
Sharp Interior and Boundary Regularity
of the SMGTJ-Equation with Dirichlet or
Neumann Boundary Control
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Abstract We consider the third order (in time) linear equation known as SMGTJ-
equation, as defined on a multidimensional bounded domain and subject to either
Dirichlet or Neumann boundary control. We then establish corresponding sharp inte-
rior and boundary regularity results.
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1 Introduction: The SMGTJ Equation

Let � be a bounded domain in R
3 with sufficiently smooth boundary � = ∂�,

as specified below. In this paper, we consider the problem of sharp interior and
boundary regularity of the linear version of a third order (in time) PDE with non-
homogeneous term on the boundary. Both Dirichlet and Neumann boundary terms
will be considered. The equation, which should be called SMGTJ [for G. G. Stokes
(1851), F. K. Moore and W. E. Gibson (1960), P. A. Thompson (1972) and P. M.
Jordan (2004)], see [12, 13, 33, 37, 39], arises in a variety of physical contexts such
as: effects of the radiation of heat on the propagation of sound; propagation of distur-
bances in a gas subject to relaxation effects; behavior of viscoelastic materials; prop-
agation of acoustic waves, etc. In particular, if in classical models in nonlinear acous-
tics (Kuznetsov equation, Westervelt equation, Kokhlov–Zobolotskaya–Kuznetsov
equation), one replaces the Fourier Law for the heat flux with the Maxwell-Cattaneo
Law (to avoid the paradox of infinite speed of propagation), one obtains a third order
in time PDE, whose linear part is the one considered in the present paper; that is
[12, 13]

τψt t t + ψt t − c2�ψ − b�ψt = 0 in (0, T ] × �, (1.1)
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where τ > 0, b > 0, c2 > 0 are fixed constants, whose physical meaning is not rel-
evant here. See [34].

We are taking � in R
3, as this is the physically significant setting. However, the

mathematical analysis works on any R
d , d = 1, 2, . . . in the Dirichlet case and in

R
d , d = 2, 3, . . . in the Neumann case.

Part A: Dirichlet Case

2 Linear Third Order SMGTJ-Equation with
Non-homogeneous Dirichlet Boundary Term

Henceforth we shall take τ = 1 in (1.1) w.l.o.g.
If the linear third order equation (1.1) is written in terms of the pressure, then

Dirichlet non-homogeneous boundary terms are appropriate [14]. We then consider
the following mixed problem in the unknown y(t, x):

⎧
⎪⎨

⎪⎩

yttt + αytt − c2�y − b�yt = 0 in Q = (0, T ] × � (2.1a)

y
∣
∣
t=0 = y0; yt

∣
∣
t=0 = y1; ytt

∣
∣
t=0 = y2 in � (2.1b)

y
∣
∣
�

= g in � = (0, T ] × � (2.1c)

2.1 Case g ≡ 0.

A rather comprehensive study of this case was carried out in [34] in the constant
coefficient case via semigroup/functional analytic techniques, and in [15, 16] in the
variable coefficient case via energy methods. Here we shall only report a subset of
these results which are relevant to the present paper. Define the positive self adjoint
operator on H = L2(�):

A f = −� f, D(A) = H 2(�) ∩ H 1
0 (�), (2.2)

so that problem (2.1a), (2.1b) and (2.1c) (with g = 0) can be re-written abstractly as

uttt + αutt + c2 Au + bAut = 0 on H = L2(�), (2.3)

along with I.C. u0, u1, u2. We re-write it as a first order problem as

d

dt

⎡

⎣
u
ut

utt

⎤

⎦ = G

⎡

⎣
u
ut

utt

⎤

⎦ , G =
⎡

⎣
0 I 0
0 0 I

−c2 A −bA −αI

⎤

⎦ . (2.4)
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Introduce the following spaces:

U0 = H × H × H (2.5a)

U1 ≡ D(A
1
2 ) × D(A

1
2 ) × H ; U2 ≡ D(A) × D(A) × D(A

1
2 )

(2.5b)

U3 ≡ D(A) × D(A
1
2 ) × H ; U4 ≡ D(A

3
2 ) × D(A) × D(A

1
2 )

(2.5c)

Theorem 2.1 ([34, Sect. 2]) The operator G in (2.4) generates a s.c. group eGt on
each of the spaces U1, U2, U3, U4 with appropriate domains so that

⎡

⎣
u(t)
ut (t)
utt (t)

⎤

⎦ = eGt

⎡

⎣
u0

u1

u2

⎤

⎦ ∈ C([0, T ]; Ui ), i = 1, 2, 3, 4 (2.6)

for [u0, u1, u2] ∈ Ui , i = 1, 2, 3, 4. Below we shall emphasize the case U3, whereby
then

G : U3 ⊃ D(G) = D(A) × D(A) × D(A
1
2 ) −→ U3 (2.4 bis)

The group generation property points out that the third order equation (2.3) has a
‘hyperbolic’ character. In fact, as in [34], rewrite (2.3) as

(ut + αu)t t + bA

(
c2

b
u + ut

)

= 0. (2.7)

This suggests introducing a new variable, as in [34]

either z = c2

b
u + ut , or else ξ = ut + αu (2.8)

(i) Thus,

If α = c2

b
, then (2.7) =⇒ ztt + bAz = 0 (z = ξ), (2.9)

the pure abstract wave equation.
(ii) Otherwise,

z = c2

b
u + ut = (αu + ut ) − γu, γ = α − c2

b
(2.10)

(ut + αu)t t = ztt + γutt = ztt + γ

(

z − c2

b
u

)

t

. (2.11)

Substituting (2.8), (2.10), (2.11) in (2.7) leads to the following hyperbolic-dominated
system
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt = −bAz − γzt + γ
c2

b
z − γ

(
c2

b

)2

u

ut = −c2

b
u + z

(2.12a)

(2.12b)

(model #2 in [34, Sect. 2]) coupling the hyperbolic z-equation with the scalar ODE
in u.

2.2 Case y0 = 0, y1 = 0, y2 = 0, g �= 0.

In this case, we seek to obtain sharp regularity of the map

g −→
{

y, yt , ytt ,
∂y

∂ν

∣
∣
∣
∣
�

}

(2.13)

from the Dirichlet boundary datum g to the interior solution {y, yt , ytt } and the

Neumann boundary trace
∂y

∂ν

∣
∣
∣
∣
�

of problem (2.1a), (2.1b) and (2.1c). Our main

result in the present Part A (Dirichlet) is the following

Theorem 2.2 With reference to problem (2.1a)–(2.1c) with zero I.C., we have the
following interior regularity results:

g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�)), g(0) = 0, ε > 0 small

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ C([0, T ]; L2(�))

yt ∈ C([0, T ]; [D(A
1
2 )]′ = H−1(�)),

ytt ∈ L2(0, T ; [D(A)]′)
∂y

∂ν

∣
∣
∣
∣
�

∈ H−1(�))

(2.14a)

(2.14b)

(2.14c)

(2.14d)

For (2.14a) and (2.14b), see (3.20) and (3.21), respectively. For (2.14c), see (3.31a).
Finally for (2.14d) see (4.1) of Theorem 4.1. Moreover,

{
g ∈ C([0, T ]; L2(�))

g(0) = 0
=⇒ ytt ∈ C([0, T ]; [D(A)]′), (2.14e)

see (3.31b), all the maps being continuous.

Remark 2.1 The results of Theorem 2.2 should be compared with the following
results for general second order hyperbolic equations, evenwith variable coefficients,
which we however report only for the canonical wave equation.
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Theorem 2.3 ([23, 25, 26]) Consider the following mixed problem, where � is a
bounded domain in R

d , d ≥ 1, with sufficiently smooth boundary �:

⎧
⎪⎨

⎪⎩

wt t = �w in Q = (0, T ] × � (2.15a)

w
∣
∣
t=0 = 0; wt

∣
∣
t=0 = 0 in � (2.15b)

w
∣
∣
�

= g in � = (0, T ] × � (2.15c)

Then
⎧
⎪⎨

⎪⎩

g →
{

w,wt , wt t ,
∂w

∂ν

∣
∣
∣
∣
�

}

continuously

L2(0, T ; L2(�)) → C
([0, T ]; L2(�) × H−1(�) × H−2(�)

) × H−1(�),

(2.16)

where H−1(�) = dual of
{
h ∈ H 1

0 (�)
}

i.e. with h(·, 0) = 0 and h(·, T ) = 0 on �

(but actually, h(·, T ) = 0 is not needed).

Indeed, our proof of Theorem2.2 in Sect. 3 (interior regularity) andSect. 4 (bound-
ary regularity) will critically be based on Theorem 2.3. This result is reported also
in [31, Chap. 10, Sect. 5]. The proof of Theorem 2.3 is by PDE-techniques, either
directly [25, 26], or much more conveniently, by duality [23].

In fact, consider the following problem, dual of problem (2.15a)–(2.15c)

⎧
⎪⎨

⎪⎩

φt t = �φ + f in Q (2.17a)

φ
∣
∣
t=T = φ0; φt

∣
∣
t=T = φ1 in � (2.17b)

φ
∣
∣
�

= 0 in � (2.17c)

Theorem 2.4 ([26], [23, Lemma 2.1, p. 154]) The following (sharp, hidden) trace
regularity holds true

T∫

0

∫

�

(
∂φ

∂ν

)2

d� = OT

(∥
∥
{
φ0,φ1

}∥
∥2

H 1
0 (�)×L2(�)

+ ‖ f ‖2L1(0,T ;L2(�))

)
. (2.18)

Since [23] it has been ascertained that a most convenient roadmap is to first show
(by PDE-techniques) Theorem 2.4 and then obtain Theorem 2.3 on {w,wt , wt t } by
duality.

Problem (2.12a), (2.12b) can be likewise re-written in an abstract form as

d

dt

⎡

⎣
z
zt

u

⎤

⎦ = A

⎡

⎣
z
zt

u

⎤

⎦ , A =
⎡

⎢
⎣

0 I 0

−bA + γ c2

b I −γ I −γ
(

c2

b

)
I

I 0 − c2

b I

⎤

⎥
⎦ . (2.19)
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where A likewise generates a s.c. group eAt on each of the following spaces [34,
Sect. 2]

H0 = D(A
1
2 ) × H × H (2.20a)

H1 ≡ D(A
1
2 ) × H × D(A

1
2 ); H2 ≡ D(A) × D(A

1
2 ) × D(A)

(2.20b)

H3 ≡ D(A
1
2 ) × H × D(A); H4 ≡ D(A) × D(A

1
2 ) × D(A

3
2 )

(2.20c)

The Hi spaces for A are the perfect courterpart of the spaces Ui for G, i = 0, . . . , 4.
One has eGt = MeAt M−1 where the operator M and its inverse M−1 are given
explicitly in [34].

The constant γ = α − c2

b plays a critical role in the stability of the s.c. group eGt

on Ui , equivalently of the s.c. group eAt on Hi . Indeed, eGt is uniformly stable on
each Ui (with a sharp explicit decay rate) if and only if γ > 0. The case γ = 0, see
(2.9) corresponds to the point spectrum σp(A) of A being on the imaginary axis,
while the point− c2

b is in its continuous spectrum [34]. Paper [4] claims that if γ < 0,
and at least in the 1-D case, the boundary homogeneous Eq. (1.1) admits a chotic and
topologically mixing semigroup on Banach spaces of Herzog’s type. General criteria
for hypercyclic and chaotic semigroups were given in [7] and further extended in [3]
with applications in [2].

2.3 Proof of Theorem 2.2: Preliminary Analysis

We introduce, as usual, the Dirichlet map

Dg = ϕ ⇐⇒ {
�ϕ = 0 in �, ϕ

∣
∣
�

= g
}
. (2.21a)

D : L2(�) → H
1
2 (�) ⊂ H

1
2 −2ε(�) = D(A

1
4 −ε), or A

1
4 −ε D ∈ L (

L2(�); L2(�)
)
(2.21b)

by elliptic theory [24, 25, 41], with ε > 0 arbitrary. One cannot take ε = 0, see
[31, Remark 3.1.4, p. 186]. At first we shall take g ∈ H 1(0, T ; L2(�)), so that gt ∈
L2(0, T ; L2(�)) = L2(�). We next return to Eq. (2.1a) and re-write it, as usual [25,
41], [31, Appendix 3B, pp. 420–424], via (2.21a) as

yttt + αytt − c2�(y − Dg) − b�(y − Dg)t = 0 in Q (2.22)

or abstractly, via (2.2), as

yttt + αytt + c2 A(y − Dg) + bA(y − Dg)t = 0 in H. (2.23)
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Extending, as usual [25, 31], the original operator A in (2.2): L2(�) ⊃ D(A) →
L2(�) to Ae : L2(�) → [D(A∗)]′ = [D(A)]′; duality [ ]′ w.r.t. H = L2(�) by iso-
morphism, and retaining the symbol A also for Ae for such extension, we re-write
Eq. (2.23) as

(yt + αy)t t + bA

(
c2

b
y + yt

)

= c2 ADg + bADgt ∈ [D(A)]′. (2.24)

Setting as in (2.10)

z = c2

b
y + yt = (αy + yt ) − γy, γ = α − c2

b
(2.25)

and proceeding as in going from (2.10) to (2.12a), (2.12b), we re-write problem
(2.1a), (2.1b) and (2.1c) as the following hyperbolic-dominated system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ztt = −bAz − γzt + γ
c2

b
z − γ

(
c2

b

)2

y + c2ADg + bADgt ∈ [D(A)]′

yt = −c2

b
y + z

(2.26a)

(2.26b)

along with the I.C. (we are taking y0 = 0, y1 = 0, y2 = 0)

z0 = c2

b
y0 + y1 = 0, z1 = c2

b
y1 + y2 = 0. (2.26c)

3 First Proof of Theorem 2.2 (Interior Regularity): Direct
Method

Step 1 The coupling γ

(
c2

b

)2

y = γ

(
c2

b

)2 ∫ t

0
e− c2

b (t−τ )z(τ )dτ between the hyper-

bolic z-dynamics in (2.26a) and the ODE y-equation in (2.26b) is a mild (lower
order) integral term. Thus, essentially w.l.o.g., we may take at first

γ = 0, i.e. α = c2

b
, (3.1)

see (2.9), to simplify the computations. Thiswill not affect the sought-after regularity
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of the map in (2.9). The terms zt , z that by taking γ = 0 disappear are benign terms
for the argument that follows. Thus, we obtain the simplified problem

⎧
⎪⎨

⎪⎩

ztt = −bAz + c2 ADg + bADgt ∈ [D(A)]′

yt = −c2

b
y + z

(3.2a)

(3.2b)

along with zero I.C., where now under the (essentially w.l.o.g.) assumption (3.1),
the z-problem is uncoupled; that is, explicitly, in PDE-form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ztt = b�z in Q = (0, T ] × �

z
∣
∣
t=0 = 0; zt

∣
∣
t=0 = 0 in �

z
∣
∣
�

= c2

b
g + gt in � = (0, T ] × �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3.3a)

(3.3b)

(3.3c)

(3.3d)

⎧
⎪⎨

⎪⎩

yt = −c2

b
y + z

y
∣
∣
t=0 = 0

(3.4a)

(3.4b)

Orientation Thus, under the (essentially benign) assumption (3.1), the crux of our
proof consists in applying to the z-wave equation, either as a mixed problem as in
(3.3a)–(3.3c), or else in the abstract form (3.2a), the optimal regularity results (at
present for the solution {z, zt } in the interior) from Theorem 2.3 of Remark 2.1 and
then use these results for z to obtain corresponding results for y, via (3.4a), (3.4b).
In carrying out this strategy, the challenge we face is that we seek to reduce the
assumption of regularity of the Dirichlet boundary term g ∈ H 1(0, T ; L2(�)) to a
sort of ‘minimal’ level, as the term gt is not present in the original problem (2.1a),
(2.1b) and (2.1c), but is sneaked in at the level of the technical step in (2.23). Of
course g ∈ H 1(0, T ; L2(�)) allows one to invoke the results of Theorem 2.3 at once
and thus obtain a preliminary (conservative) result: the map

g ∈ H 1(0, T ; L2(�)) → {z, zt } ∈ C([0, T ]; L2(�) × H−1(�)) (3.5a)

continuously. From here, it then readily follows by (3.4a), (3.4b); as y0 = 0, z0 = 0:
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y(t) =
t∫

0

e− c2

b (t−τ )z(τ )dτ ∈ C([0, T ]; L2(�)) (3.5b)

yt (t) =
t∫

0

e− c2

b (t−τ )zt (τ )dτ ∈ C([0, T ]; H−1(�)) (3.5c)

continuously. We note for future reference that for the positive self-adjoint operator
A in (2.2) we have

D(A
1
2 ) ≡ H 1

0 (�), hence [D(A
1
2 )]′ ≡ H−1(�) (3.6)

(norm-equivalence) [23, Eq. (3.1), p. 17]. Our goal is precisely to refine the regularity
results in (3.5a)–(3.5c), i.e. by eventually dropping the H 1-regularity of g in time,
via a limit approximation argument.
Step 2 To this end, we shall use critically representation formulas of solutions of sec-
ond order hyperbolic equations with (presently) Dirichlet non-homogeneous terms,
such as the z-problem (3.3a)–(3.3c), by use of cosine/sine operators. Such formulas—
(3.8a), (3.9a) below—for boundary non-homogeneous second order PDEs were
first introduced in [41] in 1977 and used extensively since, e.g. in [25–28], [23,
Sect. 3], etc. The author most gratefully acknowledges to have learnt cosine operator
theory (originally, for boundary homogeneous problems) from Sova [36], Kisynski
[17–22], Da Prato–Giusti [6]. This theory for boundary non-homogeneous problems
was later collected in Fattorini [10, 11]. For convenience and easy reference, we shall
recall critical results as needed in our present development in Appendix A. The (neg-
ative self-adjoint) operator −A : L2(�) ⊃ D(A) → L2(�) generates a s.c. (self-

adjoint) cosine operatorC(t)with corresponding sine operatorS(t)x =
∫ t

0
C(τ )xdτ .

As reported in Appendix A after [25, 26, 31, 41], the representation formulae for
the solution of the Dirichlet-boundary problem (3.3a)–(3.3c), or its abstract version
(3.2a) with henceforth

b = 1, c = 1, w.l.o.g. (3.7)

are given by (S(0) = 0) [23, p. 172]

z(t) = A

t∫

0

S(t − τ )Dg(τ )dτ + A

t∫

0

S(t − τ )Dgt(τ )dτ (3.8a)

= z(1)(t) + z(2)(t) (3.8b)
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zt (t) = A

t∫

0

C(t − τ )Dg(τ )dτ + A

t∫

0

C(t − τ )Dgt(τ )dτ (3.9a)

= z(1)
t (t) + z(2)

t (t). (3.9b)

Step 3 We now invoke the optimal regularity theory of the wave (or, gener-
ally, 2nd order hyperbolic equations), this time with Dirichlet boundary term
g ∈ L2(0, T ; L2(�)) and obtain, continuously (Theorem 2.3):

g ∈ L2(0, T ; L2(�)) =⇒

⎧
⎪⎪⎨

⎪⎪⎩

z(1)(t) = A
∫ t

0
S(t − τ )Dg(τ )dτ ∈ C([0, T ]; L2(�)) (3.10a)

z(1)
t (t) = A

∫ t

0
C(t − τ )Dg(τ )dτ ∈ C([0, T ]; H−1(�)) (3.10b)

Step 4 Next, let with ε > 0 arbitrarily small

g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�)), g(0) = 0. (3.11)

Integrating by parts (S(0) = 0) we obtain from (3.8a), (3.8b)

z(2)(t) = A

t∫

0

S(t − τ )Dgt (τ )dτ =
[

AS(t − τ )Dg(τ )
]τ=t

τ=0
− A

t∫

0

C(t − τ )Dg(τ )dτ

(3.12)

=�������
AS(0)Dg(t) −�������

AS(t)Dg(0) − A

t∫

0

C(t − τ )Dg(τ )dτ

or, as in (3.10b):

⎧
⎪⎪⎨

⎪⎪⎩

z(2)(t) = −A

t∫

0

C(t − τ )Dg(τ )dτ = −z(1)
t (t) ∈ C([0, T ]; H−1(�))

for g as in (3.11), continuously.

(3.13)

Thus, by (3.10a) and (3.13) used in (3.8b), we obtain

{
z(t) = z(1)(t) + z(2)(t) ∈ C([0, T ]; H−1(�))

for g as in (3.11), continuously.
(3.14)

Step 5 Next, returning to the y-equation in (2.26b) [with (3.7) w.l.o.g.] and z given
by (3.14) we obtain as in (3.5b), (3.5c)
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y(t) =
t∫

0

e−(t−τ )z(τ )dτ =
t∫

0

e−(t−τ )z(1)(τ )dτ +
t∫

0

e−(t−τ )z(2)(τ )dτ (3.15a)

= y(1)(t) + y(2)(t). (3.15b)

Returning to (3.10a) for z(1), we obtain conservatively

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(1)(t) =
t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; L2(�))

for g ∈ L2(0, T ; L2(�)), continuously.

(3.16)

Next, with z(2) = −z(1)
t (t) as given by (3.13), we compute

y(2)(t) =
t∫

0

e−(t−τ )z(2)(τ )dτ = −
t∫

0

e−(t−τ )z(1)
t (τ )dτ (3.17)

= −
[
e−(t−τ )z(1)(τ )

]τ=t

τ=0
+

t∫

0

e−(t−τ )z(1)(τ )dτ (3.18)

⎧
⎪⎪⎨

⎪⎪⎩

y(2)(t) = −z(1)(t) +������
e−t z(1)(0) +

t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; L2(�))

for g as in (3.11), continuously.
(3.19)

as the expression of z(2) = −z(1)
t (t) in (3.13) has such a constraint. As to the regularity

noted in (3.19), we invoke (3.10a) for the term z(1)(t), while the same regularity holds
true for the second convolution term, this time conservatively.

We conclude by (3.16) on y(1) and (3.19) on y(2) that

⎧
⎪⎪⎨

⎪⎪⎩

y(t) = y(1)(t) + y(2)(t) = −z(1)(t) + 2

t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; L2(�))

for g as in (3.11), continuously.
(3.20)

Then (3.20) shows the first result in (2.14a) of Theorem 2.2.
Step 6 Next, with (2.25) = (3.4a), invoke (3.14) for z and (3.20) for y and obtain via
(3.6): ⎧

⎨

⎩

yt = −c2

b
y + z ∈ C

(
[0, T ]; H−1(�) = [D(A

1
2 )]′

)

for g as in (3.11), continuously.
(3.21)
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Then (3.21) shows the second result in (2.14b) of Theorem 2.2.
Step 7 We finally need to establish the regularity of ytt . This will be obtained via
(3.4a) from

ytt = −c2

b
yt + zt . (3.22)

Thus, we need to establish the regularity of zt , as that of yt is given by (3.21).
But zt = z(1)

t + z(2)
t by (3.9b), where the regularity of z(1)

t = −z(2)(t) by (3.13) was
already established in (3.10b).
Step 8We seek the regularity of z(2)

t from its representation formula in (3.9a), (3.9b).
We compute from (3.9b), with g as in (3.11)

z(2)
t (t) = A

t∫

0

C(t − τ )Dgt(τ )dτ (by parts, recalling (A.2)) (3.23)

=
[

AC(t − τ )Dg(τ )
]τ=t

τ=0
+ A

t∫

0

AS(t − τ )Dg(τ )dτ (3.24)

= ADg(t) −�������
AC(t)Dg(0) + AA

t∫

0

S(t − τ )Dg(τ )dτ (3.25)

= ADg(t) + Az(1)(t) (3.26)

recalling C(0) = I and (3.10a). Thus by (3.10a)

g ∈ L2(0, T ; L2(�)) =⇒ Az(1)(t) = AA

t∫

0

S(t − τ )Dg(τ )dτ ∈ C([0, T ]; [D(A)]′)

(3.27)
continuously. Moreover, by (2.21b) with any ε1 > 0

g ∈ L2(0, T ; L2(�)) =⇒ ADg = A
3
4 +ε1(A

1
4 −ε1 D)g ∈ L2(0, T ; [D(A

3
4 +ε1)]′)

⊂ L2(0, T ; [D(A)]′)
(3.28a)

g ∈ C([0, T ]; L2(�)) =⇒ ADg = A
3
4 +ε1(A

1
4 −ε1 D)g ∈ C([0, T ]; [D(A

3
4 +ε1)]′)

⊂ C([0, T ]; [D(A)]′)
(3.28b)

continuously. By (3.26), (3.28a) and (3.27)

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ z(2)

t (t) = ADg + Az(1) ∈ L2(0, T ; [D(A)]′)
(3.29a)
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continuously, as well as by (3.26), (3.28b) and (3.27)

{
g ∈ C([0, T ]; L2(�)) =⇒ z(2)

t (t) = ADg + Az(1) ∈ C([0, T ]; [D(A)]′)
g(0) = 0,

(3.29b)
continuously.
Step 9 In turn, combining (3.10b) for z(1)

t with (3.29a) for z(2)
t in (3.9b), we conclude

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ zt = z(1)

t + z(2)
t ∈ L2(0, T ; [D(A)]′)

(3.30a)
continuously, as well as by (3.29b) on z(2)

t this time

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ zt = z(1)

t + z(2)
t ∈ C([0, T ]; [D(A)]′) (3.30b)

continuously. Finally, from (3.22), recalling the regularity of yt in (2.14b) and the
regularity of zt in (3.30a), we obtain

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ ytt = −c2

b
yt + zt ∈ L2(0, T ; [D(A)]′)

(3.31a)
continuously, as well as by (2.14b) and (3.30b)

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ ytt = −c2

b
yt + zt ∈ C([0, T ]; [D(A)]′) (3.31b)

continuously. Then (3.31b) shows the result in (2.14c) and (2.14e) of Theorem 2.2.

4 Proof of Theorem 2.2: Regularity of the Boundary Trace
∂ y
∂ν

∣
∣
∣
∣
�

In this section we shall establish the boundary regularity (2.14d) of Theorem 2.2. It
is here repeated for convenience.
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Theorem 4.1 With reference to problem (2.1a)–(2.1c), we have

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0
=⇒ ∂y

∂ν

∣
∣
∣
∣
�

∈ H−1(�) (4.1)

continuously. Here H−1(�) = dual of {h ∈ H 1
0 (�)} i.e. with h(·, 0) = 0 and

h(·, T ) = 0 on � (but actually, h(·, T ) = 0 is not needed.)

Proof Step 1We return to the solution representation formula (3.8b) complemented
by (3.13), with g as in (3.11), in particular g(0) = 0:

z(t) = z(1)(t) + z(2)(t) = z(1)(t) − z(1)
t (t) (4.2)

= A

t∫

0

S(t − τ )Dg(τ )dτ − A

t∫

0

C(t − τ )Dgt(τ )dτ . (4.3)

recalling (3.10a), (3.10b). We next invoke critically the boundary regularity results
in [23, Eq. (2.14) of Theorem 2.3, p. 153], recalled in Theorem 2.3, Eq. (2.16) of
Remark 2.1 and also (A.5):

g ∈ L2(0, T ; L2(�)) =⇒ ∂z(1)

∂ν

∣
∣
∣
∣
�

= −D∗ AA

t∫

0

S(t − τ )Dg(τ )dτ ∈ H−1(�).

(4.4)
Step 2We now return to (3.20), with g as in (3.11) (and b = 1, c = 1, w.l.o.g. as in
(3.7))

y(t) = −z(1)(t) + 2

t∫

0

e−(t−τ )z(1)(τ )dτ (4.5)

where then, recalling (4.4), we obtain

∂y

∂ν

∣
∣
∣
∣
�

= − ∂z(1)

∂ν

∣
∣
∣
∣
�

+ 2

t∫

0

e−(t−τ ) ∂z(1)

∂ν
(τ )dτ ∈ H−1(�) (4.6)

for g as in (3.11), continuously. Then (4.6) establishes Theorem 4.1. �

5 A Boundary Trace Result for the u-Problem (2.3)

The optimal interior (and boundary) regularity results for second order hyperbolic
equations with Dirichlet boundary terms were proven directly in [25, 26] and by
duality in [23] via Theorem 2.4. This latter paper then set up the road map to obtain
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optimal interior (and boundary) regularity results for a variety of other dynamics such
as: Schrödinger equations with Dirichlet boundary term, plate-like equations with
certain boundary terms, all by duality. Dual results (boundary traces) are of interest in
themselves. In this paper, we shall also show an independent dual result, which will
be used in Sect. 6 in reproving (essentially) the main Theorem 2.2. The dual result
will be given in Sect. 6. In this section, we provide an independent boundary trace
result for a problem which is not the dual problem of the original non-homogeneous
problem (2.1a)–(2.1c), but which is very closely related to the actual dual problem.
This will be presented in Sect. 6. The independent boundary trace results of the
present and next sections for the SMGTJ mixed problem will be critically based on
a duality result of second order hyperbolic equation, namely Theorem 2.4. In the
present section, the object of our interest is problem (2.3), re-written in PDE-form
as

⎧
⎪⎪⎨

⎪⎪⎩

uttt + αutt − c2�u − b�ut = 0 in Q = (0, T ] × �

u
∣
∣
t=T = u0; ut

∣
∣
t=T = u1; utt

∣
∣
t=T = u2 in �

u
∣
∣
�

= 0 in � = (0, T ] × �

(5.1a)

(5.1b)

(5.1c)

abstractly uttt + αutt + c2 Au + bAut = 0 (5.1d)

with I.C. at t = T (i.e. backward in time). We shall select the I.C. in the space U3

defined in (2.5c)
{u0, u1, u2} ∈ U3 ≡ D(A) × D(A

1
2 ) × H. (5.2)

Accordingly, in view of Theorem 2.1, we have

⎡

⎣
u0

u1

u2

⎤

⎦ ∈ U3 →
⎡

⎣
u(t)
ut (t)
utt (t)

⎤

⎦ = eG(T −t)

⎡

⎣
u0

u1

u2

⎤

⎦ ∈ C([0, T ]; U3) (5.3)

continuously, where eGt is a s.c. group on U3 with infinitesimal generator G defined
in (2.4). Explicitly,

[u0, u1, u2] ∈ U3 = D(A) × D(A
1
2 ) × L2(�) =⇒
[u, ut , utt ] ∈ C([0, T ];D(A) × D(A

1
2 ) × L2(�))

= C([0, T ]; [H2(�) ∩ H1
0 (�)] × H1

0 (�) × L2(�)),

(5.4)

continuously, to be invoked repeatedly below. The key boundary trace result of the
present section is the following Theorem.

Theorem 5.1 With reference to problem (5.1a)–(5.1b), (5.2), the following trace
estimate holds true



394 R. Triggiani

T∫

0

∫

�

(
∂ut

∂ν

)2

d� = OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
(5.5)

whereO denotes a constant depending on T, T > 0 arbitrary, as well as the equation
coefficients.

Remark 5.1 Estimate (5.5) is an illustration of a sharp, so called hidden regularity
result, in line with the phenomenon first discovered in [23, 26] for second order
hyperbolic equations, and reported (for the wave equation) in Theorem 2.4. The term

ut ∈ C([0, T ]; H 1
0 (�)) optimally in the interior, and yet

∂ut

∂ν
∈ L2(0, T ; L2(�)), i.e.

it possesses ‘ 12 ’ space regularity better than a formal application of trace theory by
reducing the time regularity from C to L2.

Proof of Theorem 5.1. Step 1 Rewrite Eq. (5.1a) as in (2.7)

(ut + αu)t t − b�

(
c2

b
u + ut

)

= 0 in Q (5.6)

and introduce now the variable ξ in (2.8) recalling (5.4)

ξ = αu + ut ∈ C([0, T ]; H 1
0 (�)), so that

c2

b
u + ut = ξ − γu, γ = α − c2

b
.

(5.7)
Rewrite problem (5.1a)–(5.1c) accordingly as

⎧
⎪⎪⎨

⎪⎪⎩

ξt t − b�ξ + bγ�u = 0 in Q

ξ
∣
∣
t=T = ξ0 = αu0 + u1; ξt

∣
∣
t=T = ξ1 = αu1 + u2 in �

ξ
∣
∣
�

≡ 0 in �

(5.8a)

(5.8b)

(5.8c)

abstractly ξt t + bAξ − bγ Au = 0 (5.8d)

with I.C. at t = T . For problem (5.8a)–(5.8c), the key sharp/hidden regularity result
is

Theorem 5.2 With reference to problem (5.8a)–(5.8c), we have

T∫

0

∫

�

(
∂ξ

∂ν

)2

d� = OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
, U3 = D(A) × D(A

1
2 ) × L2(�)

(5.9)
where OT denotes a constant depending on T, T > 0 arbitrary.
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Remark 5.2 Estimate (5.9) is again an illustration of a sharp, ‘hidden’ regularity
result, as ξ ∈ C([0, T ]; H 1

0 (�)) optimally in the interior, by (5.7), and thus (5.9)
does not follow by a formal application of trace theory.

Proof of Theorem 5.2 The proof is critically based on the approach and results of
[23] reproduced also in [31, Sect. 10.5.10, p. 958]. Let, as usual, h(x) = [h1(x), . . . ,

hd(x)] ∈ C2(�) be a vector field, such that h
∣
∣
�

= ν = outward unit normal vector.

Let H(x) =
[

∂hi

∂x j

]

, i, j = 1, . . . , d be the usual Jacobian matrix. The multiplier

method, with multiplier h · ∇ξ, applied to Eq. (5.8a), say with b = 1 w.l.o.g., gives
the usual identity [31, Eq. (10.5.10.5), p. 959]

∫

�

∂ξ

∂ν
h · ∇ξd� + 1

2

∫

�

ξ2t h · νd� − 1

2

∫

�

|∇ξ|2h · νd�

=
∫

Q

H∇ξ · ∇ξd Q + 1

2

∫

Q

ξ2t divh d Q − 1

2

∫

Q

|∇ξ|2 divh d Q

+bγ

∫

Q

�uh · ∇ξd Q +
[(

ξt , h · ∇ξ
)

�

]T

0
, (5.10)

where from (5.4), (5.7), (5.8c)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξt ≡ 0 on �; h · ∇ξ = ∂ξ

∂ν
h · ν = ∂ξ

∂ν
on �; |∇ξ|2 =

(
∂ξ

∂ν

)2

on �

ξ = αu + ut ∈ C([0, T ]; H 1
0 (�)); |∇ξ| ∈ C([0, T ]; L2(�))

ξt ∈ C([0, T ]; L2(�)); �u ∈ C([0, T ]; L2(�))

(5.11)
continuously on {u0, u1, u2} ∈ U3. Thus, as usual via (5.11), identity (5.10) reduces
to

T∫

0

∫

�

(
∂ξ

∂ν

)2

d� = OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
(5.12)

and Theorem 5.2 is established. In effect, we could get estimate (5.12) at once by
applying Theorem 2.4 directly, with �u as given by (5.11). The above computations
based on (5.10) give a flavor of the proof of Theorem 2.4 given in [23, Lemma 2.1,
p. 154].
Step 2 From (5.7), we estimate

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
∣
∣
∂ut

∂ν

∣
∣
∣
∣ − |α|

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∂ut

∂ν
+ α

∂u

∂ν

∣
∣
∣
∣ =

∣
∣
∣
∣
∂ξ

∂ν

∣
∣
∣
∣ (5.13a)

1

2

∣
∣
∣
∣
∂ut

∂ν

∣
∣
∣
∣

2

− α2

∣
∣
∣
∣
∂u

∂ν

∣
∣
∣
∣

2

≤
∣
∣
∣
∣
∂ξ

∂ν

∣
∣
∣
∣

2

(5.13b)
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which used in (5.12) yields

T∫

0

∫

�

(
∂ut

∂ν

)2

d� ≤ O
(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
+ 2α2

T∫

0

∫

�

(
∂u

∂ν

)2

d�. (5.14)

Step 3 Via u ∈ C([0, T ]; H 2(�)) from (5.4), we obtain directly via trace theory

T∫

0

∫

�

(
∂u

∂ν

)2

d� ≤ CT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
(5.15)

which inserted in (5.14) yields

T∫

0

∫

�

(
∂ut

∂ν

)2

d� = OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
(5.16)

as desired, and Theorem 5.1 is proved.

6 A Dual Result of the Non-homogeneous Dirichlet
Problem (2.1a)–(2.1c)

It turns out that the dual problem of the boundary non-homogeneous Dirichlet prob-
lem (2.1a)–(2.1c) is actually the problem

⎧
⎪⎨

⎪⎩

vt t t − αvt t + c2�v − b�vt = 0 in Q (6.1a)

v
∣
∣
t=T = v0; vt

∣
∣
t=T = v1; vt t

∣
∣
t=T = v2 in � (6.1b)

v
∣
∣
�

= 0 in � (6.1c)

abstractly vt t t − αvt t − c2 Av + bAvt = 0 (6.2)

along with I.C. at t = T . This is very closely related to problem (5.1a)–(5.1c), or its
abstract version (5.1d), as the present considerations attest. Write (6.1a) as in (2.7)
= (5.6).

(vt − αv)t t − b�

(

−c2

b
v + vt

)

= 0 in Q. (6.3)

Set, similarly to (2.8)

η = vt − αv so that ζ = −c2

b
v + vt = η + γv, γ = α − c2

b
(6.4)
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and then problem (6.1a)–(6.1c) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

ηt t − b�η − bγ�v = 0 in Q

η
∣
∣
t=T = η0 = v1 − αv0; ηt

∣
∣
t=T = η1 = v2 − αv1 in �

η
∣
∣
�

≡ 0 in �

(6.5a)

(6.5b)

(6.5c)

abstractly ηt t + bAη + bγ Av = 0 (6.5d)

with I.C. at t = T , to be compared with the ξ-problem (5.8a)–(5.8c) and its abstract
version (5.8d). Moreover, in terms of the variable ζ in (6.4), we have, with γ =
α − c2

b :

ζ = − c2

b
v + vt = (−αv + vt ) + γv = η + γv (6.6)

(vt − αv)t t = ζt t − γvt t = ζt t − γ

(

ζ − c2

b
v

)

t
= ζt t − γζt − γ

c2

b
vt (6.7)

= ζt t − γζt − γ
c2

b
ζ − γ

(
c2

b

)2

v. (6.8)

Hence (6.3) (vt − αv)t t + bA
(
− c2

b v + vt

)
= 0 is rewritten by (6.6)–(6.8) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζt t = −bAζ + γζt + γ
c2

b
ζ + γ

(
c2

b

)2

v

vt = c2

b
v + ζ,

(6.9a)

(6.9b)

to be compared with the z-problem (2.12a), (2.12b). The ζ-problem (6.9a), (6.9b)
and the z-problem in (2.12a), (2.12b) differ only by innocuous changes of signs.
Thus, the well-posedness theory developed in [34] and recalled in Theorem 2.1 for
the z-problem in (2.12a), (2.12b) applies also to the ζ-problem (6.9a), (6.9b) over a
finite time interval. In particular, the implication on the original v-problem (6.1a)–
(6.1c)—counterpart of the u-problem in Theorem 2.1 is the following Theorem.

Theorem 6.1 With reference to problem (6.1a)–(6.1c) we have

{v0, v1, v2} ∈ U3 ≡ D(A) × D(A
1
2 ) × H =⇒ {v, vt , vt t } ∈ C([0, T ]; U3) (6.10)

as a s.c. group on U3.

Returning to the v-problem (6.1a)–(6.1c), we obtain the following Theorem.
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Theorem 6.2 With reference to the v-problem (6.1a)–(6.1c), abstractly (6.2), we
have

T∫

0

∫

�

(
∂vt

∂ν

)2

d� = OT

(∥
∥
{
v0, v1, v2

}∥
∥2

U3

)
, U3 = D(A) × D(A

1
2 ) × H.

(6.11)

The proof is exactly the same as that of Theorem 5.1. The first step is showing

Theorem 6.3 With reference to the η-problem (6.5a)–(6.5d), we have

T∫

0

∫

�

(
∂η

∂ν

)2

d� = O
(∥
∥
{
v0, v1, v2

}∥
∥2

U3

)
. (6.12)

The proof of Theorem 6.3 is exactly the same as that of Theorem 5.2 (the difference
in sign +bγ in (5.8a) versus −bγ in (6.5a) is irrelevant, under the common property
�u,�v ∈ C([0, T ]; H). Also, apply at once Theorem 2.4.

Next, by duality on the trace result in Theorem6.2 for the v-problem (6.1a)–(6.1c),
we shall re-obtain (in a slightly weaker form) the basic interior regularity result of
Theorem 2.2 for

{
y, yt , ytt

}
. While the proof of Theorem 2.2 was ‘direct’, the proof

of Theorem 6.4 is ‘by duality’.

Theorem 6.4 With reference to the Dirichlet problem (2.1a)–(2.1c),we have

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ {

y, yt , ytt
} ∈ C([0, T ]; H × [D(A

1
2 )]′ × [D(A)]′)

(6.13)
continuously.

Proof Step 1We shall first establish the following

Proposition 6.5 With reference to the Dirichlet problem (2.1a)–(2.1c),we have, for
each 0 < t ≤ T :

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ {

y(t), yt (t), ytt (t)
} ∈ H × [D(A

1
2 )]′ × [D(A)]′ (6.14a)

=⇒
t∫

0

[
y(τ ), yt (τ ), ytt (τ )

]
dτ ∈ H × [D(A

1
2 )]′ × [D(A)]′ (6.14b)

continuously.
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Proof of Proposition 6.5. Step (i) By Theorem 6.1 and 6.2, we have

{
v0, v1, v2

} ∈ U3 = D(A) × D(A
1
2 ) × H (6.15a)

=⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
v, vt , vt t

} ∈ C([0, T ]; U3 = D(A) × D(A
1
2 ) × H)

AND

∂vt

∂ν
∈ L2(0, T ; L2(�))

(6.15b)

continuously.
Step (ii)We now invoke the duality identity (B.4) in Appendix B, which we rewrite
here for convenience for a generic t, 0 < t ≤ T :

〈ytt (t) + αyt (t), v0〉 − 〈yt (t) + αy(t), v1〉 + 〈y(t), v2〉
−b 〈y(t),�v0〉

= −
〈

c2g + bgt ,
∂v

∂ν

〉

L2(0,t;L2(�))

.

(6.16)

With g ∈ L2(0, t; L2(�)) and under (6.15a), (6.15b) and hence
∂v

∂ν
∈ C([0, t];

H
1
2 (�)), we have regarding the first term on the RHS of (6.16):

〈

g,
∂v

∂ν

〉

L2(0,t;L2(�))

=
t∫

0

∫

�

g
∂v

∂ν
d�dt < ∞. (6.17)

Step (iii) Under hypothesis (6.14a) for g and under (6.15a), (6.15b) for the adjoint
v-problem, we compute the last term on the RHS of (6.16) by parts as follows, for
0 < t ≤ T

t∫

0

(

gt (τ ),
∂v(τ )

∂ν

)

L2(�)

dτ =
[(

g(τ ),
∂v(τ )

∂ν

)

L2(�)

]τ=t

τ=0

−
t∫

0

(

g(τ ),
∂vt (τ )

∂ν

)

L2(�)

dτ (6.18)

=
(

g(t),
∂v(t)

∂ν

)

L2(�)

−
����������(

g(0),
∂v(0)

∂ν

)

L2(�)

−
t∫

0

(

g(τ ),
∂vt (τ )

∂ν

)

L2(�)

dτ (6.19)
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With g ∈ C([0, T ]; L2(�)) as in (6.14a) and
∂v

∂ν
∈ C([0, t]; H

1
2 (�)), we have that

the first term on the RHS of (6.19) is well-defined (conservatively). Notice that it
can also be re-written via (A.5) as

(

g(t),
∂v(t)

∂ν

)

L2(�)

= (
g(t),−D∗ Av(t)

)

L2(�)

= − (ADg(t), v(t))L2(�) (well-defined)

(6.20)

with v ∈ C([0, T ];D(A)) by (6.10) and ADg ∈ C([0, T ]; [D(A)]′) conservatively
by (2.21b) and (6.14a). Then by (6.19), (6.20)

〈

gt ,
∂v

∂ν

〉

L2(0,t;L2(�))

= − (ADg(t), v(t))L2(�) −
〈

g,
∂vt

∂ν

〉

L2(0,t;L2(�))

(well-defined, by (6.20) and (6.15b)),

(6.21)

continuously with respect to g as in (6.14a) and
{
v0, v1, v2

}
as in (6.15a), (6.15b).

Thus, the RHS of identity (6.17) is well-defined for g as in (6.14a) and
{
v0, v1, v2

} ∈
U3 as in (6.15a), (6.15b), critically because of Theorem 6.2. Next we turn to the LHS
of identity (6.16) and then the argument displayed in (B.15) of Appendix B, yields
(6.14a), for any 0 < t ≤ T .

Specifically, for each t, 0 < t ≤ T via duality pairing:

v2 ∈ H → y(t) ∈ H

vt ∈ D(A
1
2 ) → yt (t) + αy(t) ∈ [D(A

1
2 )]′

}

=⇒ yt (t) ∈
[

D(A
1
2 )

]′ (6.22)

(6.23)

v0 ∈ D(A) → ytt (t) + αyt (t) ∈ [D(A)]′ =⇒ ytt (t) ∈ [D(A)]′ (6.24)

Thus, (6.23)–(6.24) imply
{

y(t), yt (t), ytt (t)
} ∈ H × [D(A

1
2 )]′ × [D(A)]′. The

same argument then gives

t∫

0

Y (τ )dτ ∈ H × [D(A
1
2 )]′ × [D(A)]′, for any 0 < t ≤ T, (6.25)

where we have set Y (t) = [y(t), yt (t), ytt (t)]. Proposition 6.5 is proved.
Step 2 In light of (6.14b)= (6.25), we are in the same situation as in [23, Corollary
3.2, p. 173], whereby then the map

t →
t∫

0

[y(τ ), yt (τ ), ytt (τ )]dτ (6.26)

is continuous [0, T ] → H × [D(A
1
2 )]′ × [D(A)]′. Theorem 6.4 is proved. �
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Part B: Neumann Case

7 Linear Third Order SMGTJ-Equation with
Non-homogeneous Neumann Boundary Term

Likewise we shall take τ = 1 in (1.1) w.l.o.g. If the linear third order equation

(1.1) is written in terms of scalar velocity potential (where pressure = k
d

dt
(velocity

potential)), then the Neumann non-homogeneous boundary terms are appropriate
[14]. In this part B, we shall consider the following mixed problem in the unknown
y(t, x):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yttt + αytt − c2�y − b�yt = 0 in Q = (0, T ] × � (7.1a)

y
∣
∣
t=0 = y0; yt

∣
∣
t=0 = y1; ytt

∣
∣
t=0 = y2 in � (7.1b)

∂y

∂ν

∣
∣
∣
∣
�

= g in � = (0, T ] × � (7.1c)

7.1 Case g = 0.

This case is the perfect counterpart of Sect. 2.1 in the Dirichlet case, under the present
setting whereby H = L2(�)/R and −A is now the Neumann Laplacian

A f = −� f, D(A) =
{

h ∈ H 2(�) : ∂h

∂ν
= 0 on �

}

. (7.2)

A is likewise strictly positive self-adjoint on H so that the fractional powers Aθ, 0 <

θ < 1, are well defined on H . Thus, Equation (2.3) through (2.12a), (2.12b) still hold
true now including Theorem 2.1, with −A the Neumann Laplacian in (7.2), rather
than the Dirichlet Laplacian as in Sect. 2.1.

7.2 Case y0 = 0, y1 = 0, y2 = 0, g �= 0

In this case, we seek to obtain sharp regularity of the map

g → {
y, yt , ytt ; y

∣
∣
�

}
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from the Neumann boundary datum g to the interior solution {y, yt , ytt } and the
Dirichlet boundary trace y

∣
∣
�
. As in Part A, our analysis of the above question will

critically fall on the regularity of the wave equation (or a more generally of second
order hyperbolic equations) under Neumann boundary control. Unlike the Dirichlet
boundary control case invoked critically in Part A, the Neumann boundary control
case has two peculiarities: (i) it is dimension dependent (the case d = 1 is markedly
more regular [31, Sect. 9.8.4, Theorem 9.8.4.1, p. 859]; (ii) it is geometry dependent
[29, 30, 38] (reported in [31, p. 739]). Accordingly, set throughout Part B (Neumann)

α̂ = β = 2

3
for a general sufficiently smooth domain� in R

d , d ≥ 2 (7.3a)

α̂ = β = 3

4
for a parallelepiped in R

d , d ≥ 2 (7.3b)

In reference [30] the parameter α̂ refers to interior regularity while β refer to
boundary regularity. Aswe shall invoke a number of results from [30], clarity requires
that we keep both of them.

Theorem 7.1 With reference to problem (7.1a)–(7.1c), we have the following regu-
larity results

g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�)), g(0) = 0, ε > 0 small

=⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y ∈ C([0, T ]; H α̂(�) = D(A
α̂
2 ))

yt ∈ C([0, T ]; H α̂−1(�) = [D(A
1−α̂
2 )]′),

ytt ∈ L2(0, T ; H α̂−2(�) = [D(A1− α̂
2 )]′)

y
∣
∣
�

∈ H 2α̂−1(�)).

(7.4a)

(7.4b)

(7.4c)

(7.4d)

{
g ∈ C([0, T ]; L2(�))

g(0) = 0
=⇒ ytt ∈ C([0, T ]; H α̂−2(�) ≡ [D(A1− α̂

2 )]′). (7.4e)

Remark 7.1 The result of Theorem 7.1 should be compared with the following
results for general second order hyperbolic equations, even with space-variable coef-
ficients, which we however report only for the canonical wave equation. Thus, let
� be an open bounded domain in R

d , d ≥ 2, with smooth boundary �. (For d = 1,
sharper regularity results hold true [31, Sect. 9.8.4, Theorem 9.8.4.1, p. 859])
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Theorem 7.2 ([29, 30, 38]) Consider the mixed problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt t = �w in Q = (0, T ] × � (7.5a)

w
∣
∣
t=0 = 0; wt

∣
∣
t=0 = 0 in � (7.5b)

∂w

∂ν

∣
∣
∣
∣
�

= g in � = (0, T ] × �. (7.5c)

Recall the constants α̂,β from (7.3a), (7.3b). With reference to problem (7.1a)–
(7.1c), we have the following interior regularity

g ∈ L2(0, T ; L2(�)) =⇒
{

w ∈ C([0, T ]; H α̂(�) = D(A
α̂
2 )) (7.6a)

wt ∈ C([0, T ]; H α̂−1(�) = [D(A
1−α̂
2 )]′) (7.6b)

duality w.r.t. H = L2(�)/R, as well as the independent boundary (trace) regularity

g ∈ L2(0, T ; L2(�)) =⇒ w
∣
∣
�

∈ H 2α̂−1(�) (7.7)

continuously.

Next, consider the following problem, dual of problem (7.5a)–(7.5c)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φt t = �φ + f in Q (7.8a)

φ
∣
∣
t=T

= φ0; φt

∣
∣
t=T

= φ1 in � (7.8b)

∂φ

∂ν

∣
∣
∣
∣
�

= 0 in �. (7.8c)

Theorem 7.3 ([30, Theorem B(1), p. 118, proved in (2.10) Theorem 2.0, p. 123])
With reference to problem (7.8a)–(7.8c), let φ0 = φ1 = 0, f ∈ L2(Q). Then, with β
in (7.3a), (7.3b):

‖φ∣
∣
�
‖Hβ(�) = OT

(
‖ f ‖2L2(Q)

)
. (7.9)

Theorem 7.4 ([30, Theorem E with θ = 0, p. 119]) With reference to problem
(7.8a)–(7.8c), let

{φ0,φ1} ∈ H 1−α̂(�) × [H α̂(�)]′, f ∈ [H α̂(Q)]′. (7.10a)

Then we have the following (sharp hidden) trace regularity

‖φ∣
∣
�
‖L2(�) = O

(‖{φ0,φ1}‖2H 1−α̂(�)×[H α̂(�)]′ + ‖ f ‖[H α̂(Q)]′ .
)
, (7.10b)

Proof Step 1 The case φ0 = φ1 = 0 is contained in [30, Theorem E with θ = 0, p.
119].
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Step 2 Let now f ≡ 0. This case is not explicitly contained in [30], but it can be
deduced by interpolation from two results in [30].

First we have

{φ0,φ1} ∈ H 1(�) × L2(�) =⇒ φ
∣
∣
�

∈ Hβ(�) (7.11)

continuously. This is [30, Theorem C(1), p. 118]. It is proved as [30, Theorem 7.1,
(7.1), (7.2), p. 158]. Next we have

{φ0,φ1} ∈ L2(�) × [H 1(�)]′ =⇒ φ
∣
∣
�

∈ H α̂−1(�) (7.12)

continuously. This is [30, Theorem 8.3, (8.7) and (8.8), p. 162].
Finally, by (complex) interpolation between statement (7.11) and statement (7.12)

to obtain with 0 < θ < 1:

[
H 1(�), L2(�)

]

1−θ
= H θ(�); or

[
H 1(�), L2(�)

]

α̂
= H 1−α̂(�); (7.13)

for φ0; next

[
L2(�), [H 1(�)]′]1−θ

= [H 1−θ(�)]′; or
[
L2(�, [H 1(�)]′)]

α̂
= [H α̂(�)]′;

(7.14)
for φ1; finally

[
Hβ(�), H α̂−1(�)

]

1−θ
= Hβθ+(1−θ)(α̂−1)(�) = L2(�), (7.15)

where βθ + (1 − θ)(α̂ − 1) = 0 with α̂ = β for θ = 1 − α̂. Thus,

[
Hβ(�), H α̂−1(�)

]

α̂
= L2(�). (7.16)

Then Eqs. (7.13)–(7.16) conclude the interpolation argument and the case f ≡ 0 is
also proved. Theorem 7.4 is established. �

7.3 Proof of Theorem 7.1: Preliminary Analysis

We introduce, as usual [26, 31, 41], the Neumann map

Nh = φ ⇐⇒
{

�φ = 0 in �,
∂φ

∂ν

∣
∣
∣
∣
�

= h, φ ∈ L2(�)/R

}

(7.17a)

N : L2(�) → H
3
2 (�) ⊂ H

3
2 −2ε(�) = D(A

3
4 −ε), or A

3
4 −ε N ∈ L(L2(�); L2(�)) (7.17b)
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for any ε > 0. At first we shall take g ∈ H 1(0, T ; L2(�)), so that gt ∈ L2

(0, T ; L2(�)) ≡ L2(�). We next return to Eq. (7.1a) and re-write it, as usual via
(7.17a), as

yttt + αytt − c2�(y − Ng) − b�(y − Ng)t = 0 in Q (7.18)

or abstractly, via (7.2), as

yttt + αytt + c2 A(y − Ng) + bA(y − Ng)t = 0 in H = L2(�)/R. (7.19)

Extending, as usual, the original operator A in (7.2) H ⊃ D(A) → H to Ae : H →
[D(A∗)]′ = [D(A)]′, duality w.r.t. H by isomorphism, and retaining the symbol A
for such an extension, we re-write Eq. (7.19) as

(yt + αy)t t + bA

(
c2

b
y + yt

)

= c2 ANg + bANgt ∈ [D(A)]′. (7.20)

See [31, Vol. 1, pp. 420–424; Vol. 2, p. 1061]. Setting, as in (2.10)

z = c2

b
y + yt = (αy + yt ) − γy, γ = α − c2

b
(7.21)

and proceeding as in going from (2.10) to (2.26a), (2.26b) or (2.23) to (2.26a),
(2.26b), we re-write problem (7.1a)–(7.1c) as the following hyperbolic-dominated
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt = −bAz − γzt + γ
c2

b
z − γ

(
c2

b

)2

y + c2ANg + bANgt ∈ [D(A)]′

yt = −c2

b
y + z

(7.22a)

(7.22b)

along with the I.C. (we are taking y0 = 0, y1 = 0, y2 = 0):

z0 = c2

b
y0 + y1 = 0, z1 = c2

b
y1 + y2 = 0 (7.22c)
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8 First Proof of Theorem 7.1 (Interior Regularity): Direct
Proof

Step 1 (same strategy as in Step 1 of Sect. 3) The coupling between the hyperbolic
z-dynamics in (7.22a) and the ODE y-equation in (7.22b) is mild (lower order), as

the coupling γ

(
c2

b

)2

y = γ

(
c2

b

)2 ∫ t

0
e− c2

b (t−τ )z(τ )dτ , an integral operator. Thus,

essentially w.l.o.g., we may take at first

γ = 0, i.e. α = c2

b
, (8.1)

see (7.21), to simplify the computations. This will not affect the sought-after regu-
larity of the map in (7.4a)–(7.4e). Thus, we obtain the simplified problem

⎧
⎪⎨

⎪⎩

ztt = −bAz + c2 ADg + bADgt ∈ [D(A)]′

yt = −c2

b
y + z

(8.2a)

(8.2b)

along with zero I.C., where now under the (essentially w.l.o.g.) assumption (8.1),
the z-problem is uncoupled; that is, explicitly, in PDE-form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt = b�z in Q = (0, T ] × �

z
∣
∣
t=0 = 0; zt

∣
∣
t=0 = 0 in �

z
∣
∣
�

= c2

b
g + gt in � = (0, T ] × �

(8.3a)

(8.3b)

(8.3c)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

yt = −c2

b
y + z

y
∣
∣
t=0 = 0

(8.4a)

(8.4b)

Orientation Thus, under the (essentially benign) assumption (8.1), the crux of our
proof consists in applying to the wave equation, either as a mixed problem as in
(8.3a)–(8.3c), or else in the abstract form (8.2a), the optimal regularity results (at
present for the solution {z, zt } in the interior) from [29, 30, 38] reported in The-
orem 7.2 for convenience, and then use these results for z to obtain correspond-
ing results for y, via (8.4a), (8.4b). In carrying out this strategy, the challenge is
that we seek to reduce the assumption of regularity of the Dirichlet boundary term
g ∈ H 1(0, T ; L2(�)) to a sort of ‘minimal’ level, as the term gt is not present in
the original problem (7.1a), (7.1b) and (7.1c), but is sneaked in at the level of the
technical step in (7.19). Of course g ∈ H 1(0, T ; L2(�)) allows one to invoke the
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results of Theorem 7.2 at once and thus obtain a preliminary conservative result: the
map

g ∈ H 1(0, T ; L2(�)) → {z, zt } ∈ C([0, T ]; H α̂(�) × H α̂−1(�)) (8.5a)

continuously. From here, it then readily follows via (8.4a), (8.4b)

y(t) =
t∫

0

e− c2

b (t−τ )z(τ )dτ ∈ C([0, T ]; H α̂(�)) (8.5b)

yt (t) =
t∫

0

e− c2

b (t−τ )zt (τ )dτ ∈ C([0, T ]; H α̂−1(�)) (8.5c)

continuously, differentiating (8.4a) in t , and using yt

∣
∣
t=0 = 0. Our goal is precisely

to refine the regularity result (8.5a).
Step 2 To this end, we shall use critically two main results: (i) the sharp (interior
and boundary) regularity theory of Theorem 7.2 obtained by purely PDE-techniques
such as pseudo-differential operators andmicro-local analysis, and (ii) representation
formulas to express (but not to obtain from) such results. For convenience and easy
reference, we shall provide in Appendix A a short account of these results as needed
in our present development. The (negative self-adjoint) operator−A : H ⊃ D(A) →
H generates a s.c. (self-adjoint) cosine operatorC(t)with corresponding sine operator

S(t)x =
∫ t

0
C(τ )xdτ . As reported in Appendix A, the representation formulae of

problem (8.3a)–(8.3c), or its abstract version (8.2a) with henceforth

b = 1, c = 1, w.l.o.g. (8.6)

are given by

z(t) = A

t∫

0

S(t − τ )Ng(τ )dτ + A

t∫

0

S(t − τ )Ngt (τ )dτ (8.7a)

= z(1)(t) + z(2)(t) (8.7b)

zt (t) = A

t∫

0

C(t − τ )Ng(τ )dτ + A

t∫

0

C(t − τ )Ngt (τ )dτ (8.8a)

= z(1)
t (t) + z(2)

t (t) (8.8b)
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Step 3 We now invoke the sharp regularity theory of Theorem 7.2 of the wave (in
fact, generally, of 2nd order hyperbolic equations), this timewithNeumann boundary
term g ∈ L2(0, T ; L2(�)) and obtain, continuously:

g ∈ L2(0, T ; L2(�)) =⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z(1)(t) = A
∫ t

0
S(t − τ )Ng(τ )dτ ∈ C([0, T ]; H α̂(�) = D(A

α̂
2 )) (8.9a)

z(1)
t (t) = A

∫ t

0
C(t − τ )Ng(τ )dτ ∈ C([0, T ]; H α̂−1(�) = [D(A

1−α̂
2 )]′) (8.9b)

Step 4 Next, let with ε > 0 arbitrarily small

g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�)), g(0) = 0. (8.10)

Integrating by parts (S(0) = 0) we obtain from (8.7a), (8.7b)

z(2)(t) = A

t∫

0

S(t − τ )Ngt (τ )dτ =
[

AS(t − τ )Ng(τ )
]τ=t

τ=0
− A

t∫

0

C(t − τ )Ng(τ )dτ

(8.11)

=�������
AS(0)Ng(t) −�������

AS(t)Ng(0) − A

t∫

0

C(t − τ )Ng(τ )dτ (8.12a)

or, as in (8.9b):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z(2)(t) = −A

t∫

0

C(t − τ )Ng(τ )dτ = −z(1)
t (t) ∈ C([0, T ]; H α̂−1(�) = [D(A

1−α̂
2 )]′)

for g as in (8.10), continuously.
(8.12b)

Thus, by (8.9b) and (8.12b) used in (8.7b), we obtain

{
z(t) = z(1)(t) + z(2)(t) ∈ C([0, T ]; H α̂−1(�) = [D(A

1−α̂
2 )]′)

for g as in (8.10), continuously.
(8.13)

Step 5 Next, returning to the y-equation in (8.2b) [with (8.6) w.l.o.g.] and z given
by (8.7b) we obtain

y(t) =
t∫

0

e−(t−τ )z(τ )dτ =
t∫

0

e−(t−τ )z(1)(τ )dτ +
t∫

0

e−(t−τ )z(2)(τ )dτ (8.14a)

= y(1)(t) + y(2)(t) (8.14b)

as y0 = 0. Returning to (8.9a), we obtain conservatively
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(1)(t) =
t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; H α̂(�) = D(A
α̂
2 ))

for g ∈ L2(0, T ; L2(�)), continuously.

(8.15)

Next, with z(2) = −z(1)
t (t) as given by (8.12b), we compute via (8.14a), (8.14b)

y(2)(t) =
t∫

0

e−(t−τ )z(2)(τ )dτ = −
t∫

0

e−(t−τ )z(1)
t (τ )dτ (8.16)

= −
[
e−(t−τ )z(1)(τ )

]τ=t

τ=0
+

t∫

0

e−(t−τ )z(1)(τ )dτ (8.17)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(2)(t) = −z(1)(t) +������
e−t z(1)(0) +

t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; H α̂(�) = D(A
α̂
2 ))

valid for g as in (8.10), continuously.
(8.18)

as the expression of z(2)(t) = −z(1)
t (t) in (8.12b) has such a constraint. As to the

regularity noted in (8.18), we invoke (8.9a) for the term z(1)(t), while the same
regularity holds true for the second convolution term, this time conservatively. We
conclude by (8.15) on y(1) and (8.18) on y(2) that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(t) = y(1)(t) + y(2)(t) = −z(1)(t) + 2

t∫

0

e−(t−τ )z(1)(τ )dτ ∈ C([0, T ]; H α̂(�) = D(A
α̂
2 ))

for g as in (8.10), continuously.
(8.19)

Then (8.19) shows the first result in (7.4a) of Theorem 7.1.
Step 6 Next, with (8.4a), invoke (8.13) for z and (8.19) for y and obtain via (8.4a)

⎧
⎨

⎩

yt = −c2

b
y + z ∈ C([0, T ]; H α̂−1(�) = [D(A

1−α̂
2 )]′)

for g as in (8.10), continuously.
(8.20)

Then (8.20) shows the second result in (7.4b) of Theorem 7.1.
Step 7We finally need to establish the regularity of ytt . This will be obtained from

ytt = −c2

b
yt + zt . (8.21)
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Thus,we need to establish the regularity of zt , as the regularity of yt is given by (8.20).
But zt = z(1)

t + z(2)
t , where the regularity of z(1)

t = −z(2)(t) was already established
in (8.12b).
Step 8 We seek the regularity of z(2)

t from its representation formula in (8.8a). We
compute from (8.8a)

z(2)
t (t) = A

t∫

0

C(t − τ )Ngt (τ )dτ (by parts, recalling (A.2)) (8.22)

=
[

AC(t − τ )Ng(τ )
]τ=t

τ=0
+ A

t∫

0

AS(t − τ )Ng(τ )dτ (8.23)

= ANg(t) −�������
AC(t)Ng(0) + AA

t∫

0

S(t − τ )Ng(τ )dτ (8.24)

= ANg(t) + Az(1)(t) (8.25)

recalling C(0) = I and (8.9a). Thus, again by (8.9a)

g ∈ L2(0, T ; L2(�)) =⇒ Az(1)(t) = AA

t∫

0

S(t − τ )Ng(τ )dτ ∈ C([0, T ]; [D(A1− α̂
2 )]′)

(8.26)
continuously. Moreover, by (7.17b)

g ∈ L2(0, T ; L2(�)) =⇒ ANg = A
1
4+ε1(A

3
4 −ε1 N )g ∈ L2(0, T ; [D(A

1
4+ε1)]′)

⊂ L2(0, T ; [D(A1− α̂
2 )]′)
(8.27a)

as well as

g ∈ C([0, T ]; L2(�)) =⇒ ANg = A
1
4+ε1(A

3
4 −ε1 N )g ∈ C([0, T ]; [D(A

1
4+ε1)]′)

⊂ C([0, T ]; [D(A1− α̂
2 )]′)
(8.27b)

continuously, since α̂ = 2

3
or

3

4
by (7.3a), (7.3b), so 1 − α̂

2
= 2

3
or

5

8
and so 1 − α̂

2
>

1

4
+ ε. Combining (8.26) and (8.27a) in (8.26), we obtain

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ z(2)

t = ANg + Az(1) ∈ L2(0, T ; [D(A1− α̂
2 )]′)

(8.28a)
as well as, via (8.26) and (8.27b)
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{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ z(2)

t = ANg + Az(1) ∈ C([0, T ]; [D(A1− α̂
2 )]′)
(8.28b)

continuously.
Step 9 In turn, combining (8.9b) for z(1)

t with (8.28a) for z(2)
t in (8.8b), we conclude

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ zt = z(1)

t + z(2)
t ∈ L2(0, T ; [D(A1− α̂

2 )]′)
(8.29a)

as well as, via (8.28b) for z(2)
t

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ zt = z(1)

t + z(2)
t ∈ C([0, T ]; [D(A1− α̂

2 )]′) (8.29b)

since 1−α̂
2 < 1 − α̂

2 .

Step 10 Combining (8.20) on yt with (8.29a) for zt , we conclude via (8.21)

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0,
=⇒ ytt = − c2

b
yt + zt ∈ L2(0, T ; [D(A1− α̂

2 )]′)
(8.30a)

as well as, via (8.29b) for zt

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ ytt = −c2

b
yt + zt ∈ C([0, T ]; [D(A1− α̂

2 )]′)
(8.30b)

continuously. Then (8.30a), (8.30b) shows the interior regularity results in (7.4c) and
(7.4d). Theorem 7.1 is proved, except for the boundary regularity statement (7.4c),
which will be established in Sect. 9.

9 Proof of Theorem 7.1: Regularity of the Boundary Trace
y
∣
∣
�

In this section we shall establish the boundary regularity (7.4c) of Theorem 7.1. It is
here repeated for convenience.

Theorem 9.1 With reference to problem (7.1a)–(7.1c), we have

{
g ∈ L2(0, T ; L2(�)) ∩ C([0, ε); L2(�))

g(0) = 0
=⇒ y

∣
∣
�

∈ H 2α̂−1(�)) (9.1)

continuously.
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Proof Step 1 We return to the solution formula (8.7a) complemented by (8.12b),
with g as in (8.10), i.e. as on the LHS of (9.1):

z(t) = z(1)(t) + z(2)(t) = z(1)(t) − z(1)
t (t) (9.2)

= A

t∫

0

S(t − τ )Ng(τ )dτ − A

t∫

0

C(t − τ )Ng(τ )dτ . (9.3)

We next invoke critically the boundary regularity results reported in (7.7) of Theorem
7.2 as well as (A.4), (A.6):

g ∈ L2(0, T ; L2(�)) =⇒ z(1)
∣
∣
�

= (N ∗ A)A

t∫

0

S(t − τ )Ng(τ )dτ ∈ H 2α̂−1(�).

(9.4)
Step 2We return to (8.19), with g as in (8.10)

y(t) = −z(1)(t) + 2

t∫

0

e−(t−τ )z(1)(τ )dτ (9.5)

where then, recalling (9.4), we obtain

y
∣
∣
�

= −z(1)
∣
∣
�

+ 2

t∫

0

e−(t−τ )z(1)
∣
∣
�
(τ )dτ ∈ H 2α̂−1(�) (9.6)

continuously. Then (9.6) proves Theorem 9.1, hence (7.4c) of Theorem 7.1. �

10 A Boundary Trace Result for the u-Problem

In this section we consider problem (7.1a)–(7.1c) with g ≡ 0, rewritten in PDE-form
as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uttt + αutt − c2�u − b�ut = 0 in Q = (0, T ] × �

u
∣
∣
t=T = u0; ut

∣
∣
t=T = u1; utt

∣
∣
t=T = u2 in �

∂u

∂ν

∣
∣
∣
∣
�

= 0 in � = (0, T ] × �

(10.1a)

(10.1b)

(10.1c)

abstractly, with A as in (7.2)

uttt + αutt + c2 Au + bAut = 0 (10.1d)
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with I.C. at t = T (i.e. backward in time). This is the counterpart of problem (5.1a)–
(5.1d) in the corresponding Dirichlet case. In this section, we shall consider two
spaces for the I.C., see (2.5c) for U3

{u0, u1, u2} ∈ U3 ≡ D(A) × D(A
1
2 ) × H (10.2)

{u0, u1, u2} ∈ U5 ≡ D(A1− α̂
2 ) × D(A

1−α̂
2 ) ×

[
D(A

α̂
2 )

]′
(10.3a)

==

⎧
⎪⎪⎨

⎪⎪⎩

D(A
2
3 ) × D(A

1
6 ) ×

[
D(A

1
3 )

]′
, α = 2

3

D(A
5
8 ) × D(A

1
8 ) ×

[
D(A

3
8 )

]′
. α = 3

4

(10.3b)

(10.3c)

recalling (7.3a), (7.3b). Notice that the regularity of the components of U5 is reduced
by D(A

1
2 ) from u0 to u1 to u2, in line with the spaces U3 or U4 in (2.5c).

Accordingly, in view of Theorem 2.1, we have

⎡

⎣
u0

u1

u2

⎤

⎦ ∈ Ui →
⎡

⎣
u(t)
ut (t)
utt (t)

⎤

⎦ = eG(T −t)

⎡

⎣
u0

u1

u2

⎤

⎦ ∈ C([0, T ]; Ui ) (10.4)

continuously, for the solution of (10.1a)–(10.1d), where eGt is a s.c. group on Ui ,
with infinitesimal generator G defined in (2.4), with A as in (7.2) in the Neumann
case.

Theorem 10.1 With reference to problem (10.1a)– (10.1d) and to (10.2), the fol-
lowing trace estimates hold true:

(a)

‖ut‖2Hβ(�)
= OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
, (10.5)

where β = 2

3
or β = 3

4
is defined in (7.3a), (7.3b) and where OT denotes a

constant depending on � = � × (0, T ] and the equation coefficients, but not on
U3.

(b)
T∫

0

∫

�

|ut |2d�dt = OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U5

)
. (10.6)
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Remark 10.1 The above two trace regularity results do not follow from the inte-
rior regularity. They express a ‘hidden’ regularity property. As to (10.5), the inte-
rior regularity of ut is ut ∈ C([0, T ];D(A

1
2 ) ≡ H 1(�)) by (10.4), (10.2), hence

ut |� ∈ C([0, T ]; H 1/2(�)) by trace theory. Instead (10.5) yields, in particular,

ut |� ∈ L2(0, T ; Hβ(�)), with β − 1

2
= 1

6
or

1

4
stronger in space regularity by

(7.3a), (7.3b), for β = 2

3
or β = 3

4
. Likewise, as to (10.6), one has the interior

regularity ut ∈ C([0, T ];D(A
1
6 ) ≡ H

1
3 (�)) say by (10.3b) for α̂ = 2

3
, which does

not yield the trace regularity ut |� ∈ L2(0, T ; L2(�)) of (10.6).

Proof of Theorem 10.1: Step 1 Rewrite (10.1a) as in (2.7)

(ut + αu)t t − b�

(
c2

b
u + ut

)

= 0 in Q (10.7)

and introduce the new variable ξ in (2.8)

ξ = αu + ut ∈
⎧
⎨

⎩

C([0, T ];D(A
1
2 )) for {u0, u1, u2} ∈ U3 (10.8a)

C([0, T ];D(A
1
6 )) for {u0, u1, u2} ∈ U5, α̂ = 2

3
(10.8b)

in the less regular case α̂ = 2

3
in (10.3b), as it follows from (10.4) along with (10.2)

or (10.3a) respectively,

c2

b
u + ut = ξ − γu, γ = α − c2

b
. (10.8c)

Rewrite problem (10.1a)–(10.1c) accordingly as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξt t − b�ξ + bγ�u = 0 in Q

ξ
∣
∣
t=T = ξ0 = αu0 + u1; ξt

∣
∣
t=T = ξ1 = αu1 + u2 in �

∂ξ

∂ν

∣
∣
∣
∣
�

≡ 0 in �

(10.9a)

(10.9b)

(10.9c)

and set
ξ = ξ(1) + ξ(2) (10.10)
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ξ
(1)
t t − b�ξ(1) + bγ�u = 0 ξ

(2)
t t − b�ξ(2) = 0 in Q (10.11a)

ξ(1)
∣
∣
∣
t=T

= 0, ξ
(1)
t

∣
∣
∣
t=T

= 0 ; ξ(2)
∣
∣
∣
t=T

= ξ0, ξ
(2)
t

∣
∣
∣
t=T

= ξ1 in Q (10.11b)

∂ξ(1)

∂ν

∣
∣
∣
∣
∣
�

= 0
∂ξ(2)

∂ν

∣
∣
∣
∣
∣
�

= 0 in Q

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10.11c)

Step 2

Theorem 10.2 The following trace estimates hold true (recall β in (7.3a), (7.3b)):

(a)
∥
∥ξ

∣
∣
�

∥
∥2

Hβ(�)
= OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U3

)
, (10.12)

(b) ⎧
⎨

⎩

∥
∥ξ

∣
∣
�

∥
∥2

L2(�)
= OT

(∥
∥
{
u0, u1, u2

}∥
∥2

U5

)

U5 given by (10.3a)–(10.3c)
(10.13)

Proof of Theorem 10.2

(a) With
{
u0, u1, u2

} ∈ U3 in (10.2), we have

�u ∈ C([0, T ]; L2(�)), (10.14)

continuously, by (10.4), i = 3. We next invoke [30, Theorem B(1), p. 118]
(recalled in Theorem 7.3), as applied to the ξ(1)-problem in (10.11a)–(10.11c),
with RHS as in (10.14) and obtain

ξ(1)
∣
∣
�

∈ Hβ(�), continuously in U3. (10.15)

Next, with

ξ(2)
∣
∣
∣
t=T

= ξ0 = αu0 + u1 ∈ D(A
1
2 ) ≡ H1(�); ξ(2)

t

∣
∣
∣
t=T

= ξ1 = αu1 + u2 ∈ L2(�),

(10.16)
we invoke this time [30, TheoremC(1), p 118] (recalled in the (7.11) of Theorem
7.4), as applied to the ξ(2)-problem in (10.11a)–(10.11c), with I.C. as in (10.16)
and obtain

ξ(2)
∣
∣
�

∈ Hβ(�), (10.17)

continuously in {ξ0, ξ1} ∈ H 1(�) × L2(�), hence continuously inU3. Combin-
ing (10.15) and (10.17) in (10.10), we obtain (10.12) and part (a) of Theorem
10.2 is proved.
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(b) Now with
{
u0, u1, u2

} ∈ U5 in (10.3a), we have u ∈ C
([0, T ]; H 2−α̂(�) ≡

D(A1− α̂
2 )

)
by (10.4) and hence continuously

�u = Au ∈ C
(
[0, T ]; [H α̂(�)

]′)
, α̂ = 2

3
or α̂ = 3

4
as in (7.3a)–(7.3b).

(10.18)
We next invoke [30, Theorem E, with θ = 0, p. 119] (recalled in the Theorem
7.4), as applied to the ξ(1)-problem in (10.11a)–(10.11c), with RHS as in (10.18)
and zero I.C. and obtain

ξ(1)
∣
∣
�

∈ L2(�), continuously in U5. (10.19)

Next, with

ξ(2)
∣
∣
∣
t=T

= ξ0 = αu0 + u1 ∈ H1−α̂(�) = D(A
1−α̂
2 ),

[

D(A
1
6 ) ≡ H

1
3 (�) for α̂ = 2

3

]

(10.20a)

ξ
(2)
t

∣
∣
∣
t=T

= ξ1 = αu1 + u2 ∈ [
H α̂(�)

]′ ≡
[
D(A

α̂
2 )

]′
,

[[
D(A

1
3 )

]′ ≡
[

H
2
3 (�)

]′
for α̂ = 2

3

]

(10.20b)

we obtain by Theorem 7.4, Eq. (7.10b) [with f ≡ 0]

ξ(2)
∣
∣
�

∈ L2(�) (10.21)

continuously in {ξ0, ξ1} ∈ H 1−α̂(�) × [
H α̂(�)

]′
, hence continuously in U5.

Combining (10.19) with (10.21) in (10.10), we obtain (10.13) and part 10.2
of Theorem 10.2 is proved. �

Step 3 (continuing the proof of Theorem 10.1b )

(a) Thus, by Theorem 10.2a, we have for
{
u0, u1, u2

} ∈ U3 and β in (7.3a), (7.3b)

ξ
∣
∣
�

= αu + ut

∣
∣
�

∈ Hβ(�) (10.22)

while u ∈ C([0, T ];D(A)) ⊂ C([0, T ]; H 2(�)) by (10.4), (10.2) implies

u
∣
∣
�

∈ C([0, T ]; H
3
2 (�)) ⊂ Hβ(�) (10.23)

continuously in U3. Then, (10.22) and (10.23) imply ut

∣
∣
�

∈ Hβ(�) and (10.5)
of Theorem 10.1a is proved.

(b) Similarly, by Theorem 10.2b, we have for
{
u0, u1, u2

} ∈ U5,

ξ
∣
∣
�

= αu + ut

∣
∣
�

∈ L2(�) (10.24)
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continuously, while u ∈ C([0, T ]; H 2−α̂(�)) by (10.4), (10.3a) implies

u
∣
∣
�

∈ C([0, T ]; H
3
2 −α̂(�)) ⊂ L2(�) (10.25)

continuously in U5. Then, (10.24) and (10.25) imply ut

∣
∣
�

∈ L2(�) and (10.6)
of Theorem 10.1b is established. �

11 A Dual Result of the Neumann Problem (7.1a)–(7.1c)

The present section is the Neumann counterpart of the Dirichlet Sect. 6. Therefore,
it will simply list the counterpart results. The dual problem of the boundary non-
homogeneous Neumann problem (7.1a)–(7.1c) is the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt t t − αvt t + c2�v − b�vt = 0 in Q

v
∣
∣
t=T = v0; vt

∣
∣
t=T = v1; vt t

∣
∣
t=T = v2 in �

∂v

∂ν

∣
∣
∣
∣
�

= 0 in �

(11.1a)

(11.1b)

(11.1c)

abstractly vt t t − αvt t − c2 Av + bAvt = 0 (11.2)

with −A the Neumann Laplician in (7.2). This is very closely related to problem
(10.1a)–(10.1c), or its abstract version (10.1d) for reasons similar to those given in
Sect. 6. The relevant results are as follows

Theorem 11.1 With reference to the v-problem (11.1a)–(11.1c), abstractly (11.2),
we have

{v0, v1, v2} ∈ Ui =⇒ {v, vt , vt t } ∈ C([0, T ]; Ui ), i = 3, 5

(11.3a)

U3 = D(A) × D(A
1
2 ) × H, U5 = D(A1− α̂

2 ) × D(A
1−α̂
2 ) ×

[
D(A

α̂
2 )

]′
.

(11.3b)

This is the counterpart of Theorem 6.1 in the Dirichlet case, at least for i = 3.

Theorem 11.2 With reference to problem (11.1a)–(11.1c), we have

(a)

‖vt‖2Hβ(�)
= OT

(∥
∥
{
v0, v1, v2

}∥
∥2

U3

)
, (11.4)

where β is defined in (7.3a), (7.3b).



418 R. Triggiani

(b)
T∫

0

∫

�

|vt |2d�dt = OT

(∥
∥
{
v0, v1, v2

}∥
∥2

U5

)
. (11.5)

This is the counterpart of Theorem 10.1. It is a sharp, hidden trace regularity result.
Next, by duality on the trace result (11.5) for the v-problem (11.1a)–(11.1c),

we shall re-obtain (in a slightly weaker form) the basic interior regularity result of
Theorem 7.1.

Theorem 11.3 With reference to problem (7.1a)–(7.1c), we have

{
g ∈ C([0, T ]; L2(�))

g(0) = 0
=⇒ {y, yt , ytt } ∈ C

(
[0, T ];D(A

α̂
2 ) × [D(A

1−α̂
2 )]′ × [D(A1− α̂

2 )]′
)

,

(11.6)
continuously.

Proof The proof is the conceptual counterpart of Theorem 6.4 in the Dirichlet case,
subject to further technicalities proper of the Neumann problem.

Step 1We shall first establish the following.

Proposition 11.4 With reference to the Neumann problem (7.1a)–(7.1c), we have,
for each 0 < t ≤ T :

{
g ∈ C([0, T ]; L2(�))

g(0) = 0,
=⇒ {

y(t), yt (t), ytt (t)
} ∈ D(A

α̂
2 ) × [D(A

1−α̂
2 )]′ × [D(A1− α̂

2 )]′ (11.7a)

=⇒
t∫

0

[
y(τ ), yt (τ ), ytt (τ )

]
dτ ∈ D(A

α̂
2 ) × [D(A

1−α̂
2 )]′ × [D(A1− α̂

2 )]′ (11.7b)

continuously.

Proof of Proposition 11.4. It is based by duality on Theorem 11.2b, Eq. (11.5),
counterpart of estimate (10.6).
Step (i) By Theorem 11.1 and 11.2b, we have

{
v0, v1, v2

} ∈ U5 = D(A1− α̂
2 ) × D(A

1−α̂
2 ) ×

[
D(A

α̂
2 )

]′
(11.8a)

=⇒

⎧
⎪⎨

⎪⎩

{
v, vt , vt t

} ∈ C([0, T ]; U5)

AND

vt

∣
∣
�

∈ L2(0, T ; L2(�))

(11.8b)

continuously.
Step (ii) We now invoke the duality identity (B.5) in Appendix B, Neumann case,
and obtain for a generic t, 0 < t ≤ T (notation denotes duality pairing):
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〈ytt (t) + αyt (t), v0〉 − 〈yt (t) + αy(t), v1〉 + 〈y(t), v2〉 − b 〈y(t),�v0〉
= 〈

c2g + bgt , v
〉

L2(0,t;L2(�))
. (11.9)

With g ∈ L2(0, t; L2(�)) and under (11.8a), (11.8b) and hence v ∈ C([0, T ];
H 2−α̂(�) andv

∣
∣
�

∈ C([0, T ]; H
3
2 −α̂(�) [sayv

∣
∣
�

∈ C([0, t]; H
4
3− 1

2 (�)) = H
5
6 (�))

for α̂ = 2
3 ], we have regarding the first term on the RHS of (11.9):

〈
g, v

∣
∣
�

〉

L2(0,t;L2(�))
=

t∫

0

∫

�

gv
∣
∣
�

d�dt < ∞. (11.10)

Step (iii)Under hypothesis (11.7a), (11.7b) and under (11.8a), (11.8b) for the adjoint
v-problem, we compute the last term on the RHS of (11.9) by parts as follows, for
0 < t ≤ T

t∫

0

(
gt(τ ), v

∣
∣
�
(τ )

)

L2(�)
dτ =

[(
g(τ ), v

∣
∣
�
(τ )

)

L2(�)

]τ=t

τ=0

−
t∫

0

(
g(τ ), vt

∣
∣
�
(τ )

)

L2(�)
dτ

= (
g(t), v

∣
∣
�
(t)

)

L2(�)
−

����������(
g(0), v

∣
∣
�
(0)

)

L2(�)

−
t∫

0

(
g(τ ), vt

∣
∣
�
(τ )

)

L2(�)
dτ (11.11)

With g ∈ C([0, T ]; L2(�)) as in (11.7a), (11.7b) and v
∣
∣
�

∈ C([0, t]; H
3
2 −α̂(�)), we

have that the first term on the RHS of (11.11) is well-defined (conservatively). Notice
that it can also be re-written as

(
g(t), vt

∣
∣
�

)

L2(�)
= (

g(t), N ∗ Av(t)
)

L2(�)

= (ANg(t), v(t))L2(�) (well-defined)
(11.12)

with v ∈ C([0, T ];D(A1− α̂
2 )) by (11.8a) and ANg ∈ C([0, T ]; [D(A

1
4 +ε1)]′) ⊂

C([0, T ]; [D(A1− α̂
2 )]′). Here we have invoked (7.17b) for N , (11.7a) for g as well

as 1
4 + ε1 < 1 + α̂

2 . Then by (11.11) and (11.12),

〈
gt , v

∣
∣
�

〉

L2(0,t;L2(�))
= (ANg(t), v(t))L2(�) − 〈

g, vt

∣
∣
�

〉

L2(0,t;L2(�))

(well-defined, by (11.12) and (11.8b)),
(11.13)
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continuously, with respect to g as in (11.7a), (11.7b) and
{
v0, v1, v2

}
as in (11.8a),

(11.8b). Thus, the RHS of identity (11.9) is well-defined for such g in (11.7a),
(11.7b) and

{
v0, v1, v2

} ∈ U5, critically because of Theorem 11.2b, Eq. (11.5), used
in (11.8b). Next we turn to the LHS of identity (11.9) and then the duality argument
below—the counterpart of the argument in B.8 or in (6.22)–(6.24) in the Dirich-
let case—yields (11.7a) also in the present Neumann case. Specifically, for each
t, 0 < t ≤ T , via duality pairing in the LHS of identity (11.9), we obtain recalling{
v0, v1, v2

} ∈ U5 in (10.3a):

v2 ∈ [D(A
α̂
2 )]′ → y(t) ∈ D(A

α
2 )

v1 ∈ D(A
1−α̂
2 ) → yt (t) + αy(t) ∈ [D(A

1−α̂
2 )]′

}

=⇒ yt (t) ∈
[

D(A
1−α̂
2 )

]′ (11.14)

(11.15)

v0 ∈ D(A1− α̂
2 ) =⇒ ytt (t) + αyt (t) ∈ [D(A1− α̂

2 )]′ (11.16)

=⇒ ytt (t) ∈ [D(A1− α̂
2 )]′ (11.17)

since
1 − α̂

2
< 1 − α̂

2
, and hence D(A1− α̂

2 ) ⊂ D(A
1−α̂
2 ), hence [D(A

1−α̂
2 )]′ ⊂

[D(A1− α̂
2 )]′. Thus, conclusions (11.14), (11.15), (11.17) establish statement (11.7a).

A similar argument gives (11.7b) and Proposition 11.4 proved.
Step 2 In light of (11.7b), we apply [23, Corollary 3.2, p. 173] to obtain that the map
(as in (6.26))

t →
t∫

0

[y(τ ), yt (τ ), ytt (τ )]dτ

is continuous [0, T ] → D(A
α̂
2 ) × [D(A

1−α̂
2 )]′ × [D(A1− α̂

2 )]′. Theorem 11.3 is
proved. �
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Appendix A

1. Cosine Operators. While we refer to standard work [6, 10, 11, 17, 22, 36, 40]
etc for the topic of cosine operator theory on Banach space, we include here only
a few results which are used and invoked in the text with reference to a Hilbert
space H (H = L2(�) in Part A; H = L2(�)/R in Part B). In line with the text,
we let (−A) be the (strictly positive) self-adjoint infinitesimal generator of a
strongly continuous (self-adjoint) cosine operator family C(t) with sine operator
S(t)x = ∫ t

0 C(τ )xdτ , x ∈ H , with A
1
2S(t) strongly continuous:

S(t − τ ) = S(t)C(τ ) − C(t)S(τ ) (A.1a)

C(t − τ ) = C(t)C(τ ) − AS(t)S(τ ), τ , t ∈ R (A.1b)

We have

d2C(t)x

dt2
= −AC(t)x, x ∈ D(A); dC(t)x

dt
= −AS(t)x, x ∈ D(A

1
2 ), (A.2)

C(t) is even on H , C(0) = I ; S(t) is odd on H , S(0) = 0. The above formulae
(A.2) on H with H ⊃ D(A) → H can be extended to [D(A)]′ with A now the
extension Ae : H → [D(A)]′, which we still denote by A.

2. Representation formulae of non-homogeneous boundary control for wave
(second order hyperbolic) equations [25–27, 31, 41],[23, Sect. 3]
Dirichlet case We return to the Dirichlet non-homogeneous w-problem in
(2.15a)–(2.15c). Let D be the Dirichlet map in (2.21a), (2.21b) and (−A) be
the Dirichlet Laplacian in (2.2). Then

w(t) = A

t∫

0

S(t − τ )Dg(τ )dτ ; wt (t) = A

t∫

0

C(t − τ )Dg(τ )dτ . (A.3)

Neumann caseWe now return to the Neumann non-homogeneous w-problem in
(7.5a)–(7.5c). Let N be the Neumann map in (7.17a), (7.17b) and (−A) be the
Neumann Laplacian in (7.2). Then

w(t) = A

t∫

0

S(t − τ )Ng(τ )dτ ; wt (t) = A

t∫

0

C(t − τ )Ng(τ )dτ . (A.4)

3. Operator formulae for traces
Let (−A) be the Dirichlet Laplacian in (2.2) and D the Dirichlet map in (2.21a),
(2.21b). Then [41], [29, p. 181]

D∗ A∗φ = −∂φ

∂ν
, φ ∈ D(A), (A.5)
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which can be extended to all φ ∈ H
3
2 +ε(�) ∩ H 1

0 (�), ε > 0.
Let now (−A) be the Neumann Laplacian in (7.2) and N the Neumann map in
(7.17a), (7.17b). Then [41], [29, p. 196]

N ∗ A∗φ = φ
∣
∣
�

φ ∈ D(A), (A.6)

which can be extended to all φ ∈ H
3
2 +ε(�) ∩ H 1

0 (�), ε > 0, with ∂φ
∂ν

∣
∣
∣
�

= 0.

Appendix B The Dual Problem of the Boundary
Non-homogeneous Problem (2.1a)–(2.1c). A PDE-Approach

In this Appendix we consider the following two problems:

Problem #1 (2.1a)–(2.1c)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yttt + αytt − c2�y − b�yt = 0 in Q = (0, T ] × � (B.1a)

y
∣
∣
t=0 = y0; yt

∣
∣
t=0 = y1; ytt

∣
∣
t=0 = y2 in � (B.1b)

and either

Dirichlet-control y
∣
∣
�

= g in � = (0, T ] × � (B.1c)

or else

Neumann-control
∂y

∂ν

∣
∣
∣
∣
�

= g in �. (B.1d)

Problem #2With T > 0 arbitrary,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt t t − αvt t + c2�v − b�vt = 0 in Q (B.2a)

v
∣
∣
t=T = v0; vt

∣
∣
t=T = v1; vt t

∣
∣
t=T = v2 in � (B.2b)

and either

Dirichlet homogeneous B.C. v
∣
∣
�

≡ 0 in � (B.2c)

or else

Neumann homogeneous B.C.
∂v

∂ν

∣
∣
∣
∣
�

= 0 in �. (B.2d)

The v-problem (B.2a)–(B.2d) is dual to the y-problem (B.1a)–(B.1d) for zero
I.C.: y0 = y1 = y2 = 0, in the sense specified below

Theorem B.1 (i) Under the appropriate regularity assumptions on the data: {y0, y1,
y2}, g, and {v0, v1, v2}—to be made explicit below—the following identity holds true,
where 〈 , 〉� denotes the duality pairing with respect to H = L2(�) and 〈 , 〉� denotes
the duality pairing with respect to L2(�):
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〈ytt (T ) + αyt (T ), v0〉� − 〈yt (T ) + αy(T ), v1〉� + 〈y(T ), v2〉� − b 〈y(T ),�v0〉�

+〈y0,−vt t (0) + αvt (0) + b�v(0)〉� + 〈y1, vt (0) − αv(0)〉� − 〈y2, v(0)〉�

−
〈

c2
∂y

∂ν
+ b

∂yt

∂ν
, v

〉

L2(�)

+
〈

c2y + byt ,
∂v

∂ν

〉

L2(�)

= 0. (B.3)

(ii) Consider the Dirichlet non-homogeneous condition (B.1c) with zero I.C.
y0 = y1 = y2 = 0, coupled with the corresponding homogeneous Dirichlet condition
(B.2c). Then identity (B.3) specializes to

〈ytt (T ) + αyt (T ), v0〉� − 〈yt (T ) + αy(T ), v1〉� + 〈y(T ), v2〉� − b 〈y(T ),�v0〉�
= −

〈

c2g + bgt ,
∂v

∂ν

〉

L2(0,T ;L2(�))

.

(B.4)

(iii) Consider the Neumann non-homogeneous condition (B.1d) with zero I.C.
y0 = y1 = y2 = 0, coupled with the corresponding homogeneous Neumann condi-
tion (B.2d). Then identity (B.3) specializes to

〈ytt (T ) + αyt (T ), v0〉� − 〈yt (T ) + αy(T ), v1〉� + 〈y(T ), v2〉�
−b 〈y(T ),�v0〉�

= 〈
c2g + bgt , v

〉

L2(0,T ;L2(�))
.

(B.5)

Proof Step 1Multiply (B.1a) by v and integrate by parts. We obtain:

1 =
∫

�

T∫

0

yttt v dtd� =〈ytt (T ), v(T )〉� − 〈ytt (0), v(0)〉� − 〈yt (T ), vt (T )〉�

+〈yt (0), vt (0)〉� + 〈y(T ), vt t (T )〉� − 〈y(0), vt t (0)〉� −
∫

�

T∫

0

yvt t t d Q

(B.6)

2 =
∫

�

T∫

0

ytt v dtd� =〈yt (T ), v(T )〉� − 〈yt (0), v(0)〉� − 〈y(T ), vt (T )〉�

+〈y(0), vt (0)〉� +
∫

�

T∫

0

yvt t d Q (B.7)

3 =
T∫

0

∫

�

�yv d�dt =
T∫

0

⎡

⎣

∫

�

y�vd� +
∫

�

∂y

∂ν
vd� −

∫

�

y
∂v

∂ν
d�

⎤

⎦ dt (B.8)
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4 =
T∫

0

∫

�

�yt v d�dt =
T∫

0

⎡

⎣

∫

�

yt �vd� +
∫

�

∂yt

∂ν
vd� −

∫

�

yt
∂v

∂ν
d�

⎤

⎦ dt (B.9)

Step 2We sum up: 1 + α 2 − c2 3 − b 4 = 0 and obtain

〈ytt (T ) + αyt (T ), v(T )〉� − 〈yt (T ) + αy(T ), vt (T )〉� + 〈y(T ), vt t (T )〉� − b 〈y(T ),�v(T )〉�
+〈y(0),−vt t (0) + αvt (0) + b�v(0)〉� + 〈y1, vt (0) − αv(0)〉� − 〈y2, v(0)〉�
−

∫

Q

y
[
vt t t − αvt t + c2�v − b�vt

]
d Q −

〈

c2
∂y

∂ν
+ b

∂yt

∂ν
, ν

〉

L2(�)

+
〈

c2 y + byt ,
∂v

∂ν

〉

L2(�)

= 0.

(B.10)

Step 3 The
∫

Q
-term in (B.10) vanishes because of (B.2a). Next, we use the I.C. in

(B.2b) for the v-problem at t = T , and identity (B.10) reduces to (B.3). Part (i) is
proved.
Step 4 In the Dirichlet case, use y

∣
∣
�

= 0 in (B.1c) and v
∣
∣
�

≡ g in (B.2c). Then,
identity (B.3) reduces to identity (B.4).

Step 5 In the Neumann case, use
∂y

∂ν

∣
∣
∣
∣
�

= g in (B.1d) and
∂v

∂ν

∣
∣
∣
∣
�

≡ 0 in (B.2d). Then

identity (B.3) reduces to identity (B.5).

The next is a preliminary result.

Corollary B.2 With reference to the Dirichlet-Problem # 1 in (B.1a)–(B.1d) with
I.C. y0 = y1 = y2 = 0 and corresponding Dirichlet Problem # 2 in (B.2a)–(B.2d),
assume

g ∈ H 1(0, T1; L2(�)), {v0, v1, v2} ∈ U3 = D(A) × D(A
1
2 ) × H. (B.11)

Then, for any t, 0 < t ≤ T1:

y(t), yt (t), ytt (t) ∈ H × [D(A
1
2 )]′ × [D(A)]′. (B.12)

Proof We have Theorem 6.1 for any 0 < T1 < ∞:

{v0, v1, v2} ∈ U3 =⇒ {v, vt , vt t } ∈ C
(
[0, T1]; U3 = D(A) × D(A

1
2 ) × H

)

(B.13)
so that just by trace theory

∂v

∂ν
∈ C

(
[0, T ]; H

1
2 (�))

)
(B.14)

Thus, the RHS of identity (B.4) is well defined by (B.11), (B.14), finite on any finite
time interval. Here T is an arbitrary point 0 < T ≤ T1. We then focus on the LHS of
identity (B.4) to make sure that each term is well defined as a duality pairing w.r.t.
H = L2(�). We obtain
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v2 = vt t (T ) ∈ H =⇒ y(T ) ∈ H

v1 = vt (T ) ∈ D(A
1
2 ) =⇒ yt (T ) + αy(T ) ∈ [D(A

1
2 )]′

⎫
⎬

⎭
=⇒ yt (T ) ∈ [D(A

1
2 )]′

v0 = v(T ) ∈ D(A) =⇒ ytt (T ) + αyt (T ) ∈ [D(A)]′

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=⇒ ytt (T ) ∈ [D(A)]′.

(B.15)

This takes care of the first three therms on theLHSof (B.4).Notice then that the fourth
term 〈y(T ),�v0〉� is likewise automatically well-posed with v0 ∈ D(A),�v0 ∈
H = L2(�), y(T ) ∈ H . �
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18. Kisyński, J.: On second order cauchy’s problem in a Banach space. Bull. Acad. Polon. Sci. Sér.
Sci. Math. Astr. Plys. 18(7), 371–374 (1970)



426 R. Triggiani
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