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1. Introduction

We consider structural acoustic interactions comprising of an acoustic medium modeled by 
an acoustic wave propagating in a 3-dimensional bounded domain with hard and elastic walls 
coupled with an elastic structure which is modeled by a plate equation with rough nonlinear ef-
fects resulting from internal and external forces affecting the structure. The coupling is of hybrid 
type and the plate oscillations act as a force on the acoustic medium, while the acoustic veloc-
ity induces oscillations of the structure. Structural acoustic models have acquired considerable 
attention in both engineering and mathematical literature, cf. [9,12,10,23,30,27] and references 
therein. This is due to an array of technological applications which includes noise suppression in 
acoustic chambers and pressure reduction in the cockpit of a helicopter. The associated modeling 
and resulting PDE systems became a rich source of mathematical analysis, see e.g. [7,13,27] and 
references therein. The basic dynamics is an interaction between the acoustics waves hitting the 
elastic walls which then, through oscillations, provide a feedback transferred back to the acoustic 
environment. Not surprisingly, the way both dynamics interact on a common interface (elastic 
wall) is the key element and the main carrier of propagation of effects emitted by each com-
ponent. Mathematically, this part has been a source of challenges and recent discoveries. While 
each component of the system may have a well understood dynamical behavior, the interface 
effects introduce new phenomenological peculiarities which lead to new effects emerging for the 
overall structure.

As an acoustic medium domain we consider � ⊂ R3 an open, bounded domain with boun-
dary � = �1 ∪ �0, where �1, �0 are relatively open and �1 ∩ �0 = ∅. The structure wall will 
be represented by the portion �0 of the boundary, which will be assumed flat. The latter is only 
assumed for simplicity in order to focus on the nonlinear aspects of the model. Curved walls and 
shells can also be considered by using intrinsic geometry tools [22]. The dynamics of the acoustic 
medium � are associated with the velocity potential function z, while the oscillating dynamics 
on the wall �0 will be represented by the vertical displacement w. The structure is subject to an 
internal restoring nonlinear force div{|∇w|2∇w} and an external semilinear force �w2, typical 
for Boussinesq models. It is known that the Boussinesq plate alone, without restoring forces, can 
give rise to blowing up in finite-time solutions, see e.g. [32,36]. However, the presence of restor-
ing forces will provide, as expected, some stabilizing effect for the low frequencies. On the other 
hand, it is precisely this term that introduces new challenges in the analysis of wellposedness of 
weak solutions due to its supercriticality and the fact that the term is not locally Lipschitz on the 
underlying phase space. The PDE model is described below.

Acoustic Medium. The following wave equation describes the temporal evolution of the acoustic 
dynamics in �

⎧⎪⎪⎨
⎪⎪⎩

ztt − c2�z + d(x)zt = 0 in Q ≡ � × (0,∞);
∂νz + l(x)zt =

{−l0z on �1 ≡ �1 × (0,∞);
wt on �0 ≡ �0 × (0,∞);

z(0) = z0; zt (0) = z1 in �,

(1.1)

where c > 0, l0 ≥ 0. The function l(x) ≥ 0 corresponds to a potential boundary dissipation and 
d(x) ≥ 0 in � corresponds to a potential frictional damping in the acoustic environment. Both 
functions l(x) and d(x) are assumed sufficiently smooth.
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Structural Wall. Let f be a continuous function. The following nonlinear 2D Kirchhoff-
Boussinesq equation subjected to nonlinear restoring forces and a Boussinesq source describes 
the temporal dynamics on the wall �0.

⎧⎨
⎩

wtt + �2w + kwt + ρzt |�0 = div{|∇w|2∇w} + σ�{w2} − f (w) in �0;
Boundary Conditions of type (C), (SS) or (F) on ∂�0 × (0,∞);
w(0) = w0, wt (0) = w1 on �0;

(1.2)

where ρ, σ, k ≥ 0, and the boundary conditions are given by

• Clamped (C): w = 0 and ∇w = 0 on ∂�0 × (0, ∞);
• Simply Supported (SS): w = �w = 0 on ∂�0 × (0, ∞);

• Free (F): 
{

�w + (1− μ)B1w = 0;
∂ν�w + (1− μ)B2w = (|∇w|2∇w + σ∇[w2]) · ν,

on ∂�0 × (0, ∞), where ν = (ν1, ν2) denotes the normal exterior vector to the boundary of �0
and the boundary operators B1 and B2 are given by

B1u = 2ν1ν2ux1,x2 − ν21ux2x2 − ν22ux1x1; (1.4)

B2u = ∂τ

[
(ν21 − ν22)ux1x2 + ν1ν2(ux2x2 − ux1x1)

]
, (1.5)

for every u ∈ H 2(�0), τ = (−ν2, ν1) is the unit tangential vector and 0 < μ < 1/2 is the Pois-
son’s ratio.

Remark 1.1. The structural model governed by a nonlinear plate equation of Kirchhoff-
Boussinesq type is a limit of Midlin Timoshenko system in 3 variables: two rotation angles 
of filaments and the transverse displacement, also known as bending component. Letting the pa-
rameters corresponding to shear and rotation tend to zero yields the nonlinear K-B plate for the 
variable representing transverse displacement. The rigorous asymptotic argument is provided in 
[19,29].
It is known that the presence of the “Boussinesq” forcing term (σ > 0) may lead to blow-up 
in finite-time of structural solutions. This effect is counteracted by a restoring internal force 
div{|∇w|2∇w}. In some sense, the competition between the two determines the global behavior 
of the model. At the same time, the restoring force gives rise to supercritical nonlinear terms 
making the analysis of wellposedness challenging. In order to handle these effects, strong damp-
ing was added to the plate equation in earlier works [32,36]. The latter has regularizing effect 
on the dynamics making it of parabolic nature. (Semigroup generated by the linear plate model 
becomes analytic.) Our goal is to refrain from introducing these regularizing effects by consid-
ering the hyperbolic-like character of the plate equation. This leads to a subtle analysis of the 
effects caused by the supercritical (not locally Lipschitz) nonlinear terms affecting the plate in 
conjunction with boundary dissipation affecting the acoustic medium.

Remark 1.2. Boundary conditions imposed on the structure include the three basic sets: clamped, 
hinged and free. However, from the mathematical point of view, free boundary conditions are the 
most challenging as they present several subtleties in the study. One of the reasons is that �w ∈
L2(�0) does not control the H 2(�0) topology. On the other hand, free boundary conditions have 
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a lot of applications in structural theories. This is the reason for the emphasis on free boundary 
conditions in this work.

Our main goal is to study the evolution of the system (1.1)-(1.2), which describes the inter-
action between the waves propagating in the acoustic medium and the vibration of a portion 
of the structural wall that confines the medium. Since the ultimate goal of such studies is the 
long-time behavior of finite energy solutions, we will consider dissipative effects acting upon 
the interaction such as frictional k > 0, d(x) ≥ 0 and boundary l(x) ≥ 0 dissipation. The model 
is of interest not only because of the presence of a “supercritical” restoring term, given by the 
divergence, but also the semilinear energy building source (σ > 0) potentially causing a blow-up 
of the plate energy, and in general the so called “leak of the energy”. The combination of the 
two produces interesting phenomenological effects for which some of the analytical tools have 
been developed in the past within the context of plate theory, cf. [19,20] and references therein. 
However, our main interest is in studying interaction between plate oscillations and propagation 
of acoustic waves in an acoustic medium. Such interaction is of hybrid type, where the spatial 
domain �0 supporting plate oscillations becomes part of the boundary of the acoustic medium. It 
is precisely the interaction between the “leak of energy”, supercriticality of restoring forces act-
ing upon the structure and boundary forces acting upon the acoustic medium which brings new 
and interesting mathematical and phenomenological phenomena at the level of wellposedness 
(uniqueness, robustness and regularity) and stability of weak solutions to the entire hybrid inter-
action. It should also be noted that the structural dynamics does not account for any regularizing 
effects (like Kelvin-Voigt damping making the plate dynamics related to analytic semigroup), 
where the latter was widely considered in past literature [2,10,11,23].

Structural acoustic models with an interface between structural and acoustic medium have 
been of major interest due to an array of applications arising in engineering and life sciences. For 
more details on structural acoustic models we refer to [10,11,16,23,27] and references therein, 
mentioning suppression of noise in an helicopter, control of sound in an acoustic chamber as 
examples. On the other hand, mathematically, they provide an interesting problem due to an 
interface where the interaction and propagation of effects take place on the boundary, see [1,
5,10,26]. It is known that boundary behavior of solutions in hyperbolic-like dynamics (without 
inherent smoothing) is challenging and requires a number of a priori estimates, often based on 
microlocal analysis which exhibits peculiar behavior of boundary hyperbolic traces. In fact, there 
has been a considerable activity in this area, also within a context of acoustic models, see e.g. 
[16,22,26,34]. One of the findings in the present work is that boundary behavior of the traces 
to an acoustic pressure plays dominant role in the analysis of supercritical nonlinear effects of 
the elastic medium and in propagating strong Hadamard wellposedness for the entire structure. 
Thus, the interaction between the two media and propagation of relevant effects is at the heart of 
the problem and a source of challenges.

In fact, the final result depends on the type of dissipation imposed on the acoustic environment. 
In case when the dissipation is internal d(x) > 0, l = 0, the resulting dynamical system provides 
a continuous flow with respect to the strong topology of the phase space. In case when the 
acoustic dissipation is localized on the boundary l(x) > 0, the flow is generally continuous (with 
respect to the initial data) in a weak topology only. The main reason is due to the fact that in 
the latter case energy identity for weak solution may not hold in general. The method based on 
time reversibility fails as the reverse acoustic dynamic is ill-posed while the method based on 
finite difference approximation (see [25]) appears to fail due to supercritical nonlinearity of the 
structure. Therefore, derivation of energy equality for weak solutions is a challenging issue in the 
390



I. Lasiecka and J.H. Rodrigues Journal of Differential Equations 298 (2021) 387–429
boundary case. However, in situations where boundary dissipation has a “strategic” placement, 
the two methods referred to above cooperate leading to strong semigroup.

The rest of this paper is organized as follows: Section 2 presents the main result while Sec-
tion 3 provides necessary auxiliary results and analysis of the linear associated problem along 
with several nonlinear estimates. Finally, Section 4 is dedicated to the proof of the main result 
stated in Section 2.

2. Main results

Our objective in this paper is to establish wellposedness of the dynamics represented by a 
coupled PDE system presented above, which should culminate with the statement of represen-
tation of the system by a dynamical system defined on a “natural” phase space. To this end, 
Hadamard wellposedness of the semi-flow at the finite energy level, is the main goal. The corre-
sponding results are formulated in the present section while the proofs are relegated to Sections 3
and 4.

2.1. Notation

We begin by introducing some notation that will be used thorough the text. We consider 
the Hilbert space H ≡ Hz × Hw , also called finite energy space, where Hz ≡ H 1(�) × L2(�)

and Hw ≡ H × L2(�0), and H depends on the boundary conditions imposed on the struc-
ture:

H ≡
⎧⎨
⎩

H 2
0 (�0) if (C);

H 2(�0) ∩ H 1
0 (�0) if (SS);

H 2(�0) if (F ).

The total energy functional associated with solutions of system (1.1)-(1.2) and induced by the 
topology of H is given by

E(t) ≡ E(t) + σ

∫
�0

w |∇w|2d�0 +
∫
�0

F(w)d�0, (2.1)

where F is the antiderivative of f , as specified in Assumption 3.1, and E denotes the positive 
part of the total energy, given by E(t) ≡ Ez(t) + Ew(t), where Ez and Ew stand for the portions 
corresponding to the wave and plate equations, respectively, and are given by

Ez(t) ≡ 1
2

∫
�

|zt |2 + c2 |∇z|2 d� + c2l0

2

∫
�1

∣∣z|�1

∣∣2 d�1, (2.2a)

Ew(t) ≡ 1
2

∫
�0

[
|wt |2 + 1

2
|∇w|4

]
d�0 + 1

2
a(w,w), (2.2b)

where a(·, ·) is a bilinear form in H 2(�0) given by
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a(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�0

�u�vd�0, in the cases (C) and (SS);

∫
�0

[
ux1x1vx1x1 + ux2x2vx2x2

]
d�0 +

∫
�0

[
μ(ux1x1vx2x2 + ux2x2vx1x1)

]
d�0

+
∫
�0

2(1− μ)ux1x2vx1x2d�0, in the case (F),

(2.3)

for u, v ∈ H 2(�0).

Remark 2.1. Throughout the text, we will assume the following relation among the coefficients: 
1 − c−2ρ = 0. This is without a loss of generality. Simple rescaling of the energy allows to 
eliminate this condition.

Notice that the functional E is equivalent to the usual topology of H. On the other hand, the 
total energy E is not positive and does not exhibit dissipative aspect. Indeed, a straightforward 
formal computation of the energy identity shows that E(t) satisfies the following equation

d

dt
E(t) + k

∫
�0

|wt(t)|2 d�0 + c2
∫
�

l(x) |zt (t)|�|2 d� +
∫
�

d(x) |zt (t)|2 d�

= σ

∫
�0

wt(t) |∇w(t)|2 d�0.

The above identity illustrates the so called “leak” of energy when σ > 0.

2.2. Formulation of the main result

In order to establish our wellposedness result, we start by providing the definition of weak and 
strong solutions of the system (1.1)-(1.2). We say a pair of functions (z, w) is a weak solution on 
the interval [0, T ], for T > 0, if (z, zt , w, wt) ∈ L∞(0, T ; H). Moreover, the following properties 
are satisfied:

i. the map t ∈ [0, T ] �→ (z(t), zt (t), w(t), wt(t)) ∈ H is weakly continuous and, in addition, 
l
1
2 zt |� ∈ L2(0, T ; L2(�));

ii. z(0) = z0, zt (0) = z1, w(0) = w0 and wt(0) = w1;
iii. the pair (z, w) is a distributional (in time) solution of the following equation

0= d

dt

[
(zt (t), φ)L2(�) + (wt (t),ψ)L2(�0) + ρ(z(t)|�0 ,ψ)L2(�0)

]+ c2(∇z(t),∇φ)L2(�)

+ a(w(t),ψ) + (d · zt (t), φ)L2(�) + c2(l
1
2 zt (t)|�, l

1
2 φ|�)L2(�) + k(wt (t),ψ)L2(�0)

− c2(wt (t), φ|�0)L2(�0) + c2l0(z(t)|�1 , φ|�1)L2(�1) + G(w(t),ψ),

(2.4)
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for all (φ, ψ) ∈ H 1(�) × H , where

G(u,v) ≡ (|∇u|2∇u,∇v)[L2(�0)]2 + σ(∇{u2},∇v)[L2(�0)]2 + (f (u), v)L2(�0), (2.5)

for every u, v ∈ H 2(�0). Furthermore, we say that a weak solution (z, w) in the interval [0, T ]
is strong (classical) if (z, zt , ztt ) ∈ C(0, T ; H 2(�) × Hz) and (w, wt, wtt ) ∈ C(0, T ; H 4(�0) ×
Hw).

Our main result reads.

Theorem 2.1 (Existence, uniqueness, Hadamard wellposedness and regularity). Assume that 
f ∈ C1(R). With respect to the dynamics of system (1.1)-(1.2), subject to any of the bounda-
ry conditions (C), (SS) or (F), the following holds:

1. Existence of a strongly continuous semigroup in a weak topology of the phase space 
H. For every initial data U0 ≡ (z0, z1, w0, w1) ∈ H, there exists a unique weak solution 
(z, w) in the class U ≡ {(z, zt , w, wt) ∈ C([0, T ]; H)}, for some T > 0, which may depend 
on the initial data. This solution is global (T > 0 can be taken arbitrary) provided that f
satisfies the non-explosion Assumption 3.1. Furthermore, the solutions generate a strongly 
continuous semigroup St with respect to weak topology in H, given by the formula

StU0 ≡ U(t), for every U0 ∈ H. (2.6)

This is to say that for U0n ⇀ U0 in H one has Un(t) ⇀ U(t) in H uniformly in t ∈ [0, T ]. 
Continuous dependence of solutions on the initial data is with respect to weak topology of 
H. Corresponding solutions satisfy the following energy inequality

E(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds +

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

≤ E(0) + σ

t∫
0

(wt (s), |∇w(s)|2)L2(�0)ds.

(2.7)

2. Energy identity and strong continuity with respect to the initial data. Let us impose 
the non-explosion condition (3.1). In case when l(x) = 0 on � or �0 ⊂ supp l(x), the weak 
solution (z, w) must satisfy the following energy identity:

E(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds +

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

= E(0) + σ

t∫
(wt (s), |∇w(s)|2)L2(�0)ds.

(2.8)
0
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In addition, the nonlinear semigroup in part 1 becomes continuous with respect to the strong
topology of H.

3. Regularity. Assume that Assumption 3.1 is in place. In addition assume that � is sufficiently 
smooth. Weak solutions defined above become strong provided that U0 ∈ H 2(�) ×H 1(�) ×
H 4(�0) × H 2(�0) satisfies the following compatibility conditions:
For the acoustic medium:

∂νz0 + l(x)z1 =
{−l0z0 on �1

w1 on �0
; (2.9a)

For the structural wall:
ii. in the clamped (C) case: w0 = w1 = 0 and ∇w0 = ∇w1 = 0 on ∂�0;
iii. in the simply supported (SS) case: w0 = w1 = 0 and �w0 = 0 on ∂�0;
iv. in the free (F) case:

{
�w0 + (1− μ)B1w0 = 0, on ∂�0;
w0 + (1− μ)B2w0 = (|∇w0|2∇w0, ν)R2 + σ(∇{w2

0}, ν)R2 , on ∂�0,
(2.9b)

The above result shows that system (1.1)-(1.2) always defines a weak semigroup in the finite 
energy space H. It is the effect of the boundary dissipation in the acoustic medium l(x) ≥ 0
which may compromise continuity properties of this semigroup. However, a strategic placement 
of the dissipation allows to upgrade the weak continuity of the semiflow to a strong one. See part 
2 of Theorem 2.1. The latter is due to the validity of the energy identity (2.8) an essential tool in 
this study.

Remark 2.2. As can be seen from the energy balance, the system is not dissipative. There is 
a “leak” of energy on �0. In case when the boundary damping is active but supp l(·) ∩ �0 is 
strictly contained in �0. Part 1 of Theorem above leads to an existence of semigroup continuous 
in a weak topology only. Whether this weak continuity could be improved to a strong one is at 
present an open problem.

2.3. Comments

1. Structural acoustic models [12,30] have attracted considerable attention in both engineer-
ing and mathematical literature. We shall focus on the latter. A series of papers [9–11,23] studied 
control problems (piezoceramic, piezoelectric patches) formulated for linear models, often with 
Kelvin-Voigt damping imposed on the plate. These works were followed by [1,6,7,2,3,5,4,27], 
still within the context of linear models, with boundary/point, possibly nonlinear feedback con-
trols. More recently, nonlinear plate/shell models, being more accurate from the physical point of 
view, have attracted much attention, particularly with respect to long-time behavior [16]. Typical 
models accounted for semilinear effects in acoustic waves along with large displacement models 
in plate theory such as Berger or Von Kármán [17,21]. Clearly, any theory of long-time behav-
ior depends on a good understanding of the dynamical system associated with the flow [8,21]. 
While in case of Kármán-type models, the developments of past years in the area of existence, 
uniqueness and related compensated compactness [24] provide a good footing and background, 
this is not the case for K-B model under consideration in this paper. The supercriticality of the 
nonlinear internal force in the plate is a predicament for a construction of dynamical system, 
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with respect to both weak and strong topology of the natural phase space. We note that in [13], 
supercritical terms in the plate model are mitigated by a supercritical structural damping. This is 
not the case in the present paper where the coupling via the boundary with the Neumann oper-
ator prevents standard estimates to be applied. The latter has to do with the fact that Lopatinski 
condition is not satisfied (dim� > 1), thus L2 Neumann boundary data do not produce finite 
energy solutions. In the past, this predicament was circumvented by considering more regular 
plate models. In the present work, we shall rely on “hidden regularity” of solutions to acoustic 
wave equations [34] and compensated compactness methods associated with supercriticality of 
PDEs describing elastic structures. The key element of the analysis relies on exploiting boundary 
damping of an acoustic medium and its interaction via interface with the plate oscillations in 
order to establish full Hadamard wellposedness of the solutions. Interestingly enough, boundary 
damping alone leads to the problem of making the structure not time reversible, thus preventing 
well-established methods to show the energy equality to hold [8]. On the other hand, when the 
damping is properly placed, it does provide a mechanism for proving full Hadamard wellposed-
ness of the entire structure, as ascertained by our main result. This is achieved by combining 
hidden regularity for the dynamic Neumann operator with the damping along with finite differ-
ence approximation developed in [20,25].
2. The model under consideration is the simplest one which exhibits the main feature/difficul-
ties of the problem under study. These are (i) unbounded on the phase space nonlinearity along 
with (2) boundary damping on the acoustic medium. One could consider curved walls [22], extra 
semilinear terms in the acoustic wave or boundary damping in the plate, as a mechanism of sta-
bilizing oscillations [1,19]. However, we opt for the simplest possible model where the features 
to be emphasized are the main focus.
3. Let us make a few comments on the strategy pursued for the proofs. Existence of weak solu-
tions is proved rather standard Galerkin method supported by several critical estimates presented 
in Section 3. The key element in constructing weak semigroup is the uniqueness of weak so-
lutions. This is accomplished (Section 4.1) by controlling the blow-up of Lp(�0) norms for 
finite-dimensional projections of H 1(�0) functions. In order to claim strong semigroup property, 
the energy identity satisfied by all weak solutions is an essential ingredient. It is here where the 
interaction between acoustic and structural media plays a dominant role, in particular, the “hid-
den regularity” of hyperbolic traces in the non-Lopatinski case. In fact, such identity is derived 
(Section 4.2) when the support of boundary dissipation contains �0. Finally, the regularity of 
weak solutions is obtained in Section 4.3 by deriving an appropriate a priori bound satisfied by 
finite dimensional Galerkin approximations. This is possible due to the logarithmic control of 
Sobolev’s imbedding valid for H 1(�0) ∩ H 2(�0) functions. However, it should be noted that his 
task is particularly subtle in case of free boundary conditions which “spill over” unbounded and 
uncloseable trace operators in the variational formulation.

3. Preliminaries

In this section, we provide some preliminary estimates used in the proof of the main results.

3.1. Assumptions

In order to obtain global solutions and study the asymptotic behavior, the following assump-
tion on the source term is imposed.
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Assumption 3.1. Assume f ∈ C1(R) satisfies the following non-explosion condition

i. for the clamped (C) and simply supported (SS) cases:

F(s) ≡
s∫

0

f (τ)dτ ≥ −δs4 − β, ∀s ∈R, (3.1a)

for some δ ≥ 0 sufficiently small and βδ ∈ R;
ii. for the free (F) case:

F(s) ≥ −δs2 − β, ∀s ∈ R, (3.1b)

for some δ, β ∈ R.

Remark 3.1. Inequality (3.1a) holds for δ > 0 arbitrarily small if

v(p) ≡ lim inf|s|→∞
f (s)

s |s|p−1 ≥ 0, (3.2)

for p = 3. Inequality (3.1b) will remain true when v(1) > −∞.

3.2. A priori lower bound estimate

Let (z, w) be a weak solution to (1.1)-(1.2). Using the notation for the energy introduced in 
Section 1, we have

E1(t) ≡ E(t) + σ(w(t), |∇w(t)|2)L2(�0), (3.3)

|(σ (w(t), |∇w(t)|2)L2(�0)| ≤
σ

2α
‖∇w(t)‖4L4(�0)

+ ασ

2
‖w(t)‖2L2(�0)

, (3.4)

for any α > 0. In the case of clamped (C) or simply supported (SS) boundary conditions, we can 
use Poincaré’s inequality in order to estimate the L2 norm as follows

‖w‖2L2(�0)
≤ C2 |�0|

4ε
+ ε ‖∇w‖4L4(�0)

,

for any ε > 0. In this situation, we rewrite (3.4) as follows

|σ(w(t), |∇w(t)|2)L2(�0)| ≤
σαC2 |�0|

8ε
+
(σεα

2
+ σ

2α

)
‖∇w(t)‖4L4(�0)

, (3.5)

for any ε, α > 0 and w ∈ H 2(�0) ∩ H 1
0 (�0). Now, choosing α > 0 and ε > 0 such that 

σ
(

εα
2 + 1

2α
)= 1

8 , we conclude

|σ(w(t), |∇w(t)|2)L2(�0)| ≤ C(�0) + 1 ‖∇w(t)‖4L (� ) if (C) or (SS). (3.6)

8 4 0
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In the case of free (F) boundary conditions, Poincaré’s inequality cannot be used. Therefore, 
choosing α = 4σ in (3.4), we obtain

|σ(w(t), |∇w(t)|2)L2(�0)| ≤
1
8

‖∇w(t)‖4L4(�0)
+ 2σ 2 ‖w(t)‖2L2(�0)

if (F). (3.7)

Inequalities (3.6) and (3.7) allow us to conclude the following lower estimate for energy E1(t)
given by (3.3):

1
2
[
Ez(t) + Ew(t)

]− C(�0) ≤ E1(t) if (C) or (SS); (3.8a)

1
2
[
Ez(t) + Ew(t)

]− 2σ 2 ‖w(t)‖2L2(�0)
≤ E1(t) if (F). (3.8b)

Combining (3.8a) and (3.8b) yields the following estimate valid for any of the boundary condi-
tions under consideration.

1
2
E(t) ≤ E1(t) + C(�0) + σ 2 ‖w(t)‖2L2(�0)

. (3.9)

Finally, it follows from (3.8a), (3.8b) and Assumption 3.1 that, for a proper choice of δ ∈ R, 
the total energy E(t) is bounded from below by its positive part, that is to say: there exist constants 
C1 > 0 and M0 ∈R such that

C1E(t) + M0 ≤ E(t), for t ≥ 0. (3.10)

This inequality will be used in the next section for the proof of the main results.

3.3. Semigroup formulation of the linear problem

Let us consider in this section the following linear system associated with (1.1)-(1.2) and 
given by

Wave Problem:⎧⎪⎪⎨
⎪⎪⎩

ztt − c2�z + z + d(x)zt = 0 in Q;
∂νz + l(x)zt =

{−l0z in �1;
wt in �0;

z(0) = z0; zt (0) = z1 in �,

(3.11)

Plate Problem:⎧⎨
⎩

wtt + �2w + kwt + ρzt |�0 = 0 in �0;
Boundary Conditions of type (C), (SS) or (F) on ∂�0 × (0,∞);
w(0) = w0, wt (0) = w1 on �0;

(3.12)

In order to express the system in a semigroup framework, let A be an extension to L2(�) of the 
Laplace operator with Robin-like boundary condition, given by
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A ≡ −c2� + I

D(A) =
{
v ∈ H 1(�) : �v ∈ L2(�), ∂νv = 0 on �0 and ∂νv + l0v = 0 on �1

}
.

The associate Neumann operators Ni : L2(�i) → L2(�), i = 0, 1 are defined by

v ∈ L2(�) �→ Niv = φ iff φ is the solution of

⎧⎪⎨
⎪⎩

(−c2� + I )φ = 0, in �,

∂

∂ν
φ + l0φ|�1 =

{
v, in �i,

0, in �\�i.

Remark 3.2. It is well-known that A is a self-adjoint operator with a compact resolvent. There-
fore, the fractional powers of A are well-defined, in particular, we have D(A

1
2 ) = H 1(�). Also, 

we are going to consider H 1(�) with the equivalent norm

‖u‖2
D(A

1
2 )

= ‖A 1
2 u‖2L2(�) =

∫
�

c2 |∇u|2 + |u|2 d� + c2l0

∫
�1

∣∣u|�1

∣∣2 d�1,

for all u ∈ D(A
1
2 ).

Remark 3.3. We recall that, if N∗
i stands for the corresponding adjoint operator of Ni , then 

N∗
i Au = c2u|�i

for any u ∈ H 1(�) (see [28]) is the trace operator. In particular, if we consider 
N0v = Nṽ for every v ∈ L2(�0), where ṽ stands for the extension of v to � by zero outside of 
�0, then N∗

0Au = c2u|�0 for every u ∈ H 1(�).

In connection with the plate problem, we will consider the extension A to L2(�0) of the 
biharmonic operator, given by

A≡ �2,

D(A) =

⎧⎪⎪⎨
⎪⎪⎩

H 4(�0) ∩ H 2
0 (�0) if (C);{

v ∈ H 4(�0) : v = 0 and �v = 0 in ∂�0
}

if (SS);{
v ∈ H 4(�0)

∣∣∣∣�u + (1− μ)B1v = 0
∂ν�v + (1− μ)B2v = 0 on ∂�0

}
if (F).

Using the notation above, we will consider the following linear abstract problem associated 
with the system (3.11)-(3.12)

⎧⎪⎪⎨
⎪⎪⎩

ztt + A(z + [N0l(x)N∗
0 + N1l(x)N∗

1 ]Azt − N0wt) + dIzt = 0,

wtt +Aw + kIwt + c−2ρN∗
0Azt = 0,

(z(0), zt (0),w(0),wt (0)) = (z0, z1,w0,w1) ∈ H,

(3.13)

where I and I stand for identity operators on L2(�) and L2(�0), respectively.
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Remark 3.4. Recall that (see [19]) for every s ∈ [0, 1/2] we have

D(As) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H 4s
0 (�0), s �= 1/8,3/8 if (C);

H 4s(�0) ∩ H 1
0 (�0), s ≥ 1/4 if (SS);

H 4s
0 (�0), s < 1/4, s �= 1/8 if (SS);

H 4s(�0), if (F ).

Moreover, corresponding Sobolev norms are equivalent to the graph norm of respective fractional 
powers of A, that is to say: there exist constants c1, c2 > 0 such that

c1
∥∥Asu

∥∥
L2(�0)

≤ ‖u‖H 4s (�0) ≤ c2
∥∥Asu

∥∥
L2(�0)

,

for all admissible s ∈ [0, 12 ], and u ∈ D(As).

Denoting U = (z, zt , w, wt) and U0 = (z0, z1, w0, w1), the system (3.13) can be written in 
the form

d

dt
U(t) −AU(t) = 0; U(0) = U0,

where A : D(A) ⊂ H → H is given by

A≡

⎛
⎜⎜⎝

0 I 0 0
−A −A[N0lN

∗
0 − N1lN

∗
1 ]A − dI 0 AN0

0 0 0 I
0 −c−2ρN∗

0A −A −kI

⎞
⎟⎟⎠ ;

D(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u1, u2, u3, u4) ∈H

∣∣∣∣∣∣∣∣∣

u1 ∈ H 2(�); u2 ∈ D(A
1
2 );

u1 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4 ∈ D(A);

u3 ∈ D(A); u4 ∈ D(A 1
2 ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Remark 3.5. Straightforward computations show that the adjoint A∗ has a similar structure to A
with same domain.

Lemma 3.1. The operators A and A∗ are dissipative.

Proof. It is sufficient to prove that A is dissipative. Let U = (u1, u2, u3, u4) ∈ D(A). We have

(AU,U)H =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

u2
−A(u1 + [N0lN

∗
0 + N1lN

∗
1 ]Au2 − N0u4) − du2

u4
−c−2ρN∗

0Au2 −Au3 − ku4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

u1
u2
u3
u4

⎞
⎟⎟⎠
⎞
⎟⎟⎠
H

= (u2, u1)D(A1/2) − (A(u1 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4), u2

)
L2(�)

− (du2, u2)L (�)
2
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+ (u4, u3)D(A1/2) − c−2ρ
(
N∗
0Au2, u4

)
L2(�0)

− (Au3, u4)L2(�0) − k (u4, u4)L2(�0)

= −k ‖u4‖2L2(�0)
− ‖d 1

2 u2‖2L2(�) − ‖l 12 u2|�‖2L2(�) ≤ 0,

which proves the result. �
Lemma 3.2. The operator A is maximally dissipative and, consequently, so is A∗.

Proof. Since A is dissipative, it suffices to show that I − A is onto, that is R(I − A) = H, see 
Theorem 4.6 in [31]. Therefore, letting F = (f1, f2, f3, f4) ∈ H, consider the resolvent equation

F = (I−A)U ⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1 = u1 − u2

f2 = u2 + A(u1 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4) + du2

f3 = u3 − u4

f4 = u4 + c−2ρN∗
0Au2 +Au3 + ku4

(3.14)

where U = (u1, u2, u3, u4). Plugging u1 = f1 + u2 and u3 = f3 + u4 to Equations (3.14)1 and 
(3.14)3, respectively, the remaining equations reduce to the following system

⎧⎨
⎩

φ = (I + d)u2 + A(u2 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4);

ψ = − ρ

c2
N∗
0Au2 + [(k + 1)I +A]u4,

(3.15)

where φ = f2 − Af1 ∈ D(A
1
2 )′ and ψ = f4 − Af3 ∈ D(A 1

2 )′. In order to solve system (3.15), 
let us consider the following form on V ≡ D(A

1
2 ) × D(A 1

2 )

b
(
u, ũ
)=(u + du, ũ)L2(�) + (u, ũ)

D(A
1
2 )

+ (l
1
2 N∗

0Au, l
1
2 N∗

0Aũ)L2(�0)

+ (l
1
2 N∗

1Au, l
1
2 N∗

1Aũ)L2(�1)

− (v,N∗
0Aũ)L2(�0) − ρ

c2
(
N∗
0Au, ṽ

)
L2(�0)

+ (k + 1) (v, ṽ)L2(�0) + (v, ṽ)
D(A

1
2 )

,

for every u = (u, v), ũ= (ũ, ṽ) ∈ V . Note that b(·, ·) is a bilinear, continuous and coercive form 
in V . Therefore, it follows from Lax-Milgram theorem that for L = (φ, ψ) ∈ V ′ there exists a 
unique u = (u2, u4) ∈ V such that

L(ũ) = b(u, ũ), for every ũ ∈ V . (3.16)

In particular, for every ũ ∈ D(A
1
2 ) we have ũ= (ũ, 0) and equation (3.16) writes

〈φ, ũ〉
D(A

1
2 )′,D(A

1
2 )

= (u2 + du2, ũ)L2(�) + (u2 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4, ũ)

D(A
1
2 )

= 〈(I + d)u2 + A(u2 + [N0lN
∗
0 + N1lN

∗
1 ]Au2 − N0u4), ũ〉

D(A
1
2 )′,D(A

1
2 )
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which implies Equation (3.15)1. Moreover, since u1 = u2 + f1 we have A(u1 + NlN∗Au2 −
N0u4) = f2 − (I + d)u2 ∈ L2(�), which implies u1 + [N0lN

∗
0 + N1lN

∗
1 ]Au2 − N0u4 ∈ D(A). 

Equation (3.15) (for ψ ) can be obtained by setting ũ = (0, ṽ), for ṽ ∈ D(A 1
2 ). Therefore, we 

conclude that U ∈ D(A) satisfies (3.14), which finishes the proof. �
As a consequence of Lemmas 3.1 and 3.2, it follows from Lumer-Phillips theorem (see Corol-

lary 4.4 in [31]) we have the following.

Corollary 3.1. A and A∗ are generators of a strongly continuous semigroup of contractions on 
H.

It follows from the above results that the fractional powers of A and A∗ are well-defined, see, 
for instance, [37] and references therein. Moreover, we have (see [35])

D(Aθ ) = [D(A),H]1−θ , θ ∈ [0,1],

where [·, ·]θ denotes the complex interpolation functor. Furthermore, A−θ is a bounded operator 
in H, for θ ∈ [0, 1]. Another useful property of A is the following

Lemma 3.3. For any V = (v1, v2, v3, v4) ∈ H we have

‖A 1
4 v1‖L2(�) + ‖A 1

4 v3‖L2(�0) ≤ C‖A− 1
2 V ‖H. (3.17)

Moreover, for any v4 ∈ L2(�0) we have

‖A− 1
2 V ‖H ≤ C

[
‖A− 1

4 v2‖L2(�) + ‖A− 1
4 v4‖L2(�0)

]
, (3.18)

where V = (0, v2, 0, v4).

Proof. We start by observing that

D(A) ⊂ H 2(�) × H 1(�) × D(A) × D(A 1
2 ).

Interpolating between D(A) and H for θ = 1/2 and taking into account the above inclusion, we 
obtain

D(A
1
2 ) ⊂ H

3
2 (�) × D(A

1
4 ) × D(A 3

4 ) × D(A 1
4 ).

Thus, for any U = (u1, u2, u3, u4) ∈ D(A
1
2 ) we have in particular u2 ∈ D(A

1
4 ) and u4 ∈ D(A 1

4 ), 
which implies

‖A 1
4 u2‖L2(�) + ‖A 1

4 u4‖L2(�0) ≤ C‖A 1
2 U‖H, (3.19)

for some constant C > 0. Let V = (v1, v2, v3, v4) ∈ H be fixed. Since A is invertible, there 
exists a unique U = (u1, u2, u3, u4) ∈ D(A) such that V = AU . A straightforward computation 
provides
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U =A−1V =

⎛
⎜⎜⎝

N0v3 − [N0lN
∗
0 + N1lN

∗
1 ]Av1 − A−1(v2 + dv1)

v1
A−1[−c−2ρN∗

0Av1 + kv3 + v4]
v3

⎞
⎟⎟⎠ . (3.20)

Since V ∈ D(A− 1
2 ), we have

‖A− 1
2 V ‖H = ‖A 1

2A−1V ‖H = ‖A 1
2 U‖H. (3.21)

Finally, for U in (3.20), inequality (3.17) follows by combining (3.19) and (3.21).
It remains to prove (3.18). To this end, first we note that for the particular case V =

(0, v2, 0, v4) ∈ H we have

‖A− 1
2 V ‖H = ‖A 1

2A−1V ‖H =

∥∥∥∥∥∥∥∥
A

1
2

⎛
⎜⎜⎝

−A−1v2
0

−A−1v4
0

⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥
H

. (3.22)

On the other hand, since D(A) ×{0} ×D(A) ×{0} ⊂ D(A) and D(A
1
2 ) ×{0} ×D(A 1

2 ) ×{0} ⊂H
it follows by interpolation that D(A1− θ

2 ) × {0} × D(A1− θ
2 ) × {0} ⊂ D(Aθ ) for any θ ∈ [0, 1]. 

Hence, for U = (u1, 0, u3, 0) ∈ D(Aθ ) we have

‖AθU‖H ≤ C
[
‖A1− θ

2 u1‖L2(�) + ‖A1− θ
2 u3‖L2(�0)

]
, for θ ∈ [0,1].

Applying the above inequality with θ = 1
2 , u1 = −A−1v2 and u3 = −A−1v4, also having in mind 

(3.22), we conclude (3.18) as desired. �
3.4. Nonlinear estimate

An interesting issue is the uniqueness of solutions of the nonlinear system (1.1)-(1.2), due to 
the presence of div{|∇w|2∇w}, which is not bounded from H 2(�0) to L2(�0). This prevents 
applicability of standard methods based on local Lipschitz regularity. In order to deal with this 
difficulty, one idea is to obtain the estimates on a negative scale of fractional powers A for 
solutions which are of finite energy. The differential of topology provides a chance for obtaining 
“uniqueness estimate”, however, without continuous dependence on the data. We shall pursue 
this idea for the system under consideration. It should be noted that a related idea, tough applied 
to scalar single equation, was carried out in [19]. In order to obtain the estimate for the nonlinear 
term with respect to negative fractional powers of A, we proceed as follows.

Let {ψN }N∈N be the orthonormal basis consisting of eigenfunctions of A and consider M :
H 2(�0) → H−ε(�0) to be the operator that describes the nonlinearity in the structural wall 
equation:

M(w) = div{|∇w|2∇w} + σ�{w2} − f (w), w ∈ H 2(�0).

Note that with w ∈ H 2(�0), one obtains ∇w ∈ H 1(�0) ⊂ Lp(�0), for any p ∈ [1, ∞), and by 
Sobolev’s embeddings for every ε > 0
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||div{|∇w|2∇w}||H−ε(�0) ≤ C||w||3
H 2(�0)

.

We will need the following sharp estimate:

Proposition 3.1. Let R > 0 and 0 < s < 1. Using the notation from previous section, if {λm : m ∈
N} is the set of eigenvalues of A then, for m large enough, there are constants C1, C2 > 0, which 
depend on R but not on m, such that

‖A− 1
4 [M(w1) − M(w2)]‖L2(�0) ≤ C1 log(1+ λm)‖A 1

4 (w1 − w2)‖L2(�0) + C2λ
− s

4
m+1, (3.23)

for any w1, w2 ∈ H 2(�0) such that 
∥∥wj

∥∥
H 2(�0)

≤ R, for j = 1, 2.

Proof. Let w1, w2 ∈ H 2(�0) such that 
∥∥wj

∥∥
H 2(�0)

≤ R, for j = 1, 2. We start with

‖A− 1
4 [div{|∇w1|2∇w1} − div{|∇w2|2∇w2}]‖L2(�0)

≤ C‖|∇w1|2∇w1 − |∇w2|2∇w2‖L2(�0)

≤ C‖[|∇w1|2 + ∇w1 · ∇w2 + |∇w2|2]∇(w1 − w2)‖L2(�0)

≤ C
∑2

m,l=1
∑2

i,j,k=1 ‖∂xk
wl · ∂xi

wm · ∂xj
w‖L2(�0),

(3.24)

where we denoted w = w1 − w2. Decomposing the cubic terms on the right-hand side of the 
above inequality in small and large frequencies as follows

∂xk
wl · ∂xi

wm · ∂xj
w = QN(∂xk

wl) · ∂xi
wm · ∂xj

w + PN(∂xk
wl) · QN(∂xi

wm) · ∂xj
w

+PN(∂xk
wl) · PN(∂xi

wm) · ∂xj
w ≡ I1 + I2 + I3,

for i, j, k, m, l = 1, 2, where PN is the projector on span{ψ1, . . . , ψN } and QN = I − PN .
We will first deal with I1, for the same arguments hold for I2 and yield to the same estimate. 

Let 0 < s < 1. Using the embedding Hr(�0) ⊂ Lp(�0) for r = 1 − 2/p and p ≥ 2 and Hölder’s 
inequality, we have

∥∥QN(∂xk
wl) · ∂xi

wm · ∂xj
w
∥∥

L2(�0)

≤ ‖QN(∂xk
wl)‖L2/s (�0)‖∂xi

wm · ∂xj
w‖L2/(1−s)(�0)

≤ C‖QN(∂xk
wl)‖H 1−s (�0)‖∂xi

wm‖L4/(1−s)(�0)‖∂xj
w‖L4/(1−s)(�0)

≤ C
(‖∂xi

wm‖H 1(�0)‖∂xj
w‖H 1(�0)

)‖QN(∂xk
wl)‖H 1−s (�0)

≤ CR‖QN(∂xk
wl)‖H 1−s (�0).

Since QN is the eigenprojector on span{ψn : n ≥ N + 1}, it follows from the characterization in 
Remark 3.4 that

‖QN(∂xk
wl)‖H 1−s (�0) ≤ C‖A 1−s

4 QN(∂xk
wl)‖L2(�0) ≤ C‖wl‖H 2(�0)λ

− s
4

N+1,

from which we conclude
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‖I1‖L2(�0),‖I2‖L2(�0) ≤ CRλ
− s

4
N+1, for every i, j, k, l,m = 1,2. (3.25)

Finally, for I3 we use Lemma 3.4 below in order to obtain

‖PN(∂xk
wl) · PN(∂xi

wm) · ∂xj
w‖L2(�0)

≤ supx∈�0

∣∣PN(∂xk
wl)
∣∣ · supx∈�0

∣∣PN(∂xi
wm)

∣∣ · ‖∂xj
w‖L2(�0)

≤ C log(1+ λN+1)‖A 1
4 ∂xk

wl‖L2(�0)‖A
1
4 ∂xi

wm‖L2(�0)‖∂xj
w‖L2(�0)

≤ C log(1+ λN+1)
[‖wl‖H 2(�0)‖wm‖H 2(�0)

]‖w‖H 1(�0)

≤ CR log(1+ λN+1)‖w‖H 1(�0).

Using the characterization in Remark 3.4, I3 is estimated by

‖I3‖L2(�0) ≤ CR‖A 1
4 w‖L2(�0) log(1+ λN+1) for every i, j, k, l,m = 1,2. (3.26)

Plugging estimates (3.25) and (3.26) into (3.24), we conclude

‖A− 1
4 [div{|∇w1|2∇w1} − div{|∇w2|2∇w2}]‖L2(�0)

≤ C1,R log(1+ λN+1)‖A 1
4 (w1 − w2)‖L2(�0) + C2,Rλ

− s
4

N+1.
(3.27)

The estimates for the remaining two terms in the definition of operator M are more direct after 
exploiting local Lipschitz condition:

σ‖A− 1
4 div{∇(w2

1 − w2
2)}‖L2(�0)

≤ C‖
∣∣∣∇ (w2

1 − w2
2

)∣∣∣‖L2(�0)

≤ C
∑2

i=1 ‖∂xi
(w2

1 − w2
2)‖L2(�0)

≤ C
∑2

i=1
[‖w · ∂xi

(w1 + w2)‖L2(�0) + ‖(w1 + w2) · ∂xi
w‖L2(�0)

]
.

Using the embedding H 2(�0) ⊂ C(�0), the second term on the right-hand side of the previous 
inequality reads

∥∥(w1 + w2) · ∂xi
w
∥∥

L2(�0)
≤ ‖w1 + w2‖L∞(�0)‖∂xi

w‖L2(�0)

≤ CR‖A 1
4 w‖L2(�0), for i = 1,2.

The first term is estimated using Hölder’s inequality and the embedding Hr(�0) ⊂ Lp(�0) for 
r = 1 − 2/p and p ≥ 2 as before

‖w · ∂xi
(w1 + w2)‖L2(�0) =

⎧⎪⎨
⎪⎩
∫ ∣∣w · ∂xi

(w1 − w2) · 1∣∣2 d�0

⎫⎪⎬
⎪⎭

1
2

�0
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≤ |�0| 1−s
2 ‖∂xi

(w1 + w2)‖L4/(1−s)
‖w‖L4/(1−s)

≤ C‖∂xi
(w1 + w2)‖H 1(�0)‖w‖H 1(�0)

≤ CR‖A 1
4 w‖L2(�0), for i = 1,2 and 0< s < 1.

Therefore, we conclude

σ‖A− 1
4 div{∇(w2

1 − w2
2)}‖L2(�0) ≤ CR‖A 1

4 (w1 − w2)‖L2(�0). (3.28)

Finally, using Assumption 3.1, the last term in the operator M is estimated as follows

‖A− 1
4 [f (w1) − f (w2)]‖L2(�0) = ‖A− 1

4 ‖L(L2(�0))‖f (w1) − f (w2)‖L2(�0)

≤ ‖A− 1
4 ‖L(L2(�0)) sup|s|≤R

∣∣f ′(s)
∣∣‖w1 − w2‖L2(�0)

≤ CR‖A 1
4 (w1 − w2)‖L2(�0).

(3.29)

Combining (3.27), (3.28) and (3.29) and choosing N sufficiently large, we obtain estimate 
(3.23) �
Lemma 3.4 (see [14,19]). Let {ψi}i∈N be the orthonormal basis in L2(�0) of eigenvectors of 
A, Pn be the projector in L2(�0) onto the space spanned by {ψ1, ψ2, . . . , ψn} and u ∈ D(A 1

4 ). 
Then, there exists n0 > 0 such that for n ≥ n0 we have

max
x∈�0

|(Pnu)(x)| ≤ C
[
log(1+ λn)

] 1
2 ‖A 1

4 u‖L2(�0)

where λn is the corresponding eigenvalue, and the constant C > 0 does not depend on n.

Remark 3.6. The inequality stated above provides a “rate” of blowing-up estimates for projec-
tions of solutions under Sobolev’s embedding at the critical level H 1(�0), where �0 ⊂R2.

4. Proof of the main results

In this section we present the proof of Theorem 2.1, announced in Section 2.

4.1. Weak Hadamard wellposedness

We start by proving the existence and uniqueness of weak solutions.

Proposition 4.1 (Existence of weak solutions). Let f ∈ C1(R) be given. For every R > 0 and 
U0 ≡ (z0, z1, w0, w1) ∈ H such that ‖U0‖H ≤ R there exists T0 ≡ T0(R) > 0 and a pair of 
functions (z, w) which is a (local in time) weak solution of (1.1)-(1.2). In addition, we have the 
boundary regularity l1/2zt |� ∈ L2(0, T ; L2(�)). Moreover, the solution is global provided that 
f satisfies the non-explosion Assumption 3.1.
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Proof. Step 1. (Existence of Local Solutions) Since the nonlinearity in the structural wall is not 
locally Lipschitz, the proof of the above result relies on the Faedo-Galerkin method. Let T > 0
be fixed and consider {φn}n∈N ⊂ H 1(�) and {ψn}n∈N ⊂ H orthonormal basis in L2(�) and 
L2(�0), respectively. For each n ∈N , we define the approximate subspace

Vn = span{φi, i = 1, . . . , n} × span{ψi, i = 1, . . . , n}.

The approximate problem is formulated as follows:

Find (zn, wn) : [0, T ] → Vn such that, for every (φ, ψ) ∈ Vn and any case (C), (SS) or (F):

0= (zn
tt (t), φ

)
L2(�)

+ (wn
tt (t),ψ

)
L2(�0)

+ c2
(∇zn(t),∇φ

)
[L2(�)]2 + a(wn(t),ψ)

+ (d · zn
t (t), φ

)
L2(�)

+ k
(
wn

t (t),ψ
)
L2(�0)

+ c2(l
1
2 zn

t (t)|�, l
1
2 φ|�)L2(�)

− c2
(
wn

t (t), φ|�0

)
L2(�0)

+ c2l0
(
zn(t)|�1 , φ|�1

)
L2(�1)

+ ρ
(
zn
t (t)

∣∣
�0

,ψ
)

L2(�0)

+ G(wn(t),ψ);

(4.1)

and initial conditions

(
zn(0),φ

)
L2(�)

= (z0, φ)L2(�) ;
(
zn
t (0),φ

)
L2(�)

= (z1, φ)L2(�) ;(
wn(0),ψ

)
L2(�0)

= (w0,ψ)L2(�0) ;
(
wn

t (0),ψ
)
L2(�0)

= (w1,ψ)L2(�0) ,

where a(·, ·) is given in (2.3) and G is given in (2.5). Denoting zn(t) = ∑n
i=1 ξni(t)φi and 

wn(t) =∑n
i=1 ϑni(t)ψi where ξni(t) and ϑni(t) are real functions, one can rewrite both problems 

above as the following ODE system

ζ ′′
n (t) +Dζ ′

n(t) +Aζn(t) + F(ζn(t)) = 0, for 0< t < T ;
ζn(0) = ζ0 ≡ (ξn

0 , ϑn
0 ); ζ ′

n(0) = ζ1 ≡ (ξn
1 , ϑn

1 );

where ζn(t) ≡ (ξn(t),ϑn(t)) and ξn(t) ≡ (ξni(t))i=1,...,n and ϑn(t) ≡ (ϑni(t))i=1,...,n. The initial 
data is given by

ξn
j ≡

((
zj ,φi

)
L2(�)

)
i=1,...,n ; ϑn

j ≡
((

wj ,ψi

)
L2(�0)

)
i=1,...,n , for j = 0,1,

and the matrices A and D depend on the basis, while the nonlinear vector F depends on G
applied wn(t) and the basis of H , as we can see below:

A ≡
⎛
⎝c2

[(∇φi,∇φj

)
L2(�)

+ l0
(
φi |�1 , φj |�1

)
L2(�1)

]
j,i=1,...,n 0

0
[
a(φj ,ψi)

]
j,i=1,...,n

⎞
⎠ ;

D ≡
⎛
⎝
[(

d · φi,φj

)
L2(�)

+ c2
(
l
1
2 φi |�, l

1
2 φj |�

)
L2(�)

]
j,i=1,...,n

0

0 0

⎞
⎠
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+
⎛
⎝ρ

(
φi |�0,ψj

)
L2(�0)

0

0 −c2
[(

ψi,φj |�0

)
L2(�0)

]
j,i=1,...,n

⎞
⎠ ;

F(ζn(t)) ≡
(

0[
G
(∑n

i=1 ϑni(t)ψi,ψj

)]
j=1,...,n

)
.

The above system admits a unique solution ζn(t) on a maximal interval [0, T n
max), via 

Carathéodory’s theorem (see e.g. [18]). Consequently, there is a unique solution (zn(t), wn(t))

of the approximate variational problems (4.1).
In order to pass to the limit on the above approximate variational problems, we must establish 

some a priori estimates. Since 1 −c−2ρ = 0, using the energy functional introduced in Section 3.2
applied to the approximate solutions, the corresponding (approximate) energy identity reads as

En
1 (t) + k

t∫
0

‖wn
t (s)‖2L2(�0)

ds +
t∫

0

‖d 1
2 zn

t (s)‖2L2(�)ds + c2
t∫

0

‖l 12 zn
t (s)|�‖2L2(�)ds

= En
1 (0) +

t∫
0

σ(wn
t (s), |∇wn(s)|2)L2(�0)ds −

t∫
0

(f (wn(s)),wn
t (s))L2(�0)ds,

(4.2)

where En
1 (t) ≡ En(t) + σ(wn(t), |∇wn(t)|2)L2(�0). Using the embeddings H 1(�0) → L4(�0)

and H 2(�0) → C(�0) as well as the continuity of f , the right-hand side integrals of (4.2) are 
estimated as follows

∣∣∣∣∣∣
t∫

0

σ(wn
t (s), |∇wn(s)|2)L2(�0)ds

∣∣∣∣∣∣≤ 2σ
t∫

0

En
w(s)ds;

∣∣∣∣∣∣
t∫

0

(
f (wn(s)),wn

t (s)
)
L2(�0)

ds

∣∣∣∣∣∣≤
t∫

0

En
w(s)ds + t

2
· �
(
Ẽn

w(t)
)

,

where � :R+ → R+ is a continuous and increasing function, and Ẽn
w(t) ≡maxs∈[0,t] En

w(s).
Let R > 0 such that ‖(z0, z1,w0,w1)‖H ≤ R. Thus, it follows from the convergence of the 

initial data of the approximate problem that there exists n0 sufficiently large such that En(0) ≤
C(R), for every n ≥ n0. Using the embedding H 2(�0) → C(�0) and the expression of En

1 (t) we 
also have En

1 (0) ≤ C(σ, R), for n ≥ n0. Therefore, identity (4.2) implies

En
1 (t) ≤

[
C(σ,R) + t

2
· �
(
Ẽn

w(t)
)]

+ Cσ

t∫
0

En(s)ds, (4.3)

for n ≥ n0 and t ∈ [0, T n
max). On the other hand, using the lower estimate obtained in Section 3.2, 

keeping in mind that En
w does not control the L2(�0) norm of plate solutions in the case of free 

(F) boundary condition, we consider the functional �n(t) = En(t) + ‖wn(t)‖2L2(�0)
. Rewriting 

(3.9) using �n(t) we have
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1
2
�n(t) ≤ En

1 (t) + C(�0) +
(
1
2

+ σ 2
)∥∥wn(t)

∥∥2
L2(�0)

. (4.4)

Finally, using the following estimate

∥∥wn(t)
∥∥2

L2(�0)
≤ C(R) + 2

t∫
0

�n(s)ds

and inequalities (4.3), (4.4) we conclude that

�n(t) ≤
[
C(�0, σ,R) + t · �

(
�̃n(t)

)]
+ Cσ

t∫
0

�n(s)ds,

where the constant Cσ > 1 and �̃n(t) ≡ max{�n(s) : s ∈ [0, t]}. Previous estimate along with 
Gronwall’s inequality implies

�̃n(t) ≤
[
C(�0, σ,R) + t · �

(
�̃n(t)

)]
eCσ ·t , for 0≤ t < T 0

max. (4.5)

Let 0 < T n
1 ≤ min{1, T n

max}. Since �n(t) is continuous and T n
1 is finite, there exists C1n > 0

such that �̃n(t) ≤ C1n for all t ≤ T n
1 . Using (4.5) and the fact that � (C1n) �= 0, we arrive at

�̃n(t) ≤ 2CReCσ (4.6)

for 0 ≤ t ≤min{T n
1 , CR�(C1n)

−1}, where CR ≡ C(�0, σ, R). Let T n
0 be the maximum value for 

which inequality (4.6) holds for t ≤ T n
0 . Thus, we have T

n
1 ≤ T n

0 ≤ T n
max , for every n ≥ n0. Also, 

either T n
0 = ∞ or T n

0 < ∞, and in the last case we have �̃n(T
n
0 ) = 2CReCσ .

Finally, let T0 ≡ inf{T n
0 : n ≥ 0}. We claim that T0 > 0. Indeed, if it were not the case, there 

would exist T nk

0 → 0+ as nk → ∞. For such sequence, using (4.5), we have

2CReCσ = �̃n(T
nk

0 ) ≤
[
CR + T

nk

0 �
(
2CReCσ

)]
eCσ T

nk
0 .

Letting nk → ∞ in the previous inequality, we conclude 2CReCσ ≤ CR which leads to contra-
diction due to the fact Cσ > 1. Since T0 < ∞, we conclude

�n(t) ≤ 2CReCσ , for t ∈ [0, T0] and n ≥ n0.

It follows from the above estimate and (4.2) that
{
(zn, zn

t ,w
n,wn

t )
}
is bounded in L∞(0, T0;H),

and {l 12 zn
t |�} is bounded in L2((0, T0) × �).

(4.7)

In order to pass to the limit in (4.1), we need an estimate for the second-order time derivatives. 
Considering these approximate variational problems and performing straightforward computa-
tions, one can prove that for every (φ, ψ) ∈ Vn,
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∣∣∣((zn
tt (t),w

n
tt (t)), (φ,ψ)

)
L2(�)×L2(�0)

∣∣∣≤ C(σ,R)‖(φ,ψ)‖2
H 1(�)×H 2(�0)

,

where C(σ, R) > 0 depends on the initial data. The above inequality implies
{
(zn

tt ,w
n
tt )
}
is bounded in L∞(0, T0; (H 1(�) × H 2(�0))

′). (4.8)

It follows from (4.7) and (4.8) that there exists a pair of functions (z, w) and a subsequence such 
that

(zn, zn
t , z

n
tt ) → (z, zt , ztt ), weak star in L∞(0, T0;Hz × (H 1(�))′);

(wn,wn
t ,wn

tt ) → (w,wt ,wtt ), weak star in L∞(0, T0;Hw × H ′);
The above weak-star convergences and compactness results in [33] imply that (z, zt ) :

[0, T0] → Hz and (w, wt) : [0, T0] → Hw are weakly continuous. This weak continuity will al-
low us to prove the validity of the initial condition. In order to pass to the limit in the variational 
problems, we observe that the above weak convergences also imply that (see again [33])

(zn, zn
t ) → (z, zt ) strong in C(0, T0;H 1−ε(�) × H−ε(�));

(wn,wn
t ) → (w,wt ) strong in C(0, T0;H 2−ε(�0) × H−ε(�0)),

for any ε > 0. Another ingredient is the following embedding Ws,p(�0) → Lr(�0), for 0 < s < 1
and p < r < np/(n − sp). This embedding implies that the following maps w �→ |∇w|2∇w, 
w �→ |∇w|2 and w �→ f (w) are well defined from H to L2(�0) and are continuous. This conti-
nuity together with the above weak and strong convergences allows us to pass to the limit in the 
approximate variational problems obtaining a local solution.

Step 2. (Global Solutions) Our next step is to prove that the solution obtained in the previous 
step is global, provided that f satisfies Assumption 3.1. To this end, we are going to consider 
the total energy (2.1) applied to the approximate solutions. Using the approximate variational 
problem and assumption 1 − c2ρ = 0, we have

En(t) + k

t∫
0

‖wn
t (s)‖2L2(�0)

ds +
t∫

0

‖d 1
2 zn

t (s)‖2L2(�)ds + ρ

t∫
0

‖l 12 zn
t (s)|�‖2L2(�)ds

= En(0) + σ

t∫
0

(wn
t (s),

∣∣∇wn(s)
∣∣2)L2(�0)ds.

The right-hand side of the previous identity can be estimated in terms of the initial data and 
the energy functional �n(t) in order to conclude

En(t) + k

t∫
0

‖wn
t (s)‖2L2(�0)

ds +
t∫

0

‖d 1
2 zn

t (s)‖2L2(�)ds + ρ

t∫
0

‖l 12 zn
t (s)|�‖2L2(�)ds (4.9)

≤ C(σ,R) + Cσ

t∫
0

�n(s)ds.
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Further, using the expression of En(t) as well as inequalities (4.4), (4.9) and Assumption 3.1, for 
an appropriate choice of δ, we have

�n(t) ≤ CR + Cσ

t∫
0

�n(s)ds, for t ∈ [0, T0] and n ≥ n0,

where CR is a positive constant which depends on the initial data. Finally, using the lower semi-
continuity of the energy functional and by passing to the limit in the previous inequality, one 
has

�(t) ≤ CR + Cσ

t∫
0

�(s)ds, for t ∈ [0, T0],

where �(t) = E(t) +‖w(t)‖2L2(�0)
. Gronwall’s inequality implies that the solution is global with 

the desired regularity. �
In the previous result, we have proved that system (1.1)-(1.2) admits a (local in time) finite 

energy solution, which is global provided f satisfies Assumption 3.1. Next, we will show that the 
solution is unique. The argument is based on an adaptation of Sedenko’s method, as presented in 
[19], in what follows, we use the notion established in Section 3.3.

Proposition 4.2 (Uniqueness of weak solutions). Under the assumptions of Proposition 4.1, for 
every initial data in H the corresponding weak solution is unique.

Proof. Let T > 0, U0 ≡ (z0, z1, w0, w1) ∈ H and suppose that (z1, w1) and (z2, w2) are two 
weak solutions of (1.1)-(1.2) for the same initial data U0. Since (zi, wi) ∈ L∞(0, T ; D(A 1

2 ) ×
D(A

1
2 )) and l1/2zi

t |� ∈ L2(0, T ; L2(�)), for i = 1, 2, there exists R > 0 such that

sup
t∈[0,T ]

[
‖A 1

2 wi(t)‖L2(�0) + ‖A 1
2 zi(t)‖L2(�)

]
+

T∫
0

||l1/2zt (s)|�||2L2(�)ds < R. (4.10)

Define z ≡ z1 − z2 and w ≡ w1 − w2. Using the notation introduced in Section 3.3, we can 
conclude that (z, w) is the weak solution of the following first order variational formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

[
(zt (t), φ)L2(�) + (wt (t),ψ)L2(�0) + ρ

(
N∗
0Az(t),ψ

)
L2(�0)

]

+ (A
1
2 z(t),A

1
2 φ)L2(�) + (l

1
2 N∗Azt (t), l

1
2 N∗Aφ)L2(�) − (wt (t),N

∗
0Aφ)L2(�0)

+ (A 1
2 w(t),A 1

2 ψ)L2(�0) + (d
1
2 zt (t), d

1
2 φ)L2(�) + k (wt (t),ψ)L2(�0)

= (Z(t),φ)L2(�) + (M(t),ψ)L2(�0) ;
z(0) = z (0) = 0; w(0) = w (0) = 0,

(4.11)
t t
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where the time derivative is understood in the sense of distributions, Z(t) = z1(t) − z2(t) and the 
non homogeneous term M(t) is given by

M(t) ≡ div{|∇w1|2∇w1 − |∇w2|2∇w2} + σ�{w2
1 − w2

2} − [f (w1) − f (w2)] .

It follows from Proposition 3.1 that there are positive constants C1 and C2, which depend on 
R, such that M(t) must satisfy the following estimate

‖A− 1
4 M(t)‖L2(�0) ≤ C1 log(1+ λm)‖A 1

4 w(t)‖L2(�0) + C2λ
−s/4
m+1 , (4.12)

for 0 < s < 1 and t ∈ [0, T ], where λm is an eigenvalue of A large enough. It follows from 
the previous inequality and (3.18) in Lemma (3.3) that A− 1

2 M̃ ∈ L∞(0, T ; H), where M̃(t) =
(0, Z(t), 0, M(t))T . Moreover, if we denote U(t) ≡ (z(t), zt (t), w(t), wt(t)) then U(t) is the 
mild solution of the abstract inhomogeneous problem

d

dt
U(t) −AU(t) = M̃(t); U(0) = 0.

On the other hand, this solution must satisfy

d

dt
(U(t),V )H − (U(t),A∗V )H = (M̃(t),V )H, ∀ V ∈ D(A∗),

in the sense of distributions. Thus, A− 1
2 U must satisfy

d

dt
(A− 1

2 U(t),V )H − (A− 1
2 U(t),A∗V )H = (A− 1

2 M̃(t),V )H,

for every V ∈ D(A∗), in the sense of distributions. In this case, the solution must be given by

A− 1
2 U(t) =

t∫
0

eA(t−s)A− 1
2 M̃(s)ds inH,

where {eA(t−s)}t≥0 stands for the semigroup generated by A. The later identity and (3.17) in 
Lemma 3.3 imply that

ψ(t) ≡ ‖A 1
4 z(t)‖L2(�) + ‖A 1

4 w(t)‖L2(�0)

≤ C

t∫
0

[
‖A− 1

4 z(t)‖L2(�) + ‖A− 1
4 M(s)‖L2(�0)

]
ds.

(4.13)

Inequalities (4.12) and (4.13) imply

ψ(t) ≤ C1(1+ log(1+ λm))

t∫
0

ψ(s)ds + C2T λ
−s/4
m+1 , t ∈ [0, T ],
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for some 0 < s < 1. Using Gronwall’s inequality we conclude

ψ(t) ≤ C2T λ
−s/4
m+1 (1+ λm)C2·t , t ∈ [0, T ], 0< s < 1.

Letting N → ∞ and for 0 ≤ t < t0 ≡ s · (4C1)
−1 we obtain ψ(t) = 0 for 0 ≤ t < t0, which 

implies that z1 = z2 and w1 = w2 for in the interval [0, t0). Repeating the process, one can 
conclude the equalities in the whole interval [0, T ], which concludes the proof. �

Existence and uniqueness of weak solutions leads to the continuity of the flow in the weak 
topology of H (see [19]). Our next challenge is to show that the said continuity also holds with 
respect to the strong topology. This property depends on the validity of the energy identity.

4.2. Strong Hadamard wellposedness

In order to establish our next result, i.e., part 2 of Theorem 2.1- we will appeal to an ap-
proximation argument used for the purpose of proving energy equality. To proceed, recall the 
following finite difference setting and result, as presented in [25]. Let h > 0 a parameter that 
goes to 0. If X denotes a Hilbert space and g ∈ B([0, T ]; X), we extend g(t) to R by setting: 
g(t) = g(0) if t ≤ 0 and g(t) = g(T ) for t ≥ T . With this notation, we define the operation

Dhg(t) ≡ 1
2h
[
g+

h (t) + g−
h (t)

]
, for every g ∈ B([0, T ];X),

where g+
h (t) ≡ g(t + h) − g(t) and g−

h (t) ≡ g(t) − g(t − h).

With the above notation, we have the following result.

Lemma 4.1 (Proposition 4.3 in [25]). Assume that g is weakly continuous with values in X. Then

(1) lim
h→0

T∫
0

(g(t),Dhg(t))X dt = 1
2

[
‖g(T )‖2X − ‖g(0)‖2X

]
;

(2) If g ∈ H 1(0, T ; X), then the following limits are well defined in L2(0, T ; X):

lim
h→0

Dhg = gt ; lim
h→0

1
h

g+
h = gt ; lim

h→0

1
h

g−
h = gt ;

Moreover, if gt is weakly continuous with values in X, then for every t ∈ (0, T ), Dhg(t) →
gt (t) weakly in X, and

1
h

g−
h (T ) → gt (T ); 1

h
g+

h (0) → gt (0); weakly in X;

(3) In addition to previous assumptions, let V ⊂ X ⊂ V ′, gtt ∈ L2(0, T ; V ′), g ∈ L2(0, T ; V ). 
Then

lim
h→0

T∫
(gtt (t),Dhg(t))X dt = 1

2

[
‖gt (T )‖2X − ‖gt (0)‖2X

]
.

0
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With the above setting, we obtain our next result in which weak solutions established above 
also satisfy energy equality. This step is critical to establish Hadamard wellposedness and conti-
nuity of nonlinear semigroup. We recall that energy equality is satisfied for the Galerkin approx-
imations which lead to the construction of weak solution. On the other hand, we have also shown 
that weak solutions are unique and enjoy additional boundary regularity on the support of l(x)

inside �.

Proposition 4.3 (Energy identity). Let U = (z, zt , w, wt) be a weak solution in the interval 
[0, T ]. In addition we assume that either l(x) ≡ 0 or supp l(x) ⊃ �0. Then the following en-
ergy identity holds

E(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds + ρ

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

= E(0) + σ

t∫
0

(wt (s), |∇w(s)|2)L2(�0)ds, for t > 0.

(4.14)

Proof. We note that the assumption on the support of l(x) implies the additional boundary reg-
ularity

T∫
0

∥∥zt (t)|�0

∥∥2
L2(�0)

dt ≤ C(‖U‖L∞(0,T ;H)) (4.15)

Using equality (4.2) and the weak-star convergence wn
t → wt in L∞(0, T ; L2(�0)) as well as 

the lower semicontinuity of the energy functional En
1 (t), we arrive at

E1(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds + ρ

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

≤ E1(0) +
t∫

0

σ(wt (s), |∇w(s)|2)L2(�0)ds −
t∫

0

(f (w(s)),wt (s))L2(�0)ds,

which can be rewritten as follows

t∫
0

d

dt

⎧⎪⎨
⎪⎩E1(s) +

∫
�0

F(w(s))d�0

⎫⎪⎬
⎪⎭ds + k

t∫
0

‖wt(s)‖2L2(�0)
ds + ρ

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds

+
t∫

0

‖l 12 zt (s)|�‖2L2(�)ds ≤ σ

t∫
0

(wt (s), |∇w(s)|2)L2(�0)ds.

Using the expression of E(t) and the last inequality, we conclude that
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E(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds + ρ

t∫
0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

≤ E(0) + σ

t∫
0

(wt (s), |∇w(s)|2)L2(�0)ds, for t ≥ 0.

(4.16)

For the reverse inequality, let us consider first the case l ≡ 0. As presented in [20], the ar-
gument to prove the reverse inequality relies on time reversibility property. For this purpose, 
let 0 ≤ t ≤ T and consider the problem (1.1)-(1.2) with reversing time. In this case, functions 
z̃(t) = z(T − t) and w̃(t) = w(T − t) constitute a weak solution on [0, T ] of the (backwards) 
system

wave equation:

z̃t t − c2�z̃ = dzt (T − t), in Q;

∂ν z̃ =
{−l0z̃ on �1;

−w̃t on �0;
z̃(0) = z(T ); z̃t (0) = zt (T ) in �;

plate equation:

w̃tt + �2w̃ − ρz̃t |�0 = div{|∇w̃|2∇w̃} + W(T − t) on �0;
Boundary Conditions on ∂�0 × (0,∞);
w̃(0) = w(T ); w̃t (0) = wt(T ) in �0,

where W = −kwt +σ�{w2} −f (w). Since W ∈ L∞(0, T ; L2(�0)) and zt ∈ L∞(0, T ; L2(�)), 
we have that W(T − t) ∈ L∞(0, T ; L2(�0)), as well as zt (T − t) ∈ L∞(0, T ; L2(�)). Note 
also the change of the sign on the interface. In view of the above, we apply the same Galerkin-
argument for existence of solutions as before, however, applied to the z̃, w̃ problem running over 
negative times in [0, T ]. In this case, the energy inequality valid for the new variables on the 
interval [s̃, ̃t] ⊂ [0, T ] is given by

Ez̃,w̃(t̃) ≤ Ez̃,w̃(s̃) +
t̃∫

s̃

(z̃(τ ), d · zt (T − τ))L2(�) dτ +
t̃∫

s̃

(w̃(τ ),W(T − τ))L2(�0) dτ

where Ez̃,w̃ stands for the linear energy functional (see (2.2a)-(2.2b)) applied to the solution 
(z̃, w̃) of the reverse-in-time system. It follows from the uniqueness of weak solutions that (z̃(T −
t), w̃(T − t)) must coincide with (z(t), w(t)) in [0, T ]. Therefore, if [s, t] ⊂ [0, T ] then we 
choose s̃ = T − t and t̃ = T − s in the above inequality which implies, after a change of variable

E(s) ≤ E(t) −
t∫
(z(τ ), d · zt (τ ))L2(�) dτ −

t∫
(w(τ),W(τ))L2(�0) dτ.
s s
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Choosing s = 0 and keeping in mind that W ∈ L∞(0, T ; L2(�0)) and zt ∈ L∞(0, T ; L2(�)) we 
directly evaluate the last (supercritical) integral on the right-hand side of the above inequality by 
using classical Sobolev’s embeddings, obtaining

E(t) + k

t∫
0

‖wt(τ)‖2L2(�0)
dτ +

t∫
0

‖d 1
2 zt (τ )‖2L2(�)dτ

≥ E(0) + σ

t∫
0

(|∇w(τ)|2,wt (τ ))L2(�0)dτ.

(4.17)

Inequalities (4.16) and (4.17) imply identity (4.14), for this first case (l = 0), as desired.

Let us now consider the case l(x) ≥ 0 and supp l(x) ⊃ �0. This means that the l(x) ≥ l0 >

0 on �0. We first observe that zt |�0 ∈ L2(0, T ; L2(�0)) and ∂νz ∈ L2(0, T ; L2(�)) imply, by 
hidden regularity, that the map L2(0, T ; L2(�0)) � g �→ z, where z is the solution of the problem �z = 0 with boundary conditions ∂

∂ν
z + l(x)zt = g in �0 and ∂

∂ν
z + l0z = 0 in �1, has the

property z is in C(0, T ; H 1(�)) ∩ C1(0, T ; L2(�)). Hence, the strategy used here is to obtain 
both (wave and plate) energy separately, by using different methods. For the structural problem, 
we apply the same reversibility-in-time argument as before with W = −kwt +σ�{w2} −f (w) +
ρzt |�0 . This will provide the identity

Ew(t) +
∫
�0

F(w(t))d�0 + k

t∫
0

‖wt(s)‖2L2(�0)
ds + ρ

t∫
0

(zt (s)|�0 ,wt (s))L2(�0)ds

= Ew(0) + σ

t∫
0

(|∇w(s)|2,wt (s))L2(�0)ds, for t > 0.

(4.18)

Finally, for the acoustic problem, we start from the variational problem (2.4) (with ψ = 0) 
and write

0=(zt (t), φ(t))L2(�) − (zt (0),φ(0))L2(�) + c2
t∫

0

(∇z(s),∇φ(s))L2(�)ds

+
t∫

0

(d · zt (t), φ(s))L2(�)ds

+
t∫

0

(l
1
2 zt (s)|�, l

1
2 φ(s)|�)L2(�)ds + c2l0

t∫
0

(z(s)|�,φ(s)|�)L2(�)ds

− c2
t∫

0

(wt (s),φ(s)|�0)L2(�0)ds
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for any φ ∈ H 1(0, T ; L2(�)) ∩ L2(0, T ; D(A
1
2 )). Choosing φ = Dhz and using the above nota-

tion, we rewrite the previous identity as follows

0= 1
2

[
(zt (t),

1
h

z−
h (t))L2(�) − (z(0),

1
h

z+
h (0))L2(�)

]
−

t∫
0

(zt (s), [Dhz(s)]t )L2(�)ds

+c2
t∫

0

(∇z(s),Dh(∇z(s)))L2(�)ds + c2l0

t∫
0

(z(s)|�,Dh(z(s)|�))L2(�)ds

+
t∫

0

([d 1
2 z(s)]t ,Dh(d

1
2 zt (s)))L2(�)ds +

t∫
0

([l 12 z(s)|�]t ,Dh(l
1
2 z(s)|�))L2(�)ds

−c2
t∫

0

(wt (s),Dhz(s)|�0)L2(�0)ds.

Note that by the virtue of Lemma 4.1, see also [25], we have

t∫
0

(zt (s), [Dhz(s)]t )L2(�) ds = 0, for every h > 0.

Indeed, using the definition of Dh and performing straightforward computations with change of 
variables, we have

t∫
0

(zt (s), [Dhz(s)]t )L2(�) ds = 1
2h

t∫
0

(zt (s), zt (s + h) − zt (s − h))L2(�) ds

= 1
2h

h∫
0

(zt (s), zt (t + h))L2(�) ds + 1
2h

t−h∫
h

(zt (s), zt (s + h) − zt (s − h))L2(�) ds

− 1
2h

t∫
t−h

(zt (s), zt (s − h))L2(�) ds

= 1
2h

h∫
0

(zt (s), zt (t + h))L2(�) ds + 1
2h

t−h∫
h

(zt (s), zt (s + h))L2(�) ds

− 1
2h

t−2h∫
0

(zt (s), zt (s + h))L2(�) ds − 1
2h

t∫
t−h

(zt (s), zt (s − h))L2(�) ds,

which implies
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t∫
0

(zt (s), [Dhz(s)]t )L2(�) ds

= 1
2h

⎡
⎣

h∫
0

(zt (s), zt (t + h))L2(�) ds +
t−h∫

t−2h
(zt (s), zt (s + h))L2(�) ds

+
t−2h∫
h

(zt (s), zt (s + h))L2(�) ds −
h∫

0

(zt (s), zt (s + h))L2(�) ds

−
t−2h∫
h

(zt (s), zt (s + h))L2(�) ds −
t−h∫

t−2h
(zt (s), zt (s + h))L2(�) ds

⎤
⎦

= 0,

as desired.
Our assumption on the support of l(x) allows to deduce

t∫
0

||zt (s)||2�0ds ≤ C[Ez(0) +
t∫

0

||wt(s)||2�0ds]. (4.19)

In fact, the above inequality results from the so called “hidden regularity”, which in this case can 
be simply deduced from the following Lemma.

Lemma 4.2. Let g ∈ L2(0, T ; L2(�0)) and z be a solution of �z = 0, subject to zero initial data 
and the boundary conditions

∂

∂ν
z + l(x)zt =

{
g on �0

−l0z on �1

where supp l(x) ⊃ �0. Then, the following inequality holds:

||zt (t)||2 + ||∇z(t)||2 + ||z(t)||2L2(�1)
+

t∫
0

||l1/2zt (s)||2L2(�)ds ≤ C

t∫
0

||g(s)||2L2(�0)
ds.

Proof. Since the solutions are smooth for zt (t) ∈ H 1(�), ztt (t) ∈ L2(�) and compatible boun-
dary data g, it suffices to prove the inequality for smooth solutions only. Multiplying the D’Alam-
bertian by zt and integrating by parts gives

||zt (t)||2 + ||∇z(t)||2 + ||z(t)||2L2(�1)
+ 2

t∫
||l1/2zt ||2L2(�) ≤ 2

t∫ ∫
g(t)ztdxdt.
0 0 �0
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Exploiting the condition on the support of l(x) this yields

||zt (t)||2 + ||∇z(t)||2 + ||z(t)||2L2(�1)
+

t∫
0

||zt ||2L2(�0)
≤ C

t∫
0

∫
�0

|g(t)|2dxdt. �

Continuing with the proof, inequality (4.19) and Lemma 4.1 allows taking the limit as h → 0
in the expression

lim
h→0

t∫
0

([l 12 z(s)|�]t ,Dh(l
1
2 z(s)|�))L2(�)ds =

t∫
0

([l 12 z(s)|�]t , (l 12 zt (s)|�))L2(�)ds.

For the same reason, and having in mind that wt ∈ C(0, T ; L2(�0)), we obtain

lim
h→0

t∫
0

(wt (s),Dhz(s)|�0)L2(�0)ds =
t∫

0

(wt (s), zt (s)|�0)L2(�0)ds.

Taking the limit when h → 0 and using Lemma 4.1,

Ez(t) +
t∫

0

‖d 1
2 zt (s)‖2L2(�)ds +

t∫
0

‖l 12 zt (s)|�‖2L2(�)ds

= Ez(0) + c2
t∫

0

(wt (s), zt (s)|�0)L2(�0)ds, for t > 0.

(4.20)

Adding up equations (4.18) and (4.20), having in mind relation 1 − c−2ρ = 0, we obtain (4.14)
as desired. �

Our next result shows that the weak solutions depend continuously on the initial data with 
respect to the strong topology of H. The proof adopts some ideas in [25].

Proposition 4.4 (Strong continuous dependence). Under the assumptions of Proposition 4.1, the 
corresponding weak solutions of (1.1)-(1.2) depend continuously on the initial data with respect 
to the strong topology of H.

Proof. Let T > 0 and {Un
0 ≡ (zn

0, z
n
1, w

1
0, w

n
1 )}n∈N ⊂ H such that Un

0 → U0 ≡ (z0, z1, w0, w1)
in H. If Un, U : [0, T ] → H are the corresponding weak solutions of (1.1)-(1.2), then using the 
energy identity (2.8) and Assumption 3.1, we have

�n(t) ≡ En
z (t) + En

w(t) + ∥∥wn(t)
∥∥2

L2(�0)

≤ C(
∥∥Un

0
∥∥
H) + C(σ)

t∫
�n(s)ds, for t ∈ [0, T ], n ∈ N,
0
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which implies that {Un} is bounded in L∞(0, T ; H). Reducing to a subsequence if necessary, 
we conclude that

Un → U weak star in L∞(0, T ;H). (4.21)

In order to conclude the proof, it suffices to prove that

∥∥Un(t)
∥∥
H → ‖U(t)‖H in C[0, T ]. (4.22)

Since the functional �(t) ≡ E(t) + ‖w(t)‖2L2(�0)
is equivalent to the topology of H, the con-

vergence (4.22) will follow from limn→∞ �n(t) = �(t). Using the energy identity (2.8) and the 
continuity of En(t) = En

z (t) + En
w(t), we have

E(0) = lim
n→∞En(0)

= lim
n→∞

⎡
⎣En(t) + k

t∫
0

‖wn
t (s)‖2L2(�0)

ds − σ

t∫
0

(wn
t (s), |∇wn(s)|2)L2(�0)ds

⎤
⎦ .

Using the energy identity once more and the uniqueness of weak solutions, it follows from 
the previous identity that

lim
n→∞

⎡
⎣En(t) + k

t∫
0

‖wn
t (s)‖2L2(�0)

ds − σ

t∫
0

(wn
t (s), |∇wn(s)|2)L2(�0)ds

⎤
⎦

= E(t) + k

t∫
0

‖wt(s)‖2L2(�0)
ds − σ

t∫
0

(wt (s), |∇w(s)|2)L2(�0)ds.

Moreover, using the weak-star convergence (4.21) and the compactness H 1(�0) → L4(�0), we 
obtain from the previous identity that

lim
n→∞En(t) ≤ E(t).

Now, using the expression of En and E , the compactness of u ∈ H 2(�0) �→ u |∇u|2 ∈ L1(�0), 
u ∈ H 2(�) �→ F(u) ∈ L1(�) and the lower semicontinuity of En(t) = En

z (t) + En
w(t), we con-

clude

lim
n→∞

[
En

z (t) + En
w(t)

]= Ez(t) + Ew(t). (4.23)

Finally, it follows from the weak convergence (4.21) that (see [33]) wn → w in C([0, T ];
H 2−ε(�0) for any ε > 0. This strong convergence implies that

lim
∥∥wn(t)

∥∥
L (� )

= ‖w(t)‖L2(�0) (4.24)

n→∞ 2 0
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Limits (4.23) and (4.24) imply limn→∞ �n(t) = �(t) as desired and, therefore, convergence 
(4.22) follows, which concludes the proof. �

Propositions 4.1, 4.2 and 4.4 prove items 1 and 2 in Theorem 2.1. It remains to prove the 
regularity result, which will be done next.

4.3. Regularity

Proposition 4.5 (Regularity). In addition to the assumptions of Proposition 4.1, we assume that 
Assumption 3.1 holds along with the compatibility conditions (2.9a)-(2.9b). If (z0, z1, w0, w1) ∈
H 2(�) × H 1(�) × H 4(�0) × H 2(�0) and � is sufficiently smooth, then the corresponding 
solution (z, w) is strong.

Remark 4.1. So far we have proved existence and uniqueness of weak solutions, which satisfy 
the variational form. One of the issues is to be able to show that in the case of smooth and compat-
ible initial data, these solutions satisfy an appropriate form of PDE. Technical difficulties appear, 
particularly, in the case of free boundary conditions. These produce boundary terms which “spill 
over” in the variational form and are not controlled by the energy. To handle the obstacle, we 
shall work with variational forms satisfied by finite dimensional approximations. In what follows 
below, we provide a brief synopsis of steps to be followed.

• We prove that time derivatives display finite energy regularity. This step requires:
– Differentiation in time of variational equality produces new terms on the boundary which 
are not controlled by the energy. To handle these, Green’s maps and fractional powers of 
the biharmonic operator are critically used.

– In addition, time differentiation produces interior nonlinear term which is also supercriti-
cal. To handle the latter, Brezis-Gallouët inequality is used. However, this requires control 
of H 3 norms.

– The next step is to obtain the enhanced H 3 space regularity for the plate. This is obtained 
from the variational finite-dimensional formulation with critical use of compatibility con-
ditions and, again, control of “blow-up” the Sobolev’s embeddings.

• Regularity of time derivatives is obtained from logarithmic control of Gronwall’s inequality, 
and the H 4 regularity for the plate and H 2 regularity for the wave is obtained by duality.

Proof. The argument is based on establishing uniform estimates for Faedo-Galerkin approxima-
tions which then need to be reconstructed as strong solutions. Let us consider {φn}n∈N ⊂ H 2(�)

and {ψn}n∈N ⊂ H 4(�0) basis of eigenvectors of the Laplacian operator with Neumann bounda-
ry conditions and the biharmonic operator with either (C), (SS) or (F) boundary conditions (see 
Section 3.3). For each n ∈N , let Vn be the approximation subspace as defined in Proposition 4.1, 
and consider corresponding solution (zn, wn) of the following variational problem

Find (zn(t),wn(t)) ∈ Vn such that:

0= (zn
tt (t), φ

)
L2(�)

+ (wn
tt (t),ψ

)
L2(�0)

+ c2
(∇zn(t),∇φ

)
L2(�)

+ a(wn(t),ψ)

+ (d · zn
t (t), φ

)
L2(�)

+ k
(
wn

t (t),ψ
)
L2(�0)

+ c2
(
l · zn

t (t)|�,φ|�
)
L2(�)

(4.25)

− c2
(
wn

t (t), φ|�0

)
L (� )

+ c2l0
(
zn(t)|�1 , φ|�1

)
L (� )

+ ρ
(
zn
t (t)

∣∣
�

,ψ
)

2 0 2 1 0 L2(�0)
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+ G(wn(t),ψ), for any (φ,ψ) ∈ Vn;
(zn(0), zn

t (0),w
n(0),wn

t (0)) ≡ (zn
0, z

n
1,w

n
0 ,w

n
1 ) → (z0, z1,w0,w1) inH,

where a(·, ·) is given in (2.3). It follows from Propositions 4.1 and 4.4 that {(zn, zn
t , wn, wn

t )}n∈N
converges to (z, zt , w, wt) weakly star in L∞(0, T ; H), for every T > 0. Let us consider R > 0
such that ‖(z0, z1,w0,w1)‖H ≤ R.

Differentiating (4.25) in time and setting (un, vn) ≡ (zn
t , wn

t ), we obtain

0= d

dt

[(
un

t (t), φ
)
L2(�)

+ (vn
t (t),ψ

)
L2(�0)

+ ρ
(
un(t)

∣∣
�0

,ψ
)

L2(�0)

]

+c2
(∇un(t),∇φ

)
L2(�)

+ a(vn(t),ψ) + (d · un
t (t), φ

)
L2(�)

+c2
(
l · un

t (t)|�,φ|�
)
L2(�)

+ k
(
vn
t (t),ψ

)
L2(�0)

+ c2l0
(
un(t)|�1 , φ|�1

)
L2(�1)

−c2
(
vn
t (t), φ|�0

)
L2(�0)

+ d

dt
G(wn(t),ψ), ∀(φ,ψ) ∈ Vn,

(4.26)

where, we recall, G(w, ψ) is given by (2.5).
Note that

d

dt
G(wn(t),ψ) = (|∇wn(t)|2∇vn(t) + 2(∇wn(t),∇vn(t))R2∇wn(t),∇ψ)L2(�0)

+ 2σ
(∇{wn(t)vn(t)},∇ψ

)
L2(�0)

+ (f ′(wn(t))vn(t),ψ
)
L2(�0)

,

for every ψ ∈ span{ψi : i = 1, . . . , n}.
Choosing (φ, ψ) = (un

t (t), vn
t (t)) and recalling that 1 − c−2ρ = 0, we obtain

d

dt
Wn(t) + k‖vn

t (t)‖2L2(�0)
+ ‖d1/2un

t (t)‖2L2(�) + c2‖l1/2un
t (t)|�‖2L2(�)

= 3(∇wn(t), |∇vn(t)|2∇vn(t))L2(�0) − 2σ
(∇{wn(t)vn(t)},∇vn

t (t)
)
L2(�0)

− (f ′(wn(t))vn(t), vn
t (t)

)
L2(�0)

≡ 3I1(wn, vn) + 2σI2(w
n, vn) + I3(w

n, vn),

(4.27)

where Wn(t) ≡ Un(u
n(t), un

t (t)) + Vn(v
n(t), vn

t (t)) and

Un(u
n,un

t ) ≡ 1
2

[∥∥un
t

∥∥2
L2(�)

+ c2
∥∥∇un

∥∥2
L2(�)

+ c2l0
∥∥un|�1

∥∥2
L2(�1)

]
;

Vn(v
n, vn

t ) ≡ 1
2

⎡
⎢⎣∥∥vn

t

∥∥2
L2(�0)

+ a(vn, vn) +
∫
�0

∣∣∇wn
∣∣2 ∣∣∇vn

∣∣2 + 2
∣∣(∇wn,∇vn

)
R2

∣∣2 d�0

⎤
⎥⎦ .

To estimate integrals Ii, i = 1, 2, 3, we shall follow the arguments presented in [20].
Computing I1. This integral is the most critical one due to the superlinearity. To handle it, we 
shall use logarithmic estimates that follow from Brezis-Gallouët inequality (see [15])
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‖u‖L∞ ≤ C‖u‖H 1 ln1/2(1+ K) + C‖u‖H 2(1+ K)−1, (4.28)

for some constant C depending on the domain and K > 0 is arbitrary. Using the above estimate 
for ∇wn and K = ||wn||H 3(�0)

‖∇wn‖L∞(�0) ≤ C‖wn‖H 2(�0)[1+ ln1/2(1+ ‖wn‖H 3(�0))] + C (4.29)

By (4.29) and classical Sobolev embedding, we arrive at

|I1| ≤ ‖∇wn‖L∞(�0)‖vn‖3
W 1,3(�0)

≤ C‖∇wn‖L∞(�0)‖vn‖L2(�0)‖vn‖2
H 2(�0)

≤ CT,R‖vn‖2
H 2(�0)

[1+ ln1/2(1+ ‖wn‖H 3(�0))],

where CT,R is a constant that depends on the domain obtained by using the uniform bounds from 
Section 4.1.
Our next step is to obtain the estimate for the H 3 norm of wn. While this is relatively straight-

forward for clamped or simply supported boundary conditions, the treatment of free boundary 
conditions requires more involved and delicate arguments. To proceed, we go back to the approx-
imated variational problem (4.25) setting φ = 0 and using Green’s formula on the biharmonic 
operator

(�2wn,ψ)L2(�0)+ < BC,ψ |∂�0 >∂�0

= − (wn
tt ,ψ

)
L2(�0)

− k
(
wn

t ,ψ
)
L2(�0)

− ρ
(
zn
t |�0 ,ψ

)
L2(�0)

+(div{|∇wn|2∇wn},ψ)L2(�0) + σ(�{wn2},ψ)L2(�0) − (f (wn),ψ)L2(�0),

(4.30)

where BC ≡ [|∇wn|2∇wn + σ∇{wn2}] · ν. Note that, in the clamped (C) or simply supported 
(SS) cases we have BC ≡ 0. In order to deal with free boundary conditions (F), we will consider 
the following Green’s map G : L2(∂�0) → L2(�0) given by

Gg = v iff v is the solution of
{

�2v = 0, in �0;
�v + (1− μ)B1v = 0, ∂

∂ν
�v + (1− μ)B2v = g, on ∂�0.

It is known that if G∗ is its adjoint in L2 then G∗Aψ = −ψ |∂�0 for every ψ ∈ H 2(�0). Thus, we 
rewrite (4.30) as follows

<A(wn − GBC),ψ >= (R(wn) − ρzn
t ,ψ)L2(�0), (4.31)

for every ψ ∈ span{ψ1, . . . , ψn}, where

R(wn) = −wn
tt − kwn

t + div{|∇wn|2∇wn} + σ�{wn2} − f (wn).

Note that wn −GBC does not belong to D(A) due to the boundary effects caused by the Green’s 
map. Thus, identity (4.31) is understood in the dual sense, i.e., with respect to [D(A1/2)]′ topol-
ogy (or [H 2(�0)]′), Hence, we conclude

PNA(wn − GBC) =PN [R(wn) − ρzn]
t
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where PN denotes the orthonormal projector in span{ψ1, . . . , ψN }. Since PN commutes with A
(and its fractional powers) we have

APNwn =PNAGBC +PNR(wn) − ρPNzn
t , for n ≥ N. (4.32)

By elliptic regularity and characterization of fractional powers of A where Aθ ∼ H 4θ (�0) for 
θ < 7

8 [21].

G ∈ L(H−1/2(∂�0) → H 3(�0) ⊂ D(A3/4)) (4.33)

and rescaling equation (4.32) by A−1/4 yields:

A3/4PNwn =PNA3/4GBC +A−1/4PNR(wn) − ρA−1/4PNzn
t ,

for n ≥ N . This yields the estimate

‖A3/4PNwn‖L2(�0) ≤ ‖PNA3/4GBC‖L2(�0) + ‖A−1/4PNR(wn)‖L2(�0)

+ρ‖A−1/4PNzn
t ‖L2(�0) ≡ J1 + J2 + J3.

(4.34)

Estimates for J1. By elliptic regularity in (4.33) combined with the embedding H 1/2(∂�0) ⊂
Lp(∂�0) for 1 ≤ p < ∞, we have

‖PNA3/4GBC‖L2(�0) ≤ C‖BC‖H−1/2(∂�0) = C‖[|∇wn|2∇wn + σ∇{wn2}] · ν‖H−1/2(∂�0)

≤ C(‖∇wn‖3
H 1/2(∂�0)

+ ‖wn‖H 1/2(∂�0)‖∇wn‖L2(∂�0)) ≤ C(1+ ‖wn‖3
H 2(�0)

).

Estimates for J2.

‖A−1/4PNR(wn)‖L2(�0) ≤ ‖R(wn)‖H−1/2+ε(�0)

≤ C(1+ ‖wn‖3
H 2(�0)

+ ‖wn
tt‖L2(�0) + ‖wn

t ‖L2(�0)) + C�(‖wn‖H 2(�0)),

where �(r) =max|s|≤r |f (s)| and C stands for a constant that does not depend on n or N .

Estimates for J3. Using trace and interpolation theorems, we have

‖A−1/4PNzn
t ‖L2(�0) ≤ C‖zn

t ‖L2(�0) ≤ C
(
ε‖zn

t ‖H 1(�) + Cε‖zn
t ‖L2(�)

)
.

Plugging these estimates into (4.34), having in mind that D(Aθ ) ⊂ H 4θ (�0) for θ ∈ [0, 1] and 
the substitution wn

t = vn and zn
t = un, we obtain

‖wn‖H 3(�0) ≤ C1
[‖vn

t ‖L2(�0) + ‖vn‖L2(�0) + ‖un‖H 1(�)

]+ C2�̃(‖wn‖H 2(�0)) (4.35)

where �̃(r) = 1 + r3 + �(r) is an increasing function. The above leads to:
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Lemma 4.3. Under any of the boundary conditions, one has the following estimate for Galerkin 
approximation wn

‖wn‖H 3(�0) ≤ C1
[
Wn + ‖vn‖2L2(�0)

]
+ CT,R

where Wn(t) is defined below in (4.27).

Finally, the estimate in Lemma 4.3 together with uniform bounds obtained for approximated 
solutions in Section 4.1 implies the following

|I1| ≤ CT,R‖vn‖2
H 2(�0)

[
1+ ln1/2(1+Wn + ‖vn‖2L2(�0)

)
]
. (4.36)

Computing I2. If the boundary conditions are of type clamped (C) or simply supported (SS), then 
I2 can be rewritten as

I2 = −(∇{wnvn},∇{vn
t })L2(�0)

= − <
∂

∂ν
{wnvn}, vn

t >∂�0 +(�{wnvn}, vn
t )L2(�0) = (�{wnvn}, vn

t )L2(�0)

= (vn�{wn}, vn
t )L2(�0) + (wn�{vn}, vn

t )L2(�0) + 2(∇{wn} · ∇{vn}, vn
t )L2(�0).

Using the inclusion H 2(�0) ⊂ L∞(�0) and the uniform boundedness for the approximated so-
lutions, we obtain

|I2| ≤ CT,R‖vn‖H 2(�0)‖vn
t ‖L2(�0).

In the case of free boundary conditions, we use a different approach, although it might be used 
also for the other boundary conditions. We return to the variational problem (4.25) and rewrite 
I2 as follows

I2 = − d

dt

{
(vn∇wn,∇vn)L2(�0) + 1

2
(wn, |∇vn|2)L2(�0)

}

+ 3
2
(vn, |∇vn|2)L2(�0) + (vn

t ∇wn,∇vn)L2(�0)

≡ − d

dt
I21(t) + I22(t).

(4.37)

In order to the obtain estimates for I21(t) and I22(t), we are going to use inclusion Hs(�0) ⊂
L∞(�0) for s > 1, compactness imbedding and uniform boundedness for the approximate solu-
tions.

Estimates for I21.

|I21(t)| ≤ |(vn∇wn,∇vn)L2(�0) + 1
2
(wn, |∇vn|2)L2(�0)|

≤ C[‖vn‖L∞(� )‖vn‖H 1(� )‖wn‖H 1(� ) + ‖wn‖L∞(� )‖vn‖2 1 ] (4.38)
0 0 0 0 H (�0)
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≤ CT,R[‖vn‖L∞(�0)‖vn‖H 1(�0) + ‖vn‖2
H 1(�0)

] ≤ CT,R‖vn‖2
H 2−ε(�0)

≤ η‖vn‖2
H 2(�0)

+ Cη,T ,R,

for η > 0 can be taken arbitrarily small.

Estimates for I22.

|I22(t)| ≤ 3
2
|(vn, |∇vn|2)L2(�0)| + |(vn

t ∇wn,∇vn)L2(�0)|

≤ 3
2
‖wn

t ‖L2(�0)‖∇vn‖2L4(�0)
+ ‖vn

t ‖L2(�0)‖∇wn‖L4(�0)‖∇vn‖L4(�0)

≤ CT,R[‖∇vn‖2L4(�0)
+ ‖vn

t ‖L2(�0)‖∇vn‖L4(�0)] ≤ Cη,T ,R‖∇vn‖2L4(�0)
+ η‖vn

t ‖2L2(�0)

≤ Cη,T ,R‖vn‖2
H 2−ε(�0)

+ η‖vn
t ‖2L2(�0)

≤ Cη,T ,R‖vn‖2
H 2(�0)

+ η‖vn
t ‖2L2(�0)

,

(4.39)
for any η > 0 arbitrarily small.

Computing I3. Since f is of class C1, it follows from the embedding H 2(�0) ⊂ L∞(�0) and 
uniform bounds for the approximated solutions,

|I3| ≤ CT,R‖vn‖H 2(�0)‖vn
t ‖L2(�0) ≤ η‖vn

t ‖2L2(�0)
+ Cη,T ,R‖vn‖2

H 2(�0)
, (4.40)

for η > 0 arbitrarily small.
Plugging (4.37) into (4.27) and using estimates (4.36), (4.39) and (4.40), also choosing η <

k/2(2σ + 1), we conclude

d

dt
[Wn + 2σI21]+ k

2
‖vn

t ‖2L2(�0)
+ ‖d1/2un

t ‖2L2(�) + c2‖l1/2un
t |�‖2L2(�)

≤ CT,R‖vn‖2
H 2(�0)

[1+ ln1/2(1+Wn + ‖vn‖2L2(�0)
)] + 2σCη,T ,R‖vn‖2

H 2(�0)
.

(4.41)

Let us define

W̃n ≡Wn + 2σI21 + ‖vn‖2L2(�0)
+ c0, (4.42)

where c0 > 0 is an appropriate constant. Note that, since ‖v‖2
H 2 is equivalent to a(v, v) +‖v‖2L2

, 
it follows from inequality (4.38) that, making η sufficiently small and taking c0 > 0 appropriate, 
it follows that

W̃n ≥ C1,η[Wn + ‖vn‖2L2(�0)
] ≥ C2,η‖vn‖2

H 2(�0)
.

Also, taking the derivative of W̃n we obtain

d

dt
W̃n = d

dt
[W + 2σI21] + 2(vn, vn

t )L2(�0),

which implies
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d

dt
W̃n + (k/2− ε)‖vn

t ‖2L2(�0)
− Cη,ε‖vn‖2H 2(�0)

≤ d

dt
[W + 2σI21] + k

2
‖vn

t ‖2L2(�0)
.

Choosing ε < k/2, and returning to (4.41) and with the obtained bounds we conclude

d

dt
W̃n ≤ C1W̃n ln1/2(1+ W̃n) + C2W̃n. (4.43)

Solving the differential inequality (4.43), above we obtain

Wn(t) + ‖vn‖2L2(�0)
≤ CW̃n(t) ≤ CT,R(1+ W̃n(0))βT,R , for t ≥ 0,

where CT,R and βT,R are positive constants.
Using the expression of W̃n and inequality (4.38), the above estimate implies

sup
t∈[0,T ]

{‖zn
tt‖2L2(�) + ‖zn

t ‖2H 1(�)
+ ‖wn

tt‖2L2(�0)
+ ‖wn

t ‖2
H 2(�0)

} ≤ C∗
n,

for n = 1, 2, . . . , where

C∗
n ≡ CT,R

[
1+ ‖zn

tt (0)‖2L2(�) + ‖zn
1‖2H 1(�)

+ ‖wn
tt (0)‖2L2(�0)

+ ‖wn
1‖2H 2(�0)

+ ‖wn
1‖4H 2(�0)

+‖wn
0‖4H 2(�0)

]
.

Therefore, in order to obtain uniform estimates for the derivatives in higher-energy spaces, 
we must find a bound for the initial data in the above expression. If we denote zn

2 ≡ zn
tt (0) and 

wn
2 ≡ wn

tt (0), then these elements are given by the system

(
zn
2, φ
)
L2(�)

+ (wn
2 ,ψ

)
L2(�0)

= −c2
(∇zn

0,∇φ
)
L2(�)

− a(wn
0 ,ψ) + c2

(
wn
1 , φ|�0

)
L2(�0)

− (d · zn
1, φ
)
L2(�)

− k
(
wn
1 ,ψ

)
L2(�0)

− c2
(
l · zn

1 |�,φ|�
)
L2(�)

− c2l0
(
zn
0 |�1, φ|�1

)
L2(�1)

−ρ
(
zn
1 |�0 ,ψ

)
L2(�)

− G(wn
0 ,ψ),

(4.44)

for (φ, ψ) ∈ Vn.
In order to obtain an additional estimate for the approximate solutions, we need to show 

that the inner products above are uniformly bounded for every (φ, ψ) ∈ L2(�) × L2(�0) by 
choosing (zn

0, z
n
1, w

n
0 , w

n
1 ) ∈ Vn sufficiently close to (z0, z1, w0, w1) such that supn∈N C∗

n < ∞. 
Let (z0, z1, w0, w1) ∈ H 2(�) ×H 1(�) ×H 4(�0) ×H 2(�0) satisfy the compatibility conditions 
described in Theorem 2.1. Define zn

1 = P̂nz1 and wn
1 = Pnw1, where P̂n and Pn are the orthopro-

jectors over span{φi : i = 1, . . . , n} and span{ψi : i = 1, . . . , n}, respectively. Note that, in this 
case we have

∥∥(zn
t (0),w

n
t (0))

∥∥
H 1(�)×H 2(�0)

=∥∥(zn
1,w

n
1 )
∥∥

H 1(�)×H 2(�0)
≤C ‖(z1,w1)‖H 1(�)×H 2(�0) ,∀ n ∈N;

(zn,wn) → (z1,w1) in H 1(�) × H 2(�0) as n → ∞.
1 1
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The above inequality provides a uniformly bounded approximation for the elements z1 and 
w1. Let us now construct the remaining approximated initial data. To this end, let us consider the 
following functional � : H 1(�) × H 2(�0) → R given by

�(φ,ψ) ≡c2(∇z0,∇φ)L2(�) + c2l0(z0|�1 , φ|�1)L2(�1) + c2(l · z1|�,φ|�)L2(�)

− c2(w1, φ|�0)L2(�0)

+ a(w0,ψ) + (|∇w0|2∇w0,∇ψ)L2(�0) + (∇{w2
0},∇ψ)L2(�0) + M(w0,ψ)L2(�0),

where M > 0 is a constant that will be specified later. Using Green’s formulas and the compati-
bility conditions between the initial data, we obtain

|�(φ,ψ)| ≤ |c2(�z0, φ)L2(�)| + |(�2w0 − div{|∇w0|2∇w0} − σ�{w2
0} + Mw0,ψ)L2(�0)|

≤ C
(‖(z0,w0)‖H 2(�)×H 4(�0)

)‖(φ,ψ)‖L2(�)×L2(�0),

for every (φ, ψ) ∈ H 1(�) ×H 2(�0), which shows that � is a continuous functional with respect 
to L2-topology. We use the same notation � for its extension to L2(�) × L2(�0). Hence, for 
every n ∈N , we consider (zn

0, w
n
0 ) ∈ Vn satisfying

c2(∇zn
0,∇φ)L2(�) + c2l0(z

n
0 |�1 , φ|�1)L2(�1) + a(wn

0 ,ψ) + (
∣∣∇wn

0
∣∣2∇wn

0 ,∇ψ)L2(�0)

+σ(∇{(wn
0 )

2},∇ψ)L2(�0) + M(wn
0 ,ψ)L2(�0) = �(φ,ψ), for (φ,ψ) ∈ Vn.

(4.45)

The sequence {(zn
0, w

n
0 )}n∈N is a Galerkin approximation sequence for the following (nonlin-

ear) elliptic variational problem

c2(∇z,∇φ)L2(�) + c2l0(z|�1 , φ|�1)L2(�1) + a(w,ψ) + (|∇w|2∇w,∇ψ)L2(�0)

+ σ(∇{w2},∇ψ)L2(�0)

+ M(w,ψ)L2(�0) = �(φ,ψ), for (φ,ψ) ∈ H 1(�) × H 2(�0).

Since the elliptic operator associated with the previous variational problem is a locally Lip-
schitz perturbation of a monotone operator and, in addition, is coercive for suitable large M , it 
follows that {wn

0}n∈N is uniformly bounded in H 2(�0) and wn
0 → w0 strongly in H 2(�0).

Finally, identities (4.44) and (4.45) imply

(
zn
2, φ
)
L2(�)

+ (wn
2 ,ψ

)
L2(�0)

= −[�(φ,ψ) + (d · zn
1, φ
)
L2(�)

+ (kwn
1 + ρzn

1 |�0 − Mwn
0 + f (wn

0 ),ψ
)
L2(�0)

]

for every (φ, ψ) ∈ Vn. Since �(·, ·) is continuous in L2(�) × L2(�0), {(zn
1, w

n
1 )} is uniformly 

bounded in H 1(�) × H 2(�0) and {wn
0 } is uniformly bounded in H 2(�0), we conclude from the 

previous identity that {(zn
2, w

n
2 )} is uniformly bounded in L2(�) × L2(�0), which provides an 

additional a priori estimate for the first and second derivatives of the solutions, namely,

{(zn
t , z

n
tt ,w

n
t ,wn

tt )}n∈N is bounded in L∞(0, T ;H 1(�) × L2(�) × H 2(�0) × L2(�0)).
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Feeding this time regularity back into variational form allows us to boost the regularity in space 
by improving H 3(�0) to D(A) for the plate component. The above boundedness together with 
the weak-star convergence of {(zn, zn

t , wn, wn
t )} to (z, zt , w, wt) in L∞(0, T ; H) allows us to 

pass to the limit in (4.25) and conclude that the solution (z, w) belongs to the class

(z, zt , ztt ) ∈ C([0, T ];D(A) × H 1(�) × L2(�));
(w,wt ,wtt ) ∈ C([0, T ];H 4(�0) × H 2(�0) × L2(�0)),

which concludes the proof. �
Remark 4.2. Notice that the estimates (uniform with respect to the discretization parameter “n”)
for the integrals I1 I2 and I3 are more delicate. This is particularly true in the case of free (F) 
boundary conditions. The estimate for I1 has two hurdles. The above critical unboundedness of 
the restoring forces of the plate equation and the inhomogeneity in the boundary conditions which 
are not controlled by the finite energy topology. To address the difficulties, logarithmic control 
of critical Sobolev embedding is employed. However, the Galerkin approximations do not yield 
H 4(�0) regularity. (This is because the operator AG has its range only in H 3(�0) and this is the 
effect of free boundary conditions.) Therefore, the plate solution is shown to have H 3(�0) space 
regularity. The additional boost to H 4(�0) requires a subtle approximation procedure for initial 
data, as presented above.
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