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Abstract

We consider a structural-acoustic wall problem in three dimensions, in which the structural wall is mod-
eled by a 2D Kirchhoff-Boussinesq plate and the acoustic medium is subject to boundary damping. For
this model we study the existence of a continuous nonlinear semigroup associated with the model in the
finite energy space. We show that strong/weak continuity of the semigroups depends on the support of the
boundary damping. The complications are related to supercritical nonlinearity exhibited by the plate along
with the compromised boundary regularity of the acoustic waves. Compensated compactness methods along
with a hidden boundary regularity of hyperbolic traces are exploited in order to establish weak (resp. strong)
generation of a nonlinear semigroup subjected to feedback forces placed on the boundary of the acoustic
medium.
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1. Introduction

We consider structural acoustic interactions comprising of an acoustic medium modeled by
an acoustic wave propagating in a 3-dimensional bounded domain with hard and elastic walls
coupled with an elastic structure which is modeled by a plate equation with rough nonlinear ef-
fects resulting from internal and external forces affecting the structure. The coupling is of hybrid
type and the plate oscillations act as a force on the acoustic medium, while the acoustic veloc-
ity induces oscillations of the structure. Structural acoustic models have acquired considerable
attention in both engineering and mathematical literature, cf. [9,12,10,23,30,27] and references
therein. This is due to an array of technological applications which includes noise suppression in
acoustic chambers and pressure reduction in the cockpit of a helicopter. The associated modeling
and resulting PDE systems became a rich source of mathematical analysis, see e.g. [7,13,27] and
references therein. The basic dynamics is an interaction between the acoustics waves hitting the
elastic walls which then, through oscillations, provide a feedback transferred back to the acoustic
environment. Not surprisingly, the way both dynamics interact on a common interface (elastic
wall) is the key element and the main carrier of propagation of effects emitted by each com-
ponent. Mathematically, this part has been a source of challenges and recent discoveries. While
each component of the system may have a well understood dynamical behavior, the interface
effects introduce new phenomenological peculiarities which lead to new effects emerging for the
overall structure.

As an acoustic medium domain we consider & C R? an open, bounded domain with boun-
dary I' = T UTy, where I'1, 'y are relatively open and I'y N I'g = @. The structure wall will
be represented by the portion I'g of the boundary, which will be assumed flat. The latter is only
assumed for simplicity in order to focus on the nonlinear aspects of the model. Curved walls and
shells can also be considered by using intrinsic geometry tools [22]. The dynamics of the acoustic
medium 2 are associated with the velocity potential function z, while the oscillating dynamics
on the wall 'y will be represented by the vertical displacement w. The structure is subject to an
internal restoring nonlinear force div{|Vw|?* Vw} and an external semilinear force Aw?, typical
for Boussinesq models. It is known that the Boussinesq plate alone, without restoring forces, can
give rise to blowing up in finite-time solutions, see e.g. [32,36]. However, the presence of restor-
ing forces will provide, as expected, some stabilizing effect for the low frequencies. On the other
hand, it is precisely this term that introduces new challenges in the analysis of wellposedness of
weak solutions due to its supercriticality and the fact that the term is not locally Lipschitz on the
underlying phase space. The PDE model is described below.

Acoustic Medium. The following wave equation describes the temporal evolution of the acoustic
dynamics in

2 —AAz+dx)zz=0 in Q= x (0,00);

_ ) =loz on Xy1=TI7x(0,00);
Oz +1x)z = { w; on Xg=Tg x (0,00):
z2(0)=z¢; z(0)=2z; in L,

(1.1)

where ¢ > 0, [p > 0. The function /(x) > 0 corresponds to a potential boundary dissipation and
d(x) > 0 in  corresponds to a potential frictional damping in the acoustic environment. Both
functions /(x) and d(x) are assumed sufficiently smooth.
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Structural Wall. Let f be a continuous function. The following nonlinear 2D Kirchhoff-
Boussinesq equation subjected to nonlinear restoring forces and a Boussinesq source describes
the temporal dynamics on the wall I'.

wi + Aw +kw; + pzilp, = div{|Vu|? Vw} 4+ 0 A{w?} — f(w) in So;
Boundary Conditions of type (C), (SS) or (F) on aT'g x (0, 00); (1.2)
w(0) =wo, w;(0)=w; on TI;

where p, o, k > 0, and the boundary conditions are given by

e Clamped (C): w=0and Vw =0 on 97y x (0, 00);
e Simply Supported (SS): w = Aw =0 on 3y x (0, 00);
| Aw+ (1 —p)Biw=0;
o Free (F): { AW+ (1 — ) Bow = (|Vw|> Vw + o V[w?]) - v,

on 3T x (0, c0), where v = (v1, v2) denotes the normal exterior vector to the boundary of 'y
and the boundary operators B and B are given by

2 2 .
Biu=2v1v2uyx x; — Villxyxy — Vallxx;s (1.4)

Byu = 0, [(V12 — v%)uxlx2 + V12 (Uxyxy — uxm)] , (1.5)

for every u € H*(I'g), T = (—v2, v1) is the unit tangential vector and 0 < y < 1/2 is the Pois-
son’s ratio.

Remark 1.1. The structural model governed by a nonlinear plate equation of Kirchhoff-
Boussinesq type is a limit of Midlin Timoshenko system in 3 variables: two rotation angles
of filaments and the transverse displacement, also known as bending component. Letting the pa-
rameters corresponding to shear and rotation tend to zero yields the nonlinear K-B plate for the
variable representing transverse displacement. The rigorous asymptotic argument is provided in
[19,29].

It is known that the presence of the “Boussinesq” forcing term (o > 0) may lead to blow-up
in finite-time of structural solutions. This effect is counteracted by a restoring internal force
div{|Vw|?* Vw}. In some sense, the competition between the two determines the global behavior
of the model. At the same time, the restoring force gives rise to supercritical nonlinear terms
making the analysis of wellposedness challenging. In order to handle these effects, strong damp-
ing was added to the plate equation in earlier works [32,36]. The latter has regularizing effect
on the dynamics making it of parabolic nature. (Semigroup generated by the linear plate model
becomes analytic.) Our goal is to refrain from introducing these regularizing effects by consid-
ering the hyperbolic-like character of the plate equation. This leads to a subtle analysis of the
effects caused by the supercritical (not locally Lipschitz) nonlinear terms affecting the plate in
conjunction with boundary dissipation affecting the acoustic medium.

Remark 1.2. Boundary conditions imposed on the structure include the three basic sets: clamped,
hinged and free. However, from the mathematical point of view, free boundary conditions are the
most challenging as they present several subtleties in the study. One of the reasons is that Aw €
L>(I'y) does not control the H(I'y) topology. On the other hand, free boundary conditions have
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a lot of applications in structural theories. This is the reason for the emphasis on free boundary
conditions in this work.

Our main goal is to study the evolution of the system (1.1)-(1.2), which describes the inter-
action between the waves propagating in the acoustic medium and the vibration of a portion
of the structural wall that confines the medium. Since the ultimate goal of such studies is the
long-time behavior of finite energy solutions, we will consider dissipative effects acting upon
the interaction such as frictional £ > 0, d(x) > 0 and boundary /(x) > 0 dissipation. The model
is of interest not only because of the presence of a “supercritical” restoring term, given by the
divergence, but also the semilinear energy building source (o > 0) potentially causing a blow-up
of the plate energy, and in general the so called “leak of the energy”. The combination of the
two produces interesting phenomenological effects for which some of the analytical tools have
been developed in the past within the context of plate theory, cf. [19,20] and references therein.
However, our main interest is in studying interaction between plate oscillations and propagation
of acoustic waves in an acoustic medium. Such interaction is of hybrid type, where the spatial
domain I'g supporting plate oscillations becomes part of the boundary of the acoustic medium. It
is precisely the interaction between the “leak of energy”, supercriticality of restoring forces act-
ing upon the structure and boundary forces acting upon the acoustic medium which brings new
and interesting mathematical and phenomenological phenomena at the level of wellposedness
(uniqueness, robustness and regularity) and stability of weak solutions to the entire hybrid inter-
action. It should also be noted that the structural dynamics does not account for any regularizing
effects (like Kelvin-Voigt damping making the plate dynamics related to analytic semigroup),
where the latter was widely considered in past literature [2,10,11,23].

Structural acoustic models with an interface between structural and acoustic medium have
been of major interest due to an array of applications arising in engineering and life sciences. For
more details on structural acoustic models we refer to [10,11,16,23,27] and references therein,
mentioning suppression of noise in an helicopter, control of sound in an acoustic chamber as
examples. On the other hand, mathematically, they provide an interesting problem due to an
interface where the interaction and propagation of effects take place on the boundary, see [1,
5,10,26]. It is known that boundary behavior of solutions in hyperbolic-like dynamics (without
inherent smoothing) is challenging and requires a number of a priori estimates, often based on
microlocal analysis which exhibits peculiar behavior of boundary hyperbolic traces. In fact, there
has been a considerable activity in this area, also within a context of acoustic models, see e.g.
[16,22,26,34]. One of the findings in the present work is that boundary behavior of the traces
to an acoustic pressure plays dominant role in the analysis of supercritical nonlinear effects of
the elastic medium and in propagating strong Hadamard wellposedness for the entire structure.
Thus, the interaction between the two media and propagation of relevant effects is at the heart of
the problem and a source of challenges.

In fact, the final result depends on the type of dissipation imposed on the acoustic environment.
In case when the dissipation is internal d(x) > 0, [ = 0, the resulting dynamical system provides
a continuous flow with respect to the strong topology of the phase space. In case when the
acoustic dissipation is localized on the boundary /(x) > 0, the flow is generally continuous (with
respect to the initial data) in a weak topology only. The main reason is due to the fact that in
the latter case energy identity for weak solution may not hold in general. The method based on
time reversibility fails as the reverse acoustic dynamic is ill-posed while the method based on
finite difference approximation (see [25]) appears to fail due to supercritical nonlinearity of the
structure. Therefore, derivation of energy equality for weak solutions is a challenging issue in the
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boundary case. However, in situations where boundary dissipation has a “strategic” placement,
the two methods referred to above cooperate leading to strong semigroup.

The rest of this paper is organized as follows: Section 2 presents the main result while Sec-
tion 3 provides necessary auxiliary results and analysis of the linear associated problem along
with several nonlinear estimates. Finally, Section 4 is dedicated to the proof of the main result
stated in Section 2.

2. Main results

Our objective in this paper is to establish wellposedness of the dynamics represented by a
coupled PDE system presented above, which should culminate with the statement of represen-
tation of the system by a dynamical system defined on a “natural” phase space. To this end,
Hadamard wellposedness of the semi-flow at the finite energy level, is the main goal. The corre-
sponding results are formulated in the present section while the proofs are relegated to Sections 3
and 4.

2.1. Notation

We begin by introducing some notation that will be used thorough the text. We consider
the Hilbert space = H, x H,,, also called finite energy space, where H, = H'(Q) x L2(R)
and Hy, = H x Ly(T"g), and H depends on the boundary conditions imposed on the struc-
ture:

HZ(To) if (C);
H={ H*To)NH} Ty if (S9);
H?(Ty) if (F).

The total energy functional associated with solutions of system (1.1)-(1.2) and induced by the
topology of # is given by

E(t)zE(t)+a/w|Vw|2dF0+/F(w)dFo, (2.1)
o Lo

where F is the antiderivative of f, as specified in Assumption 3.1, and E denotes the positive
part of the total energy, given by E(t) = E,(t) + Ey(t), where E, and E,, stand for the portions
corresponding to the wave and plate equations, respectively, and are given by

1 2]
Ez(t)z5f|zt|2+c2|vZ|2dsz+CT°/lz|r1|2dr1, (2.2a)
Q T,
1 , 1 . 1
Ey@) = 3 lwe|” + 3 [Vw|™ |dTo + Ea(w, w), (2.2b)
Lo

where a(-, -) is a bilinear form in H2(Ty) given by
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/ AuAvdlg, inthe cases (C) and (SS);

To

a(u,v) = / [ux1x1 Uxyxy T Uxpxy szxz] dlo + / [M(Mxlxl Uxyxy + Uxpxy vxm)] dTly 2.3)
Fo To

+ / 2(1 — @)y, x, V5, x,d0,  in the case (F),
Lo

for u, v e H3(Iy).

Remark 2.1. Throughout the text, we will assume the following relation among the coefficients:
1 — ¢™2p = 0. This is without a loss of generality. Simple rescaling of the energy allows to
eliminate this condition.

Notice that the functional E is equivalent to the usual topology of H. On the other hand, the
total energy £ is not positive and does not exhibit dissipative aspect. Indeed, a straightforward
formal computation of the energy identity shows that £(¢) satisfies the following equation

%8(r)+kf |w,<r)|2dro+c2/1<x>|zt<r>|r|2dr+/d(x> ()P 4
Ty

=0 f wy (1) |[Vw(@#)|* dT.
Io

The above identity illustrates the so called “leak” of energy when o > 0.
2.2. Formulation of the main result

In order to establish our wellposedness result, we start by providing the definition of weak and
strong solutions of the system (1.1)-(1.2). We say a pair of functions (z, w) is a weak solution on
the interval [0, T'], for T > 0, if (z, z;, w, wy) € Loo(0, T; H). Moreover, the following properties
are satisfied:

i. themap t € [0, T]+— (z(¢), z;(¢), w(t), w,(¢)) € H is weakly continuous and, in addition,
1
[2z¢|r € L2(0, T; La(T));
ii. z(0) = z0, 2:(0) = z1, w(0) = wo and w;(0) = wy;
iii. the pair (z, w) is a distributional (in time) solution of the following equation

d
0= 7 [ (). D) o) + Wi (), ¥) Loy + PEDrg. VLo ] + ¢ (V2(t), V) 1, ()

Fa@), )+ (d - 2(0), D) Loy + U220 2P0 Loty + kWi (). W) Ly(ry)

- cz(u),(t), ¢|F0)L2(F0) + CZZO(Z(I)|F1 ) ¢|F1)L2(F1) + G(U)(t), W)s
(2.4)
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for all (¢, ¥) € H(Q) x H, where

G(u,v) = (IVul* Vu, Vo)1, o p + 0 (Vi) VO 1 rorp + (F @), V) 1y (2.5)

for every u, v € H*(I'p). Furthermore, we say that a weak solution (z, w) in the interval [0, T']
is strong (classical) if (z, z;, z/1) € C(0, T; H*(R) x H) and (w, w;, wy;) € C(0, T; H*(I'g) x
Hy).

Our main result reads.

Theorem 2.1 (Existence, uniqueness, Hadamard wellposedness and regularity). Assume that
f € CH(R). With respect to the dynamics of system (1.1)-(1.2), subject to any of the bounda-
ry conditions (C), (SS) or (F), the following holds:

1. Existence of a strongly continuous semigroup in a weak topology of the phase space
H. For every initial data Uy = (20, 21, Wo, W1) € H, there exists a unique weak solution
(z, w) in the class U = {(z, z;, w, w;) € C([0, T]; H)}, for some T > 0, which may depend
on the initial data. This solution is global (T > 0 can be taken arbitrary) provided that f
satisfies the non-explosion Assumption 3.1. Furthermore, the solutions generate a strongly
continuous semigroup Sy with respect to weak topology in H, given by the formula

SUp=U(t), foreveryUyeH. (2.6)
This is to say that for Uy, — Uq in H one has U, (t) — U (¢t) in H uniformly in t € [0, T].

Continuous dependence of solutions on the initial data is with respect to weak topology of
‘H. Corresponding solutions satisfy the following energy inequality

t t t
1 1
e +k [ Moo ds + [ 1452 s + [ 1326001 yds
’ ’ ’ @.7)

t
<EO) 40 f (e (5), [Vw(s)P) Ly ds.
0

2. Energy identity and strong continuity with respect to the initial data. Let us impose
the non-explosion condition (3.1). In case when [(x) =0 on T or Ty C supp [(x), the weak
solution (z, w) must satisfy the following energy identity:

t t t
1 1
e +k [ Moo ds + [ 1452 auds + [ 13201 yds
0 0 0 2.8

t
=£(0) +U/(wt(s)a IVw($)1%) L,y ds.
0
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In addition, the nonlinear semigroup in part 1 becomes continuous with respect to the strong
topology of H.

3. Regularity. Assume that Assumption 3.1 is in place. In addition assume that 2 is sufficiently
smooth. Weak solutions defined above become strong provided that Uy € H 2(Q) x HY(Q) x
H*(To) x H*(Ty) satisfies the following compatibility conditions:

For the acoustic medium:

) —lozo on Ty
dzo+1(x)z1 = { wi onTy’ (2.9a)

For the structural wall:
it. in the clamped (C) case: wy = w1 =0 and Vwg = Vw; =0o0n dTy,
iii. in the simply supported (SS) case: wy = w1 =0 and Awy =0 on al'y;
iv. in the free (F) case:

Awo+ (1 — n)Biwy =0, on olg; (2.9b)

wo + (1 — w) Bowo = (|Vwo|? Vwo, VIR2 + G(V{wg}, V)r2, on dlg, '

The above result shows that system (1.1)-(1.2) always defines a weak semigroup in the finite
energy space H. It is the effect of the boundary dissipation in the acoustic medium I(x) > 0
which may compromise continuity properties of this semigroup. However, a strategic placement
of the dissipation allows to upgrade the weak continuity of the semiflow to a strong one. See part
2 of Theorem 2.1. The latter is due to the validity of the energy identity (2.8) an essential tool in
this study.

Remark 2.2. As can be seen from the energy balance, the system is not dissipative. There is
a “leak” of energy on I'g. In case when the boundary damping is active but supp [(-) N Ty is
strictly contained in I'g. Part 1 of Theorem above leads to an existence of semigroup continuous
in a weak topology only. Whether this weak continuity could be improved to a strong one is at
present an open problem.

2.3. Comments

1. Structural acoustic models [12,30] have attracted considerable attention in both engineer-
ing and mathematical literature. We shall focus on the latter. A series of papers [9-11,23] studied
control problems (piezoceramic, piezoelectric patches) formulated for linear models, often with
Kelvin-Voigt damping imposed on the plate. These works were followed by [1,6,7,2,3,5,4,27],
still within the context of linear models, with boundary/point, possibly nonlinear feedback con-
trols. More recently, nonlinear plate/shell models, being more accurate from the physical point of
view, have attracted much attention, particularly with respect to long-time behavior [16]. Typical
models accounted for semilinear effects in acoustic waves along with large displacement models
in plate theory such as Berger or Von Karman [17,21]. Clearly, any theory of long-time behav-
ior depends on a good understanding of the dynamical system associated with the flow [8,21].
While in case of Karman-type models, the developments of past years in the area of existence,
uniqueness and related compensated compactness [24] provide a good footing and background,
this is not the case for K-B model under consideration in this paper. The supercriticality of the
nonlinear internal force in the plate is a predicament for a construction of dynamical system,
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with respect to both weak and strong topology of the natural phase space. We note that in [13],
supercritical terms in the plate model are mitigated by a supercritical structural damping. This is
not the case in the present paper where the coupling via the boundary with the Neumann oper-
ator prevents standard estimates to be applied. The latter has to do with the fact that Lopatinski
condition is not satisfied (dim 2 > 1), thus L, Neumann boundary data do not produce finite
energy solutions. In the past, this predicament was circumvented by considering more regular
plate models. In the present work, we shall rely on “hidden regularity” of solutions to acoustic
wave equations [34] and compensated compactness methods associated with supercriticality of
PDEs describing elastic structures. The key element of the analysis relies on exploiting boundary
damping of an acoustic medium and its interaction via interface with the plate oscillations in
order to establish full Hadamard wellposedness of the solutions. Interestingly enough, boundary
damping alone leads to the problem of making the structure not time reversible, thus preventing
well-established methods to show the energy equality to hold [8]. On the other hand, when the
damping is properly placed, it does provide a mechanism for proving full Hadamard wellposed-
ness of the entire structure, as ascertained by our main result. This is achieved by combining
hidden regularity for the dynamic Neumann operator with the damping along with finite differ-
ence approximation developed in [20,25].

2. The model under consideration is the simplest one which exhibits the main feature/difficul-
ties of the problem under study. These are (i) unbounded on the phase space nonlinearity along
with (2) boundary damping on the acoustic medium. One could consider curved walls [22], extra
semilinear terms in the acoustic wave or boundary damping in the plate, as a mechanism of sta-
bilizing oscillations [1,19]. However, we opt for the simplest possible model where the features
to be emphasized are the main focus.

3. Let us make a few comments on the strategy pursued for the proofs. Existence of weak solu-
tions is proved rather standard Galerkin method supported by several critical estimates presented
in Section 3. The key element in constructing weak semigroup is the uniqueness of weak so-
lutions. This is accomplished (Section 4.1) by controlling the blow-up of L ,(I"g) norms for
finite-dimensional projections of H'!(I'g) functions. In order to claim strong semigroup property,
the energy identity satisfied by all weak solutions is an essential ingredient. It is here where the
interaction between acoustic and structural media plays a dominant role, in particular, the “hid-
den regularity” of hyperbolic traces in the non-Lopatinski case. In fact, such identity is derived
(Section 4.2) when the support of boundary dissipation contains I'g. Finally, the regularity of
weak solutions is obtained in Section 4.3 by deriving an appropriate a priori bound satisfied by
finite dimensional Galerkin approximations. This is possible due to the logarithmic control of
Sobolev’s imbedding valid for H 1(Tp) N H2(I'p) functions. However, it should be noted that his
task is particularly subtle in case of free boundary conditions which “spill over” unbounded and
uncloseable trace operators in the variational formulation.

3. Preliminaries
In this section, we provide some preliminary estimates used in the proof of the main results.
3.1. Assumptions

In order to obtain global solutions and study the asymptotic behavior, the following assump-
tion on the source term is imposed.
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Assumption 3.1. Assume f € C!(R) satisfies the following non-explosion condition

i. for the clamped (C) and simply supported (SS) cases:
N
F(s) = / f(r)dr > —8s* — B, Vs € R, (3.1a)
0

for some § > 0 sufficiently small and 85 € R;
ii. for the free (F) case:

F(s) > —8s*> — B, Vs € R, (3.1b)
for some 8, § € R.

Remark 3.1. Inequality (3.1a) holds for § > 0 arbitrarily small if

o(p) = limint L% > ¢, (3.2)

lsl—>00 s |s|P~1 ~

for p = 3. Inequality (3.1b) will remain true when v(1) > —oo.
3.2. A priori lower bound estimate

Let (z, w) be a weak solution to (1.1)-(1.2). Using the notation for the energy introduced in
Section 1, we have

Ei(t) = E(t) + o (w(®), [Vw(®)|*) Ly (To)» (3.3)
@ @), VwOP) Lol < 5 IV0OIL, 0 + = WOy (3.4)

for any o > 0. In the case of clamped (C) or simply supported (SS) boundary conditions, we can
use Poincaré’s inequality in order to estimate the L, norm as follows

C?|To|
IwllLyy < = — +eIVwlir).

for any ¢ > 0. In this situation, we rewrite (3.4) as follows

oaC? (Tl n (aea

1), [Vw(t)|? <
lo(w(@), IVw(D)|)Lyrg)| < % >

o 4
+ ) IVl GS)

for any ¢, > 0 and w € H2(F0) N Hol(Fo). Now, choosing « > 0 and ¢ > 0 such that

ca 1y_1
o (7 + E) =g, wWe conclude

1
o WO VWO L] < CT0) + ¢ IVwOIE iy H©or(SS).  (3.6)

396



1. Lasiecka and J.H. Rodrigues Journal of Differential Equations 298 (2021) 387-429

In the case of free (F) boundary conditions, Poincaré’s inequality cannot be used. Therefore,
choosing & = 40 in (3.4), we obtain

1 .
lo (w(t), VWO Lol < < VWO, o + 202 lwOI2 ., ifF).  (3.7)
8 4(To) 2(To)

Inequalities (3.6) and (3.7) allow us to conclude the following lower estimate for energy E ()
given by (3.3):

[E-(t) + Ey(1)] — C(To) < E1 (1) if (C) or (SS); (3.8a)

N — N —

[E.(t) + Eu ()] — 207 |w(®) 1] 1) < E1(0) if (F). (3.8b)

Combining (3.8a) and (3.8b) yields the following estimate valid for any of the boundary condi-
tions under consideration.

1
SEW®) < E\@)+ CTo) + 0 [w®],ry - (3.9)

Finally, it follows from (3.8a), (3.8b) and Assumption 3.1 that, for a proper choice of 6 € R,
the total energy £(¢) is bounded from below by its positive part, that is to say: there exist constants
Ci > 0 and Mj € R such that

ClE(t) + My < &), fort=>0. (3.10)
This inequality will be used in the next section for the proof of the main results.
3.3. Semigroup formulation of the linear problem

Let us consider in this section the following linear system associated with (1.1)-(1.2) and
given by

Wave Problem:

2 —CAz+z+dx)z; =0 in Q;
_ —lpz in Xi;

oz +I(x)z = { w, i So

z(0)=z0; z(0)=2z in €,

Plate Problem:

(3.11)

wtt+A2w+kw[+ ,OZ[|[‘0=O in  Xo;
Boundary Conditions of type (C), (SS) or (F) on aI"g x (0, 00); (3.12)
w(0) =wp, w;(0)=w; on Tp;

In order to express the system in a semigroup framework, let A be an extension to L (2) of the
Laplace operator with Robin-like boundary condition, given by
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=—CAA+1T

D(A) = {v cHY(Q): AveLy(Q), duv=0onTy and 8yv+Iv=0on 1“1] .
The associate Neumann operators N; : Ly(I';) — L(2), i =0, 1 are defined by

(—’A+1D¢p=0, inS,
ve L))+ Njv=¢ iff ¢ is the solution of 3 v inD:
_¢+ZO¢|F1= T v
ov 0, in I'\T7.

Remark 3.2. It is well-known that A is a self-adjoint operator with a compact resolvent. There-

fore, the fractional powers of A are well-defined, in particular, we have D(A%) = HY(Q). Also,
we are going to consider H!(€2) with the equivalent norm

1 2
Il =14kl g, =/c2 Vul? + |u|2dsz+c210/ lulr, [y,
Q Iy

forall u € D(A?).

Remark 3.3. We recall that, if N stands for the corresponding adjoint operator of N;, then
N} Au = c2u|ri for any u € H'(Q) (see [28]) is the trace operator. In particular, if we consider
Nov = Nv for every v € L>(I'g), where v stands for the extension of v to I" by zero outside of
o, then NjAu = c2u|r0 for every u € H'(Q).

In connection with the plate problem, we will consider the extension A to Ly(I"g) of the
biharmonic operator, given by

A= Az,
H*(I'o) N Hg (To) if (C);
D(A) = {ve H*(Tp): v=0and Av=0inal} if (SS);
ve B4 Ty | AUt U —wBiv=0 —  op Uier
0 hAv+ (1 —pu)Bv=0 0 ’

Using the notation above, we will consider the following linear abstract problem associated
with the system (3.11)-(3.12)

21 + Az + [Nol (x) Ny + N1l (x)N{1Az; — Now;) +dlIz; =0,
wie + Aw + kTw, + ¢ 2pNi Az, =0, (3.13)
(z(0), z:(0), w(0), w(0)) = (z0, 21, wo, w1) € H,

where I and Z stand for identity operators on L,(£2) and L, (I'g), respectively.
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Remark 3.4. Recall that (see [19]) for every s € [0, 1/2] we have

Hy*(To), s #1/8,3/8 if (C);
H¥ (o) N Hy (Ty), s> 1/4 if (SS);
HY (Do), s <1/4, s #1/8  if (SS);
H*(Ty), if (F).

DA% =

Moreover, corresponding Sobolev norms are equivalent to the graph norm of respective fractional
powers of A, that is to say: there exist constants c1, ¢; > 0 such that

€1 “‘ASMHLZ(FO) < lull s gy < €2 ||"4SMHL2(F0)’

for all admissible s € [0, %], and u € D(A%).

Denoting U = (z, z;, w, wy) and Uy = (20, 21, Wo, w1), the system (3.13) can be written in
the form

%U(t)—AU(t):O; U (0) =Uy,

where A : D(A) C H — H is given by

0 1 0 0
A= —A —A[NolNa‘ —N|INfJA—-dI 0 ANy | .
10 0 0 z |
0 —c‘sz(’)kA -A —kZ

uy € HA(Q): uy € D(A?):
D(A) = { (u1,ur,u3,uq) € Hui + [NOINS + NllNl*]Auz — Noug € D(A);
uz € D(A);  uq € D(A?).

Remark 3.5. Straightforward computations show that the adjoint A* has a similar structure to A
with same domain.

Lemma 3.1. The operators A and A* are dissipative.

Proof. It is sufficient to prove that A is dissipative. Let U = (uy, us, u3, us) € D(A). We have

uz 231
(AU, U)y, = —A(uy + [N()ZN(;k + NlliNl*]Auz — Nouyg) — duy ’ Us
4 u3

—C_2,ON3<AM2 — Ausz — kuy Ug H

= (u2, u1) p(ar2y — (A(ul + [N()”\]S< + N1IN{1Auz — Nous), MZ)LZ(Q)

— (duz, u2) 1, (@)
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+ (w4, u3) peaiey — ¢2p (NG Aug, M4)L2(1~0) — (Auz, ua) 1,y — k (s, ua) 1,y
= —k lual} ) — 2 w13 ) = 72l ) <O
- 4Ly (ro) 2Ly @) 2IflL, @ =%
which proves the result. O
Lemma 3.2. The operator A is maximally dissipative and, consequently, so is A*.

Proof. Since A is dissipative, it suffices to show that I — A is onto, that is R(I — A) = H, see
Theorem 4.6 in [31]. Therefore, letting F' = (f1, f2, f3, fa) € H, consider the resolvent equation

Si=ur—uz

Hh=ur+ A + [NolNg + NllNl*]Auz — Noua) +duy
F=(I-AU < (3.14)

fr=uz—uy

fa=uq+ c_z,oN[)"Auz + Aus + kuy

where U = (u1, uz, u3, us). Plugging u; = f1 + up and uz = f3 + u4 to Equations (3.14); and
(3.14)5, respectively, the remaining equations reduce to the following system

¢ = +d)uz + A(uz + [NolN§ + NiIN{1Aus — Nou);

) (3.15)
¥ == NgAuz + [k + DT + AJus,

where ¢ = f, — Af] € D(A%)’ and ¢ = fs — Afz € D(A%)/. In order to solve system (3.15),
let us consider the following form on V = D(A%) X D(A%)

~ ~ ~ 1 1 ~
b (ll, u) =(u+du, i), + U, M)D(A 1) + (lZN(;kAu, 12 N()kAu)LQ(rO)
1 1 -
+ (ZENTAM, 12 NikAu)Lz(Fl)

. 1) - - -
— (v, Ny Ait) y(ry) — ) (NgAu, v)Lz(Fo) T &k+D @ )ym0) + 0. 0)

’

(AZ)

for every u = (u, v), u = (i, v) € V. Note that b(-, -) is a bilinear, continuous and coercive form
in V. Therefore, it follows from Lax-Milgram theorem that for L = (¢, ¥) € V' there exists a
unique u = (u2, ug) € V such that

L(u)=b(u,u), foreveryuel. (3.16)
In particular, for every i € D(A %) we have u = (&, 0) and equation (3.16) writes

(¢, 1) = (u2 +duz, i), (@) + (u2 + [NoI Ny + N1IN{1Auz — Noug, it)

D(A%)',D(A%) D(A%)

={(I+d A NolN§ + N1IN{1Aup — N, 7
(I +d)uz + A(uz + [NoI Ny + N1IN{]Au; ous) M)D(A%),’D(A%)
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which implies Equation (3.15);. Moreover, since u; = uy + f; we have A(u; + NIN*Aup —
Noug) = fo — (I +d)us € Ly(R2), which implies u1 + [N()ZNS + NllNl*]Auz — Noug € D(A).

Equation (3.15) (for v) can be obtained by setting u = (0, v), for v € D(A%). Therefore, we
conclude that U € D(A) satisfies (3.14), which finishes the proof. O

As a consequence of Lemmas 3.1 and 3.2, it follows from Lumer-Phillips theorem (see Corol-
lary 4.4 in [31]) we have the following.

Corollary 3.1. A and A* are generators of a strongly continuous semigroup of contractions on

H.

It follows from the above results that the fractional powers of A and A* are well-defined, see,
for instance, [37] and references therein. Moreover, we have (see [35])

DA% =[D(A), H];_4, 0€l0,1],

where [-, -] denotes the complex interpolation functor. Furthermore, A~ is a bounded operator
in H, for 6 € [0, 1]. Another useful property of A is the following

Lemma 3.3. For any V = (v1, v2, v3, va) € H we have
A% vl Lyc@) + AT V3]l Ly < CIATZ Vg (3.17)
Moreover, for any v4 € Ly(I'o) we have
IA72Vllge < € [IA 5 v2llac@) + 4™ vl Lacr . (3.18)
where V = (0, v, 0, vg).
Proof. We start by observing that
D(A) C HX(Q) x H'(Q) x D(A) x D(A?).

Interpolating between D(A) and H for & = 1/2 and taking into account the above inclusion, we
obtain

D(A?) C H3(Q) x D(AT) x D(AT) x D(AY).

Thus, forany U = (u1, ua, u3, us) € D(A%) we have in particular uy € D(A%) and uq € D(AAIT),
which implies

1 1 1
lAZuz |1, + AT usllL,ry) < CIIAZU |34, (3.19)
for some constant C > 0. Let V = (v, v2, v3,v4) € H be fixed. Since A is invertible, there
exists a unique U = (uy, us, u3, us) € D(A) such that V. = AU. A straightforward computation

provides
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Novs — [NoIN§ + NiIN{1Av) — AN (vy + dvy)

U=A"'v= vl 3.20
Al [—c’sza‘Am + kv3 4 v4] (3.20)
U3
Since V € D(A_%), we have
_1 L 1
IAT2V 3 = IAZAT V3 = |A2U || (3.21)

Finally, for U in (3.20), inequality (3.17) follows by combining (3.19) and (3.21).
It remains to prove (3.18). To this end, first we note that for the particular case V =
(0, v2, 0, v4) € H we have

—A 1y,
0
—A_1v4
0

IA™2 VI3 = IAZATV I3 = |AZ (3.22)

H

On the other hand, since D(A) x {0} x D(A) x {0} C D(A) and D(A) x {0} x D(A?) x {0} C H
it follows by interpolation that D(Al_%) x {0} x D(.Al_%) x {0} C D(AY) for any 6 € [0, 1].
Hence, for U = (u1, 0, u3, 0) € D(A?) we have

_9 _9
14Ul < C 14" FutlLa@ + 1A' B uslliary | foro € (0,11,

Applying the above inequality with 6 = %, u; =—A""vy and uz = — A~ vy, also having in mind
(3.22), we conclude (3.18) as desired. O

3.4. Nonlinear estimate

An interesting issue is the uniqueness of solutions of the nonlinear system (1.1)-(1.2), due to
the presence of div{|Vw|?> Vw}, which is not bounded from H2(Io) to L»(I'¢). This prevents
applicability of standard methods based on local Lipschitz regularity. In order to deal with this
difficulty, one idea is to obtain the estimates on a negative scale of fractional powers A for
solutions which are of finite energy. The differential of topology provides a chance for obtaining
“uniqueness estimate”, however, without continuous dependence on the data. We shall pursue
this idea for the system under consideration. It should be noted that a related idea, tough applied
to scalar single equation, was carried out in [19]. In order to obtain the estimate for the nonlinear
term with respect to negative fractional powers of A, we proceed as follows.

Let {yny}nen be the orthonormal basis consisting of eigenfunctions of A and consider M :
H2%(Ty) = H¢(I'p) to be the operator that describes the nonlinearity in the structural wall
equation:

M(w) =div{|Vw|*> Vw} + o A{w?} — f(w), w e H*().

Note that with w € H?(I'p), one obtains Vw € H!'(I'g) C L,(T), for any p €[1,00), and by
Sobolev’s embeddings for every € > 0
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1dv{IVwl> Vwlll gy < Cllwllya -

We will need the following sharp estimate:
Proposition 3.1. Let R > 0 and 0 < s < 1. Using the notation from previous section, if {A,, : m €

N} is the set of eigenvalues of A then, for m large enough, there are constants Cy, C > 0, which
depend on R but not on m, such that

1 1 —5
A3 M (w1) = MW2)]llz, ) < Crlog(l+ ) AT (w1 — w)llzo ) + Cohylys G:23)

for any wy, wy € H*(Tg) such that || w;j HH2 <R, forj=1,2.

(To)

Proof. Let wy, wy € Hz(l"o) such that || w; || 2 <R, for j =1, 2. We start with

(To)

1 2 . 2
AT [div{| Vw1 |~ Vwi} — div{|Vwa|* Vwa 1l 2,y
< CllIVwi*Vw; — [Vwa P Vwa |l yry)
< CllI[[Vw1]? + Vw; - Vwa + [Vwa 21V (w1 — w2l 1, )

2 2
< C Y=t 2 gkt 10, wi - O win - 0wl Ly (1),

(3.24)

where we denoted w = wi — wy. Decomposing the cubic terms on the right-hand side of the
above inequality in small and large frequencies as follows
8xk wy - 8)(; Wy + 3x_jw = QN(akal) : 8)(,- Wy + ax_,-w + PN(akal) : QN(ax,- Wyy) - 8x_jw

+PN(akal) : PN(axiwm) : 8xwaII + I+ Iz,

fori, j,k,m,l = 1,2, where Py is the projector on span{yr1, ..., ¥y} and Qy =1 — Py.

We will first deal with I, for the same arguments hold for I, and yield to the same estimate.
Let 0 < s < 1. Using the embedding H" (I'g) C L ,(I'g) forr =1—2/p and p > 2 and Holder’s
inequality, we have

“ ON Oy, wy) - O, Wiy - 3xjw“L2(r0)

S ” QN(8Xk wl) ”LQ/S(F()) ” 3x,- wm : 8Xj w ||L2/(1,S)(I‘0)

= ClIlONOxwi)l gr1=s () 10x; Win 1241y (T0) 19x; W L4 1 ) (To)
<C (||3x,- Wi ||H1(r‘0)||ax_,~w||H1(r‘0)) I1ON O, WDl gr1-5 (1)

< CrION @ w)l g1-5(ry)-

Since Qy is the eigenprojector on span{v, : n > N + 1}, it follows from the characterization in
Remark 3.4 that

1-s -5
1ON @y w) | s (ryy < CIIA™F On @xwi) | Ly o) < Cllwill g2y Ay

from which we conclude

403



1. Lasiecka and J.H. Rodrigues Journal of Differential Equations 298 (2021) 387-429

I Loro)s 12Nl Lyro) < CrRANY,.  foreveryi, j k,l,m=1,2. (3.25)
Finally, for /3 we use Lemma 3.4 below in order to obtain
| P (0x, wr) = P (3x; W) - Ox; Wl L, (rg)
< Sup,ery | PV (xewi)| - sup,cry | Py (0, win)| - [|0x; wll Ly (ro)

1 1
< Clog(1 + AN+ A% 3x, will Ly (1) IA# Ox; win | Ly () 10x; Wl Ly (1)
< Clog(l + An-+1) [llwill g2 gy 1w Il 2 gy 1wl )

< Crlog(l + An+DIwl g1(ry)-

Using the characterization in Remark 3.4, I3 is estimated by

1
11,y < CrRIAZW| 1,y log(1 + Any1) foreveryi, j k,i,m=1,2. (3.26)

Plugging estimates (3.25) and (3.26) into (3.24), we conclude

1
A~ [div{| Vi |* Vwr } — div(| Vwa |* Vo il )
. s (3.27)
< Ci,rlog(1 + AN+ DA% (w1 — w2)llyg) + C2,RAN -

The estimates for the remaining two terms in the definition of operator M are more direct after
exploiting local Lipschitz condition:

_ 1
o A3 dv{V (w? — w)I Lo ()
<C| ‘V (wf - W§)) Iy ro)
2
< CY_ 10w —w)llLyry)

< CZ?zl [Ilw - 3y, (w1 + w2l Lo (1) + w1 + w2) - A wll Ly ] -

Using the embedding H?(I'g) € C(T), the second term on the right-hand side of the previous
inequality reads

H (w1 +w2) - axiw” Ly(To) = lwi 4+ wall Lo o) 10x; wl Ly (o)
1
< CrlIA*wl Loy, fori=1,2.

The first term is estimated using Holder’s inequality and the embedding H"(I'g) C L, (I'g) for
r=1-—2/pand p > 2 as before

2
w3y, (w1 + w2l Ly = /|w-axi(w1—wz)-1| dro
Lo
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1=s
=< |F0| 2 ”3)6,' (wl + w2)”L4/(1,J) ”w||L4/(1,J)
< Clloy; (w1 + w2l g1 ) lwll 511y

SCRIIA%wIILZ(ro), fori=1,2and 0 <s < 1.

Therefore, we conclude

_ L 1
A2 div{V (W] — w} Ly < CrIAL (w1 — w2)llLy(ry)- (3.28)
Finally, using Assumption 3.1, the last term in the operator M is estimated as follows
_1 _1
A3 [f(wr) — fFw)]laare) = IA 2l gpamon I1Lf (wi) = fw2)ll L,y 1y)

1
<A™ % 2o oy SUPIs <r | F/ O] lwr — wallLyrg  (329)

1
< CrlIIA*T (w1 — w2)ll Ly (ry)-

Combining (3.27), (3.28) and (3.29) and choosing N sufficiently large, we obtain estimate
(3.23) O

Lemma 3.4 (see [14,19]). Let {{;};icN be the orthonormal basis in Ly(T'g) of eigenvectors of

A, P, be the projector in Ly(T'y) onto the space spanned by {1, V2, ..., V¥,} and u € D(.A}T).
Then, there exists ng > 0 such that for n > ny we have

1 1
max |(Pau) ()] < C [log(1 + An)|? AT ull £, 1)
0

where Ay, is the corresponding eigenvalue, and the constant C > 0 does not depend on n.

Remark 3.6. The inequality stated above provides a “rate” of blowing-up estimates for projec-
tions of solutions under Sobolev’s embedding at the critical level H!(I'y), where I'g C R?.

4. Proof of the main results

In this section we present the proof of Theorem 2.1, announced in Section 2.
4.1. Weak Hadamard wellposedness

We start by proving the existence and uniqueness of weak solutions.
Proposition 4.1 (Existence of weak solutions). Let f € C'(R) be given. For every R > 0 and
Uo = (20, 21, wo, w1) € H such that |Upllyy < R there exists Ty = To(R) > 0 and a pair of
functions (z, w) which is a (local in time) weak solution of (1.1)-(1.2). In addition, we have the

boundary regularity ['/?z;|r € L2(0, T; Lo(T")). Moreover, the solution is global provided that
f satisfies the non-explosion Assumption 3.1.
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Proof. Step 1. (Existence of Local Solutions) Since the nonlinearity in the structural wall is not
locally Lipschitz, the proof of the above result relies on the Faedo-Galerkin method. Let 7 > 0
be fixed and consider {¢,},cn C H'(Q) and {Yn},en C H orthonormal basis in L,(€2) and
L,(Tg), respectively. For each n € N, we define the approximate subspace

V,=span{¢;, i =1,...,n} x span{yy;, i =1,...,n}.
The approximate problem is formulated as follows:
Find (7", w") : [0, T] — V), such that, for every (¢, ) € V, and any case (C), (SS) or (F):

0=(2,(, )@ + WD, %), o)+ (VD). V), @p +a@" @), ¥)
+(d 2 (1. 8) gy T K (W . 9) ) + OO 2SI Ly
(4.1)
=& (w7 0 Blro) 1y ryy + €70 (" Olry $I1) )+ (Z?(MFO ’ I/f)

+ GW" (1), ¥);

L>(To)

and initial conditions

(Zn 0, ¢)L2(Q) = (2o, (p)Lz(Q) ; (Z? 0), ¢)L2(Q) = (z1, ¢)L2(Q) >
(wn(o)a w)Lz(l"O) = (U)O, 1//)L2(F0) 5 (w;l(o)v Ip)Lz(l"O) = (wls 1;0)112(]"0) 5
where a(-,-) is given in (2.3) and G is given in (2.5). Denoting z" () = > i, &, ()¢ and
w(t) = Y"1, Oni ()i where & (t) and 9,,; (r) are real functions, one can rewrite both problems
above as the following ODE system
£y (1) + D5, (1) + AL (1) + F (G (1) =0, for0<r<T;
ta(0)=20=(&,00); £, (0)=¢1= (&, 97);

where £, (1) = (§,(1), 9,(¢)) and &, (1) = (§i (1));=1,...., and V(1) = (P (1)) ;=1
data is given by

.- The initial

,,,,,

£ = ((Zjv ¢i)L2(Q)>i=1 ;07 = ((wj, Wi)Lz(ro))izl » forj=0,1,

yees T

and the matrices A and D depend on the basis, while the nonlinear vector ' depends on G
applied w" (¢) and the basis of H, as we can see below:

o 2 [(V¢i,V¢j)L2(Q)+lo (¢i|r‘1,¢j|F1)L2(r])]j’i:1 ’’’’’ ; 0
0 [a(¢j! 1»”i)]j,i:l,.‘.,n
1 1
D= [(d"/’i’¢1)Lz(Q>+cz<12¢i|r’lz¢j|r)L2(r)]ji=1...n ‘
0 0
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P (Bilre: Vi) L) ’ '
0 —cz[('l//isq)jlf‘o)Lz(I‘o)] |

jii=l,...n

+

0
Fla)= ([G (X0 P (0. 9)],_, ) ‘

.....

The above system admits a unique solution £,(t) on a maximal interval [0, 7 ,.), via
Carathéodory’s theorem (see e.g. [18]). Consequently, there is a unique solution (z"(¢), w"(t))
of the approximate variational problems (4.1).

In order to pass to the limit on the above approximate variational problems, we must establish
some a priori estimates. Since 1 —c¢~2p = 0, using the energy functional introduced in Section 3.2

applied to the approximate solutions, the corresponding (approximate) energy identity reads as

t t t
1 1
E7 (D) +k / ) I, gy ds + f ld 22} ()17, (ds + ¢ / 122 S)IPlIZ, ryds
0 0 0

4.2)

t

t
_ E10) + / o W (s), [V (5)P) Laroyds — / (F W™ (5)), Wl (5)) 1oy,
0 0

where E7(t) = E"(t) + o (w" (1), [Vw"(t)|*) 1,(ry)- Using the embeddings H'(Tg) — L4(To)
and H%(I'9) — C(Ty) as well as the continuity of f, the right-hand side integrals of (4.2) are
estimated as follows

1 1

/ o (W (s), [V (5)P) Loy ds| < 20 / E" (s)ds;
0 0
t

t
t ~
f (f " (). w]' () 1, 45| = / Eg(s)ds+§.w(Eg(z)),
0

0

where W : RT — R is a continuous and increasing function, and EZ; (t) = maxeqo,1] E7,(5).

Let R > 0 such that |[(zo, z1, wo, w1)|ly < R. Thus, it follows from the convergence of the
initial data of the approximate problem that there exists ng sufficiently large such that E"(0) <
C(R), for every n > ng. Using the embedding H*(I'g) — C(T'p) and the expression of EY(t) we
also have E7 (0) < C(o, R), for n > n. Therefore, identity (4.2) implies

t
El(t) < [C(a, R) + % . (E;},(r))} +Co / E"™(s)ds, (4.3)
0
forn > ngand t € [0, T, ). On the other hand, using the lower estimate obtained in Section 3.2,
keeping in mind that E7, does not control the L,(I'g) norm of plate solutions in the case of free
(F) boundary condition, we consider the functional ®,(¢) = E"(¢) + ||w" (t)Il%2 To)- Rewriting
(3.9) using &, (¢) we have
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1 0 1 w2
3 ®n(®) = E{(0) +C(To) + (5 + 02> lw" O, ry) - (4.4)

Finally, using the following estimate

t

I w”(f)”iz(ro) <C(R) +2/ @, (s)ds
0

and inequalities (4.3), (4.4) we conclude that

t

@) < [CTo.0.R) 19 (8,0)] + 6, / P, (s)ds,
0

where the constant C, > 1 and @, (7) = max{®,(s) : s € [0, 7]}. Previous estimate along with
Gronwall’s inequality implies

o) < [CTo,0, R +1-9(B,0) ], for0 <1 <T,,. @.5)

Let 0 < 7{" <min{l, 7, .. }. Since ®,(¢) is continuous and 77" is finite, there exists C, > 0
such that Ci>n (1) <Cy, forallt < Tl”. Using (4.5) and the fact that W (Cy,) # 0, we arrive at

&, (1) <2Cget (4.6)

for 0 <t < min{T;, CR\IJ(Cl,,)_l}, where Cp = C(I'g, 0, R). Let T(;’ be the maximum value for
which inequality (4.6) holds for t < TO". Thus, we have T]" < TO” <Tp .., forevery n > ng. Also,
either 7 = oo or T’ < oo, and in the last case we have <i>n(T0") =2CgeCe.

Finally, let Tp = inf{7j : n > 0}. We claim that 7o > 0. Indeed, if it were not the case, there

would exist T; 0" ¥ — 0+ as ny — oo. For such sequence, using (4.5), we have
20 = &, (TI) < [CR + T (2CReC">] CoTot

Letting ny — oo in the previous inequality, we conclude 2Cge€ < Cg which leads to contra-
diction due to the fact C, > 1. Since Ty < 0o, we conclude

®,(t) <2CreC, fort €0, Tp] and n > no.
It follows from the above estimate and (4.2) that

{(z”, zr,w", w;l)} is bounded in Lo (0, Tp; H),
and {l%zﬁr} is bounded in L, ((0, Tp) x I'). &7

In order to pass to the limit in (4.1), we need an estimate for the second-order time derivatives.
Considering these approximate variational problems and performing straightforward computa-
tions, one can prove that for every (¢, V) € V,,
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(@O, w1, 6. 9)) yayerairo| = CORIG D gy o

where C(o, R) > 0 depends on the initial data. The above inequality implies
{2, w)} is bounded in Loo (0, To; (H'(S2) x H*(Tp)))). (4.8)
It follows from (4.7) and (4.8) that there exists a pair of functions (z, w) and a subsequence such
that
(2", 2", 28) = (2,21, Zur), weak star in Loo(0, To; Hy x (H'(2)));
(", w!', w) = (w, wy, wy), weak star in Lo (0, To; Hy x H');
The above weak-star convergences and compactness results in [33] imply that (z,z) :
[0, To] — H; and (w, wy) : [0, To] — H,, are weakly continuous. This weak continuity will al-

low us to prove the validity of the initial condition. In order to pass to the limit in the variational
problems, we observe that the above weak convergences also imply that (see again [33])

(", 2}) = (z,2;) strong in C(0, To; H'~*(Q) x H™*(Q));

(w", wi') = (w, wy) strong in C(0, To; H*7¢(Ty) x H4(I'y)),
for any & > 0. Another ingredient is the following embedding W*-?(I'g) — L, (Ig), for0 <s < 1
and p <r <np/(n — sp). This embedding implies that the following maps w — |Vw|> Vw,
w > |[Vw|? and w — f(w) are well defined from H to L,(T"g) and are continuous. This conti-

nuity together with the above weak and strong convergences allows us to pass to the limit in the
approximate variational problems obtaining a local solution.

Step 2. (Global Solutions) Our next step is to prove that the solution obtained in the previous
step is global, provided that f satisfies Assumption 3.1. To this end, we are going to consider
the total energy (2.1) applied to the approximate solutions. Using the approximate variational
problem and assumption 1 — ¢%p = 0, we have

13 t 1
1 1
E"(1) +k / 1w ()13, 1y ds + / ld2 2} ()17, 0ds + p / 11328 S)IrlI7, ryds
0 0 0

t
=E"0) 40 /(wf (5), | V" ()]} L (rg)ds.
0

The right-hand side of the previous identity can be estimated in terms of the initial data and
the energy functional @, (¢) in order to conclude

1 t 1
1 1
&0 -4k [0l 6y ds + [ 145 O @ds +p [ IR0 pyds - @9)
0 0 0

1
<C(o,R)+Cs / D, (s)ds.
0
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Further, using the expression of £”(¢) as well as inequalities (4.4), (4.9) and Assumption 3.1, for
an appropriate choice of §, we have

t
D,(t) <Cr+Cy, / ®,(s)ds, forte[0,Tp]andn > ng,
0

where Cp, is a positive constant which depends on the initial data. Finally, using the lower semi-
continuity of the energy functional and by passing to the limit in the previous inequality, one
has

t
P(t) <Cr+Cs / d(s)ds, fortel0, Tpl,
0

where ®©(t) = E(t) + |[w(?) ”2Lz(1“0)' Gronwall’s inequality implies that the solution is global with
the desired regularity. O

In the previous result, we have proved that system (1.1)-(1.2) admits a (local in time) finite
energy solution, which is global provided f satisfies Assumption 3.1. Next, we will show that the
solution is unique. The argument is based on an adaptation of Sedenko’s method, as presented in
[19], in what follows, we use the notion established in Section 3.3.

Proposition 4.2 (Uniqueness of weak solutions). Under the assumptions of Proposition 4.1, for
every initial data in H the corresponding weak solution is unique.

Proof. Let T > 0, Uy = (20, 21, wo, w1) € H and suppose that (z', w!) and (22, w?) are two

weak solutions of (1.1)-(1.2) for the same initial data Uy. Since (z', w') € Loo(0, T’; D(.A%) X
1 .

D(A?2)) and I'/27} | € Ly(0, T; Lo(T)), for i = 1,2, there exists R > 0 such that

T
1 1 .
sup [nAzw'(t>||L2<r0>+||A2z’(t)||L2<m]+ f W22 ()Pl yds < R.  (4.10)
tel0,T]

0

Define z = z! — z2 and w = w! — w?. Using the notation introduced in Section 3.3, we can

conclude that (z, w) is the weak solution of the following first order variational formulation

d
b [(zt(t), D)y + W), ¥) 1,y + o (NG AZ(D), 1/’)Lz(ro)]
F(A22(1), A2) ) + I2N* Az (1), [ZN* Ad) L,y — (Wi (1), N AB) Ly(ro)

+ (A w(), AW Ly + (A2 20(1), d3 ) 1) + K (i (1), ) (1)
=Z®), Py + M), ¥,y
2(0)=2z(0)=0; w(0)=w,(0)=0,

(4.11)
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where the time derivative is understood in the sense of distributions, Z (t) = z! (t) — z2(¢) and the
non homogeneous term M (¢) is given by

M(t) = div{|Vw | Vwy — [Vwa > Vwg} 4 o A{w? — w3} — [f(w)) — f(w2)].

It follows from Proposition 3.1 that there are positive constants C; and C,, which depend on
R, such that M (¢) must satisfy the following estimate

—s/4

_1 1
IAT3M @)l Lyry) < Crlog(l + Am) AFW(@) Ly rg) + Car,, Ly s

(4.12)

for 0 <s <1 and ¢ € [0, T], where A, is an eigenvalue of A large enough. It follows from
the previous inequality and (3.18) in Lemma (3.3) that A"IM € Loo(0, T; M), where M(1) =
0, Z(1), 0, M(t))T. Moreover, if we denote U(f) = (z(), z;(¢), w(t), w;(t)) then U (¢) is the
mild solution of the abstract inhomogeneous problem

d -
EU(I) —AU@)=M(); U(@©) =0.
On the other hand, this solution must satisfy
d * v *
Z(U(t)’ Vg —(U@),A*V)y =M(@),V)y, VYVeDMAY,
in the sense of distributions. Thus, A~2U must satisfy
d . _1 _1 _1 -
E(A U@, V) —(A72U (1), A"V)y = (A72M (1), V),

for every V € D(A*), in the sense of distributions. In this case, the solution must be given by

t
A—%U(t)=/eA<’—S>A—%M(s)ds inH,
0

where {eA?~9)},~( stands for the semigroup generated by A. The later identity and (3.17) in
Lemma 3.3 imply that

V(0 = A 20y + AT WO L)

! 1 1 (4.13)
<c f (1473200 a2 + AT M©) o |ds.
0

Inequalities (4.12) and (4.13) imply

t
() < Cr(1 4+ log(1 + ) f Y(s)ds + CTA 10,7,
0
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for some 0 < s < 1. Using Gronwall’s inequality we conclude

V() < CTa A+ 10", 1€[0,T], 0<s<l.

Letting N > ocoand for 0 <t <ty =s - (4C))~! we obtain Y () =0 for 0 <t < 9, which
implies that z' =z, and w! = w? for in the interval [0, 79). Repeating the process, one can
conclude the equalities in the whole interval [0, T'], which concludes the proof. O

Existence and uniqueness of weak solutions leads to the continuity of the flow in the weak
topology of H (see [19]). Our next challenge is to show that the said continuity also holds with
respect to the strong topology. This property depends on the validity of the energy identity.

4.2. Strong Hadamard wellposedness

In order to establish our next result, i.e., part 2 of Theorem 2.1- we will appeal to an ap-
proximation argument used for the purpose of proving energy equality. To proceed, recall the
following finite difference setting and result, as presented in [25]. Let & > 0 a parameter that

goes to 0. If X denotes a Hilbert space and g € B([0, T']; X), we extend g(¢) to R by setting:
g(t)=g(0)ift <0and g(t) = g(T) for t > T. With this notation, we define the operation

1
Dig(t) =3 (& () +g, )], forevery ge B(0,T]; X),

where g (1) =g(t+h)—g(t) and g, (t)=g(t)—g(t—h).

With the above notation, we have the following result.

Lemma 4.1 (Proposition 4.3 in [25]). Assume that g is weakly continuous with values in X. Then

T
) tim [ (5. Dy de = (181 ~ 15 0)1%]:
a8, Erg))y di == 118Uy — 18U |-
0

(2) Ifg € H' (0, T; X), then the following limits are well defined in L»(0, T; X):

1 1
lim Dpg=g;; lim —g =g;; lim —g; =g
hf}) h8 = 8t hino hgh 8t hino hgh 8t

Moreover, if g; is weakly continuous with values in X, then for every t € (0,T), Dpg(t) —
g:(t) weakly in X, and

1 1 .
8 (1) = &(T); Eg,j(owg,m); weakly in X

(3) In addition to previous assumptions, let V.C X C V', g € L2(0,T; V'), g € L,(0,T; V).
Then

(8T = g )13 ].

| =

T
lim / (411 (1), Drg(t))x di =
0
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With the above setting, we obtain our next result in which weak solutions established above
also satisfy energy equality. This step is critical to establish Hadamard wellposedness and conti-
nuity of nonlinear semigroup. We recall that energy equality is satisfied for the Galerkin approx-
imations which lead to the construction of weak solution. On the other hand, we have also shown
that weak solutions are unique and enjoy additional boundary regularity on the support of /(x)
inside T".

Proposition 4.3 (Energy identity). Let U = (z,z:, w, w;) be a weak solution in the interval
[0, T]. In addition we assume that either [(x) = 0 or supp [(x) D ['g. Then the following en-
ergy identity holds

1 t 1
L 1
EW) +k / e (1Z s + f 422 ()17, s + / 122 )IrIIZ s
0 0 0

(4.14)

t
:5(0)+a/(w,(s),|Vw(s)|2)L2(po)ds, fort>0.
0

Proof. We note that the assumption on the support of /(x) implies the additional boundary reg-
ularity

T
2
12O e = COUNL0r30) (4.15)
0

Using equality (4.2) and the weak-star convergence w; — w; in Loo(0, T; L2(I'g)) as well as
the lower semicontinuity of the energy functional EJ (¢), we arrive at

t t t
1 1
Ei(t) +k / lwe ()7 yrgyds + o / I3 29117, ds + / 11320 l17(ryds
0 0 0

t t

< E1(0) +/U(wz(S), IVw($)|*) Ly (g ds — f(f(w(S)), Wi ($)) L, (o),
0

0
which can be rewritten as follows
t

13 t

d 1

f% El(s)+/F(w(s))dFo ds—i—k/||w,(s)||2L2(F0)ds+,0/||d2z,(s)||2L2(Q)ds
0 0

0 Iy
t t
1
+ [ W ayds o [ @) VwE PLryds
0 0

Using the expression of £(¢) and the last inequality, we conclude that
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t t t
1 1
£) +k / NI, g s + / ld32,(5)12, s + f 1 2 (), s
0 0 0 (4.16)

t
<€) +0 [ @6 IVuEP)aryds. forr=0
0

For the reverse inequality, let us consider first the case [ = 0. As presented in [20], the ar-
gument to prove the reverse inequality relies on time reversibility property. For this purpose,
let 0 <t < T and consider the problem (1.1)-(1.2) with reversing time. In this case, functions
z(t) = z(T —t) and w(t) = w(T — t) constitute a weak solution on [0, T'] of the (backwards)
system

wave equation:

Zit — crAZ =dz;(T —1t), 1in Q;

~ ) —loZ on Xy;
dz = { —w,; on Xo;

20)=z(T); z(0)=2z(T) in;

plate equation:

Wi + A2 — pZ|r, = div(|ViD|* Vib} + W(T —1) on Zo;
Boundary Conditions on 9Ty x (0, 00);
w(0) =w(T); w(0)=w,(T) inTy,

where W = —kw; + o A{w?} — f(w). Since W € Loo(0, T; L2(I'g)) and z; € Lo (0, T; L2(S2)),
we have that W(T — t) € Loo(0,T; Ly(T'g)), as well as z,(T —t) € Lo (0, T; L>(R2)). Note
also the change of the sign on the interface. In view of the above, we apply the same Galerkin-
argument for existence of solutions as before, however, applied to the z, w problem running over
negative times in [0, 7']. In this case, the energy inequality valid for the new variables on the
interval [, 7] C [0, T] is given by

f f
E: (1) < Ez 5(5) + / @), d-z2(T — 1))y dT + / (w(r), W(T — 1)),y dT

where E: j stands for the linear energy functional (see (2.2a)-(2.2b)) applied to the solution
(z, w) of the reverse-in-time system. It follows from the uniqueness of weak solutions that (Z(T —
t), w(T — t)) must coincide with (z(z), w(¢)) in [0, T]. Therefore, if [s,¢] C [0, T] then we
choose § =T —t and 7 = T — s in the above inequality which implies, after a change of variable

t t
E(s)SE(t)_/(Z(T)»d'zt(T))Lz(Q)df_/(w('c)vW(T))Lz(Fo)dr'
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Choosing s = 0 and keeping in mind that W € Ly, (0, T; Ly(I'g)) and z; € Loo(0, T'; L2(2)) we
directly evaluate the last (supercritical) integral on the right-hand side of the above inequality by
using classical Sobolev’s embeddings, obtaining

1
£ +k / e (I, + / 1}z (0112, ydT
0 (4.17)

38(0)+o/(IVw(f)IZ,wr(f))L2<ro>df-

Inequalities (4.16) and (4.17) imply identity (4.14), for this first case (I = 0), as desired.

Let us now consider the case /(x) > 0 and supp [(x) D I'g. This means that the /(x) > [y >
0 on T'g. We first observe that z;|r, € L2(0, T; L2(I'g)) and 9,z € L2(0, T; Lo (I")) imply, by
hidden regularity, that the map L (0, T L>(Tg)) > g — z, where z 1s the solution of the problem
Oz = 0 with boundary conditions a z+1(x)z; = g in ¥ and a z+1lpz =0 in X, has the

property z is in C(0, T; H'(€2)) N C'(0, T; L,(K)). Hence, the strategy used here is to obtain
both (wave and plate) energy separately, by using different methods. For the structural problem,
we apply the same reversibility-in-time argument as before with W = —kw, +o0 A{w?} — f(w) +
02¢Ir,- This will provide the identity

w(t)+/F(w(t))dF0+kf lwe (17, (1) ds+pf(Zz(S)|r0,wz(S))Lz(ro)ds

1)
(4.18)

—E,(0)+0 / IVw )P, wi ) iapds,  fort > 0.

Finally, for the acoustic problem, we start from the variational problem (2.4) (with ¢ = 0)
and write

t
0=(z,(t), p()) 1,2 — (2:(0), $(0)) 1, (02) + CZ/(VZ(S% V) Ly@ds
0
t
+ /(d -z4(1), ¢(s))L2(Q)dS

t t
+ / 28 Ir B0 Laryds + Ao / )l ) 1oy ds
0 0

t

_ & / (e (), )y La(rords

0
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forany ¢ € H' (0, T; Ly(Q)) N Ly(0, T; D(A%)). Choosing ¢ = Dy, z and using the above nota-
tion, we rewrite the previous identity as follows

t
0= % [(zt(m, %z; () a2 — (0, %z;(omm} - / (), [Drz()]) 1o (s
t IO
+c2/(Vz(S), Dp(Vz(s))) L, ds +czlo/(z(S)|r, Dp(z(s)|r)) L, ryds
0 0
t t
+ / ([d? 2(5) ], Di(d? () 1o (s + / (W2 2(5) I T Dr22(9)|M)) oy ds
0 0

t
—sz(wz(s), Dpz(s)Irg) L,y (re)ds.
0

Note that by the virtue of Lemma 4.1, see also [25], we have

t
/ (2:(8), [Dnz(s)]) @) ds =0, forevery h > 0.
0

Indeed, using the definition of Dy, and performing straightforward computations with change of
variables, we have

t t
1
[ @@ ds =55 |G- 241 =200 = W) ds
0 0

h t—h
1 1
= / (z(8), 22t +h)py ds + o / (ze(s), ze(s +h) —z(s — h)) ) ds
0 h

t
1
- / (20 (5). 24 (5 — )1, ds
h

P
1 h 1 t—h
= f (ze(s), 2@ + 1)y ds + o / (2 (s)s ze(s + 1)), ds
0 h
X 1=2h | '
~ 5 / (@ (), 2t (s + 1)y ds — o / (21 (5), 2t (s — M) 1, (@) ds,
0 t—h

which implies
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t
/ (z: (s), [th(s)]t)Lz(Q) ds
0

h t—h
1
= f(Zr(S), 2(t+h) @ ds + / (2 (8)s 2e(s + 1))y ds
0 1=2h
t—2h h

+ / (Zt(s)’zt(s+h))L2(Q)ds_/(Zt(s)vzt(s+h))L2(Q)ds
h 0

t—2h t—h

- / (2 (8), ze(s +h)) ) ds — / (ze(s), 2t (s + 1) 1, ds
h t—2h

=0,

as desired.
Our assumption on the support of /(x) allows to deduce

t 1
[ 1ds = B + [ o)l dst. (4.19)
0 0
In fact, the above inequality results from the so called “hidden regularity”, which in this case can
be simply deduced from the following Lemma.

Lemma 4.2. Let g € L7(0, T; L2(Tg)) and z be a solution of Oz = 0, subject to zero initial data
and the boundary conditions

d
—z+1x)z =

g onXy
av

—loz on X

where supp [(x) D I'o. Then, the following inequality holds:

t t
lze I+ IVZOI + 12O ,x,) + f Y22 ()17, ryds < C / g1, 1y ds-
0 0

Proof. Since the solutions are smooth for z;(r) € H'(RQ), z;/(t) € L2(R2) and compatible boun-
dary data g, it suffices to prove the inequality for smooth solutions only. Multiplying the D’ Alam-
bertian by z; and integrating by parts gives

t t
212 + V2R + 2O, 5, +2 / 22112,y <2 / f g (Ozrdxdr,
0 0 Iy
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Exploiting the condition on the support of /(x) this yields

t

t
||zt<r)||2+||vw)||2+||z(t>||%2(zl)+f||z,||%2(ro)sc/f|g(r>|2dxdt. O
0 0 I'g

Continuing with the proof, inequality (4.19) and Lemma 4.1 allows taking the limit as 7 — 0
in the expression

t

t
lim / (200 Trs D 2(9))) Laryds = / W 2() 0T, (20 (9) 1) ooy ds.
0 0

For the same reason, and having in mind that w, € C(0, T'; Ly(I'g)), we obtain

t t
}}i_r)r})/(w,(s), Dpz(s)Irg) L, (ry)ds =/(wz(s),Zz(S)lro)Lz(ro)dS-
0 0

Taking the limit when & — 0 and using Lemma 4.1,

t t
1 1
E.(0) + f 1} 2 ()2, s + / 132012, ods
0 0
. (4.20)
=E.(0)+ ¢’ /(wt(S), 2t ($)Iry) Lrpyds, fort > 0.
0
Adding up equations (4.18) and (4.20), having in mind relation 1 — ¢~2p = 0, we obtain (4.14)
as desired. O

Our next result shows that the weak solutions depend continuously on the initial data with
respect to the strong topology of . The proof adopts some ideas in [25].

Proposition 4.4 (Strong continuous dependence). Under the assumptions of Proposition 4.1, the
corresponding weak solutions of (1.1)-(1.2) depend continuously on the initial data with respect
to the strong topology of 'H.

Proof. Let T > 0 and {Uj = (z3, 27, w(l), wi)}en C H such that U — Up = (zo, 21, wo, w1)

inH.If U™, U : [0, T] - H are the corresponding weak solutions of (1.1)-(1.2), then using the
energy identity (2.8) and Assumption 3.1, we have

" (1) = EL (1) + Ej (1) + |w" (1) Hiz(l"o)
t
5C(||U8||H)+C(a)/®"(s)ds, forr€[0.7], neN,
0

418



1. Lasiecka and J.H. Rodrigues Journal of Differential Equations 298 (2021) 387-429

which implies that {U"} is bounded in L (0, T; H). Reducing to a subsequence if necessary,
we conclude that

U™ — U weak star in Lo (0, T; H). 4.21)
In order to conclude the proof, it suffices to prove that
[U"@®)],, = 1U@®ll3 inClO0, T]. (4.22)

Since the functional ®(t) = E(¢) + ||w(?) ”%2(1“0) is equivalent to the topology of #, the con-
vergence (4.22) will follow from lim,,—, oo " () = ®(¢). Using the energy identity (2.8) and the
continuity of E"(¢t) = E(t) + E}; (), we have

£(0) = lim £"(0)
n—oo
t t
= fim & @4k [ 10061 ds — o [ @), 190" OP)Layds
0 0

Using the energy identity once more and the uniqueness of weak solutions, it follows from
the previous identity that

t t
lim | £"(1) +k / lw] )17, ryds — o / W (), VW™ ($)[*) Ly(rg)ds
0 0

t t
—E() +k f e ()12, s — / (Wi (5), IVw(s) D) Ly ds.
0 0
Moreover, using the weak-star convergence (4.21) and the compactness H'(I'g) — L4(I'¢), we
obtain from the previous identity that
lim £"() < &(1).
n—0o0
Now, using the expression of £" and &, the compactness of u € H2(I'g) + u |Vu|?> € L1(I'y),

u € H*(Q)—~ F(u) € L1() and the lower semicontinuity of E"(¢) = E7(t) + Ej(t), we con-
clude

lim [EL() + E (0] = Eo(6) + Eu (0). (4.23)

Finally, it follows from the weak convergence (4.21) that (see [33]) w, — w in C([0,T];
H?7¢(I'y) for any & > 0. This strong convergence implies that

nll)n;o H wn(t)“ L2(Ty) = ||w(t)||L2(F0) (424)
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Limits (4.23) and (4.24) imply lim,_, oo " (¢) = ®(¢) as desired and, therefore, convergence
(4.22) follows, which concludes the proof. O

Propositions 4.1, 4.2 and 4.4 prove items 1 and 2 in Theorem 2.1. It remains to prove the
regularity result, which will be done next.

4.3. Regularity

Proposition 4.5 (Regularity). In addition to the assumptions of Proposition 4.1, we assume that
Assumption 3.1 holds along with the compatibility conditions (2.92)-(2.9b). If (zo, z1, wo, w1) €
H*(Q) x H'(Q) x H*(T9) x H*(I'g) and Q is sufficiently smooth, then the corresponding
solution (z, w) is strong.

Remark 4.1. So far we have proved existence and uniqueness of weak solutions, which satisfy
the variational form. One of the issues is to be able to show that in the case of smooth and compat-
ible initial data, these solutions satisfy an appropriate form of PDE. Technical difficulties appear,
particularly, in the case of free boundary conditions. These produce boundary terms which “spill
over” in the variational form and are not controlled by the energy. To handle the obstacle, we
shall work with variational forms satisfied by finite dimensional approximations. In what follows
below, we provide a brief synopsis of steps to be followed.

e We prove that time derivatives display finite energy regularity. This step requires:

— Differentiation in time of variational equality produces new terms on the boundary which
are not controlled by the energy. To handle these, Green’s maps and fractional powers of
the biharmonic operator are critically used.

— In addition, time differentiation produces interior nonlinear term which is also supercriti-
cal. To handle the latter, Brezis-Gallouét inequality is used. However, this requires control
of H? norms.

— The next step is to obtain the enhanced H?> space regularity for the plate. This is obtained
from the variational finite-dimensional formulation with critical use of compatibility con-
ditions and, again, control of “blow-up” the Sobolev’s embeddings.

e Regularity of time derivatives is obtained from logarithmic control of Gronwall’s inequality,
and the H* regularity for the plate and H? regularity for the wave is obtained by duality.

Proof. The argument is based on establishing uniform estimates for Faedo-Galerkin approxima-
tions which then need to be reconstructed as strong solutions. Let us consider {¢, },en C H*(R2)
and {Y,},en C H*(I'p) basis of eigenvectors of the Laplacian operator with Neumann bounda-
ry conditions and the biharmonic operator with either (C), (SS) or (F) boundary conditions (see
Section 3.3). For each n € N, let V, be the approximation subspace as defined in Proposition 4.1,
and consider corresponding solution (z", w™) of the following variational problem

Find (z"(¢), w" (¢)) € V, such that:
0= (27, (), ¢)L2(Q) + (w0, I/f)Lz(rO) +c (V2" @), V¢)L2(Q) +a@" (), ¥)
+(d-2[ (0. 9),,q +k WO, ]/j)Lz(l"o) +c (- Or, oIr) Ly (4.25)

— Cz (w;l(t), ¢|F0)L2(F0) + Czl() (Z’l(t)|rlv ¢|FI)L2(F1) + 1Y (Z:l(t)h"o ’ ‘(//)LZ(FO)
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+GW" (@), ¥), forany (¢, ) € Vy;

(2" (0), 27 (0), w" (0), w/ (0)) = (zq, 27, wy, wi) = (20, 21, wo, w1) in H,

where a(-, -) is given in (2.3). It follows from Propositions 4.1 and 4.4 that {(z", z}', w", wW})},eN
converges to (z, z;, w, w;) weakly star in Ly (0, T; H), for every T > 0. Let us consider R > 0
such that ||(zo, z1, wo, wi)llg < R.

Differentiating (4.25) in time and setting (1", v") = (z}}, w}'), we obtain

arl, n n
0= 2[00 )y + (O W)y + (0l 0), ]
+¢ (V" (1), V9) ) +a®" @), ) + (d -4l (1),),_ o)

(4.26)
+62 (l : u;l(f)h“, ¢|F)L2(F) +k (vtn(t)9 1/f)L2(1~0) + 6210 (un(l)h“l s ¢|F1)L2(F1)

d
= (W (1), 9ry) Ly ) + 3, CW' D). V(@) €V,

where, we recall, G(w, 1) is given by (2.5).
Note that

d
EG(w”(t), ¥) = (VW' ()P V" (1) + 2(Vw" (1), Vo' (1)) g2 V" (1), Vi) Ly(ry)

+20 (V" 00" (0}, V) )+ (F @O 0. 9) 1)
for every Y € span{y; : i =1,...,n}.
Choosing (¢, ¥) = (u} (t), v (t)) and recalling that 1 — ¢~2p =0, we obtain
d
SO K Ol gy + 12l O ) + 120 Ol )
=3(Vw" (1), [V (1) PV (1)) 1o — 20 (V" ()" (1)), Vol (1))

= (f'@"@OW" @), v} 0) 1y
=3L ", V) + 20 L(w", V") + L(w", V"),

La(Tg) 4.27)

where W, (t) = U, (u" (t), uf (t)) + Vo (V" (¢), v (¢)) and

1 2 2 2
Un (", uy) = 5 [”“;Z ||L2(Q) +c ||V”n”L2(Q) +cly ””nh"l ||L2(F1)] :

1 2 2 2 2
o) =5 a1y + a0+ [ |90 907 42| (9w, 90
To
To estimate integrals /;, i =1, 2, 3, we shall follow the arguments presented in [20].
Computing I. This integral is the most critical one due to the superlinearity. To handle it, we

shall use logarithmic estimates that follow from Brezis-Gallouét inequality (see [15])
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lullL, < Cllullg In'2(1 + K) + Cllull g2 (1 + K)7F, (4.28)

for some constant C depending on the domain and K > 0 is arbitrary. Using the above estimate
for Vw" and K = [[w" || g3 ()

IVW™ [ Lo o) < Cllw" | g2y L1+ 02 (14 [lw" | g3 (py))1 + € (4.29)

By (4.29) and classical Sobolev embedding, we arrive at

3 2
I = IV | Loy 10" 131y = CIVW | Loy 10" oo 10 12

< Cr.rIV 1y [T+ 1024 0" 17301

where Cr, g is a constant that depends on the domain obtained by using the uniform bounds from
Section 4.1.

Our next step is to obtain the estimate for the H> norm of w". While this is relatively straight-
forward for clamped or simply supported boundary conditions, the treatment of free boundary
conditions requires more involved and delicate arguments. To proceed, we go back to the approx-
imated variational problem (4.25) setting ¢ = 0 and using Green’s formula on the biharmonic
operator

(2", ) 1o+ < BC, ¥lar, >ar,
== (W) gy — K W) Ly — P @ Ires ¥) ) (4.30)

H(v{ V" PYW" L, ¥) 1) + 0 (AW}, ) gy — (F W) ¥ Lyro)
where BC = [|[Vw" |2Vw" 4+ o V{w"?}] - v. Note that, in the clamped (C) or simply supported
(SS) cases we have BC = 0. In order to deal with free boundary conditions (F), we will consider

the following Green’s map G : L2(dT9) — L2 (') given by

A%y =0, in To;

Gg =v iff v is the solution of {Av—i—(l—M)BlU:O, g’—vAv—F(l—M)BzU:g» on dl.

It is known that if G* is its adjoint in L then G* Ay = —|sr, for every ¢ € HZ2(Ty). Thus, we
rewrite (4.30) as follows

<AW" —GBC),  >= (RW") — pz!, ¥) Ly(r)+ (4.31)
for every Y € span{yrq, ..., ¥, }, where
Rw") = —w!, — kw! +div{|Vw" > Vw"} + o A{fw"?} — f(w").
Note that w" — GBC does not belong to D(.A) due to the boundary effects caused by the Green’s

map. Thus, identity (4.31) is understood in the dual sense, i.e., with respect to [D(Al/ 2)]/ topol-
ogy (or [H?(S2)]), Hence, we conclude

PvAW" —GBC) =Pn[R(wn) — pz{1
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where Py denotes the orthonormal projector in span{yr, ..., ¥x}. Since Py commutes with A
(and its fractional powers) we have

APyw" =PyAGBC + PyR(w") — pPyz)}, forn>N. (4.32)

By elliptic regularity and characterization of fractional powers of A where A% ~ H4 (Tg) for
6 <121
8

Ge L(H '?dT) — H3(Ty) C D(AY%) (4.33)

1/4

and rescaling equation (4.32) by A~"/* yields:

AAPyw =Py AHGBC + APy Rw™) — p AV 4Py,
for n > N. This yields the estimate

A 4Py w" || Ly < IPNAYAGBC Ly o) + IA™Y4Py R(W™) I Ly (1)

e (4.34)
+oll AT Py Ly =1 + o+ J3.

Estimates for Ji. By elliptic regularity in (4.33) combined with the embedding H'/2(3T) C
L,(3T) for 1 < p < oo, we have

2
IPNA4GBC | Lyry) < CIBCllg-112ry) = CIIVW" PV 4+ 0 Vw31 vl g-121)

< CUVW" 13,1500+ 1w 1512600 IV 1 a6r0) < CA+ w1320 )-
H/Z(Ty) H=*(T)

Estimates for J,.

JAT Py R o) < IR@") L g-1240ry)

< C(l + ”wn”:;.IZ([‘O) + ”w;zt ||L2(F0) + ||w[’l||L2(F0)) + C\IJ(”wn”Hz(FO))’
where W(r) = maxs|<, | f(s)| and C stands for a constant that does not depend on n or N.
Estimates for J3. Using trace and interpolation theorems, we have

IATY 4PN 2P o) < Cllzf ooy < C (2! e + Cellzf @) -

Plugging these estimates into (4.34), having in mind that D(A?) ¢ H* (Ty) for 6 € [0, 1] and
the substitution w} =v" and z} = u", we obtain

lw" [l g3ry) < Ci [0/ 1l Loy + 10" Ly (o) + Nlue” ||H1(Q)] + Cz‘i’(”wn“HZ(rO)) (4.35)
where W(r) = 1 + 13 + W(r) is an increasing function. The above leads to:
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Lemma 4.3. Under any of the boundary conditions, one has the following estimate for Galerkin
approximation w"

10" ey < o [Wa+ 10" Iy 1| + Cre
where W, (t) is defined below in (4.27).

Finally, the estimate in Lemma 4.3 together with uniform bounds obtained for approximated
solutions in Section 4.1 implies the following

11 = Cr R0 gy [ 14+ 020+ W 101 ) | (4.36)

Computing I. If the boundary conditions are of type clamped (C) or simply supported (SS), then
I> can be rewritten as

L =—(V{w"v"}, V{v/ D,y ry)
0
=—-< 5{10"11"}, v >ary HA{W" V", ) Ly = (A{w" V", v Ly (T
=" Aw"}, v Ly + W A"} v Ly gy +2(V{w"} - VU, v Ly rg) -

Using the inclusion H 2(I'9) C Loo(I) and the uniform boundedness for the approximated so-
lutions, we obtain

12| < C RIV" |l g20g) V7 I L2 (To) -

In the case of free boundary conditions, we use a different approach, although it might be used
also for the other boundary conditions. We return to the variational problem (4.25) and rewrite
I, as follows

d 1
h=—— {(van”, VUL, + 5 " IVv"Iz)szo)}

3
+ E(vn, |an|2)L2(r0) + (v V", Vu") 1,1y 4.37)

d
=——D0(t I ().
P 21(t) + (1)

In order to the obtain estimates for I51(¢) and I>(¢), we are going to use inclusion H*(I"g) C
Lo (I'g) for s > 1, compactness imbedding and uniform boundedness for the approximate solu-
tions.

Estimates for 1.

1
|B21(0)] < 10 V", VU L) + 5 (', V" 12 Ly o)
< C[|v" | Zoo (To) [[v" ||H1(F0) [|w" ||1-11(r0) + ||wn||Loo(1"0) [[v" ||?{1(1~0)] (4.38)
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< Cr.RUV Lo o) V" 1 rgy + 10" 111y = CT R IV Wpe
ny2
S 77”1) ||H2(l"0) + Ci],T,Ra
for n > 0 can be taken arbitrarily small.

Estimates for 1.
3 n n2 n n n
[x()] < El(v VUV ) L |+ 10 V', V') L rg) |

3 2
=< S @) IV L o) + 107 a1V Ly o IVV" I Lsro)

< Cr eIV T, )+ 107 L2 IV | Lyr)] < Cor r IVV" 1T, ) + 1107 1y

< Com R IV I3e gy + IV I gy < Cnt R IV I3y + MIVY 17 )
(4.39)
for any 1 > 0 arbitrarily small.

Computing I. Since f is of class C 1 it follows from the embedding H 2(T'y) C Lo (To) and
uniform bounds for the approximated solutions,

2 2
131 = Cr IV 2 og) 107 L Lo 0oy < MIVF N, rg) + ot R IV 121y (4.40)

for n > 0 arbitrarily small.
Plugging (4.37) into (4.27) and using estimates (4.36), (4.39) and (4.40), also choosing 1 <
k/2(20 + 1), we conclude

d k

TVt 20b1]+ 5 10712,y + 12U 1y + 1020} P wan
< CrRIV 13y [T+ 102+ W+ 1017, 1)1+ 20 Co 1 R IV 12 1 -

Let us define

W =Wy + 20 Ly + [0"113, 1) + co- (4.42)

where c¢o > 0 is an appropriate constant. Note that, since ||v ||le2 is equivalent to a(v, v) + ||v ||%2,
it follows from inequality (4.38) that, making n sufficiently small and taking c¢o > 0 appropriate,
it follows that

Wi 2 CryWa + 0al,0)) Z Con V" 121, -

Also, taking the derivative of Wn we obtain

d _~ d W on
EWn = E[W + 201+ 20", v{') L,y (1g)s

which implies
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d .z 2 2 d ko a2
EWn + (k/2 — o)V} ||L2(1"0) - Cn,e”Un”Hz(rO) =< E[W + 2011+ E”UanLz(ro)‘

Choosing € < k/2, and returning to (4.41) and with the obtained bounds we conclude

d -~ - ~ ~
ZWH <CWV, n'2(1 + W,) + CrW,. (4.43)
Solving the differential inequality (4.43), above we obtain

Wa(®) + 10" |1 7,00) < CWV (@) < Cr (1 +W, (0)PT%, fort >0,

where Ct,r and Br g are positive constants.
Using the expression of W, and inequality (4.38), the above estimate implies

2 2 2 2
Slép {”Z:l; ||L2(Q) + ”Z:l“Hl(Q) + ||w;1;||L2(r0) + ||w;l ||H2(r0)} =< C;,ka
t€l0,T]

forn=1,2,..., where

Cr = Crr [1+ 1 O g + 12111 g+ 17 O )+ 10Ty + 1Y I
gl |

Therefore, in order to obtain uniform estimates for the derivatives in higher-energy spaces,
we must find a bound for the initial data in the above expression. If we denote z) = z};(0) and
w) = wy,(0), then these elements are given by the system

(33 0) Loy T (5. 9) Ly = =€ (V20 V8) ) =@ ) + ¢ (0 Blr) 1y
—(d -2, ¢)L2(Q) —k (wf, 1/’)Lz(ro) — A (-r. ¢|F)L2(r) — o (1. ¢|F1)L2(F1) (4.44)
—p (Z}“Foa W)LZ(Q) - G(wgﬂ ‘ﬁ),

for (¢, ¥) €V,.

In order to obtain an additional estimate for the approximate solutions, we need to show
that the inner products above are uniformly bounded for every (¢, ) € Ly(2) x L2(Ig) by
choosing (zg, 2}, wy, w) € V, sufficiently close to (zo, z1, wo, w1) such that sup, . C,; < c0.
Let (20, 21, wo, w1) € H>() x HY(Q) x H*(I'9) x H*(T'y) satisfy the compatibility conditions
described in Theorem 2.1. Define 7} = ﬁnzl and w} = P,wi, where ﬁn and P, are the orthopro-
jectors over span{¢; : i =1,...,n} and span{y; : i =1,...,n}, respectively. Note that, in this
case we have

” (Z;Il(o)v w?(o))||1-11(9)><1-12(r0)= H (Zillv w?)”Hl(Q)XHZ(Fo) <C||(z1, wl)”[—ll(Q)xH2(]"O) ,VneN;

@, wh) — (z1, wy) in H'(Q) x H*(T) as n — oo.
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The above inequality provides a uniformly bounded approximation for the elements z; and
wi. Let us now construct the remaining approximated initial data. To this end, let us consider the
following functional IT: H'(Q) x H 2Ty) — R given by

(¢, %) =c*(Vz0. V) Ly(@) + o zolry . ¢l ) o)) + (- 21lr. Sl o)
— (w1, @Iry) Lo ()

+ a(wo, ¥) + (IVwol? Vwo, V) 1,1y + (VIwg}, V) 1y o) + M (wo, ¥) Ly (r)»

where M > 0 is a constant that will be specified later. Using Green’s formulas and the compati-
bility conditions between the initial data, we obtain
T, )| < |e*(Az0, §) 15 ()] + [(A%wo — div{| Vol Vo) — o Awg) + Mwo, ¥) 1, (ro)]
< C (I1zos wo)l g2y x 1141 ) 1@ WLy (@)% Lo (T) s
for every (¢, ¥) € H' () x H*(T'y), which shows that IT is a continuous functional with respect

to Lp-topology. We use the same notation IT for its extension to L2(2) x Ly(I'o). Hence, for
every n € N, we consider (z5, w) € V, satisfying

2
AV, VP @) + Alo@g Iy, @Ir) Loy +awg, ) + (| Vwg|” Vwd, Vi) 1y

(4.45)
+0 (VEWE)*}, V) Lyrg) + MW, ¥) 1y = 1@, ¥),  for (¢, ¥) € V.

The sequence {(z(;, w()}neN is a Galerkin approximation sequence for the following (nonlin-
ear) elliptic variational problem

(V2. V) 1y + lolry dlr ) Loy +a@. ¥) + (Vwl® Vo, Vi) 1ywy)
+ o (V{w?}, Vi) 1,y
+ M(w, V)1, = (g, ¥), for (¢, V) € HY(Q) x H*(Ty).

Since the elliptic operator associated with the previous variational problem is a locally Lip-
schitz perturbation of a monotone operator and, in addition, is coercive for suitable large M, it

follows that {wg},cn is uniformly bounded in H 2(I'p) and wy —> wo strongly in H 2(Tp).
Finally, identities (4.44) and (4.45) imply

(22:9) oo + (W3 ¥) 1)

= —[T(¢, ¥) + (d - 21, 8) ) + (kw] + o2 Iry = Muwg + fFWR), ¥) ;)]
for every (¢, V) € Vy. Since II(-, -) is continuous in L(£2) x L2(I'), {(z}, w})} is uniformly
bounded in H' () x H(I'y) and {wg} is uniformly bounded in H?(I'p), we conclude from the

previous identity that {(z5, w5)} is uniformly bounded in L»(€2) x L»(I'g), which provides an
additional a priori estimate for the first and second derivatives of the solutions, namely,

(@, 2%, w!, wh)}yen is bounded in Loo (0, T; H'(22) x Ly(2) x H*(Tg) x Ly(I)).
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Feeding this time regularity back into variational form allows us to boost the regularity in space
by improving H 3(I'y) to D(A) for the plate component. The above boundedness together with
the weak-star convergence of {(z", z}', w", w})} to (2, zs, w, wy) in Loo(0, T; H) allows us to
pass to the limit in (4.25) and conclude that the solution (z, w) belongs to the class

(2,21, 211) € C([0, T1; D(A) x H'(Q) x L2(Q));
(w, wy, wyr) € C([0, TT; H*(Tg) x H*(Tp) x La(T)),

which concludes the proof. O

Remark 4.2. Notice that the estimates (uniform with respect to the discretization parameter “n”)
for the integrals I} I and I3 are more delicate. This is particularly true in the case of free (F)
boundary conditions. The estimate for /] has two hurdles. The above critical unboundedness of
the restoring forces of the plate equation and the inhomogeneity in the boundary conditions which
are not controlled by the finite energy topology. To address the difficulties, logarithmic control
of critical Sobolev embedding is employed. However, the Galerkin approximations do not yield
H*(I'y) regularity. (This is because the operator AG has its range only in H>(T'p) and this is the
effect of free boundary conditions.) Therefore, the plate solution is shown to have H3(I'g) space
regularity. The additional boost to H*(I'g) requires a subtle approximation procedure for initial
data, as presented above.
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