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Summary

Identifying and interpreting pleiotropic loci is essential to understanding the shared etiology among diseases and complex traits. A com-
mon approach to mapping pleiotropic loci is to meta-analyze GWAS summary statistics across multiple traits. However, this strategy does
not account for the complex genetic architectures of traits, such as genetic correlations and heritabilities. Furthermore, the interpreta-
tion is challenging because phenotypes often have different characteristics and units. We propose PLEIO (Pleiotropic Locus Exploration
and Interpretation using Optimal test), a summary-statistic-based framework to map and interpret pleiotropic loci in a joint analysis of
multiple diseases and complex traits. Our method maximizes power by systematically accounting for genetic correlations and heritabil-
ities of the traits in the association test. Any set of related phenotypes, binary or quantitative traits with different units, can be combined
seamlessly. In addition, our framework offers interpretation and visualization tools to help downstream analyses. Using our method, we
combined 18 traits related to cardiovascular disease and identified 13 pleiotropic loci, which showed four different patterns of associa-

tions.
Introduction

Genome-wide association studies (GWASs) have identified
genetic variants associated with multiple traits, a phenom-
enon called pleiotropy.'** The identification of pleiotropic
loci is important to understanding the shared etiology
among diseases and complex traits. Since GWAS summary
statistics results are publicly available for many traits, these
results can be used to find pleiotropic loci. Methods to
identify pleiotropic loci are based on meta-analysis,” >
trait-specific effect size estimation,® or Bayesian ap-
proaches.” Methods based on meta-analysis give one p
value per locus and are therefore convenient if the primary
goal is identifying new risk loci. However, the meta-anal-
ysis results (the pooled statistic and the p value) alone are
insufficient to determine the degree of association for
each trait at a locus, making downstream interpretation
(i.e., which trait is significant and which one is not) diffi-
cult. Trait-specific methods give an updated effect size
and p value per trait per locus and thus have an advantage
in the interpretation and risk prediction. However, an
additional multiple testing correction may be required if
one wants to obtain a single p value per locus. Here, we
developed methods for identifying pleiotropic loci based
on meta-analysis approaches.

Applying an existing meta-analysis method to multi-
trait analyses is not optimal for several reasons. First,
many existing meta-analysis methods do not adequately
model the genetic architectures of complex traits. Howev-

er, explicitly modeling genetic correlations across pairs of
traits and their heritability can provide information on
the direction and magnitude of effect sizes across different
traits. Second, the meta-analysis methods depend on the
scales and units of the phenotypes; the units often differ
among quantitative traits, and the effect size definitions
differ between binary and continuous traits. Most meta-
analysis methods ignore the unit difference in effect size
and use the observed effect size estimates as input. There-
fore, they may not provide optimal results. For the same
reason, interpretation tools such as the forest plot® or m-
value® are less useful. Third, environmental correlations
may exist among traits collected from the same individ-
uals. Without systematically estimating and correcting
for environmental correlations, a naive application of
meta-analysis methods can inflate false positives.

Here, we propose a multi-trait method to map and inter-
pret pleiotropic loci called PLEIO (Pleiotropic Locus Explo-
ration and Interpretation using Optimal test). As with
meta-analysis methods, our method uses only GWAS sum-
mary statistics. Our method starts by estimating the
genetic correlations, environmental correlations, and her-
itability for each trait from the whole-genome GWAS sum-
mary statistics. We then standardize the effect sizes of all
traits and convert the effect sizes of binary traits to the lia-
bility scale. The standardization allows us to jointly
analyze diseases and complex traits with different
units and compare the magnitude of effect sizes. We as-
sume that genetic effect is random and develop a test of
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non-zero genetic variance components where the covari-
ance matrix is the cross-trait genetic covariance matrix.
This test can take into account both the genetic correla-
tions and heritabilities to maximize power and control
false positive rate by accounting for environmental correla-
tions. To increase computational efficiency in maximum
likelihood estimation, we developed an optimization tech-
nique by using the spectral decomposition on the covari-
ance matrix of the linearly transformed effect sizes. Even
with this technique, obtaining the p value is computation-
ally challenging because the small number of traits induces
the small sample problem. We overcome this challenge by
implementing an importance sampling method that pro-
vides accurate p value estimates.

We demonstrate the power of PLEIO in identifying pleio-
tropic loci by using both simulations and analysis of real
traits. In simulations, PLEIO was consistently more power-
ful than other methods in almost all simulated genetic ar-
chitectures because it could flexibly adapt to each genetic
architecture, whereas other methods only performed well
under certain genetic architectures. We applied PLEIO to
combine 18 traits related to cardiovascular disease and iden-
tified 13 “novel” pleiotropicloci, i.e., loci not present in the
GWAS catalog and not identified (pgy4s > 5%1078) by the
original GWAS of the individual traits. These loci were cate-
gorized into four groups on the basis of their association
patterns, which may represent distinct pathways. In addi-
tion to the powerful association test, PLEIO offers a visuali-
zation tool for the interpretation of the pleiotropic loci.
PLEIO is publicly available to the research community.

Material and methods

PLEIO analysis in five steps
Here we describe our framework, PLEIO. PLEIO aggregates GWAS
summary statistics of multiple traits to identify pleiotropic loci
shared across traits. Suppose we have Q traits that we expect to
share genetic components. We can collect T sets of genome-
wide summary statistics for these traits. T can be greater than Q
because more than one study can be included per trait. These traits
can be a mixture of binary and quantitative traits whereby the
quantitative traits can have differing phenotypic units. Suppose
we have M SNPs that are shared by all studies we collected. Let
B8 denote the effect size estimate of the i SNP for the ¢ study,
SE[E it] denote the standard error estimate, and N; denote the num-
ber of samples in the ' study. Given this input, PLEIO performs a
multi-trait joint analysis in the following five steps.
Step 1: decomposition of correlation
Correlation of GWAS marginal effect sizes can be attributable to
correlation of causal genetic effect sizes and correlation of environ-
mental effects. We decompose this correlation into genetic corre-
lation Cg and environmental correlation C, by applying cross-trait
linkage disequilibrium score regression (ct-LDSC)® to each pair of
studies. It is straightforward to estimate Cg and the heritabilities
h’ from ct-LDSC. We combine C4 and h? to get the genetic covari-
ance matrix Q.

We also use LDSC to estimate C., which reflects the correlated
errors of the effect size estimates driven by sample overlap.® We

first correct the confounding factors of each trait by dividing the
Z scores by the square root of the LDSC intercept. Then, the inter-
cept of the ctLDSC (after running LDSC with -rg flag to compute
genetic correlation) becomes the estimate of the correlation of
environmental effects between the two traits. This approach was
recently suggested by the MTAG.® We also describe another
method for estimating Ce. We combine a pair of traits with fixed
effects meta-analysis based on the inverse variance of the effect
size. Then, we apply this pooled summary statistic to get the
LDSC intercept (by running LDSC with -h2 flag to compute heri-
tabililty). Given the LDSC intercept oyets, the environmental cor-
relation is

_Nj+ Ni

Pe "‘W (amﬁta - 1)

where N; and N are the sample sizes of the two studies. We found
that the two approaches give similar estimates. For details, see Sup-
plemental methods.

Step 2: standardization of effect sizes

In the input data, the scales of effect sizes can be heterogeneous
across the studies. We calculate the standardized effect sizes of
SNP i for the trait t as

B .
3, E[(;
= and SE[,] = >20%)5,.  (Equation 1)
N, H‘@L@ ] it
E[Bi]

0t is a scaling factor that is 1 for quantitative traits and
(K2(1 — K;)* /Pi(1=P1))- (1 /[W(¢~' (1 = K;)))?) for binary traits,
where K; refers to the disease prevalence, P; = (N;|[y = 1)/N; refers
to the sample prevalence, y refers to the probability density func-
tion of the standard normal distribution, and ¢! refers to the in-
verse of the cumulative density function of the standard
normal distribution. 6; is an additional scaling factor that is O for
quantitative traits and (i X (P —K; /1 —K;)) (i X (P —K; /1 —K;) —t)
for binary traits, where ir = (y(¢~ (1 —K;)) /K;) refers to the mean
liability of cases, and t = ¢~1(1 —K;) refers to the liability threshold
for cases. For quantitative traits, 7%, can be simplified to
% = (B /SE[Bx])- (1 /+/N; ), which corresponds to the effect size
based on the standardized phenotypes and the standardized geno-
types. For binary traits, n; is the effect size for the liability,
assuming that the Z score (B /SE[8;]) was obtained from a
linear model with an observed scale (by setting the phenotypes
0 and 1). The use of the two scaling factors (6; and 6;) in a non-
randomly ascertained case-control study using a linear model
was suggested by Lee et. al.” Typically, the Z scores come from
the logistic regression model rather than the observed scale linear
model. However, it is a common practice to use these Z scores as if
they came from the linear model.'” %;; can be used conveniently
to interpret the pleiotropic effects of a variant because, in contrast
to the original effect size, Eit, it is independent of the units of phe-
notypes. We verified the accuracy of the proposed scaling for
different combinations of population prevalence and sample prev-
alence (Figure S1) in a simulation setting similar to one used by
Choi et al."!

Step 3: mapping pleiotropic loci with a variance component test

We build a statistical model optimized for the identification of
pleiotropic loci. We assume that an individual phenotype is influ-
enced by K causal SNPs whose individual contribution is very
small. For simplicity, we assume that K causal SNPs are shared by
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T traits. Let n; denote a Tx1 vector of the true effect sizes of the
causal SNP i under the standardized scale. Following the common
model widely used in previous studies,*'"'* we assume that K

SNPs have equal contributions. Then, n; ~ MVN <O7 %), where

Q denotes the genetic covariance matrix, of which diagonal ele-
ments are the narrow sense heritabilities. We assume n; = 0 for
non-casual SNPs.

Let 1; denote the observed effect sizes and SE(7;) denote the
standard errors. We can model 7; as the sum of the true genetic ef-
fect and the error:

ni=n+e,

where ¢; is a random variable denoting the error, which follows
€ ~ MVN(O, =), where X = diag(SE[n;])-C.-diag(SE[n;]). Thus,
Var(7;) = £+ = for causal SNPs and Var(;) = £ for non-causal
SNPs. As described earlier, applying LDSC to 5; and SE(7;) of all
M SNPs can produce an estimate of the genetic covariance matrix
(Q) as well as the error correlation ((Te)‘

We then relax the assumption that K SNPs have equal contribu-
tions. Then, the true effect n; needs not have the fixed variance £.
We now model 7; as

n;=7; + €,

where v; is a new random variable denoting the genetic effect that
follows v; ~ MVN(0,72Q), where 77 > 0 for causal SNPs and 77 =
0 for non-causal SNPs. That is, the scaling factor 72 of the variance
can model SNP-by-SNP differences in genetic contributions. As a
special case, if we set 72 =% for K causal SNPs and = O for
non-casual SNPs, this model is reduced to the previous model
assuming equal contributions of causal SNPs. Note that although
we relaxed the assumption of the equal contribution, the variance
of «; is still proportional to Q, which models the relative heritabil-
ity differences of the traits and the genetic correlations among the
traits. Under this model, testing whether a SNP is causal or not cor-
responds to testing the null hypothesis 2 = 0 versus the alterna-
tive hypothesis 72 > 0.

The underlying intuitions of our model are as follows. Our key

assumption is that the genetic component v; in the effect size is
a random variable whose variance is proportional to the genetic
covariance matrix Q. This implies that (1) phenotypes with larger
heritability show larger genetic effects and (2) phenotypes show
genetic effects concordant to their genetic correlations. Because
Q and £ are summarized information from the whole genome,
this approach can maximize the overall power. In that sense, our
model resembles empirical Bayes approaches.’
To test the hypothesis 77 > 0, we can fit a variance component
model to get the maximum likelihood estimate (MLE) ?,-2 that
maximizes £(77|7%;; 2, £). A numerical optimization algorithm
such as the pseudo Newton-Raphson method can be used to
find 77. However, updating the value of the likelihood function
at each iteration requires a matrix inversion. With a large T, this
can significantly increase the overall analysis time. To solve this
challenge, we developed an optimization technique that consider-
ably reduces the computational burden for finding the MLE (see
Supplemental methods). The proposed opt]lmlzatlon method
carries out a linear transformation on #; via 2 2. The transformed
observed effect sizes follow

1

?22

where the corresponding ?,-2 maximizes ﬁ(

P5.070507)
under the constraint of 72 > 0. We apply a spectral decomposition

= Pp(Ap)P}, where Ap is a diagonal matrix of the
elgenvalues, the diagonal elements of which are arranged in
ascending order, and Pp is an eigenvector matrix, the i column
of which corresponds to the i'" eigenvalue. Then, we only need to

calculate Pp(Ap +r,-21)7]P1T, per each iteration, which is much
PO

easier to calculate than (72Q + ) . Note that the values of the

matrices Pp and Ap remain unchanged with iterations. The log-

likelihood function obtained through the linear transformation
(%)) can be shown as follows:

P
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where p is the number of non-zero eigenvalues, ¢, is the tth diago-
1
nal element of Ap, 6? is the ' element of the vector PpEQ 27;,

and E is a diagonal matrix of which the first p elements are 1
and the rest are 0.

The first and second derivatives of ] with respect to 77 are as
follows:
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The optimal 72 can be obtained with the Newton Raphson

method. Asaresult, we get the log-likelihood ratio test (LRT) statistic

P Et P 5 P 5[2
Sprei0 = ;ln L+ =2 Z - Z 2

This technique can substantially shorten the time to complete
our test, and the time reduction increases with increasing num-
ber of traits (Figures S2 and S3). We note that our technique
was inspired by the technique used in efficient mixed-model
association (EMMA).'* Although the exact model and formula-
tion are different, the general scheme using eigen decomposi-
tion to simplify the problem to one-dimensional search is the
same.

Step 4: assessing statistical significance via importance sampling

Here, we describe how to assess an accurate p value of Sprgo that
asymptotically follows a 50 : 50 mixture of xZ and x3.'* However,
the asymptotic approximation is not accurate if the number of
traits (T) is small. We found that even when T is as large as 100,
the null p values calculated from asymptotic distribution deviate
from uniform distribution (Figure S4). Moreover, it turns out
that the null distribution depends on the genetic covariance ma-
trix © and error correlation matrix £. Thus, an alternative
approach would be simulating null distributions on the basis of
these study-specific factors (2 and £). But the standard sampling
is overly inefficient for assessing very small p values (e.g., 5%1078).
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Instead, we use an importance sampling approach to assess the
p value of Sprio. Let x be arandom variable denoting the standard-
ized effect sizes. Let q(x) denote the probability density function
(PDF) of x under the null. By definition, f q(x)dx = 1 where B=

RT. We can consider Spigio as a function of x given T and Q. Given
an observed Sppgjo statistic from data, which we call 4, we want to
calculate the p value of it. To this end, let f(x, §) denote an indica-
tor function as follows:

o5, a) | ISl 20
OlfSpLEI()( |2 .Q) <0

For simplicity, we replace f(x «9|E Q) with a simpler expression,
f(x). The p value of # can be expressed as

1= [Famx

To estimate I, we can exploit the importance sampling algorithm.
In importance sampling, we use a sampling distribution p(x) that
differs from q(x). Let X? ~ p(x) denote a MxT matrix of the
sampled effect sizes generated from p(x), where M is the number
of sampling. Then, we can estimate I by using X? as follows:

 _w|[®gx)] 1 M F(XD)q(XP)
P-p [ ]‘M{; ) }

where F/[ -] denotes the expectation over X?, and X¥ is the i row
vector of XP.

The challenge in importance sampling is choosing an appro-
priate p(x). It is particularly challenging in GWASs because the
range of p values is very wide, from 1.0 to 5x10~8. Thus, it is diffi-
cult to select a single distribution that can minimize variance for
all range of p values. To solve this challenge, we applied the impor-
tance sampling method developed by Owen and Zhou.'® The
method generates samples from a mixture distribution. Let p;(x)
denote the j™ sampling distribution where j = {1,2, ..., F}, and
let p.(x) denote the mixture distribution of F sampling distribu-
tions. We select F distributions so that the variance can be reduced
for a wide range of p values. We assume that each sampling distri-
bution has the equal chance to generate a sample such that

F
pa(x) = # > p;(x). Detailed information on the selection of p;(x)
i—1

pix)

can be found in Supplemental methods. Here, o)

as a con-

trol variate of m(x) = % Then, we can define

m(x, 8)

_fx9(x) -, (px)
“ w2 )

where Em’] = E[m] = I and u,, = [‘W ] fp, x)dx = 1. The con-

trol variate method maximizes the variance reductlon of Var(m*) by

using the optimal control variate coefficient (8*). Then, the variance

Var(m*) becomes equal to or smaller than Var(m). Owen and Zhou'*

showed that the p value estimate of # can be shown as follows:
XP) Z/ lﬁlp/

o] = (if foes ) > b

Given X? from p,(x), we calculate p values of 40 different ¢ that
are in the range (0, 40), which roughly correspond to p values from

1.0 to 3x 10!, For each 6, we calculate the optimal 8 for the con-
trol variate method to maximize the variance reduction of the p
value estimate. See Supplemental methods for how we obtained
the optimal control variate coefficients (8*). Using these 40 points,
we interpolate p values for § < 40 by using B-spline fit and extrap-
olate p values for § > 40 by using the linear fit on the logarithmic
p value scale.

In our method, we generate null samples once and use them for
all SNPs. One challenge with this procedure is that, by definition,
S is dependent on SNP i, as shown in Equation 1, if the trait is bi-
nary. Although the proposed scaling scheme can accurately
convert E,-t into 7; (see Figure S1), the drawback is that it imposes
a dependency between $ and i. To overcome this challenge, in the
null sample generation, we assume that all traits are quantitative.

i imations 7. — —Bi_x_L_ 51— L
That is, we use approximations 7 e v and SE[7] i for

all traits so that £ = diag(#) ~Ce-diag(71ﬁ> when N = {N,Ny,...,

Nr}. Under this assumption, $ becomes independent of SNP j, and
therefore, the null samples generated once can be used for all
SNPs. We empirically confirmed that the use of this approxima-
tion does not much affect the robustness of the false positive
rate control (data not shown).

Step 5: pleiotropy plot

PLEIO offers a tool to visualize the pleiotropic effects of a SNP,
which we named “pleiotropy plot” (Figure S5). This circular plot
provides information about the standardized effect sizes, the local
heritabilities, and the local Manhattan plots of a SNP. The outer
part is partitioned by the traits, each of which contains (1) the ef-
fect size of each trait on the original scale as text and on the stan-
dardized scale as a horizontal bar and (2) the local Manhattan plot
within a 1 Mb window. The inner part is a ribbon plot linking mul-
tiple traits. The ribbon color indicates genetic correlations. The rib-
bon width at the end indicates the relative locus-heritability per
trait (squared standardized effect size), where the width of the
largest locus-heritability is adjusted to 100%.

Data analysis

Collection of GWAS summary statistics

We collected public GWAS summary statistics of 18 diseases and
complex traits related to cardiovascular disease from large-scale ge-
netic consortia, as described in Table S1. When a consortium data-
base contained more than one GWAS for the same phenotype, we
selected the most recent study. We obtained the summary statistics
of four quantitative traits from the Global Lipids Genetics con-
sortium.'® The data consisted of the results of GWASs from
94,595 individuals from 23 studies genotyped with GWAS arrays
and 93,982 individuals from 37 studies genotyped with the Metab-
ochip array. We obtained the summary statistics of the twelve
binary traits in the UK biobank data from the Neale lab website
(Table S2). The data consisted of the results of GWASs from
361,193 individuals in the UK biobank cohort. We obtained the
summary data on coronary artery disease (CAD) from the
CARDIo+C4D consortium."” The data consisted of the results of
GWAS meta-analysis from 60,801 CAD-affected individuals and
123,504 control individuals from 48 studies. We obtained the sum-
mary data on fasting glucose (FG) from MAGIC (Meta-Analysis of
Glucose and Insulin-related traits Consortium).'® The data consisted
of the analysis results from 46,186 non-diabetic patients from 21
GWASs. All samples were from individuals of European descent,
except for those from the participants included in the CAD data
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from CARDIo+C4D consortium. For CAD data, participants were a
mixture of European ancestry (77%), South Asian ancestry (India
and Pakistan; 13%), East Asian ancestry (China and Korea; 6%),
and others (Hispanic and African American; 4%)."”

Summary statistics data quality control

For each summary statistics dataset, we removed SNPs that were
not included in 1000 Genomes.'” We checked the consistency
of allele pair of each SNP with the corresponding allele pair of
the SNP in 1000 Genomes. To eliminate potential strand mis-
matches, we pruned SNPs with the allele pair GC and AT. The
genetic covariance and error correlation were estimated from sum-
mary statistics of the remaining SNPs. A total of 1,777,411 SNPs
was included in the joint analysis of 18 traits.

Identification of novel pleiotropic loci

In the joint analysis of 18 traits, we identified 7,932 SNPs that were
genome-wide significant (pp o < 5%1078). We clumped these
SNPs with threshold (r? < 0.1) and found 625 approximately in-
dependent hits (Table S3). To estimate LD between SNPs, we
used the European samples in the 1000 Genomes data. To deter-
mine whether the remaining variants were novel loci, we excluded
variants that met any of the following two conditions: (1) the
variant had a moderate LD (r> > 0.1) with a variant that is listed
in the GWAS catalog as associated with the CVD-related traits or
(2) the variant already reached the genome-wide significance
threshold of 5%10~% in the original summary statistics of a single
trait. From this, we identified 13 “novel” pleiotropic variants (Ta-
ble S4). For GWAS catalog summary data, we used the file named
“All associations v1.0,” downloaded on September 3, 2020.

Results

Overview of method
PLEIO is a multi-trait framework to map and interpret
pleiotropic loci. PLEIO estimates the genetic covariance
and environmental covariance from GWAS summary sta-
tistics data and uses this information to increase the power
of association test (Figure S6). Consider a toy example that
involves three traits (A, B, and C) (Figure S7). At SNP X, we
observed the effect sizes of (2.2, 2.8, — 1.2), and at another
SNP X,, we observed the effect sizes of ( — 1.5, 0.4, —2.7).
For simplicity, we assume that the variances of all estimates
were one. Then, if we apply the fixed effects meta-analysis
(inverse-variance method), we get the same p value for
both SNPs (p = 0.03) because the average effect size is
the same. However, suppose we know that traits A and B
have a positive genetic correlation and trait C has a nega-
tive genetic correlation with the rest. Then, SNP X; is
more likely to be a true signal than SNP X, because the ef-
fect directions conform to the genetic correlations. More-
over, suppose we know that trait B has the largest heritabil-
ity and trait C has the smallest heritability. Then, the
association at SNP X; is even more likely because the rela-
tive strengths of the effect size conform to the heritabil-
ities. Our method accounts for both the genetic correla-
tions and heritabilities and gives a more significant p
value at SNP X; (p= 0.0006) than SNP X, (p=0.1).
PLEIO consists of five steps. First, we apply the LDSC'” to
the genome-wide summary data of traits to obtain the ge-

netic correlations Cg, the environmental correlation Ce,
and the heritabilities h®>. We summarize Cg and h* into
the genetic covariance Q. Second, we transform the effect
sizes ﬁ into the standardized effect sizes n, converting
the effect sizes of binary traits to the effect sizes for liabil-
ities. Third, we apply our variance component test to
map pleiotropic loci. We assume 7 = g + e, where g is
the genetic effect and e is the error (Figure S6). Our main
assumption is that the genetic effects follow the genetic
covariance, Var(g) = 72Q. We then test the hypothesis
2 > 0 versus 72 = 0. To find the MLE 7%>0 efficiently,
we utilize an optimization technique by using spectral
decomposition of the variance. Fourth, we apply an impor-
tance sampling method to assess the one-tailed p value.
Fifth, we report and visualize the results to help
interpretation.

Evaluation of false positive rates in null simulations

We evaluated the false positive rate (FPR) of PLEIO by using
simulations. We assumed the null hypothesis of no genetic
effect at a SNP for all T traits. Overall, we varied four fac-
tors: (1) the number of traits (T), (2) the environmental
correlation matrix (Ce), (3) the heritability parameter for
PLEIO (h?), and (4) the genetic correlation parameter for
PLEIO (Cg). Note that h? and Cg are input parameters for
PLEIO describing what PLEIO thinks to be the true h?
and Cg but are not the actual h? and Cg because the true
h? is zero in this null simulation. In a real analysis of
PLEIO, h* and Cq are estimated from GWAS statistics and
given to the test method. The test method combines
them to genetic covariance () and performs a variance
component test. Because PLEIO’s test method depends
on the input parameters h* and Cg, we wanted to evaluate
FPR when different h” and Cq were given.

Specifically, we simulated three different numbers of
traits (T'= 5, 10, 20). We set the off-diagonal elements of
Ce to 0.0 and 0.5 to simulate uncorrelated and correlated
environmental effects, respectively. We simulated two
different patterns of h”. In the “equal h®” scenario, we
set genome-wide heritability to be the same (h* = 0.5) for
all traits. In the “different h%” scenario, we simulated her-
itabilities ranging from 0.1 to 0.5. We simulated two
different patterns of Cq. In the “uniform Cg” scenario,
the off-diagonal elements of Cg were all set to 0.3. In the
“partitioned Cg” scenario, we set two subgroups and set
off-diagonal elements to 0.3 within a group and 0 between
groups. Thus, we tested 24 different scenarios
(3 x2x2x2). We generated one million null datasets for
each situation and calculated the FPR at « = 0.05. Table
S5 shows that the FPR of PLEIO is well calibrated in all
situations.

Next, we examined the FPR at a lower threshold. We
increased the number of null datasets to a billion to mea-
sure the FPR at the conventional GWAS threshold
(5%1078). We tested three numbers of traits
(T = 5, 10, 20) while assuming the equal h?, partitioned
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Cg, and no sample overlap. Table S6 shows that PLEIO’s
FPR is well calibrated for « down to 5x1078.

So far, we directly simulated effect sizes without gener-
ating genotypes. See Supplemental methods for a detailed
explanation for the simulation. We confirmed that when
we actually generated genotypes under the null, the results
were similar and the FPR was controlled regardless of the
minor allele frequency (Table S7).

Evaluation of power in alternate simulations

We compared the power of PLEIO against two meta-anal-
ysis approaches: the fixed effects meta-analysis method
and ASSET.? For the fixed effects method, we used the in-
verse-variance method of METAL.”” We used our own R
code implementation because the original METAL code
cannot account for the environmental correlation due to
sample overlap. We implemented the strategy suggested
by Lin and Sullivan,*" which can be thought of as a general
extension of METAL. ASSET is a subset-based method
assuming that the true effects could only exist in a subset
of the studies. We confirmed that FPRs were well calibrated
with both meta-analysis methods (Table S8).

Additionally, we compared the power with a trait-specific
approach, MTAG.® Unlike other meta-analysis approaches,
MTAG gives T p values given T traits. Because we measured
the power as the proportion of simulations whose p value
exceeds a threshold, we needed to combine T p values
into one p value. A straightforward approach was to choose
the minimum p value. However, additional multiple testing
burden was required with this approach. When we
measured the FPR, indeed, the FPR was inflated by choosing
the minimum p value (Table S8). To correct for multiple
testing, we applied the Bonferroni correction by multi-
plying the minimum p value by T. This approach controlled
the FPR but was conservative because the T effect size esti-
mates were correlated (Table S8). In our simulation, we
measured the power of MTAG both before the Bonferroni
correction (MTAG-U; uncorrected) and after the Bonferroni
correction (MTAG-C; corrected). Because MTAG-U is anti-
conservative and MTAG-C is conservative, they can give up-
per and lower bounds of the power of MTAG. We used our
own Python code that implements the MTAG method
because the MTAG software thought that the input was
flawed if the median of the Z scores was far from zero, which
was the case in the power simulations.

We assessed the power of the methods in various simula-
tion settings. Each setting defined a specific genetic corre-
lation structure Cg, heritabilities h?, phenotypic units (U),
and the types of traits (quantitative [Q] or binary [B]). In
each setting, we assumed T = 7 traits and repeated simula-
tions 10,000 times. The power was estimated as the
proportion of the simulations in which the p value was
< 5x1078. We assumed that the true Cg and h* were pro-
vided to PLEIO and MTAG. In power simulations, we
generated actual genotypes instead of directly sampling ef-
fect sizes from a distribution. See Supplemental methods
for a detailed explanation for the simulation.

First, we assumed a fixed heritability and perfect correla-
tions (r? = 1.0) among the seven traits. This represents the
scenario in which the same traits were collected in multi-
ple studies. In this situation, all methods performed simi-
larly well except ASSET (Figure 1A). With a sample size of
N = 50,000, the powers of PLEIO, METAL, MTAG-U,
MTAG-C, and ASSET were 63.79%, 63.81%, 63.81%,
61.67%, and 30.66%, respectively. As expected, METAL
performed well because METAL is optimal for the fixed ef-
fect scenario. PLEIO attained similar power, within the
95% confidence interval with METAL, because it can ac-
count for the genetic correlations. In this situation,
MTAG was analytically equivalent to METAL.® Because
the T p values of MTAG are identical in this scenario, the
multiple testing correction is not needed. Thus, MTAG-U
represents the correct power of MTAG, while MTAG-C is
overly conservative.

Second, we simulated different heritabilities for seven
traits, varying from 0.005 to 0.7. We simulated a uniform
genetic correlation r = 0.5 between all trait pairs. In this
scenario, PLEIO outperformed the other methods
(Figure 1B). With a sample size of N = 50,000, PLEIO
achieved a power of 77.6%, while the second-best method
(MTAG-U) achieved 67.2% and the third-best method
(MTAG-C) achieved 62.7%. PLEIO achieved higher power
than METAL because PLEIO accounts for different herita-
bilities of the traits.

Third, we simulated a complex correlation pattern with
both negative and positive correlations. We divided seven
traits into two groups (three traits and four traits). We set
the correlations in the first group to 0.95 and the correla-
tions in the second group to 0.90. We set the correlations
between the groups to a negative value of — 0.9. We
assumed a uniform heritability of 0.3 for all traits. PLEIO
showed the highest power among all methods
(Figure 1C). With a sample size of N = 50,000, PLEIO
achieved a power of 78.6%, while the second-best method
(MTAG-U) achieved 66.3% and the third-best method
(MTAG-C) achieved 62.6%. PLEIO achieved higher power
than METAL because PLEIO can take into account the ge-
netic correlation structure of the traits.

Fourth, we simulated a mixture of quantitative and bi-
nary traits. We simulated four quantitative traits and three
binary traits. For quantitative traits, we simulated different
phenotypic units ranging from 0.1U to 10U, where U was
the standard unit we assumed. We simulated a fixed herita-
bility of 0.5 and a uniform genetic correlation of 0.5 for all
traits. Again, PLEIO achieved the highest power
(Figure 1D). With a sample size of N = 50,000, PLEIO
achieved a power of 83.6%, while the second-best method
(MTAG-U) achieved 67.0% and the third-best method
(MTAG-C) achieved 60.8%. PLEIO achieved higher power
than METAL because PLEIO systematically combines het-
erogeneous traits by standardizing the effect sizes.

So far, we varied only one factor in each simulation:
different heritabilities, a complex pattern of genetic corre-
lations, and different phenotypic units. In reality, all three
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Figure 1. The simulation result comparing the performance of PLEIO and other methods

(A-E) We performed a total five power tests and labeled the results with (A)-(E). Each line shows the statistical power of a model gained
from an association test using seven summary statistics. We compared PLEIO (red), MTAG-U (blue), MTAG-C (light blue), METAL (green),
and ASSET (yellow). At the bottom of the figure, we visualized the simulation setting of each test. The boxplot shows the genetic cor-
relation. “Q” and “B” indicate whether the phenotype is quantitative or binary. The heritability values of the traits are shown on the
left side of the boxplot. The trait phenotype units are shown at the bottom of the boxplot. The line thickness indicates the 95% confi-

dence interval.

can occur together. We simulated such a combined situa-
tion. With a sample size of 50,000, PLEIO achieved a po-
wer of 69.7%, while the power of the second-best method
(MTAG-U) was 59.9% (Figure 1E).

Next, we wanted to simulate with real-data-based param-
eters. To this end, we assumed that there is one focal trait of
interest and we want to borrow information from multiple
non-focal traits. Non-focal traits are selected so that they are
closely correlated with focal trait, but the correlation be-
tween non-focal traits may not necessarily be strong. Since
MTAG gives trait-specific p values, we can use MTAG to only
look at the p value of the focal trait, which we call MTAG-E

Here, we used low density lipoprotein (LDL) as the focal
trait and selected the following six non-focal traits that
have a strong association with LDL (0.35 >|r,| >0.17) on
the basis of the genetic correlations reported in LDHub:**
triglyceride (TG), coronary artery disease (CAD), age at
Smoking (Age_Smo) childhood IQ (cIQ), hemoglobin Alc
(HbA1C), and waist-hip ratio (WHR). For simplicity, we
assumed that 1,000 causal variants were shared by all
seven traits. When we used the heritability estimates re-
ported in LDHub”* for our simulation, there was a phe-
nomenon that the overall p value was driven by the trait
with the largest h? if the sample sizes were set the same.
For this reason, we adjusted sample sizes so that Nh? is con-
stant for all traits. Then for the focal trait, we doubled the
sample size.

Figure S8 shows the results of the power simulation.
Again, PLEIO achieved the highest power. With sample
sizes satisfying Nh? = 10,000, PLEIO achieved a power of
72.6%, while the second-best method (MTAG-U) achieved
52.8% and the third-best method (ASSET) achieved 37.3%.
We note that the interpretation is different for MTAG-F
than other methods because other methods are not trait
specific. That is, in other methods, a careful interpretation
is required before concluding that the association is driven
by the focal trait.

Computation time and memory usage comparison

We compared the computation time and maximum
memory usage of the methods. We assumed the simulation
settings in the focal-trait power simulation (T = 7). As pre-
viously noted, we used our own implementations of MTAG
and METAL. For importance sampling, we used
Niampre = 100K. We generated a simulation input for per-
forming 10K and 1M associative tests, and tested each
method using one CPU. Table S9 shows that PLEIO,
MTAG and METAL can perform 1M associative tests in an
hour with less than 4GB of free memory, in this setting.

Joint analysis of multiple traits related to cardiovascular
disease

We applied PLEIO to identify pleiotropic loci associated
with traits related to cardiovascular disease (CVD). We
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Figure 2. The summary of the PLEIO analysis result with GWAS summary statistics of the 18 CVD-related traits

(A) The circular plot shows the locations and the statistical significances of the 13 novel variants (outer edge) and the 625 GWAS top SNPs
(inner edge). The inner ribbons connect the variants in the same functional category found by the DAVID analysis.

(B) The Manhattan plot of the PLEIO association results. Red triangles indicate the 13 novel loci.

collected summary statistics of 18 diseases and complex
traits from multiple consortia (Table S1). We selected 12 bi-
nary traits from the Neale lab’s UK Biobank GWAS results
(Table S2) by using the following search terms: heart, hy-
pertension, obesity, lipoproteins, cholesterol, and diabetes.
We collected four lipid traits from the Global Lipid con-
sortium,'® one binary trait (CAD) from the CARDIo-
GRAM+C4D consortium,'” and one trait (FG) from
MAGIC."® In total, we collected 13 binary and five quanti-
tative traits. See Material and methods for details of the
trait selection. Quantitative traits had differing units. Lipid
traits had the unit of mg/dL, whereas the FG had the unit
of mmol/L.'®'® We used the intersection of 1,777,411
imputed SNPs across all datasets. These traits showed
differing heritabilities and non-zero genetic and environ-
mental correlations (Figure S9).

PLEIO identified 625 independent GWAS top hits that
exceeded the threshold p = 5%x10~8 (Figure 2 and Table
$3). Among those, we found 13 independent novel vari-
ants, which have no known associations to CVD traits
and were not significant in each single study (Table S4).
The local Manhattan plots of these loci are shown in
Figure S10. Figure 2A shows a circular plot whose radial po-
sition indicates the genomic position, and the heights of

the points are the statistical significances of the variants.
The genome-wide Manhattan plot is shown in Figure 2B.
We compared the results of PLEIO to the original summary
statistics by using a mirrored Manhattan plot in Figure S11.

We used LDSC to investigate whether our statistics had
systematic inflation. To apply LDSC, we should assume
that the chi-square statistic for a SNP in LD decreases by
r2. Although it is unclear whether this assumption is cor-
rect in the PLEIO statistics, we have accepted this assump-
tion and applied LDSC. The LDSC intercept was close to
one («¢ = 1.11), which showed that our results did not
have much inflation.

We used the Variant Effect Predictor (VEP v.97.2) in EN-
SEMBL GRCh37 and obtained the annotations of the identi-
fied variants. The 13 novel variants included six intronic var-
iants, three non-coding transcript variants, three intergenic
variants, and one upstream gene variant. The 625 top hits
included 374 intronic variants, 112 intergenic variants, 41
upstream gene variants, 25 downstream variants, 23 missense
variants, 21 3’ UTR variants, 12 non-coding transcript exon
variants, 12 synonymous variants, and five 5’ UTR variants.
The detailed annotations are in Tables S10 and S11.

Using the 625 top hits, we performed an additional anal-
ysis with DAVID v.6.8. Given the list of genes obtained by
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VEP, we used DAVID to search for the presence of known
trait-gene associations based on the Genetic Association
Database (GAD, Table S12). We curated the reported trait-
gene associations into eight categories: CAD, FG,
hypertension, diabetes, high density lipoprotein (HDL),
LDL, total cholesterol, and total glycerides. That is, we cate-
gorized the variants into eight groups on the basis of the
trait category of the known association. We visualized the
results in the inner circle of Figure 3A, where each ribbon in-
dicates a pair of genes in the same phenotypic category.
For comparison, we applied MTAG to the same dataset.
Because MTAG gave 18 p values per SNP, we first consid-
ered looking at all 18x 1,777,411 p values. For the purpose
of discovering the associated locus, this is equivalent to
looking at the minimum p value per each SNP without
considering multiple testing (MTAG-U). MTAG-U identi-
fied 622 independent GWAS hits (Figure S12). Thus,
MTAG-U found a slightly fewer number of associations
than PLEIO (625 hits) in this analysis. Although MTAG-U
found a comparable number of hits, we note that the num-
ber of p values MTAG-U examined was much larger than
PLEIO. When we applied LDSC, MTAG-U showed an in-
flated intercept (a« = 3.89) as expected because MTAG-U
is @ minimum p value approach (Table S13). Next, we
considered a scenario that we want to correct for multiple
testing. After applying the Bonferroni correction, MTAG-C
identified 493 GWAS hits. Another possible approach to
correct for multiple testing would be to adjust the % statis-
tic so that the LDSC intercept would be similar to PLEIO
(¢ =1.10). However, this approach further reduced the
number of GWAS hits to 102 (Table S14), suggesting that
the inflation caused by multiple testing is not well cor-

Figure 3. Pleiotropy plot of rs1688030,
an intronic variant of HPN

The radial axis of the circular plot is divided
by the 18 traits included in the real data
analysis. The outermost layer shows the p
values and the effect size estimates of the
variant obtained from the original GWAS
summary statistics. The next layer shows
the local Manhattan plots of the variant
within 1 Mb window. The horizontal bar
plot shows the direction and maginitude
of the standardized effect size (n) with the
95% confidence interval for each trait.
The inner ribbons show the genetic corre-
lations (as the color: positive rg as red and
negative r; as blue) and the relative SNP
heritability per trait (as the width of the

High density
- Y lipoprotej
P ‘2‘46501 ein

BETA: g g, o ribbon end). The upper left corner shows
the color scale used in the inner ribbon
e plots (left) and the range of observed stan-
i"/h,pe” dardized effect sizes (right)
> 7 nsje,
s

rected by the intercept adjustment.
For a detailed description of this anal-
ysis, see Material and methods.
We measured the computation time
needed for this real data analysis by
using a single CPU core. Running LDSC for 18 traits took

0.2 h and running pairwise LDSC for (128) pairs took

1.5 h. Building the importance sampling distribution
(with Nggmpe = 1M) for PLEIO took 1.89 h. Then, testing
1,777,411 SNPs with PLEIO took 1.83 h. In total, PLEIO
spent 3.72 h excluding LDSC preprocessing and required
2.1GB memory at peak.

Interpretation of the joint analysis results

To further interpret the multi-trait associations at each locus
we identified, we visualized the result of each locus by using
a circular plot, which we call “pleiotropy plot.” The pleiot-
ropy plot includes the local Manhattan plot and the bar
plot of the standardized effect sizes. The inner ribbons
show the genetic correlations as colors and the explained
heritabilities by the locus as widths. We drew pleiotropy
plots of the 13 novel variants we identified (Figure 3 and
Figure S5). On the basis of the patterns observed in these
plots, we manually categorized the 13 variants into four
non-overlapping groups, which may imply distinct under-
lying pathways (Figure 4).

The first group of variants had associations with seven
binary traits: six traits from the UK Biobank (acute myocar-
dial infarction, myocardial infarction, heart attack, major
coronary heart disease, coronary atherosclerosis, and
ischemic heart disease) and one trait (CAD) from CARDIo-
GRAM+CA4D. These seven traits showed high genetic cor-
relations (Figure 4). We categorized variants into this group
if the variant had the strongest association with one of the
seven traits and associations (p < 0.001) with at least
three traits out of the seven traits. The variants showing
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this pattern were rs7590392 near ACVR2A (2q22.3) and
1s1979974 in ZNF827 (4q31.22).

The second group of variants had associations with lipid
phenotypes (triglycerides, LDL, HDL, and total choles-
terol). We categorized variants into this group if the variant
had the strongest association with one of the lipid traits
and associations (p < 0.001) with at least two lipid traits.
The variants showing this pattern were 1s6817572 in LRBA
(6p22.3), 1512787728 in TNKS1BP1 (11q12.1), rs2278093
in ERGIC2 (12p11.22), and rs1688030 in HPN (19q13.12).

These variants showed differing associations to the lipid
phenotypes. 156817572 showed the strongest associations
to the total cholesterol and LDL. rs12787728 showed the
strongest associations to the total cholesterol and HDL.
152278093 and rs1688030 showed the strongest associa-
tions to the total cholesterol and triglycerides.

The third group of variants had associations with both
the CAD and the lipid phenotypes. We categorized variants
into this group if the variant had associations (p < 0.001)
with both CAD and one of the lipid traits at the same time.
Although these variants satisfied both the condition for
group 1 and the condition for group 2, we categorized
them separately as the third group. The variants showing
this pattern were 157693203 in MTTP (4923) and
154393438 in RASA3 (13q34). The variants in this group
showed strong associations (p < 0.0001) to the total
cholesterol and LDL.

The fourth group of variants was the variants that were not
categorized into the three aforementioned groups. The vari-
ants in this group were rs876320 near FGFBP1 (4p15.32),
1s1561105 in RP11-175E9.1 (8p21.2), 152891902 near
RPL35AP19 (8q24.12), 152055014 in RP11-466I1.1
(8g24.12), and 151039119 in AC106729.1 (16923.1).
152891902 showed the strongest association to obesity
(p < 0.001) and weak associations to type 2 diabetes and hy-

Figure 4. Distinct association patterns of
13 novel variants identified by PLEIO

Each box represents the association of a
variant with a trait; the size of the box indi-
cates the magnitude of the standardized ef-
fect size (n), and the color of the box indi-
cates the statistical significance. The right-
side heatmap shows the genetic correla-
tions. We divided the variants into four
groups on the basis of their association pat-
terns. In the lower right corner, we provide
the color scale of the genetic correlations,
the size scale of the effect sizes, and the co-
lor scale of the associations.

01
’ : pertensions. 1s876320, rs1561105, and
Ly M 1s1039119 were interesting because their
oocor M associations to all traits were weak
ocor [l (p > 0.01). The strongest associations
oo Il of 11039119 were to coronary athero-
| — sclerosis (p = 0.02) and triglycerides

3.55 o4 |

(p = 0.08). However, this SNP’s effect

size directions to the seven binary traits
in the first group were all concordant to the genetic correla-
tions of these traits. The strongest associations of rs1561105
were to triglycerides (p = 0.005) and major coronary heart
disease (p = 0.03), acute myocardial infarction (p = 0.04),
and myocardial infarction (p = 0.05). This SNP’s effect size
directions to these three traits were all concordant to the ge-
netic correlations. The strongest associations of rs876320
were to acute myocardial infarction (p = 0.01), myocardial
infarction (p =0.04), and heart attack (p = 0.04). This
SNP’s effect size directions to these three traits were all concor-
dant to the genetic correlations. Thus, PLEIO seems to have
captured the aggregate information in multiple weak associ-
ations by considering the fact that the effect size directions
were concordant to the genetic correlations. Further follow-
ups would be needed to determine whether these loci with
weak associations to multiple traits present true associations
or false positives.

Discussion

We have presented PLEIO, a framework to identify and
interpret pleiotropic loci with GWAS summary statistics
of multiple traits. PLEIO increased statistical power by us-
ing a test of variance components in a random effect
model that models genetic correlations and heritabilities
and by using standardized units of effect sizes across traits.
Our method offers interpretation and visualization tools to
help understand shared association patterns of pleiotropic
loci.

PLEIO is a general method that includes other previous
meta-analysis methods as special cases. If we set the ge-
netic covariance matrix to a matrix of ones and the envi-
ronmental correlations to zero, the test is approximately
equivalent to the fixed effects meta-analysis method. If
we assume environmental correlations, the test is
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approximately equivalent to the Lin-Sullivan method.?" If
we set the genetic covariance matrix to an identity matrix
and the environmental correlations to zero, the resulting
test is similar to the heterogeneity test in the Han-Eskin
random effects model.”® If we set the genetic covariance
matrix to an identity matrix and assume environmental
correlations, the resulting test is similar to the heterogene-
ity test in the RE2C framework.”* A difference of PLEIO is
that, unlike other methods optimized for specific sce-
narios, it estimates the genetic covariance and the envi-
ronmental correlations from data and adjusts itself to
each scenario. For example, if we have a collection of
the studies for the same trait, PLEIO will learn this infor-
mation and act as though it were a fixed effects meta-anal-
ysis method.

PLEIO can combine the traits from different popula-
tions. When we combine the same traits of the same pop-
ulation, the genetic correlations will be one. However,
when we combine the same traits from multiple ethnic-
ities, the genetic correlation is usually positive but imper-
fect (0 < r; < 1). Recent methods can estimate genetic
correlations across different populations by accounting
for population-specific LD.?*"*° One can use these methods
to estimate r, for the PLEIO analysis if the traits come from
multiple populations.

In a multi-trait analysis, one must decide which traits
should be included. Selection of traits can be performed
on the basis of the literature describing comorbidity,
shared candidate genes, or observed genetic correlations.
If one includes a trait with no pleiotropy to other traits,
the power to detect pleiotropic loci shared across all traits
will decrease. In real data analysis, our trait selection was
based on literature search, and the observed r; between
selected traits was greater than 0.15. One approach to
choose traits can be based on an estimated r, with the
whole genome. However, a possible pitfall is that the re-
gion-specific pleiotropic effects can be ignored because
there can be specific regions whose local co-heritabilities
are greater than other regions.

There exist two types of multi-trait analyses. The first is a
joint meta-analysis in which the statistics of several traits
are combined into one. The goal of this type of analysis
is to find pleiotropic loci that are associated to multiple
traits. These analyses have the same strengths and weak-
nesses as a typical meta-analysis. Aggregating more traits
can provide additional power, but modeling heterogeneity
between traits and interpreting results can often be chal-
lenging. The second type is a trait-specific analysis in
which related traits help the association test of a specific
trait.>”*”-?® The goal of this type of analysis is to maximize
power for the analysis of each trait. In this study, we
focused on the meta-analysis methods. Because our frame-
work provides tools to facilitate interpretations, our
method can minimize the weaknesses of the joint meta-
analysis.

PLEIO has similarities and differences to a popular
approach, MTAG.® Both methods model the genetic corre-

lations, heritabilities, and environmental correlations.
Both methods can deal with binary traits and quantitative
traits with different units. The main difference is that
PLEIO is a meta-analysis approach, while MTAG is a trait-
specific method. Given T traits, PLEIO produces one p
value per locus, while MTAG produces T trait-specific p
values. Therefore, if one wants to calculate a single associ-
ation p value per locus, PLEIO can be the method of
choice. One advantage of MTAG is that the polygenic
risk prediction can be made more accurate with the up-
dated trait-specific effect sizes. In contrast, PLEIO is an
aggregate meta-analysis method that does not update
trait-specific effect sizes. Thus, for risk prediction, MTAG
can be the method of choice. In the future, it will be inter-
esting to expand the PLEIO framework to update effect
sizes via techniques such as the best linear unbiased predic-
tor (BLUP).

The pleiotropic loci identified by PLEIO can be attrib-
uted to biological or mediated pleiotropy.”’ In the former
case, the variant has an independent association for each
trait tested. In the latter case, however, the variant may
have cross-trait associations resulting from causal relation-
ship of two or more traits’ being tested. PLEIO does not
have the ability to distinguish these two types of pleiot-
ropy and will identify loci with any of them. It will be
an interesting research direction to examine the effect of
the type of pleiotropy to PLEIO’s power and to develop
methods to distinguish between the two via incorpora-
tion of Mendelian randomization into the PLEIO
framework.

We developed PLEIO under the assumption that only
GWAS summary statistics are available. If individual-
level genotype data are available, multivariate regres-
sion approaches can be used to combine information
from multiple traits.'>*%*' These methods can utilize
individual-level information and control for confound-
ing factors consistently across traits. However, to run
these methods, sample data of all traits must be avail-
able at one location. Considering that the transfers of
genotype data are becoming increasingly difficult
because of privacy issues,’”*® collecting all samples
would be challenging. Moreover, models using individ-
ual genotypes commonly require large computing re-
sources. As for the statistical power, Lin and Zeng**
have shown that the use of individual-level data did
not much improve statistical power over the use of
summary statistics in the context of traditional meta-
analysis. In multi-trait analysis, it would be interesting
to compare power between the two types of methods
in the future studies.

In summary, we proposed a general and flexible meta-
analysis framework for the identification and interpreta-
tion of pleiotropic loci. We expect that our framework
can help discover core genes that contribute to multiple
phenotypes, which can lead us to a better understanding
of the common etiology of traits and the development of
shared drug targets.
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Data and code availability

PLEIO is publicly available at https://github.com/cuelee/
pleio. The summary statistics data used for the multi-trait
association analysis are available from UK biobank
GWAS results, the Global Lipids Genetics consortium, the
CARDIo+C4D consortium, and MAGIC. The multi-trait as-
sociation results are available upon request.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
1016/j.ajhg.2020.11.017.
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