it can detect more eGenes than those reported by

the GTEx consortium. Among the 44 tissues provided by the GTEx consortium, we first

applied MARS to the Whole Blood data for evaluation as this data contains the largest

number of samples among all tissues.

For simulation studies and GWAS, we applied a threshold that corresponds to the p-

values threshold of 5 × 108 utilizing the univariate test. However, for a fair comparison

of the MARS results with those reported by the GTEx consortium, a different strategy

has been used. We used 10,000 simulations, which is the number of simulations used by

the GTEx consortium to compute their “empirical p-values” and select eGenes. To iden-

tify eGenes for MARS, we set the threshold as the border of empirical p-values between

eGenes and other genes, referred to as non-eGenes, reported by the GTEx consortium.

Figure 3 is a Venn diagram that compares the identifications of eGenes by MARS and

those reported by the GTEx consortium. MARS identified 2043 extra eGenes that were

not reported by the consortium, while MARS missed only 98 eGenes that were reported

by the consortium [28, 29]. MARS and the GTEx consortium detected 6686 eGenes in

common.

To verify that the eGenes identified by MARS are true associations, we compared the

extra eGenes with those reported by other studies that have larger sample sizes. Note that

the results throughout the paper used data from GTEx version 6. GTEx version 7 has

recently been published with more samples and improved technology in experiments. We

expect more eGenes are detected in the newer version of the data as the power increases

with the number of samples and etc. We compared the extra eGenes with those reported

by GTEx version 7. In addition, we utilized a Whole Blood data of Framingham Heart

Study (FHS) [31], which is independent of GTEx data but contains a larger sample size

(5257 samples), to validate the extra eGenes. Figure 3b is a Venn diagram that compares



Hormozdiari et al. Genome Biology          (2021) 22:128 Page 7 of 26

Fig. 3 Comparison of the eGenes identified by MARS and those reported by GTEx consortium. a The red

circle shows the eGenes identified by MARS and the blue circle shows the eGenes detected by GTEx version

6. Whole blood data was used for the analysis. b A Venn diagram comparing eGenes identified by GTEx

version 6, GTEx version 7, FHS, and MARS. Whole blood data was used for all three studies. The blue, purple,

green, and red circles show the eGenes identified by GTEx version 7, the Framingham Heart Study (FHS),

GTEx version 7, and MARS, respectively. Note that MARS used data from GTEx version 6

the identifications of eGenes from four studies, GTEx version 6, GTEx version 7, FHS,

and MARS. Among the 2043 extra eGenes, about 57% (1160 genes) were reported in

either GTEx version 7 or FHS; 775 genes were reported as eGenes in GTEx version 7,

763 genes were reported as eGenes in FHS, and 378 genes were identified as eGenes by

both GTEx version 7 and FHS. Even with the older version of the data, MARS still found

more eGenes than GTEx version 7 and MARS is expected to identify even more eGenes

when using data with a larger number of samples in further studies. Moreover, some of

the 883 genes (Fig. 3b) that were only identified by MARS and not by GTEx version 6,

GTEx version 7, or FHS, have biological evidence of being eGenes based on many studies

in the literature. Variants of the SP140 (ENSG00000079263) gene are known to be related

to multiple sclerosis (MS) [32] and chronic lymphocytic leukemia [33]. Sille et al. have

demonstrated that the expression level of SP140 is regulated by cis-eQTLs in lymphoblas-

toid cell lines [34]. Besides, the SP140 protein levels are shown to be downregulated by a

cis-acting mechanism in peripheral blood mononuclear cells (PBMCs) from MS patients

[35]. HSPB8 (ENSG00000152137) has been recently identified as an eGene using PBMCs

and the expression level of HSPB8 is known to be regulated by several SNPs [36]. Surfac-

tant protein D encoded by SFTPD (ENSG00000133661) gene is known to be regulated

by in a cis-acting manner in human blood [37], and CD83 (ENSG00000112149) has been

recently identified as cis-eQTLs gene in CD19+ B lymphocyte [38]. Additionally, in Addi-

tional file 1: Fig. S2, we thoroughly analyzed 100 randomly selected genes and compared

the p-values for MARS, the univariate test, and those reported by the GTEx consortium

to show that MARS could identify more eGenes with better p-values. These results show

that MARS is capable of identifying novel eGenes that cannot be detected using standard

association test approaches. Additional file 2: Table S1 lists the 2048 extra eGenes and

their identifications in GTEx version 7 and FHS.

One advantage of MARS is that once the null panel of LRT stats for each gene has been

established, this can be applied to the gene in any other tissues. Utilizing the null panel

of LRT stats estimated from the Whole Blood data of the GTEx consortium, we computed

the p-values of the genes in all 44 tissues of GTEx using their summary statistics and LD
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structures. Figure 4 shows that MARS identifies comparable or more eGenes than the

univariate test in addition to those reported by the GTEx consortium in all tissues. As

expected, the number of eGenes identified by the univariate test and those reported by the

GTEx consortium are very close to each other in all of the tissues. The numbers of genes

differ between tissues due to factors such as sample size differences and we only used the

common genes in each tissue and theWhole Blood data of the GTEx consortium because

the null panel of LRT stats was estimated for genes in the Whole Blood data. Additional

file 3: Table S2 provides a comparison of eGenes identified by MARS, the univariate test,

and the GTEx consortium for each tissue. In addition, we compared eGenes identified by

MARS, GTEx version 6, and GTEx version 7 and provided Venn diagrams as in Fig. 3 for

all tissues (Additional file 1: Fig. S3).

MARS detects more set-based associations in GWAS

We show the effectiveness of our method on GWAS by applying MARS to the Northern

Finland Birth Cohort (NFBC) data [39]. The NFBC data consist of 10 traits collected from

5327 individuals, namely triglycerides (TG), high-density lipoproteins (HDL), low-density

lipoproteins (LDL), glucose (GLU), insulin (INS), body mass index (BMI), and C-reactive

protein (CRP) as ameasure of inflammation, systolic blood pressure (SBP), diastolic blood

pressure (DBP), and height. For NFBC data, we examined 51,762 loci, where each locus is

defined as ±1 Mb of TSS of genes provided by the GTEx consortium.

MARS requires a lot of sampling to apply the standard GWAS p-value threshold of

5 × 10−8. To reduce the running time, we apply the idea of importance sampling [40]

on MARS for the GWAS data, which well approximates the p-value estimated from the

original sampling approach while reducing the sampling number dramatically, from 108

Fig. 4 Number of eGenes identified by MARS, the univariate test, and those reported by the GTEx

consortium. The x-axis shows the 44 tissues provided by the GTEx consortium and the y-axis shows the

number of eGenes identified by each method. The black circle shows the number of eGenes identified by

MARS, the red cross shows the number of eGenes identified by the univariate test, and the green triangle

shows the number of eGenes reported by the GTEx consortium
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to 104 (Additional file 1: Fig. S4). For further details, see the “Fast and space-efficient

sampling for MARS” sub-section of the “Methods” section. Figure 5a shows that, for all

traits, MARS identifies more or comparable loci that are likely significantly associated

with the traits. A total of 471 loci were only identified by MARS and not by the univariate

test. Additional file 4: Table S3 lists significantly associated loci identified by MARS and

by the univariate test and Additional file 1: Fig. S5 provides Venn diagrams that compare

the identifications ofMARS and the univariate test. To verify those extra loci, we searched

the loci from other GWAS by utilizing the GWAS catalog [41]. As a result, several variants

associated with 311 loci among those 471 extra loci have been previously reported [7,

42–66]. For example, the rs6060369 locus associated with height was reported by large

GWAS [49–51]. The rs1800961 locus related to HDL was previously reported by large

GWAS and meta-analysis GWAS [59–61, 65, 66]. The rs6511720 locus related to LDL

was discovered by several previous studies [45, 55, 56, 60, 61, 65]. A Venn diagram in

Fig. 5b compares the number of loci identified by MARS and the univariate test as well

as showing the number of loci for which at least one associated variant has been reported

by the GWAS catalog. The list of SNPs, the corresponding loci found by previous studies,

and their detailed information including PubMed id and SNP position are provided in

Additional file 5: Table S4. Note that loci are defined based on the gene map of GTEx

(±1Mb of TSS), so some loci may overlap (Additional file 1: Fig. S6). For the height, the

univariate test found no associations while MARS found 53 associations. To verify the 53

identifications of MARS on the height, we performed the univariate test on the genetic

investigation of anthropometric traits (GIANT) consortium data set [67] that contains

131,547 samples and is thus much larger than the NFBC data set and expected to have

greater power on the association test. As a result, we found 5788 associations where all 53

associations thatMARS found are included to show thatMARS’s identifications on height

are true-positive signals. These results demonstrate that MARS can efficiently identify

novel associations in GWAS.

Fig. 5 Significant associations identified by MARS and the univariate test in NFBC data. a Number of

significant associations identified by MARS and the univariate test. The x-axis shows the 10 traits of NFBC data

and the y-axis shows the number of set-based associations that will likely be associated with the traits. The

blue bars show associations identified by MARS and the orange bars show associations identified in the

univariate test. The 10 phenotypes are triglycerides (TG), high-density lipoproteins (HDL), low-density

lipoproteins (LDL), glucose (GLU), insulin (INS), body mass index (BMI), C-reactive protein (CRP) as a measure

of inflammation, systolic blood pressure (SBP), diastolic blood pressure (DBP), and height. b A Venn diagram

showing the number of loci was found by the GWAS catalog for 10 traits. The red circle shows the number of

loci identified by MARS, the blue circle shows the number of loci identified by the univariate test, and the

green circle shows the number of identifications reported by the GWAS catalog
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Discussion

Great efforts have been spent on finding the hidden heritability and many studies suspect

that single-level variant tests miss signals due to the small effect sizes and power prob-

lems. Approaches that examine multiple variants together may have increased statistical

power to detect risk loci with small effect sizes. Moreover, interpreting Genome-wide

Association Studies (GWAS) at the gene level is an important step toward understanding

the molecular processes that lead to disease [68, 69]. Several statistical approaches have

been proposed that test the association between a set of variants and a trait or disease sta-

tus; however, they simply use naïve statistics such as the mean or sum of χ2 for statistics

in the risk loci [24, 25, 70, 71].

Our method examines the association between a set of variants and a trait considering

the causal status and LD between variants, utilizing the model used in a recent fine-

mapping approach [13, 72]. One of the advantages of MARS is that it may be applicable to

data with only summary statistics, utilizing LD estimated from a global reference dataset

such as 1000 genome data [73]. Note that a special attention may be required for the

data frommultiancestry or human leukocyte antigen (HLA) region, for which a reference

dataset may not provide an accurate LD estimate due to population stratification [73] or

complex LD patterns [74]. Another advantage of our method is that once a null panel of

test statistics has been established for a locus, it can be applied to the locus in other stud-

ies, only if the analyzed variants (thus, the LD structures) of the locus are the same. For

example, in our GTEx analysis, the null panel statistics for genes were established only

once and applied to all of the 44 tissues. This may reduce the running time significantly

as most of the running burden comes from the null panel generation.

Applied to extensive simulated data sets with different effect sizes and the number of

causal variants, our method shows improved power compared to previous approaches

including the widely used set-based association test, fastBAT and DAP-G, while success-

fully controlling type I errors. Especially, when there are many causal variants with small

effect sizes, our method shows superior performance to the standard univariate associ-

ation test approach. Applied to Genotype-Tissue Expression (GTEx) data, our method

identifies more or comparable eGenes compared to the standard univariate approach as

well as those reported by the GTEx consortium in all tissues. In addition, using Whole

Blood data, we show that a large portion of the eGenes only identified by MARS have

been reported by other larger studies and some of them have biological evidence of being

eGenes based on previous literature. Lastly, utilizing the Northern Finland Birth Cohort

(NFBC) data, we show the effectiveness of our method to the GWAS in that our method

effectively identifies more association loci in GWAS compared to the standard associa-

tion test approach. In the experiments, we have defined each locus as a gene; however, it

could be defined as any set of variants that a user wants to apply to.

We note some limitations in our work. First, MARS is computationally costly compared

to the standard GWAS method as MARS tests the significance of an association based

on the re-sampling approach. However, in practice, we introduce fast and space-efficient

sampling techniques including importance sampling to dramatically reduce the sampling

time, which closely approximates the original result, while we were able to successfully

handle big eQTL data sets that contain tens of thousands of genes and GWAS data sets

with thousands of samples. Second, we limited the number of causal variants in a locus up

to three in the simulated studies to reduce the running time in experiments. We believe
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this is a reasonable assumption, as it has been reported that a relatively small number of

variants exist in a region [13] and MARS showed better results in practice, utilizing real

eQTL and GWAS datasets: GTEx data and NFBC data. However, this may not be a gen-

eral assumption and further investigations may require for the cases with a larger number

of causal variants (>3), comparing with previous methods such as DAP-G and fastBAT,

which may give better results for the cases. Third, our model is based on a linear model

and can only be applied to common variants, not rare variants. For data that does not

follow a normal distribution, we recommend to fit the data into a normal distribution

using techniques such as inverse normal transformation. Also, we assume the summary

statistics are corrected for population stratification. We can extend our likelihood ratio

model using CAVIAR-gene [15] instead of CAVIAR to consider the population stratifi-

cation in the future study. Lastly, MARS does not utilize existing functional data; some

current methods utilize functional data to detect more eGenes [75–77]. We can extend

the statistical framework of MARS to utilize functional data in future work. Despite these

limitations, MARS is a novel statistical method that can detect newly associated loci and

increase the number of loci in follow-up studies. Through this, MARS can increase our

biological understanding of diseases and complex traits.

Methods

In this section, we assume that phenotypic values are continuous values to ease some of

mathematical derivations of computing the summary statistics. MARS only require the

joint distribution of summary statistics to follow multivariate normal distribution. It has

been shown that for binary phenotypes the joint distribution of summary statistics follows

a multivariate normal distribution [15, 78, 79]; thus, summary statistics obtained from

case/control phenotypes are applicable for MARS as well.

GWAS statistics

Consider GWAS on a quantitative trait where we genotype n individuals and collect a

phenotype for them. Let Xi be a vector of length n with the standardized genotypic values

(i.e., mean zero and variance one) of the ith marker that we are testing and Y be a vector of

length n with the phenotypic values. We assume that the data-generation model follows

the following linear additive model:

Y = μ1n + Xiβi + e

Here, μ is the mean of the phenotypic values, 1n is a vector of n ones, βi is their coef-

ficients, and e is a vector of length n sampled fromN (0, σ 2
I) accounting for the residual

errors, where I is an n × n identity matrix.

Under this model, the phenotype follows a MVNwith the following mean and variance:

Y ∼ N
(

μ1n + Xiβi, σ
2
e I

)

By maximizing the likelihood of the model, we can estimate βi as follows:

β̂i = XT
i Y

XT
i Xi

, β̂i ∼ N

(

βi,
σ 2
e

(XT
i X)−1

)
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and the summary statistic is computed as follows:

Si = β̂i

σ̂e

√

XT
i Xi, Si ∼ N (λi, 1)

, where λi is non-centrality parameter (NCP) and is equal to βi
σe

√

XT
i Xi. We obtained the

estimated values for μ, e, and σe as μ̂ = μ1n
TXi
n , ê = Y − 1nμ̂ − β̂iXi, and σ̂e =

√

êT ê
n−2 ,

respectively.

The effect of linkage disequilibrium on the statistics

Consider the case where that the ith SNP is causal to a phenotype and the jth SNP is non-

causal but in LD with the ith SNP. The correlation between the two variants is r, which is

approximated by 1
nX

T
j Xi. The effect size of the jth SNP is computed as follows:

β̂j =
XT
j Y

XT
j Xj

, β̂j ∼ N

(

rβi,
σ 2
e

(XT
j X)−1

)

and the statistics for the jth SNP are computed as follows:

Sj =
β̂j

σ̂e

√

XT
j Xj, Sj ∼ N (rλi, 1)

We can show that the covariance between the statistics is equal to the correlation of the

genotypes as follows:

Cov(Si, Sj) =
XT
i Xj

√

XT
i Xi

√

XT
j Xj

=Cor(Xi,Xj) ≡ rij

Then, the joint distribution of the summary statistics for the two variants given their

NCPs, λi and λj, follows a multivariate normal distribution as follow:
([

Si

Sj

]

|
[

λi

λj

])

∼ N

([

λi

λj

]

,

[

1 rij

rij 1

])

CAVIAR generative model

Now we consider the case with m SNPs. Given the true effect sizes of m SNPs, 	 =
[	1,	2, · · · ,	m], the summary statistics ofm SNPs, S =[ S1, · · · , Sm]T , is as follows:

(S|	) ∼ N (�	,�) (1)

Here, � is a correlation matrix, where �{i, j} = rij. We utilize Fisher’s polygenic model

and assume that the effect sizes follow a normal distribution. Let C be a binary vector of

length m that indicates the causal status of m SNPs; 0 indicates that a SNP is non-causal

and 1 indicates that a SNP is causal. Given the causal status C, we assume that the true

effect size is as follows:

(	|C) ∼ N (0,
) (2)

where 
 is a diagonal matrix, where 
{i, i} = σ 2 if the ith SNP is causal and 
{i, j} =
ε, otherwise. From Eqs. (1) and (2), the likelihood of summary statistics follows a

multivariate normal distribution as follows:

(S|C) ∼ N (0,� + �
�) (3)
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Then the likelihood function is given as follows:

L(�,
|S) = 1√
(2π)m|� + �
�|

exp

(

−1

2
ST (� + �
�)−1S

)

(4)

We use a simple model where the probability that an SNP begins causal is γ , which is

independent from other SNPs. To compute the prior of causal status, we use the same

assumptions that are widely used in fine-mapping methods, and γ is set to 0.01 [13, 78,

80–83]. We have shown that the choice of γ does not make big differences on the results

(for details, see Additional file 1: Fig. S7) We assume each SNP is independent and that

the probability of a SNP to be causal is equal to 0.01 [81, 82]. Therefore, we compute the

prior probability as follows:

p(C) =
m
∏

i=1

γ |ci|(1 − γ )1−|ci| (5)

Here, |ci| = 1 if the ith SNP is causal and |ci| = 0, otherwise. Although we use a simple

prior, we can incorporate external information by using the SNP-specific prior γi, which

is the prior for the ith SNP, and then the prior probability for a more general case is

p(C|γ =[ γ1, · · · γm] ) =
∏m

i=1 γ
|ci|
i (1 − γi)

1−|ci|.

Model-based Association test Reflecting causal Status (MARS)

MARS examines the association between a set of SNPs and a phenotype of interest. For

the test statistic, we utilize a likelihood ratio test (LRT). We consider the likelihoods of

two models: that of the null model (L0) and that of the alternative model (L1). The null

model assumes that there is no causal SNP to the phenotype while the alternative model

assumes that there is at least one causal SNP for the phenotype. Then, we can compute

the test statistic as LRT stat = L1/L0. Given the observed marginal association statistics S

and correlation matrix �, we can compute the LRT stat as follows:

LRTstat =
∑

C∈ζ p(S|C)p(C)

p(S|C0)p(C0)
(6)

Here, we can compute the prior using Eq. (5) and the likelihood using Eq. (4). Since

there arem SNPs, there are 2m potential causal statuses. In practice, we limit the number

of allowed causal SNPs to two or three as which is consistent with reports from previ-

ous studies that a relatively small number of causal SNPs exist in a region. In addition,

as the size of genes are often very large—many genes contain more than 10,000 SNPs

within ±1Mb of TSS for the GTEx data—we order the SNPs by the value of its summary

statistics and only used the top 50 SNPs for computing the LRT stats to reduce the running

time and the space. Figure 6a shows this practical implementation of MARS used for the

experiments. This strategy dramatically reduces the running time while well approximat-

ing the results using all the SNPs in the loci (Additional file 1: Fig. S8) because the causal

SNPs are expected to be included in the top 50 SNPs.When limiting the number of causal

SNPs up to three and using care
∑3

i=1

(

50

i

)

casual statuses to consider and ζ becomes

a set that contains all the possible casual statuses with 1, 2, or 3 causal SNPs. However,

depending on the available computational power and size and properties of the data, the

number of possible causal variants for running MARS may increase using options in the

MARS program.
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Fig. 6 Practical implementation of MARS and fast and efficient sampling strategy for MARS. a To reduce the

running time and space requirement, MARS uses the top 50 statistics instead of all the SNPs in its analysis. b

For GWAS, we introduce a fast and efficient sampling strategy

eGene detection in GTEx data

To identify an eGene, we examine the association between the gene expression levels and

SNPs within ±1Mb of TSS of the gene, which can be the candidates of cis-eQTLs for the

gene. To assess the significance of a gene, we sample summary statistics from an MVN

distribution under the null hypothesis, S ∼ N(0,�). Here, � is a variance-covariance

matrix estimated from the SNPs within±1Mb of TSS of the gene. Based on the simulation

data, we order the SNPs by values of its summary statistics and used only top 50 SNPs

for computing the LRT stats; LRT
NULL
stats using equation (6). Then, we also select the top

50 SNPs of summary statistics to compute the LRT stat of the gene; LRTDATA
stat , using the

equation (6). The p-value of the gene is estimated as the quantile of LRTDATA
stat among

LRTNULL
stats . One of the advantages of MARS is that once the null panel, LRTNULL

stats , has been

estimated for a locus, the panel can be rapidly applied to the locus in any other tissues or

traits to compute a p-value. We use the Whole Blood data, which contains the greatest

number of samples among the 44 tissues, to estimate the null panels of 23,163 genes and

applied the panels to all the other tissues. To compare the MARS results with GTEx’s

results, we use 104 simulations, the number used by GTEx Consortium to compute their

“empirical p-values” to select eGenes. To identify eGenes for MARS, we set the threshold

as the border of empirical p-value between eGenes and genes other than those eGenes,

referred to as non-eGenes, reported by the GTEx consortium, which is differ by tissues

as GTEx used the FDR approach to find their eGenes. A similar process can be applied to

detect eGenes in the univariate test except using the maximum summary statistic as the

test statistic instead of LRT stat .
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Power estimation

To showMARS increases statistical power over the univariate test, we compare the power

between MARS and the univariate test. For a fair comparison, we utilized the standard

GWAS p-value threshold of 5 × 10−8. We sampled 108 number of summary statistics

under the null hypothesis, SNULL ∼ N(0,�) and 108 number of summary statistics under

the alternative hypothesis, SALT ∼ N(�	,�). Here, 	 is a vector of lengthm, wherem is

the number of SNPs that contain zeros except for the causal SNPs. For example, for a sim-

ulation, in which two SNPs (e.g., SNP 1 and SNP 2) with effect size λ are implanted in the

data, 	 is [ λ, λ, 0, ..., 0]. We examined the power for cases with two causal or three causal

SNPs implanted in the simulated data, where the causal SNPs are randomly selected

for each simulation. Then, we computed the p-value of SNULL using the univariate test,

UNIpNULL, and found the quantile q, where the p-value equals to the standard GWAS

p-value threshold of 5 × 10−8 as follows:

q = Number of (UNIpNULL < 5 × 10−8)

We compute the LRT stats of S
NULL as LRTNULL

stats , using MARS and set the LRT stat at the

quantile q as the threshold of LRT stats as LRT
THR
stat , which satisfies the following equation:

Number of(LRTNULL
stat > LRTTHR

stat ) = q

Here, LRTTHR
stat corresponds to the standard GWAS p-value threshold of 5× 10−8. Now,

we compute the LRT stats of S
ALT as LRTALT

stats, and the power of MARS is defined as the

number of LRTALT
stats that are greater than the LRTTHR

stat as follows:

Power of MARS = Number of(LRTALT
stat > LRTTHR

stat )

108
× 100

Similarly, the power of the univariate test is defined similarly by computing the p-value

of SALT using the univariate test; UNIpALT , as follows:

Power of the univariate test = Number of (UNIpALT < 5 × 10−8)

108
× 100

In the power comparison of MARS, fastBAT and DAP-G, the power estimation process

is the same as that described above except for that 105 simulations and a threshold of 10−5

is used instead of 108 simulations and a threshold of 5 × 10−8, respectively.

Fast and space-efficient sampling for MARS

To access the significance of associations, MARS uses a re-sampling approach that

requires a lot of sampling fromMVNdistribution. There are twomain obstructions to this

standard re-sampling approach. One is that a locus may contain many SNPs; for example,

many genes in the GTEx data contain >10,000 SNPs within ±1Mb of their TSS. When

the number of SNPsm is very large, the standard re-sampling approach, S ∼ N(0,�m×m),

using the Cholesky decomposition [84] is impractical. This takes a lot of time and space

as �m×m itself often requires a few gigabytes of space. We can reduce the space and

time complexity dramatically by utilizing the fact that �m×m is a covariance matrix of X;

�m×m = XTX/n, where n is the number of samples. Instead of sampling statistics from

MVN with the variance-covariance matrix of �m×m; S ∼ N(0,�m×m), we sample statis-

tics fromMVNwith the variance-covariancematrix of In×n; S
∗ ∼ N(0, In×n). This neither

takes time nor space because in general n << m and n is not large. Then we multiply S∗

by XT/
√
N to compute the statistics S = XT

√
N
S∗.
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The other main obstruction of the standard sampling approach is that the number of

sampling required to find a proper threshold for MARS may be very large. For the GTEx

data, we compared the eGenes to those reported by the GTEx consortium and performed

10,000 samplings to determine the number of samples used for computing their empiri-

cal p-values. However, for the GWAS analysis, MARS needs to perform a lot of samplings

to find a LRT threshold that corresponds to the standard GWAS p-value threshold of

5 × 10−8. Thus, for GWAS, we have applied importance sampling, which is an approx-

imation method of standard sampling. The main idea of importance sampling is that it

draws the sample from a distribution with thicker tails than a target distribution. Then,

it uses importance weights so that the correct distribution is targeted [40]. The proce-

dure is as follows. Instead of sampling from MVN with the variance-covariance matrix

of In×n; S
∗ ∼ N(0, In×n), we sample statistics from MVN with the variance-covariance

matrix of
√
2In×n; S

∗
imp ∼ N(0,

√
2In×n). Then, the new statistics from importance sam-

pling become Simp = XT
√
N
S∗
imp. We record an additional information, referred to as the

importance weight, which defined as follows:

W = f (S∗|0, In×n)

f (S∗
imp|0,

√
2In×n)

Here, f indicates the probability density function of MVN. We repeat the process of

sampling statistics S∗
imp and computing Simp and W, K times. We call each process as

a run and after K runs we have a set of statistics {Simp1 , Simp2 , · · · , SimpK } and a set of

weights {W1,W2, · · · ,WK }. Then, we estimate a univariate p-value from each Simp and

compute the p-value threshold as the ratio of the sum of weights that have the univariate

p-value< 5 × 10−8 over the sum of all the weights as follows:
∑C

i Wi
∑K

i Wi

(7)

Here, i indicates the index of a run and C is a set containing the indices of runs where

the univariate p-value< 5 × 10−8. Given summary statistics of a locus, we can access

the significance of the locus by computing LRT stat of the summary statistics as LRTDATA
stat .

In addition, we compute the K number of LRT stats for the top 50 SNPs of the Simp as

LRTNULL
stats , as well. Then we compute the p-value of the locus as the ratio of the sum of

weights where LRTNULL
stats > LRTDATA

stats over the sum of all the weights as follows:
∑D

i Wi
∑K

i Wi

(8)

Here, D is a set containing indices of runs with LRTNULL
stats > LRTDATA

stats . The association

is significant if the p-value estimated from the Eq. (8) is smaller than the p-value thresh-

old estimated from the Eq. (7). Applied to 10 randomly selected genes, we find that the

p-value estimated from the 104 number of importance sampling well approximates the

p-values estimated from the 108 number of the original re-sampling (Additional file 1:

Fig. S4). Utilizing the importance sampling, we can reduce the number of samplings dra-

matically from 108 to 104 in GWAS experiments. Figure 6 shows an overview of the fast

and efficient association strategy for MARS (Fig. 6b).

For the GTEx data analysis, we used MARS as described in Fig. 6a, where 104 number

of samplings were performed and up to two causal variants were considered. In this case,

MARS took approximately 3.5 min to test the significance for an average-size gene with
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7522 SNPs for 338 samples in our system. Using parallel processing, we were able to run

the 23,163 genes over several hours, which was approximately 3 h for sampling and com-

puting LRT stats and some extra time for pre-processing and post-processing the data. For

the GWAS data analysis, we applied the fast and efficient strategy of MARS as described

in Fig. 6b, where 104 number of importance sampling was performed and up to two causal

variants were considered. In this case, MARS took approximately 50 min to test a signif-

icance for an average-sized locus with 299 SNPs and 5326 samples in our system. Using

parallel processing, we were able to run the 56,319 number of genes in approximately tow

days.

The standard univariate test, fastBAT, and DAP-G

To compare MARS with the standard approach of the set-based association test, we

defined a univariate test that uses a maximum summary statistic among the SNPs in

the analysis locus. In addition, the widely used set-based association tests fastBAT [25]

and DAP-G [26] were used for the comparison. A Genome-wide Complex Trait Analysis

(GCTA) [85] program was downloaded from the GCTA website (http://gcta.freeforums.

net/thread/309/gcta-fastbat-based-association-analysis) and the “fastBAT” option was

used to run GCTA-fastBAT. The DAP-G program was downloaded from the appropri-

ate website (https://github.com/xqwen/dap/tree/master/dap_src), and summary statistics

were used from the run option.

GTEx data

The summary statistics and genotypes of 44 tissues of GTEx data version 6 were down-

loaded from dbGap (https://www.ncbi.nlm.nih.gov/gap); these were used to generate all

results throughout this paper. The eGene list of GTEx data version 7 was downloaded

from dbGap and only used to validate eGenes that had been identified by MARS applied

on GTEx data version 6. In total, 23,163 gene loci selected from the Whole Blood data

were used for the analysis; these contain at least 50 SNPs in their ± Mb of TSS. We gen-

erated the null panel of LRT stats using Whole Blood data that contains the most samples,

338. The numbers of genes differ between tissues due to factors such as sample size dif-

ferences; therefore, for eGene detection in 44 tissues, we used common gene regions in

each tissue and the Whole Blood data.

Northern Finland Birth Cohort dataset

The genotypes and 10 phenotype values of triglycerides (TG), high-density lipoproteins

(HDL), low-density lipoproteins (LDL), glucose (GLU), insulin (INS), body mass index

(BMI), C-reactive protein (CRP) as a measure of inflammation, systolic blood pressure

(SBP), diastolic blood pressure (DBP), and height of 5326 samples from the Northern

Finland Birth Cohort (NFBC) dataset were downloaded from dbGap. PLINK, a whole-

genome association analysis toolset (http://zzz.bwh.harvard.edu/plink/index.shtml), was

used to compute the statistics. For the set-based association test, the gene map of the

GTEx data that contains 56,319 gene positions was used to define the loci for analysis.

SNPs ±1 Mb around the transcription start site (TSS) of the genes were searched in the

NFBC genotype data and 51,762 regions with >50 SNPs were used for the analysis. 104

importance samplings were performed to generate the null panel to estimate the p-values

of MARS and the univariate test.
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GIANT consortium height dataset

To evaluate the identifications of MARS on the NFBC height data, we performed uni-

variate tests on the GIANT consortium height dataset, which contains 131,547 samples.

[67].
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