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Abstract We consider a class of models for nonlinearly elastic surfaces in this work.  We have in mind thin, 
highly deformable structures modeled directly as two-dimensional nonlinearly elastic continua, accounting for finite 
membrane and bending strains and thickness change.  We assume that the stored-energy density is polyconvex with 
respect to the second gradient of the deformation, and we require that it grow unboundedly as the local area ratio 
approaches zero.  For sufficiently fast growth, we show that the latter is uniformly bounded away from zero at an 
energy minimizer.  With this in hand, we rigorously derive the weak form of the Euler-Lagrange equilibrium 
equations. 
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1. Introduction 

     We consider a class of models for nonlinearly elastic surfaces in this work.  We have in mind thin, 
highly deformable structures modeled directly as two-dimensional nonlinearly elastic continua, 
accounting for finite membrane and bending strains and thickness change.  As discussed by Steigmann 
and Ogden [17], such systems were first postulated in [4], [6].  Hilgers and Pipkin [11], [12] provide 
formal asymptotic derivations of such models via small-thickness expansions from bulk nonlinear 
elasticity.  Nonlinearly elastic generalizations of such to intrinsically curved surfaces are pursued in [17].  
Each of these works account for the finite-strain measures discussed above.  The model treated here falls 
within that general class, although we assume a flat (but not-necessarily stress-free) reference 
configuration.  Elastic surface theories that include second-gradient terms are called “non-simple” in [17]; 
we adopt that nomenclature here.  Our main purpose is to establish the existence of weak solutions of the 
Euler-Lagrange equilibrium equations for a general class of mixed boundary-value problems. 

      An important motivation for the present work comes from our recent studies on wrinkling of highly 
stretchable elastomer membranes [9], [13].  The incorporation of finite nonlinear elasticity in the 
membrane portion of the model is crucial for capturing the correct phenomena for that class of problems.  
The nonlinear membrane model employed in [13] is obtained by viewing the thin structure as an 
incompressible, Mooney-Rivlin solid in the absence of through-thickness strain variation.  On eliminating 
the pressure (assuming stress-free upper and lower faces), one obtains the following equivalent two-
dimensional membrane energy [14]: 

    1 1(det ) 3 det (det ) 3 ,mW tr tr       C C C C C   (1.1) 

where C denotes right Cauchy-Green strain 2-tensor, and , 0   are material constants.  Note that (1.1) 

implies 
  as 0,mW J   (1.2)  
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where  1/2
: detJ  C is the local area ratio.  Condition (1.2) is also an important ingredient of two-

dimensional (planar) nonlinear elasticity, and in Section 2 we discuss its relationship to orientation 
preservation in the context of three-dimensional nonlinear elasticity, cf. Remark 2.2.  Accordingly, we 
adopt it here as a basic requirement.  It is worth mentioning that (1.2) is specified (although not 
employed) in [15].  The bending model used in [13] is rather crude, incorporating the linearized 
curvature, while thickness change is not accounted for.  We consider here the more general class of 
nonlinearly elastic models described above in the presence of general dead loading and boundary 
conditions.       

     The outline of the work is as follows.  In Section 2 we present the formulation along with our 
mathematical hypotheses.  We assume hyper-elasticity with the stored-energy density as a function of 
both the gradient and second gradient of the deformation.  We discuss the additive decomposition of the 
latter into two parts – one characterizing bending and the other typically associated with change in 
thickness.  We assume both coercivity and polyconvexity in the second-gradient argument.  Our main 
goal is to obtain weak solutions, the construction of which requires, among other things, sufficient 
smoothness.  In particular, we require 2p   in the coercivity condition.  For simplicity, we make 

hypotheses consistent with that goal from the outset.  We finish the section presenting the general class of 
boundary-value problem under consideration, which includes a wide variety of mixed boundary 
conditions in the presence of dead loadings. 

     In Section 3 we present the steps leading to the existence of weak solutions.  A global energy 
minimizer can be obtained via appropriate specialization of the general results of Ball, Currie and Olver 
[5] for k-gradient, polyconvex systems, without assuming 2.p    We give a proof here for completeness, 

working out all details in our simpler, specific setting.  We note that the resulting smoothness alone (due 
to embedding) is not enough to ensure a rigorous first-variation at a minimizer.  We further require 
sufficiently fast growth as in (1.2) to show that the local-area-ratio field of a minimizer is uniformly 
bounded away from zero.  This follows from an argument presented in [10], designed for problems of 
second-gradient bulk nonlinear elasticity.  With this in hand, the first-variation condition at a minimizer is 
rigorously obtained, delivering the weak form of the Euler-Lagrange equilibrium equations.  We make 
some final remarks in Section 4.                      

                         

2. Problem Formulation 

     Let 2  denote a bounded domain with a strongly locally Lipschitz boundary , cf. [1].  We 

henceforth make the identification 2 2 3{0} .       (As is common practice, we let n  denote both 

Euclidean point space and its translate or tangent space.)  We associate   with a reference configuration 

for a material surface in a “flat” state embedded in 3.   We denote deformations via 3: ,f  and the 

deformation gradient or total derivative of f at x  is denoted 2 3( ) ( ) ( , ).L F x f x    Also, 

: detJ  C  denotes the local area ratio, where 2: ( )T L C F F   is the right Cauchy-Green strain tensor.    

We define 

 2 3 2 3( , ) : { ( , ) : 0}.L L J   F      (2.1) 
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We note that the symmetric second-order tensor C is positive-definite if and only if 2 3( , ).LF    The 

second gradient of f at x  is denoted 2( ) ( ) ( ). x F x f x  Relative to the standard orthonormal 

basis, denoted 1 2 3{ , , },e e e we have 

 
2 2

, ( / ) ,

, ( / ) ,

i i

i i

f x

f x x

   

      

      

         

f f e e e

f f e e e e e
  (2.2) 

with Latin indices summing from 1-3 and Greek indices from 1-2.  The triple tensor product in (2.2)2 is 
defined by 

 
( ) : ( ),

( )( ) : ( )( ),

    
     

a b c u a b c u

a b c u v a b u c v
  (2.3) 

for all 3 2, , , , . a b c u v   From (2.2)2 and (2.3)2, we see that the third-order tensor 2 ( ) f x (x fixed) 

belongs to the space  2 3( ), ,sL L   the latter defined as the set of all linear transformations 

2 3: ( )L    satisfying TA A   for all 2( ).LA   We also define 

 ( ) : ( ) ,     d a b c d a b c  (2.4) 

for all 3 2, , , . a d b c    

Remark 2.1 From (2.2)2 and (2.3)2, it follows that every  2 3( ),sL L   can be associated with a 

symmetric bilinear transformation, say, 2 2 3: ,      via [ , ]: ( ) ( )   a b a b b a   for all 
2, .a b      

     We assume that the material surface possesses a stored-energy function of the form ( , ); F

 2 3 2 3: ( ), ( , ) (0, ).sL L L         We refer to such a structure as a non-simple elastic surface, cf. 

[17].  The second gradient 2  f  captures bending as well as membrane effects.  To see this, recall that 

1 2: ( ) / J n Fe Fe  defines a unit-normal field on the deformed surface : ( ),  f while 

: , , 1,2,     a f Fe are tangent vectors on the surface.  We may then write     F f a e  and 
2

, ,      f a e e cf. (2.2).  From (2.2)2 and (2.4), we have 2 n f  ,( ) ,    n a e e where 

, ,      n a n a  are the components of the second fundamental form for .   Hence,  

 2: ( , ) ,      K n f n f e e  (2.5) 

which is called the relative curvature tensor in [17], has the same components as the Weingarten map 

( , ) , 
  L n f a a where { , } a a  denotes the dual tangential basis field.  From (2.2)2, and (2.4), we 

also have 

 2 ( , ) , 1,2,  
             a f a f e e e e   (2.6) 

where ,
 

    a a  are the usual Christoffel symbols.  Finally, (2.5) and (2.6) yield the decomposition 

 2 .K 
             f n e e a e e  (2.7) 
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Let y  denote tangent space at ( ),y f x with x  fixed.  Observe that :K   n e e 2( ) ,yL    

whereas 2: ( ) .yL
      a e e     Clearly, the former accounts for bending, while the latter 

accounts for changes in membrane thickness, e.g., [11], [12].  Note that in a planar state 2( ) , f   we 

have 2
y   and 3 n e ,K 0 cf. (2.5).  Hence, in this special case we have 

2 
        f a e e ,    f e e 2( / ) ,f x x         e e e  which is the second gradient in 

the plane. 

Remark 2.2  Observe that 1 2( ) 0J    a a n  insures that 1 2{ , , }a a n  and 1 2 3{ , , }e e e  have the same 

orientation.  Thus, (1.2) is the remnant of the usual constitutive assumption from three-dimensional 
nonlinear elasticity for maintaining orientation.    

    We assume that the stored-energy function is objective, viz., 

 ( , ) ( , )  Q QF F  for all (3) :SOQ   (2.8)   

Expressing i i    e e e  and ,ij i jQ Q e e  then 2 3( ( ), ).s
ij j iQ L L     Q e e e    

Of course, (2.8) places restrictions on the dependence of   on its arguments, but this plays no role in 
what follows.  Nonetheless, we mention that (2.8) is not vacuous.  For example, it holds if   is another 
real-valued function of C  and its gradient .C  

     We further assume throughout that the stored-energy function satisfies the following properties: 

H1) For 2p  and 2 / ( 2),q p p   there is a constant 0C   such that 

 ( , ) [ ]
p qC J   F   for all  2 3 2 3( , ) ( ), ( , ),sL L L F      (2.9) 

where 
2

: i i        .   

H2)   is polyconvex: 

Let [2]  denote the list of all 2 2  sub-determinants of the components of .   Arranging the latter, viz., 

,i into a 6 2  matrix, we see that there are 
6

15
2

 
 

 
 such independent determinants, written

[2]
1 2 15( , ,..., ).d d d  These are listed below, expressed in terms of , :i if   

 

2
,11 ,22 ,12

1,11 ( 2),12 1,12 ( 2),11

1,11 ( 4),22 1,12 ( 4),12

1,12 ( 6),12 1,22 ( 6),11

1,12 ( 8),22 1,22 (

[ ] ( ) , 1,2,3,

        , 4,5,

        , 6,7,

        , 8,9,

        

f f f

f f f f

f f f f

f f f f

f f f f

 

 

 



  

  

  

  

 

f   

 

 

 








d

8),12

2,11 3,( 11)2 2,12 3,1( 11)

2,12 3,( 13)2 2,22 3,1( 13)

, 10,11,

        , 12,13,

        , 14,15.

f f f f

f f f f



 

 



  

  



 

 





  (2.10) 
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A function 2 3: ( ( ), )sL L     is said to be polyconvex if there is a convex function 
2 3 15: ( ( ), )sL L         such that [2]( ) ( , ),     cf. [5].  Here we write [2]( , ) ( , , ), F F   

with [2]( , )    convex, and we assume that 2 3 15 2 3: ( ( ), ) ( , ) (0, )sL L L         is 1.C   

H3) For 2,p  0,J   and 
2 2: ,tr R   F F F C  there is a constant , 0RC   such that 

 
,

1

, ,

( , ) ( 1),

( , ) ( 1), ( , ) ( 1).

p

R

p p

R R

C

C C



 


  

     F

F

F F

 

   
  (2.11) 

     We consider a class of mixed boundary-value problems as follows.  We let , 3( , )k pW   denote the 

Sobolev space of vector-valued p-integrable functions, such that all weak partial derivatives of order less 
than or equal to k  are also p-integrable.  Here we are interested in 2p  and 0,1,2,k  with 

0, 3 3( , ) ( , ).p pW L     The norms are defined by 

 

3

1, 3 3

2, 3 1, 3

( , )

( , ) ( , )

2

( , ) ( , )

,

,

,

p

p p

p p

p p

L

p p p

W L

pp p

W W

dx

dx

dx

 

  

  



  

  





f f

f f f

f f f



 

 

  (2.12) 

respectively, where the tensor-Euclidean norms are employed in the integrands in (2.12)2,3, as defined in 
(H1), (H3).  Consider a subset     with positive length, and let 

 2, 3 2, 3( , ) { ( , ) :  and [ ]  a.e. on },p pW W        u u 0 u v 0    (2.13) 

where 2v   denotes the outward unit normal field, which exists a.e. on .   The usual Poincaré 

inequality gives 3 3 3

2
1 2( , ) ( , ) ( , )

p p pL L L
C C

  
   u u u  

 for all 2, 3( , ).pW u   Thus, we have 

 2, 3 3

2

( , ) ( , )
,p pW L

C
 

 u u 
  (2.14) 

 for all 2, 3( , ),pW u   i.e., the right side of (2.14) defines an equivalent norm. 

     We consider the admissible set 

   2, 3 2, 3 2 3{ ( , ) : ( , ), ( , ) . . in },p p
oW W L a e

        f f f f     (2.15) 

where 2. 3( , )p
o W f   is prescribed.  The following potential-energy functional, : ,E   is to be 

minimized: 

  2[ ]: ( , ) ( ) ([ ] ) ,
c

E dx ds
 
               f f f b f B f τ f μ f v  (2.16)  

where 1 3 1 2 3( , ), ( , ( , ))L L L   b B    represent prescribed body-force and generalized body-force 

densities, respectively, : ,i iB F  B F 1 3, ( , )cL τ μ  are prescribed surface-traction and surface- hyper-

traction densities, respectively, and : \ .c          

     We observe that in the special case ,   i.e., “clamped” Dirichlet conditions are specified in (2.13),
2, 3( , )p

oW    replaces 2, 3( , )pW   in , and the surface integral is not present in (2.16).  It’s worth noting 
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that no smoothness conditions on   are required in this case.  Weaker Dirichlet conditions, viz., 
“pinned” conditions are also of interest.  The potential energy functional to be minimized in this case is 
given by 

 2[ ] : ( , ) ( ) ([ ] ) ,E dx ds
 
             f f f b f B f μ f v  (2.17)  

over the admissible set  

 2, 3 2 3{ ( , ) :  on , ( , ) . . in }.p
oW L a e       f f f f      (2.18) 

We claim that (2.14) is also valid for all elements belonging to 

 2, 3 2, 3( , ) { ( , ) :  on }.p pW W      u u 0   (2.19)  

As before, 3( , )pL 
u   31 ( , )pL

C


u  for all 2, 3( , ),pW u   while a generalized Poincaré inequality 

reads 

 3 3

2
2( , ) ( , )

.p p

ppp

L L
C dx

  

       u u u 
  

But each component of the integral in the second term above vanishes by virtue of Green’s theorem for all 
2, 3( , ),pW u   cf. [16].   

     As a final remark we note that, due to embedding ( 2),p  the boundary-value prescriptions in (2.15) 

can be interpreted in the pointwise sense.    

 

3. Energy Minima and Weak Solutions 

     We prove the existence of weak solutions in this section, culminating in Theorem 3.4.  Throughout we 
presume hypotheses (H1)  (H3).  The first step is: 

Proposition 3.1. Assume that 2, 3( , )p
o W f  and 2 3( , )o L f   on .   Then E attains its minimum 

on ,  viz., there exists * f   such that *[ ] inf [ ].E E



f

f f


  Likewise, there exists * f   such that 

*[ ] inf [ ].E E



f

f f


 


  

Proof:  By embedding, 1 3( , ),o C f  and by assumption, 1/2(det[ ])  on ,T
o o oJ m    f f  where 0m 

denotes its minimum on the compact set.  Then from (2.11)1 and (2.16), we see that [ ] .oE  f   For any  

,f  it follows from (H1) and (2.16) that 

 

 
 

1 3 1 33

1 3 1 3

1 3 2, 3

2

( , ) ( , )( , )

( , ( )) ( , )

( , ) ( , )

[ ] max

                                 +max

                          [ ] [ ] ,

p
c

c

p

p

L LL

L L L

C W

C E

E M E M

  

 

 

   

 

   

f f f b τ

f B μ

f f f f

 

 

 


  (3.1) 

the last inequality of which follows by embedding.  Since 2, 3( , ),p
o W  f f  inequality (2.14) implies   

                  2, 3 2, 3 3 3

2 2

( , ) ( , ) ( , ) ( , )
,p p p po oW W L L

C
   

    f f f f   
   
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which combined with (3.1) yields 

 2, 31 2( , )
[ ] ,p

p

W
E C C


 f f    (3.2) 

for constants 1 0C   and 2 .C   Let { }j f   be an infimizing sequence.  Since inf [ ] [ ] ,oE E


  
f

f f


 

inequality (3.2) implies that 2,{ } ( )p
j W f  is uniformly bounded.  Hence, there exists a weakly 

convergent subsequence,  

 2, 3 1 3
* * weakly in ( , ),  and  strongly in ( , ),k k

p

j j
W C  f f f f   (3.3) 

the latter of which follows by compact embedding.  The closed linear subspace 2, 3( , )pW  
2, 3( , )pW    is also weakly closed, and therefore 2, 3

* ( , ).p
o W  f f   Also, from (2.15) and (3.3) we 

deduce that 1/2: (det[ ])k k
k

T
j j j

J   f f  converges uniformly to * 0J   on .   We claim that * 0J   a.e. in 

.   If not, then 0
kj

J   uniformly in ,   where 0.    By virtue of (H1) and Fatou’s lemma, we 

have 2liminf ( ( ), ( )
k kj j

k
dx


    f x f x  2liminf ( ( ), ( )) .

k kj j
k

dx
 

    f x f x   But in view of (2.16), this 

contradicts the fact that lim [ ] inf [ ] .
kjk

E E
 

  
f

f f


  We conclude that * .f  . 

     The weak convergence of 2,{ } ( )
k

p
j W f  implies that each of the sub-determinants in (2.10) 

converges weakly, viz., 

 /2
*[ ] [ ] weakly in ( ),  for 1,2,...,15.k

p

j
L  f f  d d   (3.4) 

For example, define the vector field  2,1 3,1( ) : ( ), ( ) .f fw x x x   Then the total derivative is given by 

2,11 2,12

3,11 3,12

,
f f

D
f f

 
  
 

w  and 12[ ] det .Df wd  Now consider the sequence 12{ [ ] det },k kj j
Df wd which is 

bounded in /2 ( ).pL    That the weak limit is 12 *[ ]fd as indicated in (3.4), follows from the fact that the 

determinant can be written as a divergence, ultimately leading to 

  1
det[ ] [ ] ,

2
k k kj j j

D dx Cof D dx 
 

    w w w   (3.5) 

for all smooth test functions   with compact support in , cf. [7], [8].  In our setting here, we have 

3,12 3,11

2,12 2,11

[ ] .
f f

Cof D
f f

 
   

w     The convergence properties (3.3) then enable taking a rigorous limit as 

k   on the right side of (3.5), which yields (3.4). 

     With this in hand, polyconvexity (H2) leads to the weak lower semi-continuity of [ ]E  , i.e., 

liminf [ ] [ ]k
k

E E


f f  whenever 2, 3 weakly in ( , ).p
k W f f   First, as indicated by the estimate (3.1), the 

loading terms in (2.16) define a bounded linear functional, viz., 

  [ ]: ( ) ([ ] ) ,
c

dx ds
 

         f b f B f τ f μ f v   (3.6) 

with 1 3( , )
[ ]

C
M


f f   for all 2, 3( , ),pW f  and in view of (3.3), continuity is clear.  Hence, only the 

internal potential energy requires attention.  From (H2), we deduce  
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2 2

2
1 15

2 2 2
1 1 15

( , ) ( , )

                            ( , [ ],..., [ ], )

                               ( , [ ],..., [ ], ) ( )

                              

k k k k

k

k k

dx dx

dx

D dx







 





      

   

      

 



f f f f

f f f f

f f f f f f

d d

d d
15

2
1 15

1

  + ( , [ ],..., [ ], )( [ ] [ ]) ,k kD dx
 

    f f f f f f
  


d d d d d

  (3.7) 

where 2: { : ( ) 1 / , ( ) 0}.J        x f x x  By virtue of (3.3) and (3.4), each of the last two 

integrals on the right side of (3.7) approaches zero, and the first converges to 
2

1 15( , [ ],..., [ ], )dA

   f f f fd d  in the limit as .k   Since this holds true for all 0,   with 

0   as 0,   weak lower semi-continuity then follows from the Lebesgue monotone 

convergence theorem, cf. [7], [8].  Finally, since *[ ] liminf [ ]
kjk

E E


f f and * ,f   the proof for [ ] on E  

is complete. The proof that [ ]E f  attains its infimum on   is the same.   

Remark 3.2.  The assumptions on ,of insuring that inf [ ] ,E


 
f

f


are made here for convenience; 

otherwise, we may simply assume that inf [ ] .E


 
f

f


    

     As in the case of bulk 2D nonlinear elasticity, it is conceivable that the minimum energy configuration 

* f  is characterized by 2
* * *det[ ] 0TJ    f f  on some set of measure zero within ,  in which case 

2
* *( , )  x f f  is infinite on that same set, cf. (H1).  Of course, this is a major impediment to taking 

the first variation rigorously.  However, with (H1) in hand, we can use a construction from [10], designed 

for problems in second-gradient bulk nonlinear elasticity, to show that *J  is strictly positive on .  

Lemma 3.3. Given the hypotheses of Proposition 3.1, there is a number 0   such that 
1/2

* * *(det[ ])TJ    f f on .  

Proof. By embedding, a minimizer *f  belongs to the Hölder space 1, 3( , ),C     where 1 2 / .p    It 

follows that * ( );J C  there is a constant 0M   such that 

 * *( ) ( )  for all , .J J M
   x y x y x y  (3.8)  

Since   is locally Lipschitz, we know that each x  is the vertex of an open cone, ( ) ,IV x where 

0   denotes the radius and (0,2 )I  is the domain of the polar angle, cf. [1].  Consider the integral 

  * *( ) 0
[ ( ) ] [ ( ) ] .

I

q q

V
J M x y dx J Mr rdr



      y
y y   (3.9) 

where ,r  x y ,I  and q is specified in (H1).  Observe that the function : (0, ) (0, ),h    defined 

by 

 
0

( ) : [ ] ,qh t t Mr rdr
     (3.10)  
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is monotonically decreasing, with h   as 0,t  the latter property following from (H1), viz., 
1q    [( 2) / ] 1 1.q p p      Hence, there is a constant 0   such that 

 *( ) .h t L t      (3.11) 

For any ,y  there is a cone ( ) ( ),IV y D y   where ( )D y denotes the open disk centered at .y  

From (3.6) and (3.8)-(3.10), we then deduce 

  
 

*( )

* * * *( )

( ( )) [ ( ) ]   

             [ ( )] [ ] [ ] : ,

q

D y

q

D y

h J y J M x y dx

J dx C E L





 







  

   





y

x f f





 (3.12) 

and the result follows from (3.11), which extends to all y  via continuity.   

     With Lemma 3.3 in hand, we obtain the main result: 

Theorem 3.4. Given the hypotheses of Proposition 3.1, the minimizer *f  satisfies the weak form of Euler-

Lagrange equilibrium equations, viz., for problem (2.16) we obtain 

 
 

2 2 2
* * * *[ ( , ) ( , ) ]

    ( ) ([ ] ) 0,
c

dx

dx ds



 

        

         


 

Ff f φ f f φ

b φ B φ τ φ μ φ v


 (3.13)  

for all 2, 3( , ),pW φ  cf. (2.13).  Likewise, (3.13) holds with μ 0  for problem (2.17) for all
2, 3( , ),pW φ  cf. (2.19). 

Proof. The Gâteaux differentiability of the loading functional (3.6) is clear; we focus on the internal 

energy.  Defining 2 2
* *( ) : ( , ) ,i t t t dx


        f φ f φ we need to rigorously justify the computation 

(0)i   
0

lim{[ ( ) (0)] / },
t

i t i t


 giving the first line of (3.13).  For 0,t  the fundamental theorem of calculus 

yields 

 [ ( ) (0)] / ( ) ,ti t i t H dx


   x   (3.14) 

where 

 
1 2 2 2 2 2

* * * *0
( ) : [ ( , ) ( , ) )] .tH st st st st ds                 Fx f φ f φ φ f φ f φ φ   

By embedding, 1 3
* , ( , ),C f φ  and thus *

, [0,1],
    [ 1,1]

max .
s

t

st R
 
 

   
x

f φ  With this and Lemma 3.3 in hand, 

we use (2.11)2,3  of (H3) to deduce  

 
1 2 2 1 2 2 2

, * *0
{[| | 1] | | [| | 1] | |} .p p

t RH C st st ds
            f φ φ f φ φ  (3.15)  

Clearly, the second term of the above integrand belongs to 1( ),L   and an application of Hölder’s 

inequality shows that the same holds for the first term as well, for any ( , ) [0,1] [ 1,1].s t      Let ( ) x  

denote the supremum of the sum of these two terms in ( , ) [0,1] [ 1,1],s t     which gives 

( ) ( ) . . in ,tH a e x x  with 1( ).L     Hence, the desired result follows by taking the limit in (3.14) as 

0t   via the Lebesgue dominated convergence theorem, cf. [7], [8].   
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4. Concluding Remarks. 

     Polyconvexity in the second-gradient argument (H2), although quite general and mathematically 
expedient, does not easily lend itself to direct physical interpretation.  Of course, convexity in the second-
gradient argument alone is a special, physically reasonable case.  Also, as mentioned in [5], the Gaussian 
curvature of the deformed surface, : det ,  L  is a linear function of some of the determinants given in 

(2.10).  Indeed, a formula from differential geometry gives 2det .J K  Then writing , ,i iK n f   

where , , 1,2,3,i in f i   denote the Cartesian components, equations (2.5) and (2.10) yield 

 2 2
1 2 6 8 2 3 13 14 1 3 7 9[ ( ) ( ) ( )] / .i in d n n d d n n d d n n d d J          

     Even with 2,p   the proof of Lemma 3.3 is no longer valid if we simply require  as 0J    
without the specific blow-up condition in (2.9); the existence of a weak solution is then an open question.  
This is also the case for bulk second-gradient nonlinear elasticity [10].  For instance, this occurs in surface 
models incorporating the growth condition in (1.1), where 2 2 / ( 2)q p p    for all 2.p   We mention 

that the existence of an orientation-preserving, energy minimizer for our model with 4 / 3 2p   can be 

established.  This requires a growth condition involving each of the fifteen quantities in (2.10) along with 
that in (2.9).  Of course, our approach to weak solutions fails in that range, due to a lack of smoothness.  
If we ignore the requirement (1.2) altogether, then (H3) makes sense even if J vanishes, and the existence 
of a weak solution follows routinely.  However, as in bulk nonlinear elasticity, we then risk the possibility 
of solutions characterized by the interpenetration of matter.   

     In addition to [11], [12], there is an enormous literature – far too numerous to list – of works deriving 
surface (plate/shell) models from three-dimensional nonlinear elasticity via small-thickness asymptotics 
relative to a stress-free reference configuration.  The results range from the rigorous to the entirely formal.  
Such derivations often deliver quadratic bending energies in the absence of any condition akin to (1.2) 
and without accounting for thickness change.  Moreover, small (or even zero) membrane strains are 
usually a feature of the asymptotic model.  These properties arise from the limiting behavior of the model 
as the thickness goes to zero, whereas real-world thin structures have small but finite thicknesses. While 
such dimensionally reduced models are well suited for certain applications, e.g., inextensible and nearly 
inextensible sheets and for local post-buckling in traditional plates and shells, they are incapable of 
capturing finite-strain phenomena for thin structures.  For example, the inadequacy of the Föpple-von 
Kármán model in predicting the correct wrinkling phenomena in [13] is well documented in that work. 

     Local-injectivity conditions like (1.2) are advocated in [3] in the context of direct nonlinearly elastic 
Cosserat plate-shell theories.  These models include through-thickness shear strains in addition to the 
finite-strain measures accounted for here in this work.  A more stringent version of (1.2) is advocated in 
[3], also accounting for the small but finite thickness, based on considerations from three-dimensional 
nonlinear elasticity.  We also mention that rigorous energy-minimization results enforcing such a 
condition (with a concomitant blow-up of energy) are presented in [2] for a class of nonlinearly elastic 
Cosserat shells satisfying the Kirchhoff-Love hypothesis.  

     Our approach to constructing weak solutions is not directly applicable to elastic plate-shell models 
incorporating finite membrane strains without thickness change and in the presence of (1.2), e.g., such as 
that employed in [13].  Here we refer to models characterized by a stored-energy density that is function 
of the deformation gradient and the bending strain (2.5) only.  For growth conditions incorporating these 
strain measures, the smoothness needed to apply Lemma 3.3 is unclear; this is also the case for the results 
in [2]. 
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     Finally, we mention that the general class of surface models considered here, accounting for thickness 
change as well as the other finite-strain measures, is undoubtedly superior to that employed in [13] for the 
prediction of wrinkling in thin, highly stretched sheets. 
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