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Abstract

Simulations of complex, compressible, high-Reynolds-number flows require high-fidelity
physics and turbulence models to be appropriately coupled with strong numerical regu-
larization methods. Obtaining grid-independent and scheme-independent solutions of these
flows when using both explicit turbulence models and additional numerical regularization
is especially important for further testing and development of accurate physics models. To
this end, the current study investigates the interaction between the stretched-vortex sub-
grid-scale model and both the fourth-order piecewise parabolic limiter and a fifth-order
upwinding interpolation (or hyperviscosity). It is demonstrated that computing the subgrid-
scale kinetic energy estimate for the stretched-vortex model at a coarser resolution than the
base mesh provides results which are independent of the use of numerical regularization
techniques. This is shown to be the case for a temporally-evolving shear-layer, the inviscid
Taylor—Green vortex problem, and a decaying, homogeneous turbulent flow.

Keywords High-order finite-volume methods - Large-eddy simulation - Stretched-vortex
turbulence model - High-Reynolds-number flows

1 Introduction

Many flows of engineering interest are turbulent and inherently multiscale. Numeri-

cally resolving all scales in a high-Reynolds-number turbulent flow is challenging with
today’s computational capabilities. However, large-eddy simulation (LES) is a promising
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alternative to direct numerical simulations (DNS) in that it solves large scales while mod-
eling small-scale effects to provide a solution acceptable for many engineering require-
ments. The approach is logical when rate-limiting processes happen at the larger resolved
scales (Pope 2004). Even so, defining and modeling the small scales becomes one of the
key issues in LES.

The typical LES definition of small scales begins by separating the original solution
field, ¢, into representable scales, ¢, and unrepresentable scales, ¢’, by means of a standard
LES low-pass filter operator, the convolution operator,

G*¢=q,'_)(x,t)=/ / P&, )G —&,t—1)dr dE, (1)

where x and & are space, ¢ and 7 are time, and G is the filter kernel. In general, LES simula-
tions rarely define or use the filter kernel, G, explicitly. Rather, an implicit filter arises from
the combined effects of the discretization, the numerical scheme, and any subgrid-scale
(SGS) models used. This study assumes an implicitly defined Favre-averaged filter where
Favre-filtered velocity, @, is defined as mass-weighted momentum, @ = pu/p, with p being
density. It is also assumed that the filter kernel size is equivalent to the cell size of the grid
on which the SGS model is computed. As noted below, this does not necessarily corre-
spond to the cell size of the grid on which the solution field is stored and updated.

As a result of the filtering process, all filtered nonlinear quantities must be modeled
in terms of the individually filtered components. Explicitly modeled LES incorporates
models developed for these filtered nonlinear terms, while implicit LES (ILES) relies on
carefully designed characteristics of the numerical algorithm (e.g. numerical regulariza-
tion or dissipation) to provide the necessary modeling (Sagaut 1998; Grinstein et al. 2007;
Karaca et al. 2012; Fernandez et al. 2017; Moura et al. 2017; de Wiart et al. 2015). The
present study tests both ILES and explicitly modeled LES. The explicit LES model utilized
is the stretched-vortex SGS model (Misra and Pullin 1997). This structural model has pro-
vided results consistent with experimental data for very-high-Reynolds-number flows (Gao
et al. 2019). Numerical regularization in the form of either the piecewise parabolic method
(PPM) limiter or hyperviscosity (introduced by fifth-order upwind face-value interpola-
tion) provides the basis of ILES simulations performed within this study.

The goal of the present study is to combine numerical regularization and explicit LES
models in a compatible manner and, if possible, achieve grid-independence and scheme-
independence of large-scale solution data. Future studies of high-speed, compressible, tur-
bulent, reacting flows will require strong stabilization mechanisms independent of whether
an explicit turbulence model is utilized. If the PPM limiter and hyperviscosity sufficiently
simulate high-Reynolds-number turbulence, explicit turbulence models are unnecessary
and would only increase computational cost. However, if an explicit model is required to
achieve grid-independence of large-scale solution information, the turbulence model and
the numerical regularization must interact in a compatible manner (i.e. each acts only
where necessary). To achieve this, the current study computes the turbulence model terms
on a coarsened solution field and then interpolates the model to the original solution field
governed by the LES equations. This study uses a high-order finite-volume method (FVM)
with adaptive mesh refinement (AMR) as a natural environment in which to test the coars-
ened SGS model computation.

Throughout this study, the Favre-filtered equations describing a compressible fluid flow,
i.e. the conservation of mass (p), momentum (pu), and energy (pe), are considered. These
equations are given as follows:

@ Springer



Flow, Turbulence and Combustion

op
—_ V 13 =0’
a (pun) )
) i)+ V. (pa" +1p) =V - (7 — 7
E(pu)'i' : (pllll + p) - '(T_ngs)’ 3)
0  _. o o . " ~ ~ ~
(2 + V- (piE +8p) = V- (- G- = V- (B + B -Ei): @
- . 1__ B
p—(r—l)<pe—5pu-u— sg54>, (5)
T = ﬁ[aﬁ - ﬁﬁT], (6)
E, =plue-ue], E, =uwp-up, E, =7u-7- )
~ o
Ey, = 3o[wu-u-a], )

where I is the identity matrix and y is the specific-heat ratio of the fluid under considera-
tion. The fluid is assumed to be a Newtonian, calorically perfect, ideal gas with heat flux,
q, approximated by Fourier’s law

(i = —K'V”f, (9)

where « is the thermal conductivity of the fluid, and T is the Favre-averaged temperature.
Additionally, the molecular stress, 7, is modeled by
~ S 1 ~ S 1 ~ ~\T
#=2u(S-5v- ). §=(Va+va'), a0)
where p is the molecular viscosity of the fluid. For the present study, it is assumed that
E ., is too small to necessitate modeling.

The rest of the paper is organized as follows. Section 2 details the stretched-vortex
model as implemented in the current study. Section 3 describes the high-order FVM algo-
rithm in which the stretched-vortex model is implemented and tested. The test cases and
data processing details are presented in Sect. 4. The results and discussion of simulations
performed in the current study are presented in Sect. 5. Finally, Sect. 6 wraps up the study
with conclusions and recommendations for future research.

2 Stretched-Vortex Turbulence Model

The stretched-vortex (SV) SGS model, is a structural LES model and is based on the
assumption that, at high Reynolds numbers and sufficiently small length scales, stretched
vortex tubes dominate the flow physics (Misra and Pullin 1997; Lundgren 1982).

The model closes the filtered momentum equation, Eq. (3), using the SGS kinetic
energy, K, and the SGS vortex orientation unit-vector, e,

@ Springer



Flow, Turbulence and Combustion

(w-aa") =k (1-e(e)"). (1

Requiring K > 0, e" alone determines whether the SV model is dissipative or anti-dissipa-
tive. The present study uses Misra and Pullin’s “model 1b” (Misra and Pullin 1997), which
depends on the resolved vorticity vector, e, and the eigfnvector, e’s, associated with the
largest positive eigenvalue, A5, of the strain-rate tensor, S. A weighting factor, o, controls
the influence of each vector in the model,

e =oceh(eh) +(1-0)e”e). (12)

Using ¢ = 1 guarantees a dissipative model (Chung and Pullin 2010; Mattner 2010, 2011),
while incorporating e® decreases dissipation (Walters et al. 2019). Throughout the present
study, all simulations employing the SV model use ¢ = 1.

Among the proposed models for K (Misra and Pullin 1997; Voelkl et al. 2000; Mattner
2010; Chung and Pullin 2009, 2010), the model used by Chung and Pullin (2010) is applied
in this study. The model requires the evaluation of the incomplete gamma function, I'[-], the
grouped Kolmogorov constant, IC('), and a cutoff wavenumber, k., and has the form

K= %IC{)F[—%,K?] . (13)

c

The cutoff wavenumber, « ., is computed using

=4y % a=(eh)'Seb, =L A =@aag” g
The Kolmogorov constant, ICE) is given by
F
K = {2} (15)

P ek}
In Eq. (15), {-} is an ensemble average of the variables over a spatial domain, Q, encom-
passing N points, X;, neighboring x,,
1
{¢} = N Z d’(Xo’Xi), (16)
X;€Q ; X;#Xg
where, in this study, N = 26. F, is the second-order structure function
Fy = (a(xo) —u(x;)) - (8(x) —a(x;)) . (17
Additionally, Q is a weighting evaluated over all wavenumbers, k, given by
0(x,.d) = 4/ kS Pexp(—k?) <1 - Jo<£ﬂd>> dk, (18)
0 Ke

where J; is the zeroth-order Bessel function of the first kind, and d is the planar distance
from the cell center to the SGS vortex axis

d= AL =[x —x;) - (% —x)] = [(%—x,) 'e%]z : 19)

c
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Efficient means of computing ICg, I'[-], and the eigenvalues/eigenvectors are presented by
Voelkl and others (Voelkl et al. 2000; Chung and Pullin 2009; Shetty and Frankel 2013).

In addition to closing the filtered momentum equation, Eq. (3), the current study mod-
els E i and E, in the filtered energy equation, Eq. (4), following the methodology pre-
sented by Kosovic et al. (2002) and Hill et al. (2006). The results presented throughout this
study do not use the model of Kosovic et al. (2002) and Hill et al. (2006) for the SGS stress
correction, E, , in the pressure computation of Eq. (5). Comparisons of decaying turbu-
lence simulations with and without the pressure correction showed no observable differ-
ence between the two in globally summed quantities and in energy spectra. For these low
Mach number flows, this observation is expected.

3 Numerical Framework
3.1 FVM Algorithm: Chord

All results presented in this study are obtained using the FVM algorithm, Chord (Gao et al.
2014; Guzik et al. 2015, 2016; Gao et al. 2016; Owen et al. 2018), built upon the highly
parallelizable (scaling to at least 1x10° cores) AMR framework Chombo (Colella et al.
2009). Chord solves the governing equations for transient, compressible, turbulent, react-
ing and non-reacting fluid flows with complex geometry. It has been designed to achieve
high levels of accuracy and performance for turbulence and combustion simulations on
modern high-performance computing architecture. For smooth flows, Chord is fourth-
order accurate in space and time (using the standard four-stage Runge Kutta time-march-
ing method) (Gao et al. 2014, Guzik et al. 2015, Guzik et al. 2016, Gao et al. 2016, Owen
et al. 2018). For flows with strong discontinuities (e.g. shocks or detonation waves), the
PPM limiter (Colella and Sekora 2008; McCorquodale and Colella 2011) is used for stabil-
ity. Chord is capable of additional stabilization by hyperviscosity through fifth-order face-
value interpolations. Chord’s turbulence modeling capabilities include unsteady Reynolds-
averaged Navier-Stokes (URANS), LES, and DNS. Additionally, Chord utilizes AMR
in space and subcycling in time and accommodates complex geometry while preserving
freestream conditions using generalized coordinate transformations.

In the present study, all spatially discrete operators are fourth-order accurate by default.
However, numerical stabilization in the form of either the PPM limiter or hyperviscosity is
tested in conjunction with the SV LES model.

3.2 Fifth-Order Interpolation/Hyperviscosity

In FVMs, flux evaluations at the faces of a computational cell are essential and require
knowledge of face values. Reconstructing solution variables at cell faces is one of the fun-
damental operations in the algorithm and is a major difficulty in terms of stability. Low-
dissipation, high-order, centered interpolations can create spurious, high-frequency solu-
tion content and allow it to grow, especially near unresolved solution gradients. Adding
a high-order viscosity term to the interpolation through a spatially-biased interpolant can
help alleviate spurious high-frequency content (Chaplin and Colella 2017).

Interpolating the face-averaged primitive state, (W);, Lot from the cell-averaged primi-
tive state, (W);, follows the process described in previous literature (Gao et al. 2014; Guzik
et al. 2015). A cell index is denoted by i on an integer lattice and e is a unit-vector in
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direction d. A cell face is reached by a shift of 1/2. A four-cell, fourth-order, centered
approximation to (W),_ 1, is given by
2

@) 7 1
(W>i+%ed = E(<W>i + <W>i+ed) - E((W%‘—ed + <W>i+22f’)’ (20)
while the right-biased, five-cell, fifth-order approximation is provided by

WD, = (=3W)y_gs + 27(W), + 47 (W = 13 (W)
a 1 21
+ @(2<W>i+3ed) .

A reflection of Eq. (21) about the face provides a left-biased interpolation. Using both the
left and right-biased values, the final face value is the solution of a Riemann problem.
Examining the difference between the two interpolations reveals the high-order, cell-
centered numerical dissipation term present in the fifth-order interpolant
® @
<W>i+ <W)i+%ed

1
Sel.R

= 2 ((Whioas = 4O, + 6(W)ppes = AWy + (W) o
N Ax4 04

~ % ﬁ (<W>i+ed) :

It is through the high-order numerical dissipation term that the highest frequency content is
detected and controlled.

3.3 Piecewise Parabolic Method

The high-order piecewise parabolic method (PPM) is an extension of Godunov’s
method (Colella and Woodward 1984; Colella and Sekora 2008; McCorquodale and
Colella 2011). Essentially, the PPM consists of two main steps. First, face values are
interpolated using high-order finite-difference approximations based on the cell-averaged
values. If necessary, the interpolants are limited to ensure monotonicity. Second, a para-
bolic profile is constructed in each cell and constrained to keep it monotone. If the local
extremum is smooth, as determined by checking adjacent second derivatives, the limiter is
not applied. A third-derivative condition is also checked to avoid limiting perturbations of a
cubic in multidimensional problems (McCorquodale and Colella 2011). The PPM scheme
delivers a more accurate representation of spatial gradients of smooth flows and a steeper
representation of discontinuities. Additional techniques such as artificial dissipation and
slope flattening are applied at shocks to suppress unwanted numerical oscillations. In the
limit of a complete flattening, the scheme recovers the first-order Godunov method locally
near the discontinuities. In the present study, the PPM scheme is implemented closely fol-
lowing the work by McCorquodale and Colella (2011).

3.4 Numerical Implementation of the SV SGS Model

When applying the SV SGS model at a coarser length scale, 4;, than the grid filter, Ax,
existing AMR infrastructure is used within Chord. As shown in Fig. 1, the cell-averaged
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Fig. 1 Coarsened SGS kinetic
energy estimate (example dem-
onstrates 4, = 24x)

primitive state on the original fine mesh at cell-index i, (W){ , is averaged to a coarser
mesh, (W)¢. The fine mesh has cell spacing Ax.

Following the averaging procedure, the coarse cell-averaged value, <W>§’ is decon-
volved to obtain the cell-centered value, Wf , to fourth-order accuracy using the decon-
volution (McCorquodale and Colella 2011)

1, W)

W! = (W){ —
= Wi 2o

(23)

where & is the cell spacing of the grid level. Working with the cell-centered state as
opposed to the cell-averaged state preserves the order-of-accuracy of the numerical scheme
and the SGS energy estimate in smoothly varying solution fields even when computing
nonlinear terms. To use the cell-averaged quantities during the computation of nonlinear
terms would not preserve the scheme’s order-of-accuracy in nonlinearly-evolving smooth
regions of the flow unless rather complicated product-rules of averages were utilized. On
the coarser mesh, with cell spacing 4;, the SGS kinetic energy estimate is computed using
W and then interpolated to the original mesh. From here, (Kggs ) is interpolated to the cell
faces. On the cell faces, the orientation model is computed using Wf and combined with
K. to obtain a conservative SGS momentum flux. The detailed steps as presented in an

SGS
algorithm format are as follows:

1. Average the fine cell-averaged primitive state to a coarser mesh and deconvolve it to
obtain the coarse cell-centered primitive state:

(WY = (W)e — We

2. Compute the coarsened cell-centered SGS kinetic energy estimate from the cell-centered
primitive state and average it over a coarse cell:
n C "
Wi = (Ksas); = (Ksas);

i

3. Interpolate the cell-averaged SGS kinetic energy estimate to the fine mesh:

(Ksgs)i = (Kses ){
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4. Interpolate the fine cell-averaged SGS kinetic energy estimate to the cell faces and
deconvolve it to obtain the fine face-centered SGS kinetic energy estimate:
S S S
(Ksgs); = <KSGS>i+%e,, - (KSGS)H_%ed
5. Compute the fine face-centered turbulent flux using the interpolated SGS kinetic energy
estimate and the orientation model computed on the fine mesh with fine mesh data.

As complex as this appears, even without optimizing the computational implementation,
the SGS model costs less than 10% of the computation time when the coarsening ratio is
4 (4; = 4Ax), and approximately 35% of the computation time when 4, = Ax for a three-
dimensional simulation. In other words, applying the model at a coarser scale reduces the
expense of computing the nonlinear filtered terms.

Using 4, > Ax for the SV model has previously been tested, as in the study of Chung
and Matheou (2014). Furthermore, it was conclusively demonstrated that grid-converged
LES results are obtainable for high Reynolds number, practical flow simulations. The cur-
rent study departs from the implementation methodology of Chung and Matheou in that
the current study explicitly uses a coarser mesh when computing the SV model SGS kinetic
energy estimate rather than implicitly incorporating the larger filter width through the x,
parameter in Eqgs. (13)—(15). This difference is utilized in order to enable the coupling of
the SV model with numerical regularization. Without computing the SGS kinetic energy
estimate on a coarser mesh, the smallest represented information necessary for the the SV
model SGS kinetic energy calculation would still largely be affected by the numerical regu-
larization. As a result, the model would still register too low of an SGS kinetic energy
estimate, even with the increased filter-width size being incorporated into the computa-
tions through «,.. The SV model was originally designed to match an explicitly defined SGS
kinetic energy spectra to the smallest representable-scale kinetic energy. Using numerical
regularization, it is expected that the scales used to match the SGS kinetic energy spectra
should no longer reside near the grid-cutoff, but rather at the scales associated with the
equivalent filter size of the LES system.

4 Test Cases

Throughout this study, three cases test the concepts and algorithms. The first is a tempo-
rally-evolving mixing-layer (Pantano and Sarkar 2002; Jackson and Grosch 1989; Mattner
2011), while the second case is the decaying, inviscid Taylor—Green vortex where the
Reynolds number is infinity (Bull and Jameson 2014). The last case is a decaying, homo-
geneous turbulence case based on the widely used Comte-Bellot and Corrsin experimental
dataset of decaying, grid-generated turbulence (Comte-Bellot and Corrsin 1971).

4.1 Time-Evolving Mixing-Layer

The time-evolving mixing-layer considered in the present study is configured as fully-peri-
odic double-shear as shown in Fig. 2.

The freestream velocities of streams 1 and 2 are U, ,, = 34.03 m/s and U, ,, = —U,
respectively, and the freestream pressures and densities of both streams are identical. The flow
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Fig.2 Configuration of the time-

evolving double mixing-layer 1,01, 11 U _ AU
Useo = &Y
p2,p2, T>
Uso = &Y
p1,p1, Th Uloo = =5

has a Mach number, M, of 0.1 based on the arithmetic mean of |U; | and |U, | , a Prandtl
number, Pr = 0.71, a specific heat ratio, y = 1.4, and a Reynolds number of 11650, based on

Uyl
Re; (= M , (24)
(o8 ﬂ
where §,, is the initial vorticity thickness

L,/2 =2

1 : it
5 =— p‘<1——> dy, 25
oo (Au/2)? 5)

with L, being the domain length in the shear-layer normal direction, and Au being the
magnitude of the difference between the two freestream velocities, Au = Uz o — Ul ol

The momentum thickness, &, is §&,/4. The computational domain size is,
L, XL, XL, =1376, X 1376, x 6835. The meshes consist of coarse resolutions with
64 X 64 x32 cells in the streamwise, shear-layer normal, and spanwise directions
respectively, medium resolutions with 128 x 128 x 64 cells, and fine resolutions with
256 x 256 x 128 cells.

The velocities in each stream were sinusoidally perturbed and computed from a stream
function in order to achieve an analytically divergence-free initial velocity field. This stream
function is defined as

- £
Y= :fUl,ootanh<259>, (26)

where the factor & is defined as

_ bsi 2rw;x
¢ =y+exp(—nlyl) Z ,~sm< 2 +¢i> , 27

and the velocities are computed analytically as

oY oY

= — y =

ay “ox (28)

The i-th perturbation mode has phase shift ¢;, wavenumber w;, and magnitude b;.
The parameter # controls the decay rate of the perturbations in the shear-layer normal
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direction. For this study, # = 8z /L,. Perturbation modes with @ = 8, 4, 2, and 1 were cho-
sen for the streamwise and spanwiée directions. The dominant mode with @ = 8 was given
b =0.1(L,/2) for the streamwise direction and b = 0.05(L,/2) for the spanwise direction.
All other perturbations were randomly provided magnitudes of either three percent or one
percent of the half-domain height. Streamwise and spanwise phase shifts were randomly
chosen. Density was initialized from the ideal gas law assuming constant pressure, identi-
cal freestream density values for both shear-layer streams, and using the Crocco-Busemann
relation for temperature

1
P =p [1 + 5(7/ - 1)M2<1 —tanh<2£50>> <1 +tanh(2%)>] . (29)

Pressure was initialized assuming a constant pressure profile with correction for the veloc-
ity perturbations

p=py— 1pO P+ 2uUytanh _5 +v2 )(y = 1), (30)
2 26,
where it is given by

it:u—UOtanh(ziég) . 3D
The double-shear problem provides an anisotropic-turbulence test case in which the tur-
bulence is fed by a freestream, large-scale energy reservoir. This energy reservoir continu-
ally generates turbulence until the turbulence reaches the periodic boundaries, essentially
mimicking a forced turbulence problem. At this point, the energy decays away. Although
a relatively simple configuration, the double-shear case provides a test with flow features
commonly encountered in real-world engineering problems. The large-scale anisotropy is
common in almost any wall-bounded or jet-type flow as is the continual production of tur-
bulent energy from large-scale flow features that persist for long time-periods. For these
reasons, the time-evolving shear-layer has been a favorite for testing LES models and algo-
rithms. The SV model has previously been tested with the time-evolving shear-layer by
Mattner (2011). While Mattner used a Fourier spectral collocation scheme in the periodic
streamwise and spanwise directions and an eighth-order finite-difference scheme in the
slip-wall-bounded shear-layer normal direction, every coordinate direction in the present
study uses the finite-volume discretization described in Sect. 3. Additionally, Mattner pre-
sented one-dimensional energy spectra while the current study presents three-dimensional
energy spectra.

4.2 Inviscid Taylor-Green Vortex

The Taylor—Green vortex flow is initialized in a fully-periodic cube of side-length D with a
sinusoidal initial condition given by

u=-U, sin(%)cos(%)sin(%) (32)
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(2 o o )
w=0 (34)

poUZ 2
P=po+01—60<cos<2’gx)+cos<?>>(cos(2’grz>+2) (35)
o 2P y
RT,  p, (36)

where U, is the velocity fluctuation magnitude and # is the number of vortices contained in
the domain in each coordinate direction. The flow has a Mach number based on U, of 0.1,
a Prandtl number of 0.71, and a specific heat ratio y = 1.4. Cell counts of 643, 1283, and
2563 were used for all of the Taylor—Green vortex cases.

In the limit of infinite Reynolds number, the Taylor—Green vortex provides an ideal test
of algorithmic components examined in this study. The vortex evolution begins with “vor-
tex wrap-up”, eventually transitioning to a turbulent energy cascade process. It is apparent
that all initial kinetic energy eventually resides at the subgrid-scale even though it is never
dissipated in this inviscid problem. Once the kinetic energy resides at the subgrid-scale, it
is indistinguishable from internal energy except through a model. As a result, the numeri-
cal algorithm must sufficiently dissipate represented-scale kinetic energy while correctly
capturing the energy cascade process. This test case will demonstrate the dissipative char-
acteristics of the algorithms when physical viscosity is absent.

4.3 Decaying Homogeneous Turbulence

Decaying, grid-generated turbulence is a classic test of the capabilities of LES models and
multiple experimental datasets are readily available for this case (Skeledzic et al. 2018;
Comte-Bellot and Corrsin 1971; Hearst and Lavoie 2015). This particular study simulates
the Comte-Bellot and Corrsin experiment (Comte-Bellot and Corrsin 1971) following the
numerical procedure outlined by Rozema et al. (2015) and partially developed by Kang
et al. (2003).

The experimental case consists of a bulk flow, U,.;, of 10 m/s through a mesh with a
spacing between wires, L ¢, of 0.0508 m. A characteristic time, 7, is defined as

U,

7=t 37
Lref ( )

ref»

where ¢ is the true physical time. If a reference-frame is chosen to convect with the flow, a
change in spatial location can be correlated with a change in time in the convecting refer-
ence frame. Measurements of the one-dimensional energy spectra were performed at spa-
tial locations corresponding with characteristic convecting reference frame times of

T =42,98, and 171 after the generation of the turbulence by the mesh. At the first meas-

urement station, u% was measured to be 0.222 m/s and the Kolmogorov scale was deter-

mined to be 2.94 x 10~* m.
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To numerically simulate this case, a domain reference length, D, ¢, was chosen as 11L,
and a local turbulent velocity reference value of u,.; was chosen as 0.2224/3/2 m/s in order

to match the experimental value of uf All computational parameters were nondimen-

sionalized by D, and u,; as necessary. An algorithm-dependent, divergence-free initial
condition with random phase shifts was fit to the energy spectrum measured at the first sta-
tion (7 = 42). Each case was run with the algorithm specific initial condition from 7 = 0 to
7 = 42. The resulting flow fields were each rescaled following the method proposed by
Kang et al. (2003) in order to act as the initial condition for the simulations in this particu-
lar study. In the present study, the cell-averaged field at T = 42 was deconvolved using the
same method as presented in McCorquodale and Colella (2011) to obtain the point-value
field that could be rescaled. Following the rescaling of the point values, the rescaled cell-
averaged field was computed using a box-filter convolution operator. The rescaled fields
were then used as initial conditions to run from 7 = 42 to ¢ = 171. The Reynolds number
based on u,.; and the domain size was 10400. Meshes of size 64°, 1283, and 256> are used
for all decaying homogeneous turbulence simulations in the present study.

4.4 Simulations and Data Analysis

A non-dimensional, characteristic time, 7, is utilized for all the results presented. This
“eddy turn-over” time is defined as
U

T = IZ, (38)
where U is a characteristic velocity and L is a characteristic length scale. For the shear-
layer case, the characteristic time scale is computed from the arithmetic mean of the abso-
lute values of the two stream velocities and the initial momentum thickness. For the invis-
cid Taylor-Green vortex the characteristic scales are chosen to be the turbulent velocity
and the integral length scale, while for the decaying homogeneous turbulence case, these
are the convective velocity and the mesh spacing. The shear-layer spectrum transitions to
fully developed turbulence by 7 ~ 20. The decaying Taylor—Green cases transition to fully
developed turbulence by 7 =~ 10. After this point, the kinetic energy decays away due to the
energy cascade process.

The results of interest in this study are presented using the three-dimensional kinetic
energy spectra from each case. All spectral data is computed from instantaneous flow data
using the software package FFTW. To compute the three-dimensional energy spectra, the
square of the Fourier-transformed velocity vector is shell-summed. The resulting kinetic
energy is then normalized using the simulation domain volume and the initial sum of
kinetic energy such that the sum of the kinetic energy presented in the spectrum plots is
equal to unity at the start of the simulation. The wavenumber, &, is given with respect to the
simulation domain such that k = 1is the largest wave mode fully contained in the periodic
simulation domain.

For each of the test cases presented, the kinetic energy spectrum results are broken into
five distinct parts gathered into two separate figures. The first column of the first figure
for each test case compares the use of three different numerically regularized algorithms:
the fourth-order centered discretization with the SV model (explicit LES), the fourth-order
PPM algorithm (implicit LES), and the fifth-order algorithm (implicit LES). The second
column of the first figure presents the coupling between the SV model and the last two

@ Springer



Flow, Turbulence and Combustion

numerical regularization techniques presented in the first column. This particular set dem-
onstrates issues that arise from naive couplings of the LES SGS model with numerical
regularization techniques (when 4, = Ax). For the third column, the SV model is used with
and without numerical regularization and specifically utilizes the coarsening method pro-
posed in this study (4, # Ax). The second figure of kinetic energy spectrum for each simu-
lation displays the comparison between the various schemes using the coarsened SV model
at single mesh resolutions. The first row shows the kinetic energy spectra as previously
described, while the second row displays the kinetic energy premultiplied by the wave-
number, k, and placed in a log-linear plot. This last presentation of the results is intended
to specifically highlight the largest wave modes and demonstrate whether or not the simu-
lation results are grid-converged. The first two columns of spectra in the first figure are
intended to show the baseline performance of the algorithms presented. The last column of
the first figure highlights grid-independence achieved by the coarsened SV model compu-
tation. The second figure highlights scheme-independence achieved by the coarsened SV
model computation, in that all numerical regularization approaches converge to the same
result.

5 Results and Discussion
5.1 Time-Evolving Mixing-Layer

The double-shear-layer results presented in this section consist of a three-dimensional
kinetic energy spectra plot demonstrating the kinetic energy evolution in Fig. 3, vorticity
contours demonstrating the flow evolution in Fig. 4, and three-dimensional kinetic energy
spectra in Figs. 5 and 6.

As shown in Fig. 4, the double-shear-layer problem begins with the development of
coherent vortices. These vortices rapidly break down and lead to full development of the
kinetic energy spectrum by 7 = 20 as seen with the use of the fourth-order centered dis-
cretization with the SV model and no numerical regularization in Fig. 3. The two layers
continue to evolve in a turbulent manner and grow in the shear-layer normal direction until
they begin interacting with one another at 7 ~ 35. Between 7 ~ 20 and at least 7 =~ 80, the
kinetic energy spectrum is in a quasi-steady state, mimicking artificially forced turbulence
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Fig.3 Double-shear-layer time evolution of kinetic energy spectrum using the fourth-order SV model and
no numerical regularization on a 128 X 128 X 64 mesh with 4, = Ax
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Fig.4 Evolution of double-shear-layer vorticity magnitude from =2 to 7 =50, mesh size
512 x 512 X 256 . Rows from top to bottom display increasing simulation time while each column presents
a different numerical scheme. The vorticity magnitude presented here is in grayscale contours ranging from
white = 0 [s~!] to black = 75,000 [s~']
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Fig.5 Kinetic energy spectra of double-shear-layer case at = = 50. The first column presents three methods
of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpolation (row
3). The second column adds the SV model to the PPM method (row 2), and the biased interpolation (row
3). The final column presents the same schemes except with a fixed 4; equivalent to 1/64th the streamwise
length of the domain

quite well. This quasi-steady state turbulence allows for the study of the various algorithms
over long periods of time at moderate Reynolds numbers.

Examining Fig. 4 provides a means of visualizing the differences between using numeri-
cal regularization without the SV model and using the SV model with no additional numer-
ical regularization. The first column presents the results from using the fourth-order PPM
scheme with no turbulence model, while the second, third, and fourth columns present the
results from using the SV model with A, = Ax, 4, = 2Ax, and A, = 4Ax respectively. From
the results of the first column, it is observed that the PPM method dampens most high-
frequency solution content (as compared with the SV model results in the second column)
while still allowing some small-scale flow features to develop. Examining column two of
Fig. 4, it is readily apparent that the SV model with 4, = Ax allows more high-frequency
data to remain than the PPM method . However, as the coarsening factor of the SV model is
increased beyond unity (4, > Ax), the solution field retains less high-frequency content as
displayed in columns three and four of Fig. 4. Instead, only the larger-scale vortices remain
and the resolvability of the flow field increases. This increase in resolvability decreases the
likelihood that poorly resolved fluctuations will contaminate the well-resolved large-scale
information. It is also important to note that the overall structure of the largest-scale vorti-
ces remains relatively unchanged as the A,/ Ax ratio is increased for the SV model. The SV
model only removes more of the small scales as the 4,/ Ax ratio increases, allowing for the
potential of grid-independent solutions.
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Fig.6 Kinetic energy spectra of double-shear-layer case at 7 = 50: comparison between the fourth-order
SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed 4 for the
SV model. The first column presents the results using a 64> mesh with 4, = Ax, while the second column
uses a 1283 mesh with A, = 2Ax and the third column uses a 2563 mesh with Ar = 4Ax. The first row pre-
sents the results in log-log form while the second row premultiplies the kinetic energy by the wavenumber,
k, and presents the results in log-linear form to highlight the largest scales of the simulation. The dashed
gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model is com-
puted

Figure 5 presents a comparison of several schemes used to simulate the double-shear
case. The first column is a comparison of three methods of numerical regularization: the
fourth-order SV algorithm (first row), the PPM method (second row), and fifth-order inter-
polation/hyperviscosity (third row). The second column adds the SV model to the PPM
method (row 2), and the biased interpolation (row 3). In the third column, the SV model is
applied at different ratios of 4;/Ax with constant 4;.

The fourth-order centered discretization with the SV model, presented in the first col-
umn of row one of Fig. 5, shows more consistency in the largest scales with decreasing
Ax than either of the other two numerically regularized schemes presented in the first col-
umn. It is evident that the fifth-order interpolation performs worse than the fourth-order
PPM scheme when considering the largest scales. From these results, it would be natural to
conclude that the fourth-order SV algorithm should be used in this simulation, especially
when strong numerical regularization techniques are unnecessary for a low Mach number
flow such as this case. However, as this study provides one piece of a foundation for future
simulations of high-speed, compressible, reacting turbulent flows, numerical regularization
must be tested and compared with the fourth-order SV results. Additionally, it is apparent
that none of these methods provides the grid-independent or scheme-independent solutions
which are sought within this study.

As previously noted, column two of Fig. 5 displays the results of naively coupling the
SV model with the last two numerically regularized schemes of the first column. If the
SV model with no additional numerical regularization performs somewhat well, it may be
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anticipated that adding the SV model to the fourth-order PPM method or the fifth-order
interpolation would improve these results. But from the results presented in the second col-
umn of Fig. 5, it is seen that adding the SV model on top of the already existing numerical
regularization does not significantly alter the results obtained using the stand-alone numer-
ically regularized schemes presented in the last two rows of the first column of Fig. 5. To
make sense of this, the form of the SV model must be considered. The model adds dis-
sipation that is proportional in magnitude to the gradient squared. This is in contrast with
methods that target only the highest frequency features in a simulation and are typically
proportional to higher powers of the solution gradient. As a result, it is expected that the
model dissipation affects more scales than just the smallest represented scales. The dissipa-
tion magnitude, however, is computed entirely using the smallest represented scales. When
coupled with a small-scale-suppressing numerical regularization method, the SV model
perceives almost no small scales and therefore assumes almost no SGS kinetic energy. In
essence, the SV model works entirely on the assumption that locally unresolved veloc-
ity gradients will exist in unresolved turbulent flows, which is not always the case when
numerical regularization techniques are used in the simulation. From the LES point-of-
view, the numerical regularization techniques used in this study increase the effective filter
width of the complete LES system. To include the SV model in the system in a scheme-
consistent manner, the model terms must be computed at the proper effective filter width.

As seen in column three of Fig. 5, when the SV model is computed at a coarser scale
than the base mesh (4, > Ax) as proposed in the present study, the results display less vari-
ation across all scales than when the coarsening is not utilized. This phenomenon occurs
independent of the scheme tested, but is most pronounced in the numerically regularized
cases. To compare the impact of all schemes, Fig. 6 compiles the results on one plot for
each base mesh size. Figure 6 convincingly demonstrates scheme-independent simulations
over coarse and medium turbulent scales using the SV model and numerical regularization.
Engineering analysis often only considers larger-scale dynamics and it is encouraging that
by increasing 4, these dynamics converge to the same result independent of the numerical
regularization that is applied. Note that the result of the third column of Fig. 6 is not neces-
sarily the most accurate for this case (e.g. a smooth flow). The most accurate solution is
probably that using mesh 256> from the first row and column of Fig. 5. However, for flows
with discontinuities, limiting or other stabilization must be added and the approach used
for Fig. 6 becomes highly attractive.

5.2 Infinite-Reynolds-Number Taylor-Green Vortex

Results of the infinite-Reynolds-number Taylor—Green vortex case are presented in Figs. 7,
8 and 9, with Fig. 7 demonstrating the kinetic energy spectrum fill-in over time and Figs. 8
and 9 showing the kinetic energy spectrum at 7 = 20.

As was mentioned in Sect. 4.4, the high-frequency information contained in the invis-
cid Taylor-Green vortex energy spectrum completely fills in by 7 ~ 10 as shown in Fig. 7.
After the high-frequency information is fully developed, the spectrum begins to decay
away rather uniformly at the highest frequencies, while the lowest frequencies decay rather
non-uniformly into the higher frequencies. The straight, temporally self-similar form of the
energy spectrum is expected to continue at higher mesh resolutions and later simulation
times due to the lack of physical dissipation.

Just as was seen in the previous test case, the results shown in column one of Fig. 8 lack
large-scale grid-independence. The last two methods of numerical regularization seen in
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Fig.7 The inviscid Taylor—Green vortex energy spectrum time-evolution from the fourth-order centered
scheme using the SV model and no numerical regularization with A, = Ax on a 1283 mesh

10 2\ N—5/3 22\ —5/3
SN o W \
4tord = (-3 M N,
= 10 2
sVoo® ¥ ™y
1075 s, \\'
107!
A /’k\«
th — .
4% _ord = 103
PPM g
1075 -
e e A%
> A 7"
= —: t\' \
5th_ord E/ 1073 — 43 )
|--128° v
10 2563 3 \ ‘\.'n

100 10" 102 10° 10! 102 10° 10! 102

k k k
Numerical Ay Ly
e c— =04
regularization SV: Az 1 SV Ay 6

Fig.8 The inviscid Taylor—Green vortex kinetic energy spectrum at 7 = 20. The first column presents three
methods of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpola-
tion (row 3). The second column adds the SV model to the PPM method (row 2), and the biased interpola-
tion (row 3). The final column presents the same schemes except with a fixed 4, equivalent to 1/64th the
length of the domain

the first column are typical of implicit LES schemes used to simulate physically complex,
high-Reynolds-number flows. In cases of extremely-high-Reynolds-number flows, where
DNS results are impractical or impossible to obtain, difficulties arise when attempting to
determine the quality of the implicit LES results. A reasonable expectation is for conver-
gence in medium to large scale features as the grid is refined. This metric is used to judge
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Fig.9 Inviscid Taylor-Green vortex kinetic energy spectrum at 7 = 20: comparison between the fourth-
order SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed 4,
for the SV model. The first column presents the results using a 64> mesh with A, = Ax, while the second
column uses a 128> mesh with Ap =2Ax and the third column uses a 2563 mesh with Ap = 4Ax. The first
row presents the results in log-log form while the second row premultiplies the kinetic energy by the wave-
number, k, and presents the results in log-linear form to highlight the largest scales of the simulation. The
dashed gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model
is computed

the quality of the simulations in a meaningful way. As for the previous case, the fourth-
order SV scheme shown in the first column of the first row exhibits less overall variation
with decreasing Ax.

In contrast with the temporally-evolving shear-layer, column two of Fig. 8§ shows some
improvement in large-scale consistency when the SV model is coupled with the numerical
regularization techniques. While the fifth-order discretization shows the most improvement
from adding the SV model, the fourth-order PPM scheme shows some improvement as
well. As this is an inviscid, infinite-Reynolds-number case, it is expected that the numerical
regularization will not eliminate all energy at the smallest representable scales. For exam-
ple, if one considers a highly-compressible flow simulation which contains strong shocks,
it will be noted that the smallest representable scales still contain significant energy, even
with the use of numerical regularization. The SV model can still detect small-scale energy
and use this to alter the large-scale information over time. As described in the temporally-
evolving shear-layer case, it is expected that matching the LES filter width to the equiva-
lent filter size of the numerical method would provide an even greater improvement in the
results. These test cases are described next.

Column three of Fig. 8 shows the significant improvement provided by the coarsening
method. For all three schemes tested, grid-independent LES solutions are obtained with
all 1283 results nearly identical to 2563 results. The term “grid-independent solutions™ is
used here in the sense that the numerical errors have been isolated from the SV model
effects. Clearly, the grid-independence being seen is due to an increase in grid resolution
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while introducing little or no new physics to the flow field. Another form of grid-inde-
pendence would be to fix the filter width with respect to the discretization size and obtain
converged solutions even as new physics at smaller scales are introduced to the simulation
with an increasing mesh resolution. Ultimately, one expects convergence to DNS. Such a
study evaluates both the model and its overall interaction with the CFD scheme. Similar to
Chung and Matheou (2014), the current study does not perform such a grid-independence
test.

Figure 9 displays scheme-independent results as were seen in the previous test case. The
near complete agreement between the large scales of Fig. 9 points to the success of the SV
model in properly regularizing high-Reynolds-number turbulent flows and to independence
from additional numerical regularization.

This particular case demonstrates that large-scale scheme-independence of high-Reyn-
olds-number cases is achievable and that the effect of LES SGS models can be isolated
without using an explicit-filtering approach. It is also possible that other structural LES
SGS models could be used with the coarsening method presented here to obtain similar
grid-independent results. With care, this method could be computationally less expensive
than traditional explicit filtering methods used to evaluate LES SGS model performance.
Instead of computing nonlinear model terms on the base mesh and then filtering the results,
the model terms are naturally filtered when they are computed on the coarser mesh, leading
to a reduction in the number of necessary computational evaluations. Utilized in the setting
of a high-Reynolds-number turbulent flow, this method has the potential to provide an ideal
test framework for the performance of various LES SGS models.

5.3 Decaying Homogeneous Turbulence

Results of the decaying, homogeneous turbulence case are presented in Figs. 10 and 11
which display the three-dimensional kinetic energy spectra at times corresponding with the
experimental measurement stations. Figure 10 presents the kinetic energy premultiplied by
the wavenumber, k, in log-linear format so as to accentuate the larger scales of the simula-
tion. Figure 11 compares the various schemes tested using a 4; fixed at an equivalent reso-
lution of 64°.

As stated in Sect. 1, the current study aims to obtain results showing scheme-independ-
ence and grid-independence (if possible) while using both the SV model and numerical
regularization. Even for low-Reynolds-number turbulent flows it may be necessary to
incorporate numerical regularization in cases where strong discontinuities exist and where
the physics is particularly vigorous as in reacting turbulent flows. While the current test
case is not reacting and does not require numerical regularization, future studies of low-
Reynolds-number reacting flows will require regularization. As a result, this case continues
the pattern of the previous test cases in scrutinizing the coupling of the SV model with
various numerically regularized algorithms.

Similar to the previous two test cases, column one of Fig. 10 demonstrates that the
fourth-order PPM method and the fifth-order interpolation display significant variation
in the large scales with changing mesh resolution. Additionally, given the experimental
data, it is apparent that numerical regularization techniques tested here remove spurious
high-frequency solution content while simultaneously retaining too much well-resolved
kinetic energy. The resultant kinetic energy overshoot does decrease with increasing mesh
resolution as would be expected, but it does not decrease to the point of matching the
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Fig. 10 Kinetic energy spectrum for decaying homogeneous turbulence. The first column presents three
methods of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpola-
tion (row 3). The second column adds the SV model to the PPM method (row 2), and the biased interpola-
tion (row 3). The final column presents the same schemes as the second column except with a fixed 4,
equivalent to 1/64th the streamwise length of the domain. The initial conditions for 7 = 42 are all identical
to one another and are cropped to emphasize differences in the other time scales

experimental data. In contrast to this finding is the result obtained with the fourth-order SV
scheme. This scheme shows much greater consistency among the scales as mesh resolution
changes and is generally much closer to the experimental data than either of the numeri-
cally regularized schemes in column one. The comparisons in the first column demonstrate
failings of ILES for this case versus a well-developed SGS model.

As was demonstrated in the first test case, it is seen from the results of the second
column of Fig. 10 that the naive coupling of the SV model with the fourth-order PPM
method or with the fifth-order interpolation makes little to no difference as compared
with the regularized schemes without the SV model. It is interesting to note that this
was the case with both low and medium-Reynolds-number tests, while the infinite-
Reynolds-number case showed some improvement when the SV model with 4, = Ax
was added to the other two methods of numerical regularization.

When examining the cases utilizing the coarsened SV model as shown in the third
column of Fig. 10, a substantial improvement over the second column of Fig. 10 is
noted. In these figures, it must be noted that the simulations have the grid cutoff in
the dissipative range of the turbulent kinetic energy spectra, while the SV model is
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Fig. 11 Kinetic energy spectrum for decaying homogeneous turbulence: comparison between the fourth-
order SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed 4,
for the SV model. The first column presents the results using a 64> mesh with A, = Ax, while the second
column uses a 128> mesh with A = 2Ax and the third column uses a 2563 mesh with 4, = 4Ax. The first
row presents the results in log-log form while the second row premultiplies the kinetic energy by the wave-
number, k, and presents the results in log-linear form to highlight the largest scales of the simulation. The
dashed gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model
is computed

computed at a length scale in the inertial range of the kinetic energy spectra. When
Ap = Ax, the SV model well handles a filter cutoff in the dissipative range. Having
Ap > Ax, A; in the inertial range, and Ax in the dissipative range is a curiosity of this
case. The result of the third column of Fig. 10 clearly shows that this is not a sig-
nificant cause for concern in the decaying, homogeneous turbulence case. The implica-
tions and effects of this will be more exhaustively studied in future work. Nevertheless,
grid convergence is more apparent in column 3 versus column 2 for the solutions with
numerical regularization.

Similar to the first two test cases, Fig. 11 shows that the coarsening method nearly
achieves scheme-independent solutions when the separation between the numeri-
cal regularization and the SV model is sufficient to allow the SV model to operate
appropriately. The results do show some small differences between the schemes even
when A, = 4Ax. Even for relatively low-Reynolds-number decaying turbulence cases
such as this, the coarsened SV model provides an improvement over the numerically
regularized algorithms, used both with and without the SV model. Again, note that
the bare SV model (row 1, column 1 of Fig. 10) best fits the data. But if additional
numerical regularization is necessary, there is strong evidence of scheme convergence
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and moderate evidence of grid convergence when the SV model is applied at coarser
scales. The coarsening method proposed in the current study shows that even though
the SV model was designed for high-Reynolds-number flows, it has the capability of
working in rather low-Reynolds-number flows if properly coupled with the existing
algorithmic components.

6 Conclusions

In the current study, it is shown that the new methodology of computing the SV model
at a coarser scale than the base mesh achieves scheme-independence even when various
numerical regularization techniques are included in the LES system. Additionally, grid-
independence of the large scales (in the sense of isolating numerical error from model
effects) is achieved for high-Reynolds-number flows. Furthermore, this methodology
introduces a new avenue for discerning the impact of the SGS model and the numerical
regularization on the solution. This new avenue may be more robust and reliable than
using explicit filtering.

Within the present study, the interaction of the various algorithmic components was
seen to heavily influence the final simulation outcome. When the methods of numerical
regularization used in the present study are incorporated into simulations, they suppress
the highest-frequency information and prevent the SV model from detecting sufficient
SGS kinetic energy. However, when the SV model is evaluated at a coarser resolution
than the base mesh, it is more isolated from the numerical regularization and can add
the proper dissipation to all scales of the system.

The temporally-evolving shear-layer was seen to achieve scheme-independence for
all scales when A, = 4Ax. It was also noted that the large-scale structures of the overall
flow field remained the same as the 4,/Ax ratio was increased.

In addition to the previously mentioned grid-independence, the infinite-Reynolds-
number Taylor—Green vortex case showed some improvement of the solution when the
SV model using 4, = Ax was coupled with the fourth-order PPM method and the fifth-
order interpolation scheme. This was the only case that showed this improvement before
implementing the coarsening method described in this study. Given that the SV model
was developed for high-Reynolds-number flows, it was not surprising that this test case
showed the best results.

While the decaying homogeneous turbulence case did not perform as well as the first
two test cases, it demonstrated significant improvement using the new methodology.
The case nearly reached scheme-independence across all scales.

This methodology reduces the computational expense associated with computing the
SGS model as it requires approximately 3(Af / Ax) fewer evaluations of the actual SV
model kinetic energy estimate. In the case of 4, = 44x, this corresponds to two orders
of magnitude fewer computational evaluations of the SGS kinetic energy estimate. The
necessary averaging and interpolation operators add relatively little overhead as they are
already an essential part of the functionality in the AMR framework used in the current
study. However, this should not be construed as a reason to set Af > Ax. Rather, consider
using 4, > Ax only if additional numerical regularization is to be combined with the SV
model.

The findings presented in the current study pave the way for appropriately incor-
porating the SV model into future studies of highly compressible, reacting, turbulent
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flows that contain strong discontinuities. Such studies have the potential to extend the
new coarsening method to SV wall-models and provide a more consistent coupling
between wall-models and freestream LES SGS models.
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