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Abstract We consider a class of models for nonlinearly elastic surfaces in this work. We have in mind thin,
highly deformable structures modeled directly as two-dimensional nonlinearly elastic continua, accounting for finite
membrane and bending strains and thickness change. We assume that the stored-energy density is polyconvex with
respect to the second gradient of the deformation, and we require that it grow unboundedly as the local area ratio
approaches zero. For sufficiently fast growth, we show that the latter is uniformly bounded away from zero at an
energy minimizer. With this in hand, we rigorously derive the weak form of the Euler-Lagrange equilibrium
equations.
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1. Introduction

We consider a class of models for nonlinearly elastic surfaces in this work. We have in mind thin,
highly deformable structures modeled directly as two-dimensional nonlinearly elastic continua,
accounting for finite membrane and bending strains and thickness change. As discussed by Steigmann
and Ogden [17], such systems were first postulated in [4], [6]. Hilgers and Pipkin [11], [12] provide
formal asymptotic derivations of such models via small-thickness expansions from bulk nonlinear
elasticity. Nonlinearly elastic generalizations of such to intrinsically curved surfaces are pursued in [17].
Each of these works account for the finite-strain measures discussed above. The model treated here falls
within that general class, although we assume a flat (but not-necessarily stress-free) reference
configuration. Elastic surface theories that include second-gradient terms are called “non-simple” in [17];
we adopt that nomenclature here. Our main purpose is to establish the existence of weak solutions of the
Euler-Lagrange equilibrium equations for a general class of mixed boundary-value problems.

An important motivation for the present work comes from our recent studies on wrinkling of highly
stretchable elastomer membranes [9], [13]. The incorporation of finite nonlinear elasticity in the
membrane portion of the model is crucial for capturing the correct phenomena for that class of problems.
The nonlinear membrane model employed in [13] is obtained by viewing the thin structure as an
incompressible, Mooney-Rivlin solid in the absence of through-thickness strain variation. On eliminating
the pressure (assuming stress-free upper and lower faces), one obtains the following equivalent two-
dimensional membrane energy [14]:

W, =a(oC+(detC)" —3)+ B(det C +1rC(det €)' -3), (1.1)
where C denotes right Cauchy-Green strain 2-tensor, and 7, f > 0 are material constants. Note that (1.1)
implies
W,/ oasJ\O0, (1.2)
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where J = (detC)l/2 is the local area ratio. Condition (1.2) is also an important ingredient of two-

dimensional (planar) nonlinear elasticity, and in Section 2 we discuss its relationship to orientation
preservation in the context of three-dimensional nonlinear elasticity, cf. Remark 2.2. Accordingly, we
adopt it here as a basic requirement. It is worth mentioning that (1.2) is specified (although not
employed) in [15]. The bending model used in [13] is rather crude, incorporating the linearized
curvature, while thickness change is not accounted for. We consider here the more general class of
nonlinearly elastic models described above in the presence of general dead loading and boundary
conditions.

The outline of the work is as follows. In Section 2 we present the formulation along with our
mathematical hypotheses. We assume hyper-elasticity with the stored-energy density as a function of
both the gradient and second gradient of the deformation. We discuss the additive decomposition of the
latter into two parts — one characterizing bending and the other typically associated with change in
thickness. We assume both coercivity and polyconvexity in the second-gradient argument. Our main
goal is to obtain weak solutions, the construction of which requires, among other things, sufficient
smoothness. In particular, we require p > 2 in the coercivity condition. For simplicity, we make

hypotheses consistent with that goal from the outset. We finish the section presenting the general class of
boundary-value problem under consideration, which includes a wide variety of mixed boundary
conditions in the presence of dead loadings.

In Section 3 we present the steps leading to the existence of weak solutions. A global energy
minimizer can be obtained via appropriate specialization of the general results of Ball, Currie and Olver
[5] for k-gradient, polyconvex systems, without assuming p >2. We give a proof here for completeness,

working out all details in our simpler, specific setting. We note that the resulting smoothness alone (due
to embedding) is not enough to ensure a rigorous first-variation at a minimizer. We further require
sufficiently fast growth as in (1.2) to show that the local-area-ratio field of a minimizer is uniformly
bounded away from zero. This follows from an argument presented in [10], designed for problems of
second-gradient bulk nonlinear elasticity. With this in hand, the first-variation condition at a minimizer is
rigorously obtained, delivering the weak form of the Euler-Lagrange equilibrium equations. We make
some final remarks in Section 4.

2. Problem Formulation

Let QcR* denote a bounded domain with a strongly locally Lipschitz boundary 0Q, cf. [1]. We
henceforth make the identification R* =R* x {0} c R’. (As is common practice, we let R” denote both
Euclidean point space and its translate or tangent space.) We associate Q with a reference configuration
for a material surface in a “flat” state embedded in R®>. We denote deformations via f:Q — R?, and the
deformation gradient or total derivative of f at x € Q is denoted F(x) = Vf(x) € L(R*,R?). Also,
J:=/detC denotes the local area ratio, where C:=F"F € L(R?) is the right Cauchy-Green strain tensor.

We define
L'(R*,R*):={F e L(R*,R*): J > 0}. (2.1)



We note that the symmetric second-order tensor C is positive-definite if and only if F € L (R*,R*). The
second gradient of f at x € Q is denoted G(x) = VF(x) = V*f(x). Relative to the standard orthonormal
basis, denoted {e,,e,,e,}, we have

VI =f, ®e, =(0f,/0x,)e, e,

Vi=f, ®e ®e,=(0"f/0x ox,)e ®e Qe (22)
a B i o pIvi a B>

soff
with Latin indices summing from 1-3 and Greek indices from 1-2. The triple tensor product in (2.2), is
defined by

(a®b®c)u:=a®b(c-u),

(2.3)
(a®b®c)(u®v):=a(b-u)(c-v),

for all aeR’,b,c,u,veR’. From (2.2); and (2.3),, we see that the third-order tensor V*f(x) (x fixed)

belongs to the space L' (L(]Rz),]R3 ) , the latter defined as the set of all linear transformations
G:L(R*) > R’ satisfying GA =GA” for all A € L(R?). We also define

d-(a®b®c):=(d-a)b®c, (2.4)
for all a,d e R’,b,c e R”.

Remark 2.1 From (2.2), and (2.3),, it follows that every G € I’ (L(Rz),R3) can be associated with a
symmetric bilinear transformation, say, G:R*xR* > R’, via Gla,b]:=G(a®b) =G(b ®a) for all
a,beR’.

We assume that the material surface possesses a stored-energy function of the form W(G,F);
v.r (L(]Rz),]R3 ) x L' (R*,R*) = (0,00). We refer to such a structure as a non-simple elastic surface, cf.
[17]. The second gradient G = V*f captures bending as well as membrane effects. To see this, recall that
n:=(Fe, xFe,)/J defines a unit-normal field on the deformed surface X :=f(Q2), while
a, =f,,=Fe, ,a =1,2,are tangent vectors on the surface. We may then write F=Vf=a,  ®e, and
V= a, ,®e, ®ey,cf (2.2). From (2.2);and (2.4), we have n- V= (n- a, ;)e, ®e,, where

n-a, ,=-n,, a, are the components of the second fundamental form for . Hence,

K=n-Vf=(nf,,)e, ®e,, (2.5)

which is called the relative curvature tensor in [17], has the same components as the Weingarten map
L=(n-f,;)a"® a’ where {a”,a”} denotes the dual tangential basis field. From (2.2),, and (2.4), we

also have
a’-Vi=(a’ f, )e, ®e, =T e, ®e,, y=12, (2.6)

where a” -a, ; =T, are the usual Christoffel symbols. Finally, (2.5) and (2.6) yield the decomposition

VI=K,n®e, ®e,+I a ®e, ®¢,. (2.7)



Let 7, denote tangent space at y =f(x), with x € Q fixed. Observe that K ;n®e, ®e,: L(R*)—> T, -
whereas I ,a ®e, Qe : L(R*) —> 7,. Clearly, the former accounts for bending, while the latter
accounts for changes in membrane thickness, e.g., [11], [12]. Note that in a planar state f(Q)c R*, we
have 7 = R’and n=e, = K =0, cf. (2.5). Hence, in this special case we have

Vi=I7,a ®e, Qe,=f
the plane.

vy D€, €, = (62fy /ox,0xy)e, ®e, ®e,, which is the second gradient in

Remark 2.2 Observe that J =(a, xa,)-n>0 insures that{a,,a,,n} and {ee,,e,} have the same

orientation. Thus, (1.2) is the remnant of the usual constitutive assumption from three-dimensional
nonlinear elasticity for maintaining orientation.

We assume that the stored-energy function is objective, viz.,

¥(QG,QF) = ¥(G,F)for all Qe SO(3): (2.8)

Expressing G=G,, e, ®e, ®e, and Q=Q,e, ®e,, then QG=0,G, ¢, ®e, Qe, e L'(L(R*),R?).

ij i

Of course, (2.8) places restrictions on the dependence of W on its arguments, but this plays no role in
what follows. Nonetheless, we mention that (2.8) is not vacuous. For example, it holds if ¥ is another
real-valued function of C and its gradient VC.

We further assume throughout that the stored-energy function satisfies the following properties:

H1) For p>2and ¢>2p/(p—2), there is a constant C >0 such that
W(G.F)>C[|g]" +J ] forall (G,F)e L' (L(R*),R’)x L' (R*,R?), (2.9)
where |6 =G-G =G,,G., -

H2) G Y is polyconvex:

Let D' denote the list of all 2x2 sub-determinants of the components of G. Arranging the latter, viz.,

. . 6 . . .
g, s> 10t0 a 6x 2 matrix, we see that there are [2] =15 such independent determinants, written

D =(d,,d,,...,d,s). These are listed below, expressed in terms of G, = f,  :

d,[f1= finfin —(fi2)"s £=1,2,3,
= funJinn = finSuayis £=45,
=SS = hnieayns £=6.7,
= frinSiomr = Fianiens £=8.9, (2.10)
= finS s = hinSisyins £=10,11,
= fonsg-ne — FonSapas £=12,13,
= fonfsane = FonSiiaay, (=14,15.



A function ¢: L' (L(R*),R’) = R is said to be polyconvex if there is a convex function
@:L'(L(R*),R*)xR"” — R such that o(G) = @(G, D), cf. [5]. Here we write ¥(G,F)=®(G, D", F),
with (G, D) > @ convex, and we assume that @ : L’ (L(R*),R*)x R” x L' (R*,R*) — (0,00) is C".

H3) For p>2, J>n>0,and |F|2 =F.F:=trC<R?, there is a constant C,x>0 such that

¥(G.F)<C, (5| +1).

. (2.11)
[W4(G.F)|<C, (9] +1),

Y (G.F)|<C, (9" +D.

We consider a class of mixed boundary-value problems as follows. We let W*”(Q,R?) denote the

Sobolev space of vector-valued p-integrable functions, such that all weak partial derivatives of order less
than or equal to & are also p-integrable. Here we are interested in p >2and k =0,1,2, with

W (Q,R*)= L (Q,R?). The norms are defined by

”f zp(g,ﬂ@) = ,[Q|f|p dx’
605 s, = I8 o, + [ VEL . (2.12)
”f”sz'p(Q,RS) - ”f”[V:/l'p(Q,RS) + J.Q‘sz‘p dx,

respectively, where the tensor-Euclidean norms are employed in the integrands in (2.12),,3, as defined in
(H1), (H3). Consider a subset I' — 0Q with positive length, and let

WP QR ={ueW*”(Q,R’):u=0and [Vu]v=0aec. onT}, (2.13)

where veR? denotes the outward unit normal field, which exists a.e. on 6Q. The usual Poincaré
<GVl o SC VP, L forall we WP (@RY). Thus, we have

inequality gives ||u e R R

2
”u”W“’(Q,RS) < C“V uHL”(Q,]R3) ’ (2.14)
forall ue Wrz’p (Q,R?), i.e., the right side of (2.14) defines an equivalent norm.
We consider the admissible set
A={f W (QR):f —f eW>"(Q,R*),Vfe L' (R*,R’) ae.in Q}, (2.15)

where f, e W*?(Q,R’) is prescribed. The following potential-energy functional, E:.4 — R, is to be
minimized:
E[f]:= IQ[T(V2f,Vf) ~(b-f +B-Vf) Jdx— jr [t-f+p-(VEIV) s, (2.16)

where be L'(Q,R*),Be L'(Q,L(R*,R?)) represent prescribed body-force and generalized body-force
densities, respectively, B-F:=B_F, , T,pe L T. ,IR*) are prescribed surface-traction and surface- hyper-
traction densities, respectively, and I', :==0Q\T.

We observe that in the special case ' =0Q, i.e., “clamped” Dirichlet conditions are specified in (2.13),

WP (Q,R%) replaces W7 (Q,R*)in A, and the surface integral is not present in (2.16). It’s worth noting



that no smoothness conditions on 0Q are required in this case. Weaker Dirichlet conditions, viz.,
“pinned” conditions are also of interest. The potential energy functional to be minimized in this case is
given by

E[f]:= IQ[‘I’(sz,Vf) —(b-f+B-Vf) Jdx - jm p-([VEIv)ds, (2.17)
over the admissible set

A={feW>(QR):f=f ondQ,VfeL (R*R®)ae.in Q). (2.18)

We claim that (2.14) is also valid for all elements belonging to

Wil ( QR ={ueW> (Q,R’):u=0onoQ}. (2.19)
As before, |[u 7 @R < C ||Vu||u,( QR forall ue W;;p (Q,R%), while a generalized Poincaré inequality
reads
p 2 p P
||Vu||L,](Q’R3) =G [”V u”mn,n«]) * .szudx‘ }

But each component of the integral in the second term above vanishes by virtue of Green’s theorem for all
ue Wy (QR), cf. [16].

As a final remark we note that, due to embedding (p > 2), the boundary-value prescriptions in (2.15)
can be interpreted in the pointwise sense.

3. Energy Minima and Weak Solutions

We prove the existence of weak solutions in this section, culminating in Theorem 3.4. Throughout we
presume hypotheses (H1) — (H3). The first step is:

Proposition 3.1. Assume that f, e W>?(Q,R*)and Vf, e L'(R*,R*)on Q. Then E attains its minimum
on A, viz., there exists f, € A such that E[f.]= ifn£ E[f]. Likewise, there exists f, € A such that

E[f.]=inf E[f].

feA

Proof: By embedding, f, € C' (4, R?), and by assumption, J, =(det[VE'VE ])"* >m on Q, where m >0
denotes its minimum on the compact set. Then from (2.11); and (2.16), we see that E[f ]<c. For any
f € A, it follows from (H1) and (2.16) that

P

C“sz

< B+ max e (b 0, + 7]

7 (QR3 HNQR? (T, ,R) )

+mgx|Vf|(||B||L1(Q,L(]R3)) + ”u”L‘(FC,JR3)) (3.1
< E[f]+M|f| < E[f]+ M|ff]

c'(QRY) w2 (QRY)?

the last inequality of which follows by embedding. Since f—f e W>”(Q,R?), inequality (2.14) implies
f

o o

< C(HV%H &

||f||wz~1’(9,nz<3) - (R ) ’

WP (QR? I QR



which combined with (3.1) yields
Ef12 G ]2 50, + Cos 3.2)

for constants C, >0 and C,. Let {f;} = A be an infimizing sequence. Since ifn£ E[f]1<E[f ] <o,

inequality (3.2) implies that {f } < W*?(Q) is uniformly bounded. Hence, there exists a weakly

convergent subsequence,

f, —f, weakly in W**(Q,R*), and f, —f. strongly in C'(Q,R?), (3.3)

j
the latter of which follows by compact embedding. The closed linear subspace W (Q,R*)
w*?(Q,R?) is also weakly closed, and therefore f, —f, € W>”(Q,R’). Also, from (2.15) and (3.3) we
deduce that J, = (det[Vf; ijk D"* converges uniformly to J, >0 on Q. We claim that J, >0 a.e. in

Q. Ifnot, then J, — 0 uniformly in Y <€, where |Y| >0. By virtue of (H1) and Fatou’s lemma, we
have liminf L\P(vth (x), VI, (x)dx L liminf W(V?f, (x),Vf, (x))dx — . Butin view of (2.16), this
contradicts the fact that }im E[f, 1= ifnj E[f]<o. We conclude that f, € A..

The weak convergence of {f; } W*?(Q) implies that each of the sub-determinants in (2.10)

converges weakly, viz.,
d,[f,]—d,[f.] weakly in L"*(Q), for £ =1,2,...,15. (3.4)

j
For example, define the vector field w(x) = ( S (%), f34 (x)). Then the total derivative is given by
DW — |:~f2,11 f‘2,12
f3,11 f3,12

bounded in 1”*(Q). That the weak limit is d,,[f.]as indicated in (3.4), follows from the fact that the
determinant can be written as a divergence, ultimately leading to

}, and d,[f]=det Dw. Now consider the sequence {dp,[f ] =detDw , }, which is

[ detDw , Jp ax = —% _[Q(Cof[ijk ]qu) W d, (3.5)

for all smooth test functions ¢ with compact support in Q, cf. [7], [8]. In our setting here, we have

Cof[Dw]= {_f;” _ffS’“

k — o on the right side of (3.5), which yields (3.4).

}. The convergence properties (3.3) then enable taking a rigorous limit as

With this in hand, polyconvexity (H2) leads to the weak lower semi-continuity of E[-], i.e.,
lirkninf E[f, 1> E[f] whenever f, — f weakly in W>”(Q,R’). First, as indicated by the estimate (3.1), the

loading terms in (2.16) define a bounded linear functional, viz.,
[f]:= jQ (b-f+B-Vf)dx+ L [t-f+p-((VEIv)|ds, (3.6)

with [([f]] < M ], 5, forall £ ew?”(Q,R%),and in view of (3.3), continuity is clear. Hence, only the

QRY)
internal potential energy requires attention. From (H2), we deduce



[RAERYATE jgg Y(V3,,VE, )dx

2.[9 CD(sz,dl[f],...,dls[f],ka)dx
+.[Q qu)(vzf,dl[f],...,dls[f],ka)-(szk —V*f)dx (3.7)
+.[Q iDd,q)(vzf’dl[f]’"‘>d15[f]’ka)(dﬂ[fk]_dl[f])dxa

where QQ_ ={xeQ: ‘sz(x)‘ <1/¢&, J(x)=¢&>0}. By virtue of (3.3) and (3.4), each of the last two
integrals on the right side of (3.7) approaches zero, and the first converges to

L) OV’f,d,[f],...,d,s[f],V)dA in the limit as k — co. Since this holds true for all & > 0, with

|Q -Q,| >0 as £ -0, weak lower semi-continuity then follows from the Lebesgue monotone

convergence theorem, cf. [7], [8]. Finally, since E[f.]< lirkninf E[f, ]and f. € A, the proof for £[-]on A

is complete. The proof that E[f] attains its infimum on A is the same. 0

Remark 3.2. The assumptions on f , insuring that ifn£ E[f] < o0, are made here for convenience;
otherwise, we may simply assume that ifn£ E[f]<o0.
€

As in the case of bulk 2D nonlinear elasticity, it is conceivable that the minimum energy configuration
f, € A is characterized by J? = det[Vf/ Vf,]=0 on some set of measure zero within Q, in which case

X — W(V*f,,V1,) is infinite on that same set, cf. (H1). Of course, this is a major impediment to taking
the first variation rigorously. However, with (H1) in hand, we can use a construction from [10], designed
for problems in second-gradient bulk nonlinear elasticity, to show that J, is strictly positive on Q.

Lemma 3.3. Given the hypotheses of Proposition 3.1, there is a number 7 >0 such that
J. =(det[VE'VL.])"> >non Q.

Proof. By embedding, a minimizer f, belongs to the Holder space C**(Q,R?), where a =1-2/ p. It
follows that J, € C*(Q); there is a constant M >0 such that

J.(X)<J.(y)+M|x—y|" forall x,y e Q. (3.8)

Since dQ is locally Lipschitz, we know that each x € Q is the vertex of an open cone, V, (x)  Q, where
6 >0 denotes the radius and / < (0,27) is the domain of the polar angle, cf. [1]. Consider the integral

f 0 @)+ M[x= 3 T4 de= y[[ 1.y + Mr* T ra. (3.9)

where r = |x -y, y= |I ,and q is specified in (H1). Observe that the function /4 :(0,00) — (0,0), defined
by

W)=y [ [0+ M, (3.10)



is monotonically decreasing, with 4 7 oo as ¢\ 0, the latter property following from (H1), viz.,
—ga+1= —q[(p-2)/ p]+1<-1. Hence, there is a constant 7 >0 such that
h) <L <tzn. (3.11)

For any y € Q, there is a cone V, (y) = QN D,(y), where D,(y)denotes the open disk centered at y.
From (3.6) and (3.8)-(3.10), we then deduce

MIONS [, ) +Mx=T"dx
’ . (3.12)
< [J.(x)] dx<C(E[f.]+/[f.])=L.,

N QNDs(y)
and the result follows from (3.11), which extends to all y € Q via continuity. 0

With Lemma 3.3 in hand, we obtain the main result:

Theorem 3.4. Given the hypotheses of Proposition 3.1, the minimizer f, satisfies the weak form of Euler-
Lagrange equilibrium equations, viz., for problem (2.16) we obtain

jﬂ[\yg (VM,,V1.)-Vi + ¥, (V. VL.) - Voldx

(3.13)
~J®-@+B-Vo)ux | [t-¢+u-[Volv)ks=0.

for all @ e W7 (Q,R?), cf. (2.13). Likewise, (3.13) holds with p=0 for problem (2.17) for all
0 e W7 (QRY), cf. (2.19).

Proof. The Gateaux differentiability of the loading functional (3.6) is clear; we focus on the internal
energy. Defining i(¢) = J.Q‘P(sz* +1V2,Vf, + tV@)dx, we need to rigorously justify the computation

i'(0)= lir%{[i(t) —i(0)]/ t}, giving the first line of (3.13). For ¢ # 0, the fundamental theorem of calculus
yields

[i(£) —i(0)]/ t = jﬂ H,(x)dx, (3.14)
where

H (x):= jol[\{fg (V1. +5tV2Q, VL, +5tVQ) - Vo + ¥ (VL. + stV @, VL, + 5tV @) - V)lds.

By embedding, f.,p € C'(Q,R?), and thus (,rlna[)é ! |Vf* + stV(p| < R. With this and Lemma 3.3 in hand,
T

we use (2.11)23 of (H3) to deduce

|H|<C,, j; (| V2, + 5tV [P +1]| Vi | H| VK. + stV |” +1]| Vo |}ds. (3.15)

Clearly, the second term of the above integrand belongs to L'(QQ), and an application of Holder’s
inequality shows that the same holds for the first term as well, for any (s,7) €[0,1]x[-1,1]. Let y(x)
denote the supremum of the sum of these two terms in (s,7) €[0,1]x[—1,1], which gives

|Hl (x)| <y(x) ae. in Q, with y € L'(Q). Hence, the desired result follows by taking the limit in (3.14) as

t — 0 via the Lebesgue dominated convergence theorem, cf. [7], [8]. O



4. Concluding Remarks.

Polyconvexity in the second-gradient argument (H2), although quite general and mathematically
expedient, does not easily lend itself to direct physical interpretation. Of course, convexity in the second-
gradient argument alone is a special, physically reasonable case. Also, as mentioned in [5], the Gaussian
curvature of the deformed surface, x :=detL, is a linear function of some of the determinants given in

(2.10). Indeed, a formula from differential geometry gives detK =.J’x. Then writing Koy =nf .55

where n,, f,,i =1,2,3, denote the Cartesian components, equations (2.5) and (2.10) yield
K= [nizdi +mn,(d, —dy)+n,ny(d5 —d,,)+mny(d; —d,)]/ J?

Even with p > 2, the proof of Lemma 3.3 is no longer valid if we simply require ¥ ./ o0 asJ \ 0

without the specific blow-up condition in (2.9); the existence of a weak solution is then an open question.
This is also the case for bulk second-gradient nonlinear elasticity [10]. For instance, this occurs in surface
models incorporating the growth condition in (1.1), where ¢ =2<2p/(p—2) forall p>2. We mention

that the existence of an orientation-preserving, energy minimizer for our model with 4/3 < p <2 can be

established. This requires a growth condition involving each of the fifteen quantities in (2.10) along with
that in (2.9). Of course, our approach to weak solutions fails in that range, due to a lack of smoothness.

If we ignore the requirement (1.2) altogether, then (H3) makes sense even if J vanishes, and the existence
of a weak solution follows routinely. However, as in bulk nonlinear elasticity, we then risk the possibility
of solutions characterized by the interpenetration of matter.

In addition to [11], [12], there is an enormous literature — far too numerous to list — of works deriving
surface (plate/shell) models from three-dimensional nonlinear elasticity via small-thickness asymptotics
relative to a stress-free reference configuration. The results range from the rigorous to the entirely formal.
Such derivations often deliver quadratic bending energies in the absence of any condition akin to (1.2)
and without accounting for thickness change. Moreover, small (or even zero) membrane strains are
usually a feature of the asymptotic model. These properties arise from the limiting behavior of the model
as the thickness goes to zero, whereas real-world thin structures have small but finite thicknesses. While
such dimensionally reduced models are well suited for certain applications, e.g., inextensible and nearly
inextensible sheets and for local post-buckling in traditional plates and shells, they are incapable of
capturing finite-strain phenomena for thin structures. For example, the inadequacy of the Fopple-von
Karman model in predicting the correct wrinkling phenomena in [13] is well documented in that work.

Local-injectivity conditions like (1.2) are advocated in [3] in the context of direct nonlinearly elastic
Cosserat plate-shell theories. These models include through-thickness shear strains in addition to the
finite-strain measures accounted for here in this work. A more stringent version of (1.2) is advocated in
[3], also accounting for the small but finite thickness, based on considerations from three-dimensional
nonlinear elasticity. We also mention that rigorous energy-minimization results enforcing such a
condition (with a concomitant blow-up of energy) are presented in [2] for a class of nonlinearly elastic
Cosserat shells satisfying the Kirchhoff-Love hypothesis.

Our approach to constructing weak solutions is not directly applicable to elastic plate-shell models
incorporating finite membrane strains without thickness change and in the presence of (1.2), e.g., such as
that employed in [13]. Here we refer to models characterized by a stored-energy density that is function
of the deformation gradient and the bending strain (2.5) only. For growth conditions incorporating these
strain measures, the smoothness needed to apply Lemma 3.3 is unclear; this is also the case for the results
in [2].
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Finally, we mention that the general class of surface models considered here, accounting for thickness
change as well as the other finite-strain measures, is undoubtedly superior to that employed in [13] for the
prediction of wrinkling in thin, highly stretched sheets.
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