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Abstract

In this paper we present an abstract maximal LP-regularity result up to T = oo, that is tuned
to capture (linear) Partial Differential Equations of parabolic type, defined on a bounded domain
and subject to finite dimensional, stabilizing, feedback controls acting on (a portion of) the bound-
ary. Illustrations include, beside a more classical boundary parabolic example, two more recent
settings: (i) the 3d-Navier-Stokes equations with finite dimensional, localized, boundary tangen-
tial feedback stabilizing controls as well as Boussinesq systems with finite dimensional, localized,
feedback, stabilizing, Dirichlet boundary control for the thermal equation.

1 Introduction and statement of main result.

Though written at the outset at the abstract level for an abstract linear model, the present paper is
actually motivated by, and ultimately directed to, nonlinear Partial Differential Equations (PDEs) of
parabolic type, defined on a bounded domain and subject to finite dimensional, stabilizing, feedback
controls acting on (a portion of) the boundary. A key preliminary goal is to establish uniform sta-
bilization of the corresponding linearized boundary-based, feedback, closed-loop problem. The extra
property to be established is that such boundary-based feedback linearized system possesses the maxi-
mal LP-regularity property up to T' = oo in the natural functional setting, where uniform stabilization
is achieved. Maximal LP-regularity up to T' = oo is then critically used to provide a novel, much
streamlined, improved treatment of the consequent nonlinear analysis of well-posedness and uniform
stabilization of the nonlinear parabolic problem in the vicinity of an unstable equilibrium solution. See
[L-P-T.2] for the Navier-Stokes equations and [L-P-T.4] for the Boussinesq system, to be compared to
prior treatments such as in [B.1], [B.2], [B-T.1], [B-L-T.1], [B-L-T.2], [B-L-T.3], [L-T.6]. Our driving
motivating illustration is the 3d Navier-Stokes equations of Section 5. Here, the functional setting
where uniform stabilization with a finite dimensional, localized, boundary, even tangential, control is
achieved in full generality cannot be a Hilbert-Sobolev space. In fact, in studying local well-posedness
and uniform stabilization near an unstable equilibrium solution, handling the N-S nonlinearity requires
a sufficiently high topological level as to impose compatibility conditions between the initial conditions
and the boundary-based control. In truth, whether it was possible at all to achieve uniform stabiliza-
tion of the Navier-Stokes equations in the vicinity of an unstable equilibrium solution by virtue of a



localized boundary-based feedback control that is finite dimensional also for d = 3 was an open prob-
lem that was solved in the affirmative in the recent paper [L-P-T.2]. It required a suitable Besov space
setting, with tight indices, based on L4(Q2), ¢ > d and ‘close’ to L3(Q2), which possesses two features:
(i) a topological level high enough to be able to handle the 3d non-linearity; (ii) without recognizing
compatibility conditions. Such Besov setting then replaces the Hilbert-Sobolev setting that was tra-
ditionally used in the literature on parabolic stabilization of fluids over many years. Stabilization of
the Navier-Stokes equations was pioneered by A. Fursikov [Fur.1], [Fur.2], [Fur.3].

While it has been known for many years that analyticity of the s.c. semigroup and maximal regu-
larity are equivalent properties in the Hilbert setting [Sim], in the Banach setting maximal regularity
implies, but need not be implied by, maximal regularity [Dore.2], [K-W.2].

Maximal regularity at the abstract functional analytic level, as well as maximal regularity of
(linear) parabolic problems on bounded (or even unbounded) domains is of course a much worked out
topic over many years; however, in the latter case of a bounded domain, typically with homogeneous
boundary conditions. There is a vast literature on this topic, that covers non only classical parabolic
operators but also Navier-Stokes-based operators such as the Stokes operator, see [D-V], [Dore.1],
[Dore.2], [Sim], [DaP-V], [DaP-G.1], [DaP-G.2], [Gi.1], [Gt], [Sol.1], [K-W.1], [K-W.2], [Ves|, [Weis],
[P-S], to name a few.

In this paper, our focus is instead on linear parabolic problems with boundary-based stabilizing
feedback control of finite dimension.

Our abstract maximal LP-regularity theorem up to T = oo of Section 1 is tuned to capture the 3d
Navier-Stokes linearized illustration of Section 5, mentioned above. In fact, there are critical genuine
intrinsic properties pertinent to such Navier-Stokes-illustration in the L%(Q2)-setting, ¢ > d that are
extracted and elevated to become abstract assumptions of the theorem of Section 1.

To ease the transition on the applications, we provide in Section 4 a more classical illustration
of parabolic boundary stabilization, that was studied in the Hilbert setting L?(Q) in the early 80s
[L-T.1], [L-T.2], [Tr.1], [Tr.2], [Tr.3] and which is here re-presented in the L7 setting, to conclude now
with maximal LP-regularity up to 7' = oo in the stabilized case. Section 6 then goes on by providing
an additional illustration of our abstract theorem of Section 1, as applied to a linearized Boussinesq
system, coupling the Navier-Stokes equations with a thermal equation, where a Dirichlet boundary
stabilizing finite dimensional feedback localized control acts on the heat component [L-P-T.4]. Again,
ultimately, well-posedness and uniform stabilization is achieved in a Besov space setting, by virtue of
the asserted maximal LP-regularity of the linearized system.

1.1 Standing assumptions.

We introduce the following assumptions.

(H.1) Let Y be a Banach space which, moreover, is a UMD-space [K-W.2, p 75]; hence reflexive
[H-N-V-W, Theorem 4.3.3, p306].

(H.2) Let —A : Y D D(A) — Y be the generator of a s.c. bounded analytic semigroup e 4 on
Y, t > 0. Accordingly, the fractional powers A% 0 < 6 < 1, of A are well-defined, possibly after a
translation.



(H.3) Let —A* D Y* D D(A*) — Y* have maximal LP-regularity on Y* up to T: —A" €
MReg (LP(0,T;Y™)) (so that, a-fortiori, —A* is the generator of a s.c. bounded analytic semigroup
e~ on Y*; as implied by (H.2) via the reflexivity of ¥ in (H.1)).

(H.4) Let U be another Banach space and let G be a (“Green”) operator satisfying
G : continuous U — D(A7) C Y, or A"G € L(U,Y) (1.1)

for some constant v, 0 <~y < 1.

(H.5) Consider the following three operators A4,, A, F

A, Y DD(A,) =D(AF) — Y, >0, (1.2a)
with Y* 5 D(A%) = D(4* ) — v* (1.2b)

so that, by the closed graph theorem, A,A~(17%) € £(Y") is a bounded operator on Y and AZA*_(I_E) €
L(Y™) is a bounded operator on Y*;

A=—-A+A4,: YDODA) =DA) —Y, (1.3)
F e L(Y,U), F (stands for “feedback”).

Since the perturbation A, of —A in (1.3) is A'*-bounded and —A is a s.c. analytic semigroup
generator, it follows [Pazy, Corollary 2.4, p 81] that

A is the generator of a strongly continuous analytic semigroup e* on Y, t > 0. (1.5)

The focus of our main interest in this paper is the operator

A, = Al -~ GF):Y > D(Ap) — Y (1.6)
DA,)={zeY: I-GF)xeD(A)}. (1.6b)

Remark 1.1. a) We quote from [K-W.2, p 75]: “All subspaces and quotient spaces of L1(2), 1 < g <
oo have the UMD property but L' () or spaces of continuous functions C(K) do not. As a rule of
thumb, we can say that Sobolev spaces, Hardy spaces and other well-known spaces of analysis are
UMD if they are reflexive”.

b) In applications to PDE closed-loop systems, € is an open bounded domain in R? with sufficiently
smooth boundary I' = 912, while the feedback control acts on the boundary I' = 9 of 2. Then the
space U will be based on I', say U = L%(T"), possibly subject to further conditions. The operator
A has compact resolvent.

1.2 The dynamical model generated by A,: Main results.

Proposition 1.1. Under the given assumptions (H.1), (H.2), (H.4), (H.5) the operator Ap in
(1.6) generates a s.c. analytic semigroup ert onY, t > 0. If moreover A has compact resolvent, then
likewise the resolvent R(\, A,) is compact on'Y and so the semigroup eArt s compact as well for all
t > 0. [Pazy, Thm 3.3, p 48]



A proof is given in Section 2. On the basis of Proposition 1.1, we consider the following abstract
dynamical system on the space Y:

% Al —GFly+f=Ap+f y0)=geY (1.7a)
y(t) = etrlyo + /t eAr =9 f(s)ds (1.7b)
0

with the forcing term f specified below. Equation (1.7) serves as an abstract model of the Partial
Differential Equations of parabolic type, written in a closed loop form, with feedback controls acting
on the boundary I' of the smooth bounded domain © € R? in Remark 1.1. This will be illustrated in
subsequent sections. The goal of the present paper is to establish the following result on the maximal
LP-regularity on Y of the feedback operator Ap.

Theorem 1.2. Assume (H.1)-(H.5). With reference to the dynamics (1.7), let yo =0
a) Then the map

t
F > (L)) = / eAr(t=5) f(5)ds - (1.82)
0
continuous LP(0,T;Y) — X = LP(0, T; D(A,)) N W"P(0,T;Y), 1 <p < o0 (1.8b)
so that there is a constant C = C, 1 > 0 such that

l9tll o 0.2 + 1Ae¥] ooy < C Il limoryy - (L9)

In short: the operator Ap has maximal LP-reqularity on'Y up to T < oco. We express this symboli-
cally, using the notation of [Dore.2]

A, € MReg(LP(0,T;Y)). (1.10)

b) Assume further that the s.c. analytic semigroup ert of Proposition 1.1 is uniformly stable on'Y .
Then, the above results (1.8), (1.9) hold true with T' = oo, so that [Dore.2, Theorem 5.2, p307]

A, € MReg(LP(0,00;Y)). (1.11)

c) Suppose there exists a bounded operator B € L(Y) such that the s.c. analytic semigroup etrt

generated via Proposition 1.1 by
A, =A, +B=A(I-GF)+B (1.12)
18 uniformly stable in Y. Then

A, € MReg(LP(0,00;Y)). (1.13)

Remark 1.2. Case b) occurs in the case of uniform stabilization of the closed-loop linearized Navier-
Stokes equations with a feedback control pair {v,u}, with boundary feedback control v acting on an
arbitrary small connected portion T of the boundary I" = 90 of the bounded domain €2, and interior
control u acting tangentially (parallel to f) on an arbitrary interior collar w supported by L. Fig 2,
Section 5. The operator F' is the feedback operator for v, the operator B is the feedback operator for
u. The control u cannot be dispensed with to obtain maximal LP-regularity up to T' = oo: the presence
of the additional bounded operator B € L(Y) is critical to achieve such uniform stabilization. With
B = 0 one obtains maximal LP-regularity only up to any T' < co. All this is to be discussed in Section
5. In other cases (Sections 4 and 6), we can take B = 0.



2 Proof of Proposition 1.1.

The short proof, patterned after [L-T.4, p 151], is inserted here for completeness. It uses two key
ingredients: the classical perturbation theory of the resolvent R(\, A, ) in terms of R(\, A) [Pazy, p
80]; and assumption (1.1) on G, in addition to (1.4) for F. Both statements: (i) that A, generates a
s.c. analytic semigroup e*r! on Y, t > 0, and (ii) that the resolvent R(), A,) is compact on Y rely
on the first ingredient. The classical perturbation formula [Pazy, p 80] written for A, in (1.6) is:

R(M\AL) = [T+ RN A)AGF] P R(), A), (2.1)

at least for A € p(A), with Re A > some py > 0. Next, property A"G € L(Y) for some 0 < v < 1 as
in (1.1) yields A7G = (kI — A)YG € L(U,Y) for some k > 0 suitably large, as D(A) = D(A) by (1.3),
where —A = A — kI generates a s.c. analytic semigroup ! on Y by (1.5). Moreover, ATGF € L(Y)
by (1.4). Accordingly a well-known formula [Kre, Eq (5.15), p 115] gives

N A - N ALY (A < N AL
HR()\,A)AGFHE(Y) HR(A,A)A (A GF)HE(Y) <o, HR()\,A)A HE(Y) (2.2)
< &1 i 0as A —s oo € p(A)  (23)
Then by (2.1) and (2.3), we obtain
IR Ap)ll 2oy < Crpo IR Al 2y s VA, Re A> some pg > 0. (2.4)

Thus, via (2.4) the properties of R(A,.A) [generation by A of a s.c. analytic semigroup on Y by
(1.5) and compactness transfer into corresponding properties for R(\, Ar)] [Fat, Lemma 4.2.3, p 185].
Finally, compactness of the resolvent and analyticity of the semigroup a-fortiori imply compactness of
the semigroup for all ¢ > 0 [Pazy, Thm 3.3 p48]. Proposition 1.1 is proved.

3 Proof of Theorem 1.2.

Part a) Step 1: With F' € L(Y,U) by (1.4) and G satisfying (1.1), the intrinsic presence of the operator
GF as a right factor in the expression of A, in (1.6a) makes such expression not directly suitable for
deducing its maximal LP-regularity on Y, as it would leave the power A~ on the LHS unaccounted
for on Y. Accordingly, we find it convenient to consider instead the more amenable adjoint/dual
operator.

A = (I — GF)*"A* = —(I — GF)* A" + (I — GF)* A} (3.1a)
Y* 5 D(A%) = D(A") = D(A*) — Y* (3.1b)

via (1.3), since GF € L(Y) and (I — GF)* € L(Y*). We rewrite A}, in (3.1a) as

£

* * * vk AxY 1= * —(1— * A1
At = A+ [FFGTAT A + (I - GF) (A~ (179 4,)" A (3.2)
whereby the adjoint of the right factor (I — GF) in (1.6a) becomes now a left factor (I — GF)* in
(3.2). In obtaining in (3.1a) the form of A}, from that of Ap in (1.6a), we have used [Fat, p 14] that

1—e

(I-GF) € L(Y). Moreover, we have also used A, = A'™(A~(179) 4,) hence A* = (A== 4,)*4* °,



with (A~(1=9) A,)* € L(Y™*) by (1.2b).

Step 2: By duality on Proposition 1.1 on the reflexive Banach space Y, the operator A}, in (3.1)
generates a s.c. analytic semigroup eArt on Y.

Step 3:
Proposition 3.1. For the generator A}, in (3.1) of the s.c. analytic semigroup eAFt on Y*, we have
A% € MReg(LP(0,T;Y™")), 0 <T < oo. (3.3)

Proof. The proof is based on a perturbation argument. With [AYGF]* = F*G*A*" € L(Y*) by
(H.4)=(1.1) and (1.4), rewrite (3.2) as:
p=—A"+1I (3.4)
0= [F*G*A”|A* 7 +[(I — GF)* (A~ (179 4,)"]4* . (3.5)
In (3.5), both terms in the square brackets [ | are bounded in Y* by assumption (H.4) = (1.1) and
(H.5). The following estimates then hold true:

(i) H (F*G A1 A"

<C
Y*

1—v
‘A* T

. vaeD(A’) (3.6)

>

(i) i1 =GRy (4079 4,))4" "2

£

<C HA*I_ x
Y*

. Ve (A, (3.7)
Hence, by (3.6), (3.7) the perturbation IT in (3.5) satisfies
[z|[y. <C HA*GOxHy* , T E D(A*QO), 0p = max{l —e,1 -7y} < 1. (3.8)

We are now in a position to draw some consequences from (3.4), (3.8):
(a) The perturbation II is A" bounded on Y* 0<6y<1.
(b) On the other hand, by (H.3), we have A* € M Reg(L*(0,T;Y™)).

Then via (3.4), properties (a), (b) imply via [Dore.2, Theorem 6.2, p 311] or [K-W.1, Remark 1i, p
426 for § = 1] that A7 € M Reg(LP(0,7;Y™)) and Proposition 3.1 is proved. O

Step 4: We now prove Theorem 1.2 that A, € M Reg(LP(0,T;Y) as claimed in (1.10). To this end, we
invoke the fundamental result of L. Weis [K-W.2, Theorem 1.11, p 76], [Weis, Theorem, p 198]. Since
by Proposition 1.1, A, generates a s.c. analytic semigroup ert on the UMD-space Y which modulo a
translation (innocuous for the present argument), we may take to be bounded. Then the sought after
property that A, € M Reg(LP(0,7;Y)) is equivalent to the property that the family 7 € £(Y)

7 ={tR(it,A,), t € R\{0}} be R-bounded, (3.9)

where R(-,

family 7 in

) denotes the resolvent operator of A,. However, in our present UMD setting for Y, the

AF
(3.9) is R-bounded if and only if the corresponding dual family 7" in £(Y™)
7 = {tR(it, A%), t € R\{0}} is R-bounded. (3.10)

6



This result follows from [H-N-V-W, Proposition 8.4.1 p. 211] which shows such equivalence in
K-convex spaces, combined with [H-N-V-W, Ex 7.4.8, p 113] stating that a UMD space is K-
convex. The special case of such duality with respect to the space Y = L1(Q), 1 < ¢ < oo, with
Y* = L9(Q), Y, +"/y = 1is given in [K-W.2, Corollary 2.11, p 90]. But the R-boundedness property
in (3.10) is equivalent by the same result [K-W.2, Theorem 1.11, p 76], [Weis, Theorem, p 198], to the
property that A7 € MReg(LP(0,7;Y™)), and this is true by Proposition 3.1. In conclusion, we have
A, € MReg(LP(0,T;Y)), and Theorem 1.2, part a) is proved.

Part b) If it is known that the s.c. analytic semigroup e'rt, £ > 0 on Y is uniformly stable, then we
can take 7' = oo by invoking [Dore.2, Theorem 5.2, p 307]: A, € M Reg(LP(0,00;Y)).

Part ¢) is now obvious as B € L(Y). O

Corollary 3.2. In a UMD space Y, maximal LP-regularity of A:Y D D(A) — Y is equivalent to
maximal LP-regularity for A* : Y* D D(A*) — Y™

This is contained in the proof given in Step 4 above.

4 A classical parabolic equation with finite dimensional boundary
feedback control: maximal LP-regularity on Y = L%(Q),1 < ¢ < cc.

4.1 Open and closed-loop boundary control problem

Let Q be an open bounded domain in R?, d > 2, with sufficiently smooth boundary T' = 9. Let w
be an arbitrary small open smooth subset of the interior €2, w C §2, of positive measure.

Fig 1: Internal subportion w.

For notational simplicity and space constraints, we shall focus on the canonical case of the Laplacian
translated, in order to make the original boundary homogeneous problem (4.1a-b-c) with f = 0
unstable. This will then introduce the boundary feedback stabilization problem that will ultimately be
an illustration of the abstract Theorem 1.2 with T" = oo in Section 4.3. Without uniform stabilization,
the boundary feedback problem (4.3a-b-c) will claim maximal LP-regularity only for 7' < oo in Theorem
4.1. The treatment extends to second order (say), uniformly strongly elliptic operators. Thus, we
consider the following parabolic problem in the unknown y(¢,x), = € €, initially with open loop



boundary control f in the Dirichlet B.C.

ye = (A + Ay inQ=(0,T] xQ (4.1a)
y|t:0 =0 in Q (41b)
yls, = f in¥X=(0,T]xT (4.1c)

Our goal is to convert the open loop control system (4.1) into a closed loop feedback control system.
We choose the open loop control f to be expressed as a finite dimensional feedback operator F' of the
form

K
— Z Y, W) L2(w) Ik (4.2)
k=1

with given vectors wy, € L?(w), gr € LY(T), 1 < q < oo, so that corresponding closed loop feedback
control problem is

=(A+A)y in@=(0,T] xQ (4.3a)

Yl=0 = Yo in Q (4.3b)
K

y‘E = Z <y7wk>L2(w) 9k in ¥ = (OaT} x I (430)
k=1

Our basic function space is Y = L4(Q), 1 < ¢ < oc.

4.2 Abstract model of the closed loop system (4.3). Verification of Theorem 1.2, T' < oo.

We introduce the translated Dirichlet Laplacian and corresponding Dirichlet map.

Ao =(A+)p, A, :Y DD(A,) = {p e W(Q): ¢|p =0} — Y. (4.4)
¢=Dg <— {(A + 02)¢> =0in Q, ¢|p = g} (4.5a)
D:LIYT) — W9(Q) ¢ D ((—A)l/zq) (4.5b)
where
Ap =Ap, D(A,)=D(A) (4.6)

is a suitable translation of A, , so that the fractional powers (—A)’, 1 < 6 < oo, are defined by
complex interpolation [Adams|. The operator A,, in (4.4) has compact resolvent on Y = L7(Q2) and
is the generator of a s.c. analytic semigroup e! on Y = L9(Q) [Fri, Example, p101]. Returning to
problem (4.1) and using the definition of the Dirichlet map D in (4.5), we can rewrite Eq (4.1a) as

=(A+A)y-Df)inQ, [y-Dfllr=0. (4.7)
Hence, the abstract version of the open-loop system (4.1) is

y=A, (y—Df)onY = LYQ). (4.8)



Next, returning to (4.2) with F € L£(L*(w),LY(T')), we see that the abstract version (4.8) of the
closed-loop system (4.3) specializes to

y=A, (I —-DF)y= ALY, y(0) = yo, on Y = LI(Q). (4.9)

We next verify that the boundary feedback closed loop control problem (4.3a-c) that is, its abstract
model (4.9), satisfies Theorem 1.2 for T < occ.

Theorem 4.1. Let 1 < ¢ < co, wy € L*(w), gy € LIY(T).

(i) The feedback operator in (4.9)
AF,t'r- = Atr (I - DF) (4.10&)

L9Q) D D(A,,) = {z € LYQ) : (I — DF)z € D(A;,)} (4.10D)

is the generator of a s.c. analytic semigroup ernt on Y = L1(Q), t > 0.

(ii) Moreover, A,., has mazimal LP-regularity on Y = L1(Q) up to T < oo,

Ftr

A, € MReg(IP(0,T;Y)). (4.11)

Proof. (i) Of course part (ii) implies part (i). But the direct proof of part (i) is more direct. See
[L-T.1], [L-T.2], [Tr.2] for ¢ = 2. Appropriate modifications yield the desired conclusion a) also
for 1 < g < o0.

(ii) We need to verify assumptions (H.1) through (H.5) of Section 1, except for boundedness of ¢ ="
on Y* in (H.3), so that the maximal LP-regularity for the operator A, in (4.10) will hold for
T < oco. (H.1) Since Y = LI(Q2), 1 < g < oo, assumption (H.1) holds true. (H.2) This is
a-fortiori true, since A, is the generator of a s.c., analytic semigroup eArtony = L1(Q), t > 0.
(H.3) Y = LI(Q), 1 < q < 00, is reflexive and Y* = (L4(Q))* = L7 (Q), Y.+ = 1. Moreover
the operator A7

A= (B +22)p, LT(Q) 5D (A7) = {0 e W (@) : ol = 0} (4.12)

is also the generator of a s.c., analytic semigroup eit on Y*, t > 0. In addition, it is well-known
that A7 has maximal LP-regularity on Y*: A7 € M Reg (LP(0,T;Y™)). Thus (H.3) holds true
(without boundedness). (H.4) We take U = L9(T"). Then (4.5b) verifies (H.4) for D with
v = Y5, (H.5) We are actually taking A, = 0 in the present illustration. Thus, (H.1)-(H.5)
have been verified and Theorem 1.2 a) yields our present part (ii) of Theorem 4.1: maximal
LP-regularity up to any T < oo.

O

4.3 Case T = oo. Uniform stabilization of problem (4.3a-c), by boundary feedback
control f = Fy as in (4.2), for suitable wy € L?(w), gr € LI(T).

In the present subsection, under suitable assumptions, we seek to specialize the class of localized
interior vectors wy € L?(w) and boundary vectors gr € L4(T'), so that the s.c. analytic semigroup



erirt >0, 0nY, guaranteed by Theorem 4.1 (i) is, in addition, uniformly stable on Y. This goal

can be rephrased as a uniform stabilization problem for the open-loop parabolic system (4.1a-c), by
virtue of a suitable feedback control f = Fy in (4.2), for suitable vectors {wy, gx }5_,. Moreover, we
seek K to be minimal number. A solution of this problem for ¢ = 2 and w replaced by €2 was given in
[Tr.3, Theorem 2.1D and Theorem 2.4D].

Remark 4.1. The vectors wy, are selected from the full rank conditions in [Tr.3, (2.11)] which hold
true also with the LP(2) inner-product in [Tr.3, (2.11)] replaced by the LP(w) inner-product [B-T.1,
Claim 3.3, p1458]|, due to the Unique Continuation Theorem in [B-T.1, Lemma 3.7, p1466], [Tr.6].
Instead, the vectors g are obtained by showing a moment problem such as [Tr.3, (A.7)]. Once uniform
stability of ererl on Y is achieved, we can then conclude that the maximal LP-regularity of A,  can
be pushed to T' = oo, hence improving (in this special setting) Theorem 4.1.

Fitr

Theorem 4.2. Under the setting of Remark /.1 regarding the special choice of the vectors wy € L?(w)
and g, € L1(T), the s.c. analytic semigroup eArirt i uniformly stable on Y. Hence A, has mazimal
LP-regularity up to T = o0 : A, € MReg(LF(0,00;Y)).

5 Linearization of Navier-Stokes equations with boundary feedback
2
control: maximal L’-regularity on L%(Q2) and Bg;9 /»(Q) up to T =
0.

5.1 Linearized controlled Navier-Stokes problem.

Notation: Bold notation refers to vector-valued (d-valued) quantities and corresponding spaces.

This section is based on paper [L-P-T.2] and its predecessors [B-L-T.1], [B-L-T.2], [L-T.5], [L-T.6]
which provides uniform stabilization near an unstable equilibrium solution y, of the Navier-Stokes
equations, d = 2,3 in closed-loop form, by virtue of a finite-dimensional feedback control pair {v,u}
on {F w}. Here see Fig 2, T is an arbitrary small connected portion of the boundary I' = 99, of a
bounded sufficiently smooth domain €2 in R?, d = 2,3, while w is an arbitrarily small collar supported
by T’

Fig 2: Internal localized collar w of subportion T of boundary I'
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The (eventually feedback) boundary control v acts tangentially over I, while the (eventually feedback)
interior control w acts “tangential-like”, that is, it acts in the tangential direction 7, parallel to the
boundary in the small boundary layer w. See Fig 2. To this end, a critical intermediary step towards
the uniform stabilization of the nonlinear N-S system consists in considering the following linearized
problem near the equilibrium solution y,, defined in Theorem 5.1 below:

wi — VoAw + Le(w) + Vx — (m(z)u)T =0 in Q (5.1a)
divw =0 in Q (5.1b)

w="v on X (5.1c)

w(0,x) = wo(x) on (5.1d)

Here m is the characteristic function of w: m =1 on w, m = 0 on Q\w, while v, > 0 is the viscosity
coefficient. L. is the first order Oseen perturbation

Le(w) = (ye - V)w + (w - V)y, (5.2)

where y, is the equilibrium solution, obtained from the following known result, the basic starting point
of the analysis, see [A-R, Theorem 5.iii, p58] for 1 < g < oo and [C-F, Theorem 7.3, p59] for ¢ = 2.

Theorem 5.1. Consider the following steady-state Navier-Stokes equations in €2

oAy, + (y..V)y, + V. = f in Q (5.3a)
divy,=0 in Q (5.3b)
¥y, =0 onT. (5.3c)

Let 1 < q¢ < oo. For any f € L%Q) there exits a solution (not necessarily unique) (y.,mTe) €
(W24(2) N W"(@2)) x (WH(Q)/R).

Case 1: The equilibrium solution is unstable. Instability of the equilibrium solution means that the
corresponding Oseen operator A, in (5.11) below - which depends on y, - has N unstable eigenvalues:
.. < ReAny1 <0< ReAy <...< Re ;. To counteract such instability, [[-P-T.2] seeks a boundary
tangential control v acting with support on f, and an interior control u acting tangential-like on w,
of the preliminary form (for F see [L-P-T.1, Eqt (5.4)])

v fr, FfreFC W2_1/q’q(F), q>2, sothat f, - v =0, hencev-r=0onIT" (5.4)

i
M=

B
Il

1

pie(tug, ur € WY C LL(QY), wvg(t) = scalar, pug(t) = scalar, (5.5)

i
L

-in fact, eventually in feedback from as in (5.17), (5.18). This will lead to the following boundary
feedback closed loop PDE-system:

11



K
wi — VoAw + Le(w) + Vx =m (Z Pyw, q;,) w uk> in @ (5.6a)
k=1
divw =0 in Q (5.6b)
K
w = Z (Pyw, py,) we Jr on X (5.6¢)
k=1
w(0,x) = wo(x) on €2 (5.6d)

to be further explained below. Qualitatively, the main result of the present Section 5 is: for a suitable
explicit selection of the boundary tangential vector f, and interior vectors g, ur,p, € WY as in
(5.4), (5.5) the resulting boundary feedback closed loop system (5.6a-b-c-d) generates a s.c. semigroup,
which is analytic, uniformly stable, with generator that has maximal LP-regularity up to 7' = 0o in a
suitable LY/Besov setting, ¢ > d. to be identified blow. Moreover, K = max{ geometric multiplicity
of \j; i =1,...,N}. For the corresponding formal statements, we refer to Theorems 5.2-5.4 below.
Maximal LP-regularity will be an application of the abstract Theorem 1.2 as it will be established in the
present section. We note that in order to obtain uniform stabilization, and hence maximal LP-regularity
up to T' = oo, the interior tangential-like feedback control w in (5.5) ultimately acting on w, cannot
be dispensed with. This is due to a counter-example [F-L] as explained in [L-P-T.2]. The presence
of such w is, abstractly, accounted for by the operator B € £(Y) in Theorem 1.2, part c¢). Uniform
stabilization of problem (5.6a-b-c-d) rests critically at the outset of the (finite dimensional) analysis on
a suitable Unique Continuation Property for a suitably overdetermined adjoint eigenproblem [L-T.5],
[L-T.6] to avoid the counterexample of [F-L]. Here below, we shall put the PDE problem (5.6a-b-c-d)
in the abstract setting of Theorem 1.2, part ¢). To this end, we need some preliminary background.

5.2 Preliminaries: Helmholtz decomposition

Definition 5.1. Let 1 < g < co and €2 C R™ be an open set. We say that the Helmholtz decomposition

for L(Q2) exists whenever L9(2) can be decomposed into the direct sum of the solenoidal vector space
L1(€2) and the space G(Q2) of gradient fields

LU(Q) = LI(Q) & G1(Q), (5.72)

Li(Q)={y e C*(Q):divy=0in Q}‘H'"
={ge Li(Q):divg=0; g-v=0o0n 00},
for any locally Lipschitz domain Q ¢ R%, d > 2 [Ga.1,p 119]

GI(Q)={y € LIYQ):y = Vp, p € WLI(Q) where 1 < g < oo}.

(5.7b)

Both of these are closed subspaces of L%(£2). The unique linear, bounded and idempotent (i.e. Pq2 =P,
projection operator P, : L(Q2) — LZ(f2) having L%(Q) as its range and G?(12) as its null space is
called the Helmholtz projection. Under the present assumption of smoothness of Q (C''-smoothness is
enough [Ga.1]), the Helmholtz projection is known to exist: The Helmholtz decomposition exists for
L7() if and only if it exists for L7 (), and we have: (adjoint of Py) = P; = Py (in particular P is
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orthogonal), where P, is viewed as a bounded operator LY(Q2) — L(Q2), and P; = P, as a bounded
operator LY (Q) — L7 (Q), Y/, + Yy = 1.

5.3 Preliminaries: The Stokes and Oseen operators

First, for 1 < ¢ < oo fixed, the Stokes operator A, in LZ({2) with Dirichlet boundary conditions is
defined by
Agz=—P,Az, D(A,) = W2>(Q) N Wy9(Q) N LL(Q). (5.8a)

The operator A, has a compact inverse A;' on LZ(€2), hence A, has a compact resolvent on L%(Q).

Moreover, it is well-known that —A, generates a s.c. analytic Stokes semigroup e~ 44t which is uni-

formly stable on LZ(€): there exist constants M > 1,6 > 0 (possibly depending on ¢) such that

le™ | 2z o) < Me™™, > 0. (5.8b)

It is equally well-known [Sol.5] that —A, has maximal LP-regularity on LZ(€Q) up to T' = oo: —A, €
MReg(LP(0,00; L1(2))). Next, we recall from (5.2) the first order Oseen perturbation L.

L.(z)=(y.-V)z+ (z-V)y,, (5.9)
and define the first order operator A, g,
Aogz = PyLe(2) = Pyl(y, - V)z + (z- V)y,), D(Aog) = D(A/?) = W) N LL(Q),  (5.10)

Thus, Ay qAq /2 is a bounded operator on LZ(12), and thus A, , is bounded on D(A(ll/ 2). This leads
to the definition of the Oseen operator

Ay = —(WoAg+ Aoy), D(Ay) =D(A,) C LL(N) (5.11)

also with compact resolvent. Moreover A, generates a s.c. analytic semigroup e on Li(Q), t>0.

5.4 Preliminaries: Well-posedness in the L9-setting of the non-homogeneous stationary
Oseen problem: the Dirichlet map D : boundary — interior.

We follow [B-L-T.1], [L-T.5], [L-T.6], [L-P-T.2]. Recalling the first order operator L.(v¢) = (¢-V)y, +
(y. - V) from (5.9) and introducing the differential expression Ay = —vyAv + L.(1)), we consider
the stationary, boundary non-homogeneous Oseen problem on 2:

AY + V7' = —v,AYp + L (Y) + V' =0 (5.12a)
divep)=0inQ; ®P=gonl, g-v=0onT. (5.12Db)

Problem (5.12) may not define a unique solution ; that is, the operator g — 1% may have a nontrivial
(finite dimensional) null space. To overcome this, one replaces in (5.12) the differential expression
AY = —v,AY + Lc(v) with its translation k + A, for a positive constant k, sufficiently large as to
obtain a unique solution . In line with the considerations made in [L-P-T.2] and also in the name
of simplicity of notation, we are here justified to admit henceforth that problem (5.12) (with k& = 0)
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defines a unique solution 1. We shall then denote the “Dirichlet” map g — v by D : Dg = 1 in
the notation of (5.12). More precisely, define

U;={veL!l):v-v=0onT}. (5.13)

Then with reference to problem (5.12) we have, recalling [Wahl, (0.2.17), p XXI]
W = Dv, v e U, — Dg € Wr9(9) N L4(0) < D4/ ) (5.14)
or AJ*°D e L(U,, LL(Q)). (5.15)

5.5 Abstract model of the linearized w-problem (5.1).

After the above background, we can finally give the abstract model (in additive form) of the linearized
w-problem in (5.1) in PDE-form still for 1 < ¢ < co. It is given by [L-T.5], [L-T.6], [L-P-T.2]

{'wt — Aq'w + Aemt,qu - Pq [(mu)T] =0on [D(A:;)]/ (516)

w(z,0) = wo(z) = yo(z) — Y, in LL(Q).
In this section, Aczt 4 is the extension of Ay in (5.11) from LZ(2) — [D(AZ)]/.
The operator A, defining the linearized w-problem in feedback form.

Paper [L-P-T.2] constructs suitable controllers {v,wu}, this time in feedback form and thus going

beyond (5.4), (5.5), with tangential boundary controller v supported on T, and the tangential-like
interior controller u supported on w of the form

K

v=Fw= Z <PNw7pk>Wu fk’ fk: €FC WZ_I/WQ(F)’ P € (WqJJV)* - Lgl(Q)a qz 2
k=1 N

fi-vlr =0; hence v-v|p =0, f supported on T (5.17)

u=Jw= (PNw,qy)  ug, qp€ (W%)" C L% (), uy supported on w. (5.18)

u
WN

M=

k=1

Once inserted, this time, in the linear abstract w-problem (5.16), such v and w in (5.17), (5.18) yield
the linearized feedback dynamics driven by the dynamical feedback stabilizing operator A, below

K K

dw

o Aw— A,D ( Z <PNw’pk>W1;\, fk> + P, <m<z <PNw, qk>w% uk) 7') =A, w, (519)
k=1 k=1

dw _

i Aw — A DFw + Ppm(Jw) = A, w. (5.20)

Eq (5.19) is the abstract version of the boundary feedback problem (5.6a-d) in PDE-system. More

specifically A, is rewritten as

A, =A, +B:LLQY DDA, ) — LLQ), ¢>2 (5.21)

F,q
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A JI—DF) : LL(Q) D> D(4,,) — LL(Q), ¢ > 2 (5.22a)

Fq

D(A,,) ={h € LL(Q) : h— DFh € D(A;) = W>1(Q)n W Q) NLLQ)} =D(A,,) (5.22b)

K
Z<PN ,Pk> fk e W /o9(T);
k=1

B(:) =P, <m(§:<PN -,qk>W7fvuk>T> € L1(Q) (5.23a)

k=1

F e L(LL(D),LYT)); BeL(LLRQ)), q¢>2. (5.23b)

5.6 Application of abstract results of Section 1 to the linearized Navier-Stokes boundary
feedback problem (5.1) in the abstract form (5.20).

The operator A, on LZ(€),q > 2, in (5.22) is of the same form as the abstract operator A, in (1.6a)
under the following correspondence:

(1) The space Y in (H.1) is now L%(Q2), g > 2, which is a UMD-space. Assumption (H.1) holds true.

(2) The abstract operator —A in (H.2)is now the Stokes operator —A, in (5.8a). As noted, —A, is the
generator of a s.c. analytic semigroup e 47 on Y = L%(Q), which moreover is uniformly stable
by (5.8b). It is equally classical that — A, has maximal LP-regularity on LZ(2) up to T' = oco. So,
a-fortiori, (H.2) holds true [Sol.1], [Sol.2], [Sol.3], [Sol.4].

(3) The space LL(Q2), q > 2, is reflexive. The adjoint operator —Ay in the LZ(2) — L7 (9) duality
pairing is given by

ALf = —PyAf, D(AL) = W27 (Q)n W7 (2) N LY (), (5.24)

and thus —Aj generates a s.c. analytic uniformly stable semigroup e —A2t on Y* = (LL(Q2)) =

LZI(Q). Moreover, such —A7 has maximal LP-regularity on Y* up to T' = oo. Thus assumption
(H.3) holds true.

(4) The abstract Green map G in (H.4) is now the Dirichlet map (5.14) and the abstract Banach
space U in (H.4) is now U, as defined in (5.13). The assumption (1.1) for G is given by (5.14),
(5.15) with constant v = '/, — €. This way, assumption (H.4) holds true.

(5) The abstract operator A, in (H.5) is the Oseen perturbation A,, in (5.10). Thus, (1.2a) holds
true with 1 — e = !/ by (5.10). The abstract operator A in (1.3) is the Oseen operator (5.11).
The operator F' in (1.4) is the operator in (5.17).

We next recall that [L-P-T.2] shows that one can construct explicitly, vectors py, ug, fi, q; hence an
operator B in (5.23a-b) such that the operator A, = A, + B generates a s.c. analytic semigroup

on e*Fal on L1(€2), which moreover is uniformly stable,

=

< Chpe ™ >0, ¢>2, (5.25)
£(LE(9)
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with decay rate 79 = |Re Any1| —€, An41 being the first unstable eigenvalue of Ay, see below (5.3c).
In order to achieve (5.25), it is critical to use a suitable operator B as in (5.23a), i.e. the interior
tangential-like control u, in view of the counter example [F-L] to a required Unique Continuation
Property even for the Stokes over-determined problem for d = 2. More insight is given in [L-P-T.2].

On the basis of the above considerations, in particular subject to the vectors py,, uk, fi, q; as identified
in [L-P-T.4], we can apply the abstract Theorem 1.2 and obtain the next three results.

Theorem 5.2. a) The operator A, = A, + B given by (5.21) has mazimal LP-regularity on LZ(2)
up to T = 0o: A, € MReg(LP(0,00; LL())), ¢ > 2.

b) The operator A, in (5.22a) has mazximal LP-regularity on LL(2) up to T < oo:
A, € MReg(LP(0,T; LL(Q))), ¢>2, T < .

A companion result, established in [L-P-T.2, Theorem 11.4] describes the action of semigroup etrat
on the subspace

B"0) = loe B (@): divg=0, g-vp =0} (5.264)
— B NLUQ), l<p< 2;3 1 (5.26b)
of the Besov space
Bi, "(Q) = (LY@, W (@), s, (5.27)
defined as a real interpolation space, as a specialization of the general formula
By () = (L9(Q), W™1(Q)) s (5.28)

m’

for m =2,s =2/,

Theorem 5.3. [L-P-T.2, Theorem 11.4] Consider now the original s.c. analytic feedback semigroup
etral on L1(Q), which is uniformly stable here by (5.25). Let 1 < p < 2q/gq,,l, q > 2. Then,

. ~2-2
era s continuous B,,""() = (Lg(Q),D(ARq))P%’p = (Lg(ﬂ),D(Aq))k%’p (5.29)
— X%, = LP(0,00; W29(Q)) N WP (0, 00; LL(Q)). (5.30)

Case 2: The literature reports physical situations where the volumetric force f in (5.3a), is actually
replaced by Vg(z); that is, f is a conservative vector field. In this case, a solution to the stationary
problem (5.3) is: y, = 0,7, = g. Taking y, = 0 (hence L.(-) = 0 by (5.2)) one obtains A, , =0, A, =
—A, and the linearized w-equation (5.16) specializes to

M + voAy(n — Dv) = Py(mu) in LL(Q). (5.31)

In this case, as discussed in [L-P-T.2], we can enhance at will the uniform stability of the corresponding
problem by the use only of the tangential feedback finite dimensional control v, as acting on the entire
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boundary I". Thus we can take w = 0 in this case. With boundary feedback operator F' as in (5.17)
except as acting now on the whole boundary I, the resulting, feedback operator is (v, = 1)

A,, = Al — DF) (5.32)
K
F-=Y"(Pv-py) frn Fr€FCW?/ein), (5.33)
k=1 N

The corresponding closed-loop feedback system in PDE-form is

N — VAN + V1 =0 in Q (5.34a)
divnp =0 in Q (5.34b)

K
nlp = Fn =3 (Pxn.pe),, fr in ¥ (5.34c)

k=1

On the basis of the above considerations we obtain

Theorem 5.4. Let y, = 0. One can select the vectors py, f, in (5.33) so that the feedback operator
A, in (5.32) is the generator of a s.c. analytic semigroup eArt on L1(Q), which moreover has an
arbitrary preassigned decay rate

< Mye™™,  t>0. (5.35)

HQAFt
L(LE(Q))

r > 0, preassigned. Finally, A, has mazimal LP-reqularity on LL(Q), ¢ > 0, up to T = oco: A, €
MReg(LP(0,00; LL(2))).

6 Linearization of the Boussinesq system with finite dimensional
boundary feedback control: maximal L’-regularity on L%(€2)x L(2)
up to 1" = oo.

This section is based on paper [L-P-T.4] which provides uniform stabilization near an unstable equi-
librium solution y, of the nonlinear Boussinesq system d = 2,3 in closed-loop form, by virtue of a
pair of finite-dimensional feedback controls {v,u} acting on {I',w}. Here, see Fig 2, except that u is
not tangential-like in the present section, I' is an arbitrary small connected position of the boundary
I' = 9Q of a bounded, sufficiently smooth domain 2 in R?, d = 2,3, while w is an arbitrary small
collar supported by I". To this end, a critical intermediary step - of interest to the present paper -
consists in studying the following linearized Boussinesq system in PDE form near y, in the variable

w = {wy,wy} € LI(N) x LI(Q) = WL(Q):

d
% —vAwy + Le(wys) — ywpeq + Vx = mu in @ (6.1a)
d
%—nAwh—i—ye-th-i-wf'V@e:O in Q (6.1b)
divw; =0 in Q (6.1c)
wr =0, w, =v on X (6.1d)
wy(0,-) =wyo;  wp(0,-) = whyo on . (6.1e)
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with I.C. {w(0),w,(0)} € W(Q) = LL(Q2) x LI(Q). Here, as in Section 5, m is the characteristic
function of w: m =1 on w, m = 0 on Q\w, while the first order Oseen perturbation L. is defined
in (5.2). The term ey denotes the vector (0,...,0,1), while s, v are physical constants. The original
nonlinear Boussinesq system models heat transfer in a viscous incompressible heat conducting fluid. It
consists of the Navier-Stokes equations (in the velocity vector) coupled with the convection-diffusion
equation (for the scalar temperature). The equilibrium solution y, is obtained from the following
result, the basic starting point of our analysis.

Theorem 6.1. Consider the following steady-state Boussinesq system in 2

—VAYe + (Yo - V)ye — (0 — 0)eq + Ve = f(x) in Q (6.2a)
—KkAOe +ye -Vl = g(x) in Q (6.2b)

divye. =0 in Q (6.2c)

Ye=0,0.=0 on 05 (6.2d)

Let 1 < g < oco. For any f,g € L1(Q),LYRQ), there exists a solution (not necessarily unique)
(Ve, Oy e) € (W29(Q) N W(Q)) x (W29(Q) N Wy l(2)) x (WH(Q)/R).

See [Ace], [A-A-C.1], [A-A-C.2] for ¢ # 2. In the Hilbert space setting, see [C-F], [F-T], [V-R-R], [Kim].

Instability of the equilibrium solution. Instability of the equilibrium solution means that the
operator A, in (6.14) below has a finite number, say N unstable eigenvalues --- < Re Ay < 0 <
Re Ay < --- < Re A\;. To counteract such instability, [L-P-T.4] seeks a boundary control v acting
with support I', and an interior control u acting on w, of the following feedback form

K
0= S (Pvw,pg) fin i € F € WD), py e (WH)* € LE(Q) x LUR), 422,
k=1
fx supported on r (6.3)

(Pxw,py)ug, ug € Lo(Q), q(W%)* C LY

g

(Q) x L), wug(t) supported on w (6.4)

i
M=

B
Il

1

ig(Q) = any (d-1)-dimensional the space obtained from LZ(2) after omitting one specific

co-ordinate, except the d*! coordinate from the vectors of LZ(92).

which, once inserted in (6.1d) and (6.1a) respectively yield the following feedback closed loop PDE-
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system

K
dw
dtf vAws + Le(wy) — ywreq + Vx =m (Z (PNw,p) u ) in Q (6.5a)
k=1
d
Zh kAwp +y, - Vwp, +wy -V, =0 in Q (6.5b)
divwy =0 in Q (6.5¢)
K
wr =0, wy, = Z (Pyw, pi) [ on X (6.5d)
k=1
w(0,) =wypro;  wp(0,-) =wpo on €. (6.5e)

to be further explained below. Qualitatively, the main result of the present Section 6 is: for a suitable
explicit selection of the boundary vectors fr and the interior vectors p.,qy,ug in (6.3), (6.4) the
resulting boundary feedback closed loop system (6.5a-b-c-d) generates a s.c. semigroup which is
analytic, uniformly stable, with generator that has maximal LP-regularity up to 7" = oo in a suitable
functional setting to be identified below. Moreover, K = max {geometric multiplicity of A;, i =1,...,N}.
The formal statements will be given in Theorems 6.4 and 6.5 below.

The Helmholtz decomposition of Section 5, and related machinery, with projection P, applies now
in the study of the linearized N-S equation (6.1a). In particular, the space LZ(2) is defined in (5.7)
and is the state space of the velocity vector. Next we define the coupling linear terms as bounded
operators on L9(€2), L1(2) respectively, ¢ > d:

[from the N-S equation] C,h = —~yFP,(heq), C, € L(LI(Q),LL(%)), (6.6)
[from the heat equation] Cy,z=12z V0., Cy, € LILL(N),LI(Q)); (6.7)

Thus applying the Helmholtz projector P, to the coupled linearized N —S equation (6.1a) and recalling
the operator A, from (5.11) as well as (6.6), we rewrite (6.1a) abstractly as

d'wf

W — Aq’lﬂf + C',Ywh = Pq(mu) (68)

Next, with the goal of writing the abstract model for the coupled heat equation (6.1b), we introduce
the following operators

(i) the heat operator By in L4(§2) with homogeneous Dirichlet boundary conditions
Bygh = —Ah, D(B,) = W9(Q) N W, 4(Q); (6.9)
(ii) the first order operator B, 4, corresponding to Bj:
Bogh =Ye-Vh. D(Bog) = D(B?) C L(%); (6.10)
(iii) the following operator for the heat component

B, = —(kBy+ B,gq), D(By) =D(B,) C LI(Q). (6.11)
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If we take v = 0 in (6.1d), the abstract version of the corresponding equation (6.1b) is, recalling (6.3)

d
% — Bwy, + Co,wy =0, for v =0, (6.12)
Thus, by (6.8) and (6.12), the abstract model of the uncontrolled PDE-system (6.1a-¢) (that is, with

v =0 and u = 0) is given by

d wyel wr| . q — 714q q . - -
dt [U}J = Aq [wh} in Wi(Q) = L1(Q) x LY(Q), withv=0,u=0 (6.13)

where the free dynamics operator A, is given by

Aq - C’Y

A= [—Cee B, } W5 () = Lo () x L(Q) © D(Ag) = D(Ag) x D(By)

= (W29(Q) N W§(Q) N LL(Q)) x (W9(Q) N Wy (Q) — WI(Q). (6.14)

Next, in preparation for the abstract version of the fully controlled dynamics (6.1a-¢), we introduce the
Dirichlet map D [L-T.4, p181] with reference to the Dirichlet boundary controlled thermal equation
(6.1Db)

p=Dv < {A¢Y=0inQ, Y|p=vonT} (6.15a)
D : LYT) —s W/49(Q) € D(B,* %) continuously (6.15b)
BJ*°D e £(LY(T), L(R)), (6.15¢)
counterpart of (5.15). Accordingly, we rewrite Eq (6.1b) as
dwp, .
W—f@A(wh—Dv)+ye'th+wf~V96:01nQ (6.16)

where [wy, — Dv]p = 0 by (6.1d), (6.15a). Accordingly, invoking the operators By, Cy, from (6.9), (6.7),
we can rewrite Eq (6.16) abstractly as

d
% + kBy(wy, — Dv) + By quwy, + Co,wy = 0. (6.17)

Thus, setting w = {wy, wp} and combining Eqts (6.8) with Eq (6.17), we obtain the abstract model
of the controlled PDE-linearized Boussinesq system (6.1a-¢):

d;w_i wr|l | Ay —Cy| |wy Py(mu)
dt — dt {wh] o [—C(;E B, wy, t KBegtgDv| "~ (6.18)

where Byt extends By in (6.9) from LY(Q2) — [D(B;)]".

6.1 Properties of the operator A, in (6.14).

The following result collects basic properties of the operator A,. It is essentially a corollary of Theorems
A3 and A.4in [L-P-T.4, Appendix A] for the Oseen operator A, as similar results hold for the operator
B, while the operator C, and Cg, in the definition (6.14) of A, are bounded operators, see (6.6), (6.7).

20



Theorem 6.2. With reference to the Operator Ay in (6.14), the following properties hold true:
(i) A, is the generator of strongly continuous analytic semigroup on WE(Q) for t > 0;

(ii) A, possesses the mazimal LP-regularity property on WE(Q) over a finite interval:

A, € MReg(LP(0,T;WI1(Q))), 0< T < oc. (6.19)

(111) Aq has compact resolvent on WL(Q).

Next, we impose that the pair {v,u} of controls be given in feedback form as in (6.3), (6.4) [L-P-T.4]
repeated here as

K

v=F- =Y (Py-,p) fu fu € FC W /oq(D), (6.20)
k=1

pi € [(WE(Q)4]" € LL(Q) x LQ), > 2, fi supported on T

K
u=J - =F (mz (PN -, qy) uk> , g € [(WLQ)N]" C L7 () x LI(Q) uy, supported on w,

k=1
(6.21)
so that F' and J are both bounded operators
Fe(Wi(Q),LYT)); J e L(WIL(Q),LL()) (6.22)
In (6.20), (6.21), {-,-) denotes the duality paring (WZ(Q))x — [(W2(Q))%]" and the vectors py, q;, €

[(WZ(Q))%]". Substituting (6.20), (6.21) into (6.18) yields the linearized w-problem in feedback form

K
P, <m Z (PNyw, q;,) uk>

w+ k=l (6.23)

K
HBextq (Z PNw Dy fk)
k=1

w [ A —C,
dt —Co. By

or
dw [Aq —C,

Jw .
o ¢, B, w + [ ] =A, w (6.24)

$Begt.gDFw

Eq (6.23) is the abstract version of the boundary feedback problem (6.5a-d) in PDE form. Recalling
(5.11) for A, and (6.11) for By, rewrite (6.24) with v = k = 1, w = [w1, wa] € WI(Q),

—A w1
d ! —Aog —C
W _ 0 4 T lw+ [J'w] =A, w (6.25)
dt —B, ot DF | w —Cp, —Bog 0 4
2
dw <
— =A, w=A, w+lw (6.26)



~Aqwn 0 Jw
O e M e S
D (AFyq) - {w - [Z}’j € W2(Q) = LL(Q) x LIUQ) : w; € D(A,), <m + DF> w e D(Bq)}
(6.28)
D(IT) = D(Ao) X D(Boy). (6.29)

6.2 Maximal LP-regularity on WZ(Q2) of the linearized feedback operator A, up to
T = oo.

With reference to the operator A, in (6.24) or (6.25), consider the following abstract dynamics
Xt =A. x+q¢ x(0)=0in WL(Q) (6.30)

t
x(t) = / et ra=)g(s)ds (6.31)
0
The main theorem of the present Section 6 is

Theorem 6.3. With reference to the bounded operator F' and J in (6.20), (6.21), let T < co. Then,
the operator A, in (6.25) has mazimal LP-regularity on W(Q) up to T < oo; that is,

t
(Lx)(t) = / ePra =%y (s)ds (6.32)
0
continuous:
LP(0,T; WE(Q)) — LP (0, 73D (A,,)) (6.33)
so that continuously
x € LP (0,T;D (A.,)) NWHP(0,T; Wi(Q)). (6.34)

6.3 The problem of feedback stabilization of the w-dynamics (6.23).

We return to the basic preliminary assumption of instability of the equilibrium solution, that is of the
operator A, in (6.14), see below (6.2). The following result is proved in [L-P-T.4, Theorem 2.1].

Theorem 6.4. With reference to the closed-loop feedback abstract dynamics w on (6.23), whose PDE
version is given by the system (6.5a-¢), we can select (in mﬁmtely many ways) boundary vectors
fr € W2 /a4(T) with support on T, interior vectors w; € L! o (W) with support w as well as vectors
P @i € [(WL(Q)N]" so that the s.c. analytic semigroup etr, qt is uniformly stable on W()

HeAF,qt < Ce Mt >0 (6.35)

L(wi@) —

with constant 1, satisfying Re An4+1 <71 < 0. Recall (6.4) for EZ(Q), i.e. uy is (d—1)-dimensional.
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Theorem 6.5. Under the setting of Theorem 6.4, we have that Theorem 6.3 holds true up to T = oo:
A, € MReg (LP(0,00; WZ(Q))) . (6.36)

Proof of Theorem 6.3. We return to A, as given in (6.26) A, = AF‘q + II, where II is a benign
operator regarding the issue of maximal LP-regularity as it involves: the bounded operator J €
L(WZL(Q),LL(Q))in (6.21), the bounded operators Cy € L(L(2); LL(Q)) and Cg, € L(LL(Q2), L(£2))
n (6.6), (6.7); the operator A,, which is A;/Q—bounded, see (5.10); and the operator B, , which is
simply Bl/Q—bounded, see (6.10). Thus, it suffices (it is equivalent) to show that AF’q in (6.27), (6.28)
has maximal LP-regularity on WZ(Q) up to T' < oo : A, € MReg (LP(0,T; WZ(52))). We rewrite

Ap, as
—Aqwl = —Aq I:IOl:| w
A, w= . (6.37)
_B, (H n DF) w

with domain as in (6.28). To this end, we cannot apply directly Theorem 1.2. Instead, we shall work
with the adjoint A* , as in the proof of Theorem 1.2. For w € WZ(Q) and vy € [D(Bg)],, we compute
the adjoint of B, DF

(BgDFw, v3) 140 = <w,F*D*B;‘vg>W3(Q) : (6.38)
Thus, for [Z;] eD (A;q), we have
* U1 _ _A;; 0 * *
AFq L’Z] = [ 0 —B*] [ } + F*D* B vs. (6.39)

By (6.15¢), we have D*B}" € L (Lq’(Q), LY (F)) , v="/2¢— ¢, and so F*D*B} = (F*D*B;") B;M,

where F* € L (Lq/(l“), Wg/(Q)) Hence, for the perturbation in (6.38) we estimate

|F*D* Byusl| = |[(F*D*B;) By || < €| By (6.40)

<[] ] o)
Vs L
0 B; V9

* 7Yk Ok s b Ay 0
and F"D*B] is [0‘1 Bj;] -bounded, 1 — v < 1, where [0‘1 BZ]
WZ(Q) up to T' < co. We now proceed as in the proof of Theorem 1.2, that is, Step 3. By a known
perturbation result [Dore.2, Theorem 6.2, p 311] or [K-W.1, Remark 1i, p 426 for § = 1] we conclude
from (6.39) that A* - and hence A7 in (6.24) has maximal LP-regularity on W2 (Q) up to T < oo.
We finally conclude ‘that A, has maximal LP-regularity in W9 () up to T < oo via Step 4 of the
proof of Theorem 1.2, as Wq 7(Q) is UMD. O

<C (6.42)

A*
0 has maximal LP-regularity on
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Proof of Theorem 6.5. Since, under the setting of Theorem 6.4, the s.c. analytic semigroup etral s
also uniformly stable on W2(Q), see (6.35), then maximal LP-regularity holds up to T' = oc. O
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