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Abstract

While many machine learning methods, particularly deep neural networks, have
been trained for density functional and quantum chemical energies and properties, the
vast majority of these methods focus on single-point energies. In principle, such ML
methods, once trained, offer thermochemical accuracy on par with density functional
and wave function methods but at speeds comparable to traditional force fields or
approximate semiempirical methods. So far, most efforts have focused on optimized
equilibrium single-point energies and properties. In this work, we evaluate the accu-
racy of several leading ML methods across a range of bond potential energy curves and
torsional potentials. Methods were trained on the existing ANI-1 training set, calcu-
lated using the wB97X / 6-31G(d) single points at non-equilibrium geometries. We find
that across a range of small molecules, several methods offer both qualitative accuracy
(e.g., correct minima, both repulsive and attractive bond regions, anharmonic shape,
and single minima) and quantitative accuracy in terms of the mean absolute percent
error near the minima. At the moment, ANI-2x, FCHL, and a new libmolgrid-based

convolutional neural net show good performance.

Introduction

Machine learning (ML) methods have been proposed as surrogates for time-consuming quan-
tum mechanical calculations, such as density functional and first-principles methods, for their
rapid prediction potential once trained.'™! For ML to be a successful surrogate, the meth-
ods need to be able to perform property predictions adequately for optimized geometries,
capture not just the well of the potential energy curve but also the anharmonicity that force
field methods fail to capture, and appropriately handle multiple conformations of the same

molecule.

Numerous studies have shown the proficiency of ML methods to predict thermochemical

parameters at already optimized geometries utilizing various types of representations and



neural network structures.?!? Early representations, such as Coulomb Matrix!'® and bag-of-
features,'4'5 demonstrated success in property predictions with further iterations of repre-

sentations such as FCHL 1617

continuing to improve the property prediction at optimized
geometries. These ML methods are typically trained on the QM7 or QM91%20 data sets
consisting of optimized molecules with up to 7 or 9 heavy atoms respectively and help to

demonstrate ML’s potential as a surrogate.

Additional deep neural network (DNN) methods, like ANI*?2! and BAND NN,?? used
training data beyond optimized single points to better evaluate the potential surface for
dynamics and geometry optimizations. These methods utilize the ANI-1 data set,?® or
ANI-2 data set in the case of ANI-2x, for training as they contain both equilibrium and
non-equilibrium structures of up to eight heavy atoms containing H, C, N, and O with the
non-equilibrium structures being generated from normal-mode sampling. The training set
for ANI-2x adds the additional elements of F, Cl, and S while providing additional torsion
sampling data.® The BAND NN model uses a subset of the ANI-1 data set with only non-
equilibrium geometries with energies within 30 kcal/mol of the equilibrium energy. Although
these methods have been shown to perform adequately in their respective papers, the range
for bond stretch applications has been limited to the harmonic portion of the potential energy

curve, rarely examining the potential energy curves further from equilibrium.

Recent work has expanded the knowledge on ML performance for predicting and ranking
thermally accessible conformations.?* Though ML was not tasked with large bond stretches
as in this work, the ability of ML methods to rank conformational energy was only com-
parable to that of semiempirical methods. While this is not equivalent to the accuracy of
density functional (DFT) or ab initio electronic structure methods, for ML methods to be an
accurate surrogate for quantum chemical methods, continued advancements in ML models

and training sets are needed to provide further performance improvements.

For ML to become a viable replacement for current methods, ML needs to achieve optimized



geometries and predict properties without relying on force field (FF) methods. Most FFs
have been refined for small molecules and biomolecules and can struggle with non-covalent
and steric interactions for applications such as conjugated polymers. While these issues can

25,26 geometries of FFs generally can be less than

be lessened with specific parameterization,
ideal.?” ML trained on higher levels of theory ideally captures these non-covalent interactions

and provides better initial optimized geometries.

With the rapid adoption of ML, there has been a growing desire to use ML in molecular
dynamics (MD) applications to provide more accurate simulations than FFs at a much lower
cost than time-consuming quantum mechanical calculations.?* For ML to be reliable, it needs
to properly predict geometric changes that occur in MD simulations from non-equilibrium
bond stretching to torsional barriers. This work seeks to examine how well the current state
of ML performs at these tasks, as well as to display the methods’ understanding of chemical
physics to help decide key needs for ML to improve as a surrogate for computationally

expensive quantum calculations.

Methods

Mbolecules

A mixture of small and large molecules was chosen to evaluate ML performance on poten-
tial energy surfaces for a total of 17 bond stretches and 5 dihedral scans. The molecules
examined were benzene (C-C and C-H stretching), methanol, methane, CO, H,, ethylene,
water, acetylene, hydrogen cyanide, N,, ammonia, biphenyl, aspartame, sucrose, dialanine,
and diglycine. Bond stretches were evaluated every 0.1A while dihedrals were evaluated

every 20° with the exception of biphenyl which was every 15°.



Computational Methods

The reference method, wB97X,?® was performed using Orca 4.0.1%° while the force field

calculations, MMFF943%3* and GAFF,3® were performed using Open Babel version 3.0.3

Machine learning methods and representations included the pre-trained models ANI-1x,3*
ANI-2x,5> BAND-NN,?2 as well as FCHL,3" Bag of Bonds (BOB),3 and Extended Connec-
tivity Fingerprints (ECFP).3940 Scikit-learn®! was used for kernel ridge regression (KRR)
and bayesian ridge regression (BRR) for BOB and random forest regression (RFR) with
BOB and ECFP representations while FCHL used the custom KRR in QML.

We also trained a deep convolutional neural network (Colorful CNN), an approach that has
been successfully used in protein-ligand binding affinity prediction.*?*3 The input molecule
is represented as a voxelized grid of atomic densities as generated by the libmolgrid library. 44
Our network has six modules separated by pooling operations each with seven convolutional
layers and was trained on the ANI-1x data set.?> The trained Colorful CNN model can be

found at https://github.com/hutchisonlab/ml-benchmark.

Due to method scaling efficiency for memory usage, a subset of the ANI-1 data set was taken
for training representations using BOB/KRR and BOB/BRR. For consistency, ECFP/RFR
and BOB/RFR were additionally trained on this subset. The subset consists of 5 non-
equilibrium geometries for every molecule with up to 7 heavy atoms, as well as 5 non-
equilibrium geometries for half of the molecules with 8 heavy atoms, to create a training
set consisting of 33,496 molecules and 167,480 non-equilibrium geometries. All molecules
from the test set were removed from the training set. This training set was additionally
used for BOB/RFR and ECFP/RFR. An additional subset of the first 5000 non-equilibrium
geometries was used for FCHL/KRR. Increasing the training set for FCHL/KRR had a
negative impact on prediction performance so our results are with the model trained on

1000 different molecules for a total of 5000 non-equilibrium geometries.



Results and discussion

To illustrate the qualitative performance of potential energy surface predictions, we analyzed
both small and larger molecules outside of the ANI-1 data set used for training for each ML
method. We wish to focus on how the methods perform not only around the bond length
at the energy minima, ry, but also in the attractive and repulsive regimes to gain a better
understanding of how ML methods would behave if given less ideal starting geometries for

a task such as geometry optimization.

Table 1: Overview of machine learning performance sorted by median mean absolute percer
error (MAPE).

Methods Median MAPE! r,?2 Repulsive Wall® Attractive Forces* Minima after 2A°
wBITX 6-31G(d) 0 17 17 17 0
ANI-2x 0.002 17 13 17 12
BOB/BRR 0.227 0 5 5 9
FCHL/KRR 0.255 10 16 15 13
Colorful CNN 0.2555 16 17 17 13
ANI-1x 0.265 16 11 17 5
BOB/KRR 0.313 1 9 11 13
BOB/RFR 43.881 2 3 0 8
BAND-NN 99.310 11 9 56 56
MMFF94 100.050 14 17 0 0
GAFF 100.133 13 17 0 0
ECFP/RFR 193.370 0 0 0 0

! Median mean absolute percent error over all 17 molecules from ro + 0.25A.

2 The number of molecules in which the lowest predicted energy point matches DFT.

3 The number of times the method predicted a repulsive wall as the bond was compressed.

4 The number of times the method predicted anharmonic attractive forces after ry.

5 The number of molecules predicted to have a local or global minima after 2A.

6 BAND-NN regularly would not predict energies for geometries with a bond stretch of 2A or greater.

Each ML method was evaluated on the criteria demonstrated in Table 1 for bond stretches.
The median mean absolute percent error (MAPE) was calculated from the energy values
ranging from ro £+ 0.25A for the molecules to determine how accurate and precise the ML
predicted energies are. Since the ANI-1 training set samples harmonic displacements around
the ro (e.g., Figure S1) this range corresponds mostly to interpolation. Comparisons for
repulsive short-range and attractive long-range interactions — extrapolations outside the

training range are compiled in Table S1. The ry evaluation criteria considered whether the



method correctly predicted the DFT equilibrium bond length to be the lowest energy bond
length. Additional evaluation criteria included the qualitative prediction of a repulsive wall,

anharmonic long range interactions, and if there were incidences of additional minima past

2A.

While methods like BOB/BRR and BOB/KRR had the second and fifth-lowest median
MAPE, their ability to predict the geometry with the lowest energy, a repulsive wall, and
attractive forces was quite poor compared to the other top methods based on MAPE. Other
methods utilizing RFR also performed poorly, often predicting stepwise energy surfaces seen
in Figure 1, thus being incapable of consistently predicting rg, attractive, or repulsive forces.
This is seen in Figure 1b when the bond breaking causes the only change in the ECFP
representation and leads to the higher energy. Other ML methods such as ANI-1x, ANI-
2x, FCHL, and Colorful CNN were able to accurately predict energies while also predicting
the repulsive and attractive forces of the molecule. In short, while random forest methods
may have accuracy at single-point properties, they prove inherently inaccurate for potential
energy and should be avoided.
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Figure 1: N, potential energy curves for ML methods utilizing random forest regression for
predictions using (a) BOB and (b) ECFP for the ML descriptors.

A possible advantage for the ANI-1x and ANI-2x models is that some molecules in our
test evaluation are found in the ANI-1x training set. In the training of the other methods,

molecules in our test set were purposefully left out of the training set but may be present in



the ANI-1x and ANI-2x model. For that reason, we will focus the remainder of our discussion
on molecules outside of the ANI-1 training set, examining the best overall performers, ANI-
1x, ANI-2x, FCHL, and Colorful CNN from Table 1. The performance of all methods is

included in the supplemental information.

Figure 2a displays the performance of ANI-1x, ANI-2x, Colorful CNN, and FCHL on the
N-N bond stretch of N,. While each of these ML methods predicts the correct ry, there are
issues in the prediction of the potential energy curve. ANI1-x, ANI-2x, and Colorful CNN
fail to accurately depict the repulsive region with ANI-2x lowering in energy as the bond was
compressed to 0.6A. FCHL depicts the repulsive wall but inaccurately predicts the energy
as the bond is compressed. All four methods accurately determined the attractive forces to

about 2A with ANI-2x matching wB97X to 2.25A.

The H-H stretch of H, in Figure 2b indicates one possible issue for ML. All four meth-
ods performed poorly with ANI-2x being the only method to obtain the correct ry. This
performance is likely due to the absence of H-H bonding data within the training set. H,,
while a unique bond, demonstrates the need to be careful when applying ML to molecules

or chemistry completely outside the scope of the training set.

Figure 2c and 2d demonstrate the prediction capability of these ML methods on bond
stretches for molecules larger than the training set. FCHL was only able to accurately
capture the shape of the potential energy curve for dialanine, failing to capture the well of the
potential energy curve for aspartame, perhaps from the difficulties training the entire ANI-1
set. ANI-1x, ANI-2x, and Colorful CNN retain both repulsive and attractive information
while having accurate energies to that of wB97X for both aspartame and dialanine. These
methods do continue to exhibit difficulty in accurately predicting bond compression under

1A as well as bond stretching after 2A.
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Figure 2: Bond stretch potential energy curves for (a) Ny, (b) H,, (¢) aspartame, (d) dialanine
using total SCF energies in kcal /mol.

For bond stretches, ANI-1x, ANI-2x, Colorful CNN, and FCHL models show promise with
initial training indicating these methods can accurately predict the bottom of the potential
energy well. While force fields such as MMFF94 or GAFF can be used to obtain optimized
geometries near this regime, ultimately ML methods should exhibit accuracy not only at
single-point energy evaluation tasks, but at qualitatively and quantitatively accurate poten-
tial energy curves. Further training on long-range attractive forces might enable ML models

to evaluate non-covalent interactions.

As an example, further evaluations were carried out on energy predictions from frozen-rotor
dihedral angle scans performed with wB97X 6-31G(d) for biphenyl and sucrose. Table 2
compiles the predicted lowest energy angle for these molecules as well as the barrier energies

from —45° to 0° for biphenyl and 0° to —60° for sucrose.

ANI-1x and ANI-2x properly predict the lowest energy angle for biphenyl while Colorful CNN



predicts —45° to be a local, but not global, minima. FCHL improperly predicts rotation
energies as seen in Figure 3a, predicting 0°, 180°, and —180° to be the lowest energy

dihedrals. All of the methods over-predicted the height of the energy barrier for biphenyl.

For sucrose, all four methods correctly predicted the lowest energy angle. ANI-1x best
captures the energy of the dihedral angles, seen in Figure 3b, with ANI-2x and Colorful
CNN under-predicting the energy for most angles. Unlike with biphenyl, FCHL captures the

shape of the torsion scan for sucrose but vastly over predicts the energies at each angle.

Table 2: The ML prediction of 3 and the barrier energy between the lowest and
highest energy dihedrals for biphenyl and sucrose compared to the reference
wB97X 6-31G(d) method.

Methods Biphenyl Sucrose
0o (°) Barrier Energy (kcal/mol) | 6y (°) Barrier Energy (kcal/mol)
wBI7X 6-31G(d) | -45 3.54 0 2.45 x 10°
ANI-1x -45 3.95 0 2.50 x 103
ANI-2x -45 4.16 0 1.93 x 10°
Colorful CNN -135 5.49 0 9.46 x 102
FCHL/KRR 180 5.52 0 9.73 x 10*
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Figure 3: Dihedral energy predictions for (a) biphenyl and (b) sucrose in kcal/mol.

Dihedral scans demonstrate how small conformational changes in the molecule can affect the
potential energy surface. The 2D torsion scans in Figures 4 and 5 compare ML performance
to that of wB97X and FFs, MMFF94 and GAFF. ANI-1x, ANI-2x, and Colorful CNN retain

the resolution of some of the higher energy ¢ and v between —100° to 100° while FCHL
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predicts these to be lower energy conformations similar to both FF methods. In lower energy

conformations both BAND and BOB/KRR methods over-estimate these energy differences.
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Figure 4: 2D torsion scans of dialanine in kcal/mol unless otherwise stated. Methods were
tested at the geometries obtained with wB97X 6-31G(d) from the torsion scan. Note that
color schemes differ, due to large differences in energy scales.
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Diglycine
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Figure 5: 2D torsion scans of diglycine in kcal/mol unless otherwise stated. Methods were
tested at the geometries obtained with wB97X 6-31G(d) from the torsion scan. Note that
color schemes differ, due to large differences in energy scales.

The additional torsion training in ANI-2x provided a beneficial reduction in the MAE for
both dialanine and diglycine, seen in Table 3, by roughly 35% from ANI-1x. Additional
torsion sampling for methods Colorful CNN and FCHL should also provide a decrease in
MAE for predicting dihedral angle energies. This could improve accuracy for the Colorful

CNN method that is already qualitatively adequate.

As an example, the ANI-2x training includes additional torsion sampling, and the method
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Table 3: Mean absolute error (M AE) in kcal/mol of 2D torsion scans for the top
performing methods.

Methods ‘ Dialanine MAE AEnergy (kcal/mol) Diglycine MAE AEnergy (kcal/mol)

ANI-2x 1.89 1.71
ANI-1x 3.01 2.52
Colorful CNN 7.10 6.07
FCHL/KRR 252.17 200.86

shows improved accuracy over ANI-1x. Providing additional torsion sampling training sets

should improve ML method accuracy across multiple methods.

A prevailing pitfall of ML methods stems from the training set. At the end of the day,
the machine learning method is only as good as the training set. As seen with H,, models
struggle with chemical motifs outside of the training set. Current ML training sets largely
consist of a subset of the molecules generated in the GDB-17% set, typically containing
at least H, C, O, and N. While these training sets are a noble starting point for covering
small organic molecules, they lack a diversity of atom species needed for applications such
as protein binding and DNA sequencing. Additional data sets such as PubChemQC*% could

help to further expand the snapshot of chemical space MLL methods are trained on.

Conclusions

Much work has focused on the use of machine learning methods as surrogates for computationally-
intensive density functional and quantum chemical methods. Often such efforts train and
test on single-point energies of optimized structures. An important step is to evaluate ML

methods across potential energy curves and surfaces for tasks such as geometry optimization.

ML methods such as ANI-2x, Colorful CNN, and FCHL perform decently near the well
of the potential energy curve while struggling to properly predict repulsive regions and
particularly long-range attractive forces. While this poor performance outside the domain of
the training set is expected, these methods show promise with further improvements through

the addition of stretched bonds in training data helping to improve model performance in
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this area. Increased torsion sampling for training ANI-2x improved the model’s performance

over ANI-1x and should provide improvements for models like Colorful CNN and FCHL.

In general, there is still the issue of applying ML to the prediction of molecules too far
outside the scope of the training set. The inclusion of additional elements and an increase in
diversity of molecules in the training set from diverse data sets such as PubchemQC should

alleviate some of these challenges.
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