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Abstract

The calculation of the entropy of flexible molecules can be challenging, since the

number of possible conformers grows exponentially with molecule size and many low-

energy conformers may be thermally accessible. Di↵erent methods have been pro-

posed to approximate the contribution of conformational entropy to the molecular

standard entropy, including performing thermochemistry calculations with all possible

stable conformations, and developing empirical corrections from experimental data. We

have performed conformer sampling on over 120,000 small molecules generating some

12 million conformers, to develop models to predict conformational entropy across a

wide range of molecules. Using insight into the nature of conformational disorder,

our cross-validated physically-motivated statistical model gives a mean absolute error

⇡4.8 J/mol · K, or under 0.4 kcal/mol at 300 K. Beyond predicting molecular entropies

and free energies, the model implies a high degree of correlation between torsions in

most molecules, often assumed to be independent. While individual dihedral rotations

may have low energetic barriers, the shape and chemical functionality of most molecules

necessarily correlate their torsional degrees of freedom, and hence restrict the number
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of low-energy conformations immensely. Our simple models capture these correlations,

and advance our understanding of small molecule conformational entropy.

1 Introduction

While entropy is a major driving force in many chemical changes and is a key component

of the free energy of a molecule, it can be challenging to calculate with standard quantum

thermochemical methods. Proper consideration in flexible molecules, even within a rigid

rotor approximation, requires not just the calculation of the translational, rotational, and

vibrational partition functions, but sampling all thermally-accessible conformational degrees

of freedom. Several previous e↵orts have focused on both exhaustive quantum mechanical

evaluations of multiple conformers1–5 and empirical estimates of the entropy from multiple

thermally-accessible conformers.6 Other e↵orts have used molecular dynamics with varying

force fields, which may not yield the same accuracy as modern quantum chemical meth-

ods.7–11

In principle, the number of possible conformers increases exponentially with the size of a

molecule, or more accurately, the number of torsionally rotatable bonds since each of these

free or partially hindered rotors should be independent. In solution or gas phase, many

bonds have low torsional energy barriers (e.g., sp3�sp3 single bonds) even if in the solid

state, matrix e↵ects may restrict free torsional motion. Thus, it is common practice in

conformer generation to focus on sampling hundreds or thousands of geometrically diverse

conformers,12–14 and using fast molecular mechanics force fields for energy evaluations – even

if they do not always correlate well with more accurate electronic structure methods.15–17

Recent improvements in density functional tight-binding approximations18–21 and in avail-

ability of computational resources have enabled the work we present here: an evaluation of

conformer ensembles and the corresponding entropies of over 120,000 small molecules with up

to twenty rotatable bonds, and comprising over 12 million conformers. We have previously
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noted that the GFN2 method is a relatively fast approximate quantum method with a high

degree of correlation with more accurate DLPNO-CCSD(T)22 single-point energies.16 Since

the GFN2 method is applicable to a wide range of elements, compounds were drawn from the

Crystallographic Open Database (COD)23,24 as well as more complex organic macrocycles

from the ZINC database.25 Most of our analysis focuses on ⇠93,000 molecules comprising 9.9

million conformers, with the remainder used as validation sets for statistical and machine-

learning prediction models. The set includes a wide range of molecular sizes, with up to 128

atoms, up to 181 bonds, and up to twenty rotatable bonds (see Appendix A, Figure S1).

2 Computational Methods

2.1 Data

Molecules with twenty or fewer rotatable bonds from the Crystallography Open Database

(COD)23,24 and ZINC25 were used to construct the training and testing sets; details are given

in Appendix A. We also constructed an additional test set consisting of cyclic tetrapeptides

composed of all combinations of four out of fourteen di↵erent amino acids (see Appendix A,

Table S1).

In all cases, molecular geometries were optimized using the GFN2 method,18,19 followed by

conformer sampling using the iterative metadynamic sampling and genetic crossover (iMTD-

GC) method implemented in the CREST program,20,21 including additional geometry opti-

mization of the final conformer ensemble. The concept is similar to other e↵orts to sample

conformational minima.11 Note that the CREST calculation may break molecules into frag-

ments; those molecules that were fragmented in the final output were excluded from our

analysis.

The lowest energy conformer was selected for calculating the vibrational modes to evaluate

standard rigid rotor harmonic oscillator vibrational, translational, and rotational entropies.26
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All entropies were computed at fixed temperature T = 298.15 K in this analysis. We

can therefore compare the magnitudes and relative distributions of the GFN2-calculated

component entropies (see Figure 1).

The component entropies (translation, rotational, vibrational, conformational) in Figure 1

are not strictly additive, since rotational entropies depend on the moment of inertia, which

will be conformer-dependent, and low-energy torsional modes for the thermally-accessible

conformers should be removed from the vibrational entropy.3,4,27–29 Still, vibrational en-

tropies generally contribute the greatest fraction of the total molecular entropy, followed

by translational and rotational entropies, respectively. The median conformational entropy

comprises 36.3 J/mol · K, or ⇡2.6 kcal/mol at 300K and while relatively small, should not

be neglected.
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Figure 1: Distributions of GFN2-calculated vibrational, translational, rotational, and con-
formational entropies across the molecules studied.

We find a reasonable linear correlation between the number of atoms and vibrational entropy,

since the vibrational energy is expected to depend on the thermal occupation of low-energy

breathing modes (see Appendix A, Figure S5). Thus, it can be easily predicted with linear

models with descriptors such as number of atoms, number of bonds, and molecular weight.
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Higher accuracy predictions may be obtained by optimization and vibrational calculations

with other density functional and ab initio methods. Similarly, the rotational and transla-

tional entropies may be calculated analytically, given the mass, symmetry of the molecule,

and the moments of inertia of a particular geometry. While the vibrational entropy may be

the largest in magnitude, it can also be calculated e�ciently from an optimized geometry

(i.e. median time of 16 seconds with the GFN2 method using a dual-core job; see Appendix

A, Figure S6).

In contrast, few studies have considered conformational entropy across a wide range of small

molecules. The time required is 200-300 times longer than the vibrational calculations, with

a median time of 1.01 hours per compound, and an average of 2.08 hours per compound for

a dual-core job using the GFN2 method on the same hardware (see Appendix A, Figure S6).

2.2 Models

We developed machine learning models using Extended Circular Fingerprints with a diameter

6 (ECFP6),30 as well as continuous data-driven descriptors (CDDD).31 The implementation

of ECFP6 in RDKit32 was used. The pretrained model as implemented by Winter et al.

was used to generate the CDDD features. Note that we did not apply any preprocessing

step on SMILES strings when generating the CDDD features. We used the Scikit-Learn33

implementations of LASSO regression, ridge regression, kernel ridge regression, and cross-

validation. Keras34 was used to train the neural network. We also included an end-to-

end molecular graph convolutional neural network35 as implemented in DeepChem36 for

comparison. The implementation details of these models are described in detail in Appendix

E.

Molecular descriptors such as the number of rotatable bonds, number of methyl groups,

counts of functional groups (amide, ester and thioamide), plus our own descriptors, namely

total ring flexibility, and foldability, were used in the linear models. RDKit was used to
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compute these counts. RingDecomposerLib37 was used for the ring decomposition and cal-

culation of ring flexibility. The construction of the foldability score and total ring flexibility

are discussed in detail in Appendix C.

3 Results and Discussion

As mentioned above, conformer generation for small molecules often involves sampling di-

hedral angles from a set of defined “rotatable bonds”, specified from a set of patterns for

acyclic bonds with low rotational barriers (e.g., sp3�sp3 non-ring single bonds).13 The num-

ber of conformers should therefore increase with the number of rotatable bonds, as will the

conformational entropy. Since we use an approximate density functional method, GFN2, we

seek to build physical understanding of the components of conformational entropy through a

statistical model across our entire set of molecules, using separate validation data to consider

the generality of the trends and avoid overfitting.

3.1 Rotatable Bond Dihedrals and Numbers of Conformers

An unbranched n-alkane, CnHn+2
, is the simplest type of acyclic saturated hydrocarbon.

The low torsional energy barrier of carbon-carbon single bonds enables all bonds to freely

rotate and result in di↵erent conformations. In principle, with low torsional barriers and all

bonds being equal, the number of conformers should increase exponentially with the count

of rotatable bonds (⇡ 3n�3), assuming three possible local minima per rotatable bond. How-

ever, symmetry, correlated dihedral angles, and excluded volume often reduce the number

of thermally accessible conformers.2,3,5,38

Rather than an exponential number of possible conformers in the linear alkanes, the number

of low-energy conformers increases sub-linearly on a logarithmic scale, when evaluated either

with exhaustive systematic conformer enumeration (Confab)12 using a standard molecular

force field (MMFF94),39 or using CREST conformer generation with the GFN2 method, as
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Figure 2: Conformational entropies for increasing lengths of n-unbranched alkanes, CnH2n+2
.

The counts of conformations in (a) and (b) are shown on a logarithmic scale. (a) Number
of alkane conformers within a given energy range (in kcal/mol) of the global minimum
(i.e., within 3, 5, 8, 10, 100, and 500 kcal/mol) using Confab exhaustive sampling with the
MMFF94 force field. (b) Number of conformers within a given energy window in kcal/mol
of the global minimum using CREST sampling and the GFN2 method. (c) Conformational
entropies for calculated for n-alkanes using CREST / GFN2. Note that for smaller hydro-
carbons (n < 4 carbons) the scaling is approximately linear, and beyond n = 8�10 carbons,
the conformational entropies are roughly constant. (d) Schematic of central torsion in octane
C

8
H

18
indicating potential steric bumping (clashing carbons shown in blue) between the two

molecular ends.
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illustrated in Figures 2a and 2b respectively. The curves fit roughly to a power-law function,

with exponents ⇡ 1.5 � 2.6, depending on the method and the energy window.

Since the number of low-energy conformers increases relatively slowly (i.e. sub-exponentially)

with the number of rotatable bonds, the conformational entropy will therefore increase log-

arithmically, as found by the computed CREST / GFN2 entropies. For short alkane chains

(n < 4 carbon atoms), the increase in conformational entropy is approximately linear, and

approximately logarithmic or perhaps close to constant for long chains (see Figure 2c). One

can understand that in long chains, dihedral motion in the center of the molecule will inher-

ently restrict otherwise free rotations to avoid steric clashes—a concept known as excluded

volume in polymer theory. These results match previous detailed quantum chemical calcu-

lations of conformational entropy in linear alkanes.2,3,5,38

Figure 3a shows the conformer populations across the set of ⇠93,000 molecules at di↵erent

GFN2-computed energy cuto↵s (shown in di↵erent colors up to 6 kcal/mol), and the number

of conformers within 6 kcal/mol of the global minimum grows at a logarithmic rate, reaching

⇠ 103 conformers for molecules with twenty rotatable bonds. Across the set, this still suggests

the number of rotatable bonds is a useful predictor of the number of thermally-accessible

conformers, and thus the conformational entropy — even if in larger molecules, the degrees

of freedom are inherently correlated.
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Figure 3: (a) Scaling of the number of conformers across the ⇠93,000 molecules in the training
set, on a logarithmic scale, within a given energy threshold, as a function of the number of
rotatable bonds; and (b) correlation between the number of rotatable bonds, Nrotor, and
GFN2-calculated conformational entropies, shown as violin plots for each rotatable bond
bin. The line indicates a logarithmic best fit, i.e. a + b log(Nrotor + 1), with a coe�cient of
determination of 0.232; this highlights the need for better predictors than simply the number
of rotatable bonds.

3.1.1 Branching and Terminal Methyl Rotors

Beyond simple linear alkanes, branched alkanes and cycloalkanes can be used as models to

understand other components of the conformational entropy. Both propylene chains and

highly branched alkanes exhibit logarithmic increases in CREST-computed conformational

entropy, based on the number of terminal CH
3
groups (see Figures 4a and 4b). Note that

methyl groups are known to increase entropy as hindered rotors.40,41 The magnitude of the

methyl rotor entropies are higher from the CREST/GFN2 ensembles than previous quantum

chemical estimates (i.e. 9.1 J/mol · K from CREST/GFN2 vs. 6.8 J/mol · K from HF/6-

31G(d) using a hindered rotor model),40 but reflect that beyond iso-pentane, correlations

between multiple CH
3
groups slow the increase in conformational entropy to logarithmic.

Similarly, while cycloalkanes have fewer torsional degrees of freedom (i.e. N � 3 for an

N -membered ring), the CREST-computed conformational entropy increases logarithmically

with the ring size (see Figure 4c).
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Figure 4: Conformational entropies for alkanes. (a) Conformational entropies calculated
for increasing lengths of polypropylene chains, as a function of the number of repeat units,
illustrating approximately logarithmic increase; and (b) branched alkane chains as a func-
tion of the number of terminal methyl rotors. (c) Conformational entropies calculated for
increasing ring size of cycloalkanes, n-CnH2n. The conformational entropies tends to grow
logarithmically with ring size.

3.2 Ring Conformations

Building from the simple alkanes, we can understand that the conformational entropy has

multiple components based on the torsional degrees of freedom, including rotatable bonds,

terminal CH
3
groups, and correlated motions in flexible rings, such as the cycloalkanes.42

Rings can be fused together, forming bicyclic and polycyclic rings. These rings can share one

atom (spirocyclic), two adjacent atoms (fused), and three or more atoms (bridged). These

three modes of ring junction impose di↵erent steric constraints on the molecule, and give

distinct low energy conformations. The number of degrees of freedom of these complex rings
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cannot be simply explained by the ring size. Thus, we introduce a new descriptor, namely

Total Ring Flexibility, RTotal
f , to better understand the flexibility and thus conformational

entropy of rings. We apply the concept of unique ring families (URFs)43 to decompose

the ring systems into subfamilies, and calculate the number of degrees of freedom (or ring

flexibility) for each subfamily. The Total Ring Flexibility is simply the sum of the ring

flexibility of all subfamilies, minus any penalties from constraints imposed in the ring(s),

such as endocyclic double bonds, shared aromatic bonds and/or di↵erent ring junction types

(see Appendix C, Table S5). Adding the Total Ring Flexibility measure to our statistical

model shows good correlation with the CREST-computed conformational entropy values,

with a Pearson correlation coe�cient, R2 = 0.7 (see Appendix C, Figure S11).

3.3 Intramolecular Functional Group E↵ects

In addition to the additive e↵ects of the number of rotatable bonds, terminal methyl groups,

and ring flexibility, some types of molecular functional groups reduce the conformational de-

grees of freedom. For example, in our previous work, BOKEI, we found correlated neighbor-

ing dihedral torsions due to steric clashes and intramolecular interactions.44 Consequently,

the conformational entropy decreases due to various intramolecular functional group inter-

actions, for example hydrogen bonds and ⇡-⇡ stacking.

It is well-known that five- to eight-membered ring systems have a high propensity to form

intramolecular hydrogen bonds (see definition in Appendix C, Table S3 and S4), and some

motifs are commonly used in drug design.45,46 Their geometries, including bond angles and

distance, have been studied by others.45,46 In this work, we further characterise the shortest

path between donor and acceptor atoms, and show that the atom features at given positions

are highly conserved for a given acceptor type (see Appendix C, Figure S14). The path

with acceptor in a ring shows contrasting features to the path with acceptor not in a ring,

indicating a strong influence of the ring geometry on the interaction. Our analysis provides

insights into the chemical characteristics of the shortest path between intramolecular hydro-
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gen bonds, and this information can be used to identify potential intramolecular hydrogen

bonds without knowing 3D structures of the molecule.

The formation of intramolecular ⇡-⇡ interactions usually leads to a so-called ‘folded’ struc-

ture. The “foldability” of the path depends on the path length, and intramolecular hydrogen

bonds generally assist the formation of long ⇡-⇡ stacking. We studied the interaction path

containing the following functional groups: amide ester, ketone, ether, urea and carbamate

group. These functional groups play an important role in supporting such small molecule

‘folding’. Figure S16 in Appendix C shows that the atom features at given positions are

highly conserved, especially for the path containing carbamate and urea groups. The paths

containing amide or ether show varying atom features along the path.

Further, the partial double bond character in amides, thioamides and esters increases the

rotational energy barrier, and reduce the conformer population size, and thus the conforma-

tional entropy. To estimate the e↵ect of the intramolecular interactions and the delocalization

of electrons, we introduce new descriptors, namely the foldability, F , and functional group

counts, NSG, to count the number of rotatable bonds involved in the shortest path between

the terminal heavy atoms involved in intramolecular hydrogen bonds and ⇡-⇡ interactions,

and the number of specified functional groups in the molecule respectively.

3.4 Statistical Models

As discussed above, calculation of conformational entropy is time-consuming, thus it is ben-

eficial to build models that can rapidly estimate conformational entropy. Using the physical

understanding of the logarithmic functional form and contributions to the number of low-

energy conformers and thus conformational entropy, we compared di↵erent statistical and

machine learning models, including linear regression, LASSO, ridge regression, kernel ridge

regression (KRR), and neural networks (NN). The new descriptors mentioned above were

used in linear regression. Standard molecular fingerprints (ECFP6)30 and continuous and
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data driven descriptors31 were used separately as inputs for various machine learning models.

We also included an end-to-end graph convolution networks for comparison.

The conformational entropy, Sconf, depends on the number of low-energy thermally-accessible

conformations, which increases sub-exponentially as seen in Figure 3a, and can be approxi-

mated by Equation (1) for some constant, C.

Sconf = log(nstates) ⇡ C log(Nrotor) (1)

As illustrated in Figure 3b, there is a weak linear correlation between the computed con-

formational entropies and the number of rotatable bonds, Nrotor (R2 = 0.23), because the

number of terminal CH
3
groups, and contributions of ring flexibility including of molecules

with no “rotatable bonds”, are not considered. For example, molecules with no rotatable

bonds are calculated to have a median conformational entropy of 40 J/molK, indicating

most have some flexibility. The residual plot in Figure S17 in Appendix D shows that the

model tends to be underestimated for small fitted values and be overestimated for high fitted

values, suggesting a more sophisticated multivariate model is needed.

Using the contributions discussed above in model systems, we may approximate the confor-

mational entropy with following linear model (LM-Best):

Sconf ⇡ �0 + �1 log(Nrotor + 1) + �2 log(NMethyl + 1) + �3 log(R
Total
f + 1)

+�4 log(NSG + 1) + �5 log(FHBond + 1) + �6 log(F⇡�⇡ + 1)
(2)

where Nrotor, NMethyl and NSG are the number of rotatable bonds, number of methyl (CH
3
)

groups and number of specified functional groups (amide, ester and thioamide) respectively.

RTotal
f is the total ring flexibility, FHBond and F⇡�⇡ are the foldability scores for intramolecular

hydrogen bonds and ⇡-⇡ stacking within a molecule (see Appendix C).

This model is in close agreement with the GFN2-calculated conformational entropy, with a
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coe�cient of determination, R2 = 0.72. The error is smaller than the one-variable model in

Eq.(1). Negative values of the parameters associated with the number of specified functional

groups, foldability with intramolecular hydrogen bonds, and ⇡ � ⇡ stacking, suggests that

the conformational entropy decreases as these variables increase, which matches our expec-

tations. Small p-values from the t-tests indicate these parameters are significantly di↵erent

from zero (see Appendix D). Surprisingly, the parameters associated with the ring flexibility

are slightly negative, which is not consistent with observations in cycloalkanes (Figure 4c)

and the small cyclic molecules subset shown in Appendix C Figure S11. This indicates

our proposed descriptor, ring flexibility, may not fully capture the conformational entropy

of complex rings. Taking the substituent information and the intramolecular interactions

within rings into account remains areas for future work.

3.5 Validation and Model Comparison

To assess the predictive power of the model, we calculated the mean absolute error between

the model-predicted and GFN2-computed conformational entropies for two independent test

sets, ZINC-I and the peptides set. The ZINC-I set contains diverse small molecules selected

from ZINC, and has no overlap with the training data. The peptides set contains 8,861 cyclic

tetrapeptides (CTPs) composed of fourteen di↵erent naturally-occurring amino acids (see

Appendix A, Table S1). Our proposed linear model outperforms machine learning models

with ECFP6 as model inputs, and gives a mean absolute error of 4.79 and 4.46 J/mol · K

and Pearson correlation coe�cient between predicted and computed conformational entropies

R2 = 0.74 and 0.65 respectively (see Table 1, and Appendix E Table S12). We argue that

the ECFP6 fingerprints only consider local information about the corresponding atom, and

the global topological information including long range intramolecular interactions therefore

cannot be encapsulated in such representations. This limits the predictive power of the

models. The kernel approach fails to obtain good predictions in peptides, as the cyclic

peptides are likely too dissimilar from molecules in training data (see Appendix A, Figure

14



S3).

The kernel ridge regression and deep neural network models that are fed with continuous,

data-driven descriptors (CDDD) somewhat outperform the linear regression by capturing

additional nonlinearity (see Table 1). This highlights that the data driven representation

discussed in this work encapsulates long range dependences of conformational entropy in the

molecular graph, and therefore gives better predictive performance than local fingerprints

such as ECFP6 alone.

Table 1: Model performance. Comparison of the mean absolute error (MAE) between the
model’s predicted and GFN2-computed conformational entropies, in J/mol · K, for training
set and both test sets. LR-1 is a single-variable linear model, with number of rotatable bonds
as the sole explanatory variable. LR-Best is the proposed model. DNN with CDDD gives
the lowest MAE in train and test sets, while KRR with CDDD gives the lowest MAE in
CTPs sets.

Model Training (MAE) ZINC-I Set (MAE) CTPs Set (MAE)
LR-1 8.67 8.83 9.00
LR-Best 5.08 4.79 4.46
LASSO (ECFP6) 5.55 5.47 6.76
Ridge (ECFP6) 4.95 5.29 5.83
KRR (ECFP6) 6.04 6.01 8.25
DNN (ECFP6) 5.22 5.27 6.99
LASSO (CDDD) 4.34 4.30 4.85
Ridge (CDDD) 4.27 4.26 4.54
KRR (CDDD) 4.14 4.14 4.17

DNN (CDDD) 3.66 3.83 4.32
GCN 5.18 4.86 5.46

4 Limitations and Future Work

The Gibbs-Shannon entropy formulation is used in the conformational entropy calculation,

which means the conformer population (probability) is determined by GFN2-computed con-

former energy. Hence the resulting conformational entropy of a given molecule may di↵er

when other energy functions based on density functional theory (DFT) and force fields (FF)

are used.47 Moreover, an error may occur when the molecular dynamic simulations produce
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duplicated structures, as the calculation takes the unique conformations as input.

In addition, the temperature e↵ect on entropy was not considered in our analysis, limiting

the applicability of the model beyond 300 K to more general temperatures. We can intro-

duce additional interaction terms in our model to take the temperature e↵ect into account,

as discussed in Appendix F. Figure S22 in Appendix F shows that the conformational en-

tropies of unbranched alkanes at di↵erent temperatures (T = 298.15 K, 320 K, 360 K, 400

K) and the temperature has a significant e↵ect on very flexible alkane molecules, in which

the conformational entropies increase by approximately 5-6 J/mol · K at 400 K. The model

with interaction terms is thus able to learn the underlying relationship and give accurate

predictions.

Furthermore, as shown in Appendix A Figure S1, the training data predominantly consists

of small and medium-sized organic molecules, i.e. number of heavy atoms Natoms < 70.

Hence the model is not readily applicable to large molecules with more than 100 atoms. To

extend the capability of the model to a wider range of molecules, future work is required to

(i) increase sampling of large (Natoms > 70) and highly flexible (Nrotor > 20) molecules, and

(ii) introduce additional descriptors to capture the e↵ect of other long range intramoleculr

forces in flexible molecules. Additional work is underway to consider similar conformational

entropy e↵ects in inorganic and organometallic molecules, including sampling a larger subset

of databases such as PubChem.48 Work to expand to larger and more flexible molecules is

challenging to ensure full sampling of all thermally-accessible minima despite the stochastic

nature of most conformer search methods.

5 Conclusion

In summary, our analysis shows that the conformational entropy increases logarithmically

with the number of degrees of freedom in the small molecules. Despite the possible num-

ber of conformers increasing exponentially, inherent correlation between multiple rotatable
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bonds and terminal CH
3
groups restricts the number of thermally-accessible conformations

greatly. Intramolecular interactions such as ⇡-⇡ stacking and intramolecular hydrogen bonds

further reduce the number of thermally-accessible conformers, and decrease the conforma-

tional entropy as a result. Such e↵ects, here in small molecules, relate to Levinthal’s paradox

and energy landscapes found in protein folding.49–51 The contribution of ring entropy from

flexible rings has to be assessed carefully. Our new descriptors consider the intramolecular

functional groups that decrease conformational flexibility, ring flexibility and foldability, and

thus improve the prediction of the conformational entropy component of standard molecular

entropy.

The resulting statistical model, based on a physical understanding of the various contribu-

tions to conformational entropy, outperforms current machine learning methods, and gives

a mean absolute error of 4.8 J/mol · K, or ⇡0.34 kcal/mol at 300K. Our approach facili-

tates the calculation of thermodynamic properties and provides insights into the e↵ect of

intramolecular interactions on conformational preferences and intrinsic correlation between

molecular torsional motion. This work can also be extended to predict the change in solva-

tion entropy as well as ligand conformational entropy upon protein-ligand binding, and thus

provide better estimates of binding free energies for drug discovery.11,52 With recent work on

calculating accurate absolute entropies,47 we believe similar e↵orts can include treatment of

rotational, translational, and vibrational entropy contributions as well.
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