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1. Introduction

Most current brittle-fracture models introduce the crack as a separate entity, a priori
endowed with properties that are distinct from the constitutive law of the bulk material. In
addition, the fact that fracture involves discontinuous deformations is problematic, because
such deformations cannot be approximated by smooth functions and still maintain bounded
elastic energy, especially if higher-gradients are included in the model. An attempt to
circumvent such problems was Truskinovsky’s Fracture as a Phase Transition [?]. In this
approach, fracture results from nonconvexity of the stored energy function, but it involves
strains in the fracture zone that become unbounded as the transformation strain goes
to infinity. It would be desirable to regularize the problem using higher gradients, but
this leads to infinite energies in the same limit. Indeed, any approximation of a cracked
deformation by smooth ones would have unbounded higher gradient energy in the limit.

Here we develop a nonlinear elastic, local constitutive model that can predict fracture
automatically as a phase transition via a standard bifurcation analysis, is amenable to
regularization by higher gradients, and does not involve discontinuous deformations, ad-
ditional field variables, such as damage or phase-field variables, or a separately specified
surface energy.

Our first observation concerns one-dimensional fractured deformations, viewed here as
strictly monotone mappings that involve at least one jump discontinuity. The graph of
such a function has disjoint pieces, that can be joined together by vertical segments of
“infinite slope” (see Fig. 1a). One can then easily construct a generalized inverse of this
deformation, by interchanging the abscissa and the ordinate. The graph of this inverse has
strictly increasing pieces that are the graphs of the (standard) inverses of the deformation
on either side of the crack. Moreover their graphs are connected by a horizontal segment,
which corresponds to the “inverse” of the segment of infinite slope. The generalized inverse
so constructed is a piecewise smooth mapping, where two or more “phases” of positive
stretch are separated by one or more intervals of zero stretch. One would then extend the
notion of deformation to admit nonnegative, as opposed to strictly positive, derivatives, so
that mere (non strict) monotonicity is required.
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FIGURE 1. (A) A cracked deformation (blue) with a vertical segment
(black) attached to render the graph a continuous curve. (B) The gen-
eralized inverse of the cracked deformation. The horizontal segment (black)
is the opened crack in the deformed configuration.

In a sense, the inverse deformation closes the crack, as it maps each crack interval to
a single point, the reference location of the crack. Amnalogously, the original deformation
opens the crack, as it maps the single crack point in the reference configuration to the
cracked interval in the deformed one.

A major advantage is that unlike the discontinuous original deformation, the gener-
alized inverse, Fig. 1b, is Lipschitz continuous and has mere gradient discontinuities, like
a two-phase deformation [?]. Here intervals of positive stretch are separated by inter-
vals of zero stretch. These we identify with the uncracked phase and the cracked phase,
respectively. The length of a cracked-phase interval is nothing but the crack opening dis-
placement.

Another crucial advantage of the inverse description is that the analogy with phase
transitions extends naturally to the constitutive law itself, once we invoke the inverse
deformation approach of Shield [?], as we now explain. Typically, in one dimension, a
material that suffers brittle fracture would have an elastic stored energy function of the
form shown in Fig. 2b, having a convex well at the reference state, but eventually becoming
concave and approaching a horizontal asymptote from below as the stretch tends to infinity.
The inverse stored energy function W is related to the (usual) stored energy function W
by [?] 7

W(H) = HW(1/H), H>0
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FIGURE 2. (A) A stored energy function of a material that undergoes brittle
fracture. (B) The corresponding inverse stored energy function.

and has the property that the elastic energy of a deformation f : [0,1] — [0, A] can be

written as
Ak

/0 W @)de = | W @)y

0
where h = f~! is the inverse deformation. For W as in Fig. 2a, the inverse stored energy

*
W would be as in Fig. 2b,, where we now extend its domain of definition as follows

HW(1/H), H>0
W(H) =<0, H=0
o0, H <0.

Here we allow the possibility that the inverse stretch H := h’ = 0 (corresponding to the
cracked phase as discussed above) but prohibit A’ < 0, which corresponds to f’ < 0, that
is, orientation-reversing interpenetration. We recall that the case h' = 0 corresponds to
crack opening, not interpenetration. Instead of the usual constraint f’ > 0 we thus impose
h' > 0 as a constraint. When one visualizes this unilateral constraint as a vertical barrier

at 0 as part of the graph of W (Fig. 2b), it is clear that the latter has the form of a two-well
energy, with wells at 0 and 1, while the inverse deformation of Fig. 1b is a zero-energy one
(global minimizer) provided the slopes of the rising portions equal 1. In Fig. 2b, the well at
1 corresponds to the undeformed, uncracked state, while the one at 0 to the cracked state.
The length of the part in the 0 phase in Fig. 2b (horizontal segment) is the crack opening
displacement. In this sense, the 0 phase is “thin air” or empty space between crack faces.

kk *
A standard minimization of this two-well energy gives the convexification W of W
(together with the constraint A’ > 0). This corresponds to a material that cannot resist

Kk _—
compression (Fig. 3a). Also W is the inverse stored energy function of W, which has
the form shown in Fig. 3b, corresponding to a material that cannot sustain tension. The
drawback here is that minimizers h of the inverse energy can have an arbitrary number of
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FIGURE 3. (A) The convexification W of W of Fig. 2b. (B) The stored

ko
energy function W whose inverse stored energy is W.

cracked intervals h’ = 0 alternating with intervals where h’ = 1, corresponding to arbitrary
positions of cracks in the reference configuration.

*

The final advantage of the inverse approach is that the problem associated with W
can be regularized by the addition of higher gradients of the inverse deformation h to the
energy which would become

EA{h} = W(h’ ))dy + / [h" (y (1.1)
0

The analogous attempt to add higher gradients of the original deformation f to the energy

runs into difficulties because of the discontinuities of f (Fig. 1a).

We study equilibria of the displacement problem in the inverse formulation. While we
could employ global energy minimisation of (1.1), we choose instead to follow the path of
global bifurcation (no pun intended), keeping in mind that stable branches of local energy
minima may occur, while exploiting phase plane techniques in the spirit of [?]. The only
complication here is the unilateral constraint A’ > 0 on the inverse deformation in an
otherwise fairly standard two-well problem with higher gradients like [?, ?].

A physical description of the results is what one expects from a fracture model worth
its salt, and agrees with predictions of discrete models [?]: In particular, pulling on a bar
eventually breaks it at one of the two ends and the stress vanishes thereafter. The broken
end has an additional surface energy (because of higher gradients) as posited by Griffith.
Solutions with more fractures than one are unstable. Longer bars are more brittle (break
sooner and more suddenly) than shorter bars.

The strength of the inverse approach lies in the simplicity of model (1.1) and the
mathematical ease with which these conclusions are reached. This is promising, and it
begs the question of two or three dimensional formulations, which we pursue elsewhere ||.

The outline of this paper is as follows:
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OUTLINE

SURFACE ENERGY (Griffith)

SCALE EFFECT

STABILITY

HIGHER. dimension

Our assumptions for W(and thus for W*) are in accordance with the properties sug-
gested in Figure 2:

W e C3(0,00); W(F) /oo as F\,0; W(F) "v>0as F /oc;

W(1)=0; W >0, F#1,

W is strictly convex on [0,1/k) and strictly concave on (1/k,00), where 0<x < 1.
(1.2)

As a consequence of (1.2), it follows that

W* e C3(0,00); W*(0)=W*(1)=0; W*>0, H#1;, W*0):=W;(0%) =~;
W* is strictly concave on [0, k) and strictly convex on (k,00).
(1.3)

We now give an outline of the work. In Section 2 we consider the inverse-strain formulation,
based on (1.3), presuming hard loading in the presence of the unilateral constraint, cf.
(1.1). We then proceed with a change of variables rendering the problem amenable to a
bifurcation analysis. We show that the linearized problem about the homogeneous solution
admits a countable infinity of potential bifurcation points. In Section 3 we show that each
of these are indeed bifurcation points, viz., we prove that each point found in Section 2 gives
rise to a local “pitchfork” bifurcation. In Section 4 we show that the trivial homogeneous
solution is locally stable (the potential energy is rendered a local minimum) up to the
first bifurcation point, after which there is an exchange of stability. We then infer that all
local “higher-mode” branches, emanating for the second and higher bifurcation points are
unstable.

In Section 5 we demonstrate that each local bifurcation path is, in fact, a subset of
a global continuum of solutions, subject to the Rabinowitz alternatives [R]. In Section 6
we obtain a priori bounds on all nontrivial solutions. In Section 7, we use a well-known
argument to show that the global bifurcating branches are separated from each other by
virtue of the nodal properties of their respective solutions, and we eliminate one of the
alternatives of the Rabinowitz theorem, cf. [CR] In addition, we demonstrate that each
of the global bifurcating branches is bounded and terminates in fracture. Finally, Section
7 closes with an argument from [CGS]|, demonstrating that all solutions on the global,
higher-mode branches are unstable. Consequently, we focus on the first global bifurcating
branch of solutions in Section 8. As in [LR], we present the global bifurcation diagram as
an effective stress-strain diagram in terms of the original Lagrangian variables. We show
that the generalized stress vanishes at the termination of the branch, and that the fracture
always occurs at one of the ends of the bar. The projection of the first global branch
connects the bifurcation point on the homogeneous stress-strain curve to the zero-stress
line at a finite value of the hard-loading parameter, whereas the homogeneous stress-strain
curve predicts fracture asymptotically at infinity. ...
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2. Formulation

We begin with the total potential energy (1.2), written in terms of the inverse strain
H="n:

A
E.[H] = /0 ()2 + W)y, (2.1)

whereA > 0. We treat ¢ > 0 as a fixed small parameter throughout. We consider “hard”
loading, viz., h(0) = 0, h(\) = 1; in terms of the inverse strain, this becomes

A
f() H(y)dy = 17 (2'2)
H >0 on [0,)],
for A € R* := (0,00),cf. (1.1). For convenience of our forthcoming analysis, we change
variables as follows:
y=2As, 0<s<1,
u(s) := AH(As) — 1. (2.3)
Then (2.1), (2.2) are equivalent to
1
V) = / (5@ + X0, w)lds, (2.4)
0
subject to
fol uds = 0,
u>—1 on [0,1], (25)
respectively, where
LA u) == W*([1+ u]/A). (2.6)

Next, we formally look for equilibria as critical points of u + V. yielding the Euler-Lagrange
equation

—eu” + Np\u) —p=0, 0<z<1, (2.7)
subject to (2.5) and (2.7)

where

dW*
dH -~
The natural boundary conditions (2.7)2imply that the Lagrange multiplier appearing in
(2.7)1 evaluates to

PN u) = W ([L+ul/A); W =

(2.8)

j= 23 /0 O\, u(7))dr. (2.9)

We observe that u = 0 is a solution of (2.7)-(2.9) for all A € RT := (0,00), and we
look for bifurcation from this trivial solution ray. Accordingly, we investigate the formal
linearization at u =0 :

—eu” + NW*(1/Nu=0, 0<z<1,

W(0) = /(1) =0, [ uds=0, (2.10)
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where W* := €W Clearly (2.10) admits nontrivial solutions

dH?
u = ¢y, :=cos(nms), n=1,2,.., (2.11)
provided that the characteristic equation
2.2
EN-T .
2 —W*(1/N), (2.12)

has corresponding “roots” A\,, n = 1,2, ... For each value of n € N, the left side of (2.11)
defines a parabola in the variable ”1/)\”. Then taking into account the graph of —W*(.), cf.
(1.2) and Figure 4, we conclude that (2.12) has a countable infinity of simple (transversal)
roots:

1/k <A1 <A <. (2.13)

each of which corresponds to a respective nontrivial solution (2.11).

3. Local Bifurcation

In order to carry out a rigorous bifurcation analysis, we introduce operator notation
on appropriate function spaces as follows:

Xk ={ve CFR):v(s) = v(s+2) = v(—s), /1 vds =0}, k=0,1,2. (3.1)
0

We let |lv||,denote the usual maximum norm on [0,1], i.e., |[v], = m[ax] lu(s)|, |lvll; =
s€(0,1

lv]lg + [1V'|ly » ete.; each of (3.1) so equipped is a Banach space. We then view (2.7)1 to be
defined for all z € R, and identify it with a mapping F : Rt x (O € X?) — X9, where

O:={ueX*: u>-1on [0,1]}. (3.2)

Observe that any solution of

F(\u) =0, (3.3)
satisfies (2.5) and the boundary conditions (2.7)2. A routine phase-plane analysis of (2.7)
(cf. Section 6) shows that the converse holds, viz., any solution of (2.7) fulfilling (2.5); and
(2.5)gstrictly, is also a solution of (3.3).

We note that F(A\,0) = 0 for all A € (0,00), and our previous formal calculations
(2.10)-(2.13) are rigorous consequences of the fact that F(-) is a C' mapping: Let A()) :=
D,F(),0): X2 = X° denote the Frechet derivative of u + F (), u) at u = 0. Then (2.10)
is equivalent to

A(Nu =0, (3.4)
and (2.11)-(2.13) imply
A(MAp)dn, =0, n €N, (3.5)
which constitutes a necessary condition for bifurcation at (A,,0), n =1,2,... It’s easy to
show that the inhomogeneous equation

AN)u = b, (3.6)
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has a unique solutionu € X2, for all b € X°, provided that A # \,, n=1,2,..., cf. (2.13).
On the other hand, for each values of A = A, given by (2.13), standard ODE methods for
constant-coefficient 2"%-order equations show that (3.6) admits the homogeneous solution
(2.11) times an arbitrary constant plus a particular solution, the latter of which exists
provided that fol ¢nbds = 0. We conclude that A(\) € L(X?, X) is a Fredholm operator
of index zero, i.e., the dimension of the null space agrees with the co-dimension of the
range.

As a consequence, we may employ the well-known Liapunov-Schmidt method to inves-
tigate simple bifurcation in the neighborhood of the points (A,,0),n = 1,2,...,cf. [CR],
[K]. In particular, it’s enough to verify the “crossing condition”

Ar(An)én ¢ Range(A(An)). (3.7)

From (2.10) and (3.4), we ind A/(\p)¢n = Chn, where Cy, := 20, W*(1/An)— (M)W (1/ M) <
0,n=1,2,...cf (1.2), (2.13). Moreover, from (2.10) it follows that A(\,)is formally self-
adjoint, and

/1 (Ar(\p) bp) dndx = Cy, /1 cos® nadr # 0, (3.8)
0 0

which verifies (3.7). We now have:
Proposition 3.1 For each n = 1,2, ...,there is an open neighborhood of (0, \y,), denoted
N, CRY x O, and a unique local path of non-trivial solutions of (2.3) given by

Po = {0 w) = Con(t), Hdn +Da(t)) 1t € T} C N, (3.9)

where An : J — R and ¢, : J — XZ2are each continuously differentiable on some open
interval J containing 0,with A\,(0) = A, and 1, (0) = 0. Moreover, X, (0) = 0, i.e., each
P, represents a “pitchfork”.

Remark 3.2 The very last part above follows from the observation that F'(A\,ou) =
oF (A, u),where ou(s) := u(s—1), which is the forward shift by one-half the period, cf. [GS
1], [HP].

4. Stability of Local Solutions

In this section we adopt the usual energy criterion for stability, viz., an equilibrium
solution is locally stable if it renders the potential energy a local minimum; if not, the
equilibrium is unstable. Referring to (2.4), we note that V. : RT x X! — Ris a C?
functional. Thus, we may rigorously employ the second-derivative test (second variation)
to obtain weak local minima. We first consider the trivial solution.

Proposition 4.1 The trivial solution u = 0 is stable for all A\ € (0, A\1)and unstable
for all X\ € (A1,00), where (A1,0) € RY x X2 is the first bifurcation point, cf. (2.13) and
Proposition 2.1.

Proof. The second variation of (2.4) at u = 0 is given by

2

1
PV 00 1= TV, 7o = /0 (£07)? + NPT (1/ A )]s, (4.1)
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for all variations n € X!. The Lagrange multiplier does not appear above, due to the fact
that the constraint (2.5);is linear, cf. [Z]. Next we employ the sharp Poincaré inequality

1 1
/ (n')?ds > 712/ nds, (4.2)
0 0
where 72 is the first eigenvalue of the operator —7” on X?2. Then (4.1), (4.2) lead to
1
G2V [N, 0;m) = [em? + N2W*(1/N)] / nds. (4.3)
0

In view of (2.12) withn = 1, and from the graph of —W*(-),we conclude that ex?/\? >
—W*(1/A) for all 1/X > 1/Ay, cf. (1.2) and Figure 4. Of course this implies that (4.3) is
positive for all A € (0, \;)and 7 € X1.

For any A > \j choose the admissible test functions 7, := cos(¢ns),for £ = 1,2,..., k.
Then

VL[, 05 = [e€772 + NW*(1/N)]/2. (4.4)

Again, from (2.12) and the graph of W*(-),we see that ef?72/\2 < —W*(1/)), implying
that 62VZ[\,0;m¢] < O.for £ =1,2,....k. O

Since each (0, \,),n = 1,2, ..., is a simple bifurcation point, the results of Proposition
4.1 and well-known exchange-of-stability arguments give immediate information concerning
the stability of the local pitchfork bifurcating solutions given by Proposition 3.1. If (A, u) €
P1,then u will be stable or unstable if the pitchfork is supercritical or subcritical, i.e., if
A1(0) > 0 or Mj(0) < O,respectively, cf. [K]|. Assuming sufficient smoothness of W*, a
formula from [K] gives

X1(0) = 37 (1/M1)/8,

which can be positive or negative, depending on the sign of W *(1/A1),i.e., the first local
path can be stable or unstable. On the other hand, the other local solution paths P,,n =
2,3, ..., are all unstable — regardless of the sign of W (1/A,). This is due to the fact that
the second variation (4.4) is negative in two or more “directions” for all A > \;. whereas
the exchange of stability at a simple, supercritical pitchfork only involves one eigenvalue
regaining positivity. We now summarize.

Proposition 4.2 If (\,u) € Py,then u is stable (unstable) if W*(1/\1) > 0 (< 0).
In the latter case (instability), the linear operator Dy, F(\ u): X? — X° has one negative
eigenvalue. If (\,u) € P,k = 2,3, ...,then u is unstable, and D, F(\,u)has k — 1negative
eigenvalues if the pitchfork Py is supercritical, and k negative eigenvalues in the subcritical
case.

5. Global Bifurcation

In order to obtain global results, we first consider the linear operator L[v] := —ev”.

Since zero is not an eigenvalue of L : X? — X0 the operator is bijective with a compact
inverse L™ : X0 — X0 Clearly L™! : X' — X! is also compact. Now consider the
operator equation

G\ u):=eu— K(\u) =0, (5.1)
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where
1
K\ u) = A3 [p()\,u) _ / p()\,u(T)dT] , (5.2)
0
K:Rt x (Ac X!') = X!is compact,
A={ueX':u>—-1on [0,1]}, (5.3)

and G : RT x (A C X') — X! is C'. Then any solution of (5.1) is a solution of (3.3), and
vice-versa. In particular, each of the local, nontrivial solution paths (3.9) satisfy (5.1) as
well.

The advantage of (5.1) is that the Leray-Schauder degree of u — G(A, u) is well defined,
which we now exploit. The Frechet derivative of v — G at (A, 0) is given by

DyG(X\,0) = L7YA\) = el — X2W*(1/N L7t e L(XY), (5.4)

cf. (2.10), (3.4). Hence, zero is a simple eigenvalue of L~1A(\,),with null space spanned
by ¢n,for each rootA,,n = 1,2,...,of (2.12), respectively, cf. (2.11), (2.13). Since L' is
compact, L~YA(\) = eI — N2W*(1/A)L~" has Fredholm index zero for all A € R*. Finally,
it’s not hard to see from (3.7), (3.8) that the Leray-Schauder index of A — D,G(),0) =
L7YA())(along the trivial solution) changes sign at each root A\,,n = 1,2, ... Hence, the
global bifurcation theorem of Rabinowitz is applicable to (5.1).

Theorem 5.1 For each rootA,,n = 1,2,...;of (2.12), (An,0)is a point of global bifur-
cation. That is, letS denote the closure of the set of all nontrivial (u # 0) solution pairs
of (5.1), and let Cpdenote the component of S containing (A,,0). Then at least one of the
following is true:

(1)Cpis unbounded in R x X1;

(ii) Cncontains (A, 0),with A # Ap;

(iii) Cp ¢ RT x A.

6. A priori Bounds

We obtain bounds on nontrivial solutions u # 0 in this section. We only require upper
bounds, given that u > —1 is automatic, cf. (2.5)3. Recall that any nontrivial solution pair
(A, u)of (5.1) delivers a solution of (3.3). Ifu # 0,then by virtue of evenness and periodicity,
it attains both its maximum and its minimum somewhere on the closed interval, i.e., there
are points s, spr € [0, 1] such that:

slél[%,}f] u(s) = u(sn), sIeI%(l)fll] u(s) = u(sm),
with  u(sm) <0 < u(sy), (6.1)
u’(sm) =0 and u’(sp) <0,

where (5.1)y is a consequence of (2.5);. We now evaluate (2.7); at s,and at sps,subtract
the resulting equations and employ (2.8), (6.1)3 to deduce

WAL+ u(san)]/A) < WL+ ulsm)]/A). (6.2)
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From the graph of W*,it follows that both (6.1)sand (6.2) can be fulfilled only if

0<1/A< M and 0 < [1+u(sm)]/A<[1+u(sy)]/\< M, (6.3)
whereM > Osatisfies W*(M) = v,cf. Figure 3. Of course (6.3) is equivalent to
A>1/M and -1 < u(sp) < u(sy) < AM —1. (6.4)

Then (2.3)3, (6.3) and (6.4) immediately yield:
Theorem 6.1. Any nontrivial solution pair (A, u), w # 0,0f (5.1) satisfies

|ullg < Cy :=max{1,AM — 1}; (6.5)

in terms of the inverse deformation H(y) = [u(y/X) + 1]/A,this becomes
H < M. 6.6
max, [H ()] (6.6)

Finally, there is a constant C) ., depending on Aand e, but independent of w, such that
Jull; < Cxe. (6.7)

Proof. The estimate (6.7) is a direct consequences of (6.5) and (2.7)1, (2.9). O

In view of (6.4), we have A > 1/M for any nontrivial solution pair. Accordingly we
may refine Theorem 5.1 as follows:

Corollary 6.2 Alternatives (i), (iii) of Theorem 5.1 may be replaced by

(i)'C,, C RY x X'is unbounded,

()" Cp, NRT x OA # D,i.e., there is(\,u) € CowithA € Rt and u(s,) = —1 for some
s, € [0,1],

respectively.

7. Detailed Properties of Global Bifurcating Solutions

We first observe that the global solution branches, C,,n = 1,2, ..., of Theorem 5.1 are
mutually separated by nodal properties via a well-known argument [CR2]. Let Z; denote
the open set of all functions v € X! having precisely ¢ zeros in (0,1),each of which is
simple, withv(0) # 0 and v(1) # 0.Then by virtue of (2.11) and (3.9), it follows that each
local path of non-trivial solutions satisfies

P\ {(A\,0)} CRT x Z,,n=1,2,..., (7.1)

for|J| sufficiently small. In fact, this property is inherited globally:
Proposition 7.1. Fach of the global bifurcating branches of Theorem 5.1, Cp,n =
1,2, ..., is characterized by distinct nodal properties, viz.,

Co\{(Mn,0)} € (R x Z,),n=1,2,... (7.2)

As such, Cp, N Cpy = 0, for all m # n, and each C,,n = 1,2, ...,is characterized by either
alternative (i)’ or alternative (iii)’ of Corollary 6.2.

Proof. The argument given in [CR], [R] shows that nodal properties of solutions on
global branches of 2™@-order ODE, such as (2.7)1, (2.9), can change only at the trivial
solution. Given that C,is a continuum, this relies on (7.1) and the uniqueness theorem.
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Since P,, C Cp,the observation that Z,, N Z,, = 0 for all m # n, then implies (7.2). This
rules out alternative (ii) of Theorem 5.1 as well. [

Next we find it convenient to return to the original variables via (2.3), in which case
the equilibrium equation (2.7); now reads

—eH" + W*(H) = w, (7.3)
where @ = /3. This along with (2.3), (2.8) and (2.9), yields

=5 / W (H (7.4)

The boundary conditions (2.7)2 now become
H'(0) = H'(\) =0. (7.5)

By virtue of (2.3), any solution of (2.5), (2.7)-(2.9) gives a solution of (2.2), (7.3)-(7.5),
and vice-versa.

In order to glean more information, we identify (7.3) with a dynamical system, treating
74" as a time-like variable. Then there are two critical points or “equilibria” corresponding

to solutions of the algebraic equation
W*(H) —w =0. (7.6)

The graph of W*reveals that there are precisely two solutions for W*(H) < w < 7,denoted
H = «a, and H = fB,where 0 < a < 8 < M. cf. Figure 3. In addition, (7.3) admits the first

integral
€

S(H' — [W*(H) ~ wH] =T, (7.7)
where I is a constant. With (7.7) in hand, we obtain the phase portraits depicted in Figure
5, where « is a “center”, and £ is a “saddle”. According to the boundary conditions (7.5),
the trajectories should “start and stop” on the H-axis. As such, we are interested only in
closed orbits about the center

a=1/X\, (7.8)
the value of which follows from (2.3), given that it represents the trivial solution H =
1/A & wu = 0. Moreover, we must chose only those orbits yielding even, periodic solutions
having period 2\/p,p = 1,2, ... Recalling property (1.2)_, first integral (7.7) also implies
that a nontrivial solution Hof (2.5), (2.7)-(2.9) with period 2A/p has either a maximum at
y = 0 and a minimum at y = \/p, or vice-versa, with Hstrictly monotonic on (0, A/p),cf.
[SG]. In view of (2.3), these same qualitative properties hold for nontrivial solutions of
(3.3) or equivalently of (5.1). In fact it’s worth stating the following:

Proposition 7.2 For any solution pair (A, u) € C,\{(Mn,0)},n = 1,2,...,given by
Theorem 5.1, it follows that « has minimal period 2/n, either u has a maximum ats = Oand
a minimum at s = 1/nor vice-versa, and u is strictly monotone on (0,1/n).

Proof. Given the equivalence of systems (2.5), (2.7)-(2.9) and (2.2), (7.3)-(7.5) via
(2.3), we see that u has period 2/p for some p € N, etc. So the only issue to address is the
claim that p = n; this follows from (7.2). Indeed, if p # n, then (2.5) insures that u(0)and
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u(1/p)have opposite signs. Thus, u has a single zero on (0, 1/p) ,leading to precisely p zeros
on (0,1). But this contradicts (7.2) unless p=n. O

Remark 7.3 Referring again to (7.3), the cases w < W*(k) and w > ~are not
associated with solutions of (7.3), (7.5). The first leads to either one degenerate critical
point o = 3 (for w < W*(k)) or no critical points, while the second case yields a critical
point that violates (2.2)2.

We now claim that “facture” occurs on each of the global solution branches, each of
which is bounded.

Theorem 7.4 Fach of the global bifurcating branches of Theorem 4.1, Cp,m = 1,2, ...,
is bounded in RY x X1 and characterized solely by alternative (iii)” of Corollary 6.2.

Proof. In view of Proposition 7.1, if (i)’ of Corollary 6.2 is not true then (iii)’ is
automatic. So it’s enough to show that alternative (i)’ does not hold. We argue by
contradiction, assuming that (i)’ is true. Then the bound (6.7) implies there is a sequence
{(N\j,u;)} C Cy such that A\; — oo. From (2.3) we obtain a sequence of solutions {(\;, H;)}
of (2.2), (7.3)-(7.5), with

Hj(y) = [L+u;(y/ )]/ > 0 on [0, Aj], (7.9)
cf. (5.3). We also have a sequence of centers (7.8) satisfying
Q5 = 1/)\]' \ 0, (7.10)

which implies that the phase portrait in Figure 5(b) is appropriate. With w; := W*(«;), we
also have the sequence of saddles for (7.3), coming from W*(Bj) = w;j,satisfying 5; /" M,
viz., wj /7, as j — oo,cf. Figure 3. Conditions (7.9) and (7.10) taken together imply
that the amplitude of the “oscillation” about the center must also approach zero. That is,
from (7.9), we have 0 < §; := min H’(y) < oj = 1/);,and along that particular orbit,

y€[0,A]
(7.7) yields
€

5(H’)2 + W*(aj)H — W*(H) =T, (7.11)
where I'; = W*(a;)0; — W*(8;) \y Oas j — oo. But this contradicts the previously noted
observation that the minimal period of the solutionH; is given by T; = 2\;/n  — oo as
7 — o0o. Indeed, referring to the phase portrait in Figure 5b, the period is an increasing
function of I' in (7.7) that approaches infinity as I" #v,cf. [A]. O

We close this section with a strengthened version of Proposition 4.2, regarding the
instability of the “higher-mode” global solution branches. For any solution pair (A, u) €
Cn\{(An,0),the second variation takes the form

d2 1 .
§*VI\ usn) == 5 VehutTnll=o = / [e(n)? + NW*([1 +ul/Nn?lds.  (7.12)
0
We observe that (7.12) is well defined for all n € H'(0,1),whereH'(0,1) := {v € H'(0,1) :
fol vds = 0}. We now use an argument form [CGS] to obtain the following instability result:
Proposition 7.5 For (A u) € C,\{(\n,0),n = 2,3,..., the second variation (7.12) is
strictly negative at some n € H'(0,1), i.e., wu is unstable.
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Proof. We first define

ols) = { g:(s)i /2 28821{7’ (7.13)
and choose any ¢ € H'(0, 1)such that
¥(0) =1 and 9¥(s) =0 for 1/n <s< 1. (7.14)
By virtue of Proposition 7.2, it follows that
u'(1/n) =0, (7.15)
and thus,
No:= ¢+ 1Y € HY(0,1) for 7 € R. (7.16)
Substituting (7.16) into (7.12) yields
2V usmo] = fo " [e(u”)? + N2V (L4 u)/A) ()] ds (7.17)
+ 27 [ e N2W (1 + ul /N uYlds + O(r).
From (1.2)_, (2.7) and (2.8), we find that
eu” = N2W*([1 + u] /M. (7.18)
Substituting (7.18) into (7.17), while making use of (7.14), (7.15), leads to
2V N, us o] = =270 (0) + O(7). (7.19)

Finally, since u is a nontrivial solution, we know that u”(0) # 0. Otherwise, (2.3) would
imply that H”(0) = 0,which contradicts (7.3) unless (7.6) is satisfied. Thus (7.19) is
negative for sufficiently small 7. [

Remark 7.6 Results for similar 1D models associated with phase transformations
suggest that the first global branch should contain stable solutions for sufficiently small
e >0, cf. [CGS], [LR]. We pursue this via a computational strategy in the next section.

8. Effective Macroscopic Behavior

In this section we interpret our results in terms of the conventional Lagrangian descrip-
tion, as discussed in Section 1. Taking the point of view of [LR], our goal is to obtain the
effective or macroscopic stress-strain diagram based on the global solutions obtained and
characterized in Sections 5-7. This is an alternative global bifurcation diagram. In view
of Propositions 4.2 and 7.5, it’s enough to consider only the trivial solution and the first
global branch Cj;the latter is the only branch potentially containing stable solutions.

We first express (2.1), (2.2); in terms of the deformation gradient

F(x) = f'(x) = 1/H(f(x)). (8.1)
Recalling y = f(z) & x = h(y), we likewise have
H(y) =1 (y) = 1/F(h(y))- (82)

By the chain rule and the change-of-variable formula, we find that

H'(f(z)) = —F'(2)/(F()), (8.3)
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and the total energy becomes

~ 1 "2
A /0 [ZU;,? + W(F)dz, (8.4)

subject to

1
/ Fdz = A (8.5)
0
The Euler-Lagrange equation for (8.4), (8.5) is readily obtained:

F'\' 5 (F\°
(#) +3 ()
where the multiplier o, enforcing (8.5), represents the constant generalized stress carried by

the bar. Indeed along the trivial, homogeneous solution F' = A, we obtain the first-gradient
constitutive law

—¢ +W(F)=0 on (0,1). (8.6)

o =W, (8.7)

which, in view of (1.3) and Figure 2a, is depicted in Figure _. Using (8.1)-(8.3) and the
chain rule, it’s not hard to see that (8.6) is equivalent to

1 .
oc=¢[H"H - 5(H’)Q] +W*(H) — HW*(H) on (0,\), (8.8)
where we have also employed (1.1). According to Theorem 7.4, the bounded solution
branch C; contains a nontrivial solution pair(As,us)withA\, € RTand  wu.(s,) = —1for

some s, € [0,1],cf. Corollary 6.2. Moreover, by virtue of Proposition 7.2, u is strictly
monotone, and thus either s, = 0 or s, = 1 (in fact, by symmetry both possibilities occur
on Ci, cf. Remark 3.2). In other words, the bar fractures at one of the two ends. We now
show that the generalized stress vanishes at that solution, i.e., the fractured bar carries no
stress.

Theorem 8.1 Suppose that (A, us) € C1 is as described above. Then either H,(0) :=
(1 4+ us(0)/ A = 0 or Hy(A) := (1 + us(As) /A = 0, and the generalized stress (8.8) is
identically zero at that solution.

Proof. Without loss of generality, suppose that u.(0) = —1. Then according to (2.3),
H,(0) = 0. From Proposition 7.2 and the discussion preceding it, we note that (8.8) is
valid on R mod 2. Evaluating (8.8) at y = 0 (< s = 0),while employing (1.2) and (7.5),
we arrive at c = W*(0) —0-y=0. O

It is possible

According to Proposition 3.1 and Theorem 7.4, the bounded solution branch C;connects
the bifurcation point (A1,0) to the “fracture” point (A, u.),described above. In terms of
the stress-strain diagram of Figure_, the bifurcation point is located at (Ay, W(\;)),where
A1 > 1/k, cf. (2.13). Moreover, in view of Theorem 8.1, the fracture point is located at
(A, 0),for A\, € RT. With A\ now playing the role of macroscopic strain, viz., A = f(1),the

projection of C; onto the o vs. A plane connects (A1, W(A1))to (A, 0).
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In order to compute the first global branch we turn to the methodology of Carr, Gurtin
& Slemrod|[?]. For 0 <a<b<1and z >0, let

U(z,a,b) = W*(z) — w(a,b)z + T'(a,b), (8.9)
where
w(a,b) = W*(bg - 3/*(“), I(a,b) = w(a, b)a — W*(a), (8.10)

and (formally) define

b 1 b z
a,b) = | ————=dz, a,b :/ —dz 8.11
90(a ) /a VU(z,a,b) 91(ab) a VU(z,a,b) (8.11)
Proposition 8.2. (i) Suppose (A\,u) € C1 with H(y) as in (2.3). Let H(0) = Ha and
H()\) = Hy. Then these satisfy

0<H <k, H <Hy<l1, U(H,H,Hy)>0 VH € (Hy,H>) (8.12)

\/ggo(Hl,Hﬂ =, \/591(H1,H2) =1 (8.13)

Moreover the generalized stress o from (8.6) is given by

o = W*(Hl) - w(Hl,HQ)Hl (814)

(ii) For each Hy € [0,1/\1), the second of (8.13) is uniquely solvable for Hy = H(H).
Define

A(Hy,e) = \/ggo(Hl,lﬁI(Hl)), 6(Hy) = W*(Hy) — w(Hy, H(H1))H, (8.15)

Then the above is a parametrization of the image of C1 onto the (\,o) plane.
(iii) Setting Hy = 0 above gives the fracture point (A\,0) = (A, 0) where Cy contacts the
zero-stress line. More specifically,

1< A =X0,)\,1 ase\0.

Remark. Given an inverse strain profile H from the 1st branch Ci, this result allows

us to determine the point (A, o) on the effective or macroscopic stress-strain diagram.
Typically we (numerically) solve the second of (8.13) for Hy in terms of H;. This gives the
parametrization (8.15) of (A, o).
Proof of Proposition 8.2.(i) By hypothesis, Proposition 7.2 with n = 1 and the phase
portrait (see discussion leading to (7.8)) H is strictly monotone on [0, \] and H'(y) # 0
except at y = 0, A, thus (7.7) and the natural boundary conditions (7.5), imply that
W*(H) —wH +T >0 for H € (Hy, H2) and vanishes for H = H;, i = 1,2. This in turn
shows that

W*(H) — wH +T = U(H, Hy, H») (8.16)
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and that the third inequality in (8.12) holds, which implies the first two. Substituting
(8.16) in (7.7), solving for H' and keeping the negative of the two solutions (the other
giving equivalent results) we infer

H'(y) = —/(2/e) U(H(y), Hi, Ha), y € [0, (8.17)
This can be solved for the inverse y = §(H) of H(y), noting that §(H;) = 0, yielding

e (1 1
g(H) = \/7 ——dz
2 Hy v/ U(Z, Hl, HQ)
The requirement that §(Hz) = X then gives the first of (8.13), while the integral constraint
(2.2) reduces to the second of (8.13) after changing variables from y to H. Next, use (7.3)
and (7.7) to eliminate H” and H’, respectively, from (8.8), deducing that o = —I'. This
confirms (8.14) in view of (8.10), in view of (8.16).

Proposition 8.3. Let H, : [0, A\ — [0,1] be the inverse strain solution at the fracture
point (A, 0). For A > A, define

H* 9 S S *9
Hy(y) = @), 0<y<A (8.18)
0, A <y <A

Then Hy is a broken solution (with zero stress o = 0) of the Euler-Lagrange inequality
corresponding to (2.1). In addition, as € — 0, the energy (2.1) is

1 o)
E.[H) = V2 /0 VI (HYAH + o(v/2) = Ve /1 VAW (F)/F5dF + o(vE)  (8.19)

Remark. After the bar breaks at \., we can continue pulling the broken end y = A,
further to any A > A.. The interval A\, <y < A is “aether” or vacuum H = 0 or “F = o”
namely a displacement discontinuity, the famous crack-opening displacement. Here there
is a transition layer from H close to 1 to H = 0 of size approximately /. Morevover the
first formula in (8.19) is formally identical to the interfacial energy of a phase boundary
with higher gradients [?], so this energy can be interpreted as the surface energy of fracture
in ther sense of Griffith [].

Proof of Proposition 8.3. The Euler-Lagrange inequality becomes

. =w, yeG={yel0,A\]:H(y) >0},
~eH"(y) + W' (H(y) 5.20)
>w, yeB={ye[0,)\:H(y) =0}

cf. (7.5), together with the natural boundary conditions and smoothness requirements
H =0 on oG, H e C*([0, \]), H=0 ondB

Choosing H = Hy, from (8.18) we identify the “glued” set G = [0, A\«) and the “broken” or
coincidence set B = [\, A]. Now H, satisfies (8.17) with H; = 0 (for y € [0, A.]) so squaring
and differentiating it shows that the first case in (8.20) holds. Upon setting H(y) = 0 in
the second case, and noting that W*(0) = ~ we obtain w < , which holds true, since by
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(8.10), w = w(0, H2) equals the slope of a chord joining two points on the strictly concave
graph of W*, whose maximum slope at H = 0 is ~.

Next, write the energy of Hj as follows, observing the constraint fo/\ H(y)dy = 1, that
Hy =0 on [\, A] by (8.18), that W*(0) = 0 and using .

E.[H,) = / A(Q[Huy)P + W (Hy(y)) — =[Hy(y) — 1/7] )y
- /OA* <§[H{,(y)]2 + W (H.(y)) — @ H.(y) )dy +
= [ (Sl + U0, o))y + (0, ()
-/ " U (HL(y),0, Ho(e)dy + (0, Fi(e)

=z e V2U(H,0, H(e))dH + w(0, Ha(e))
0

where we have used (8.17) to obtain the fourth line above and the change of variables for
the fifth line. Here Hy(e) is the root of the second of (8.13) with H; = 0. As shown by
CGS [?]...

In order to gain more information concerning the location of A,, and to infer stability
properties, we turn to a specific model and compute the first global branch of solutions.
Specifically, we choose W*(H) = H(1 — H)?, which follows from W (F) = (1 — 1/F)? via
(1.1).

We introduce a special W* that is piecewise-quadratic, so that the Euler-Lagrange
equation is (piecewise) linear. Let

k=1/V2, d=v2-1

and define
v {7 VR
Suppose we look at solutions of (2.7) such that 0 < H(z) < k for 0 < x < A, so that
—l<u(s)<rA—1, se(0,1) (8.22)

in (2.7) (this demands that A\ > 1/k). Then (2.7) becomes linear and reduces exactly to
(2.10), whose solutions are u(s) = Acos(nrws), 0 < s < 1, for some constant A, with A
restricted to satisfy (2.12) namely A = A\, = mr\/6/72. The bifurcation condition thus
holds all along each branch, from A = 0 at bifurcation, all the way to fracture where
|A| = 1, so that w = —1 at one end. The second inequality in (8.22) then asserts kA > 2
namely ¢ > 16/72. Branches in the (), o) plane are vertical lines form the trivial branch
(stress-stretch curve o = 1/A2, all the way down to o = 0 with A = \,, = nﬁm.
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REMARK: For ¢ < 16/m? part of the branch near the bottom involves solutions u that
violate (8.22) in part of the domain. These are trigonometric in part of the domain and
exponential in the rest. These can be computed more or less explicitly modulo solution of
nonlinear algebraic equation for the parameters. but the simple ones are the purely
trigonometric ones where the 2nd variation can be computed explicitly. Can
we investigate the stability of these?

SOLUTIONS FOR ¢ > 16/72:

u(s) = Acos(nms), 0<A<I, A=\, =nm\/g/2
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