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Abstract
Simulations of complex, compressible, high-Reynolds-number flows require high-fidelity 
physics and turbulence models to be appropriately coupled with strong numerical regu-
larization methods. Obtaining grid-independent and scheme-independent solutions of these 
flows when using both explicit turbulence models and additional numerical regularization 
is especially important for further testing and development of accurate physics models. To 
this end, the current study investigates the interaction between the stretched-vortex sub-
grid-scale model and both the fourth-order piecewise parabolic limiter and a fifth-order 
upwinding interpolation (or hyperviscosity). It is demonstrated that computing the subgrid-
scale kinetic energy estimate for the stretched-vortex model at a coarser resolution than the 
base mesh provides results which are independent of the use of numerical regularization 
techniques. This is shown to be the case for a temporally-evolving shear-layer, the inviscid 
Taylor–Green vortex problem, and a decaying, homogeneous turbulent flow.

Keywords  High-order finite-volume methods · Large-eddy simulation · Stretched-vortex 
turbulence model · High-Reynolds-number flows

1  Introduction

Many flows of engineering interest are turbulent and inherently multiscale. Numeri-
cally resolving all scales in a high-Reynolds-number turbulent flow is challenging with 
today’s computational capabilities. However, large-eddy simulation (LES) is a promising 
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alternative to direct numerical simulations (DNS) in that it solves large scales while mod-
eling small-scale effects to provide a solution acceptable for many engineering require-
ments. The approach is logical when rate-limiting processes happen at the larger resolved 
scales (Pope 2004). Even so, defining and modeling the small scales becomes one of the 
key issues in LES.

The typical LES definition of small scales begins by separating the original solution 
field, � , into representable scales, 𝜙̄ , and unrepresentable scales, �′ , by means of a standard 
LES low-pass filter operator, the convolution operator,

where � and � are space, t and � are time, and G is the filter kernel. In general, LES simula-
tions rarely define or use the filter kernel, G, explicitly. Rather, an implicit filter arises from 
the combined effects of the discretization, the numerical scheme, and any subgrid-scale 
(SGS) models used. This study assumes an implicitly defined Favre-averaged filter where 
Favre-filtered velocity, �̃ , is defined as mass-weighted momentum, �̃ = 𝜌�∕𝜌̄ , with � being 
density. It is also assumed that the filter kernel size is equivalent to the cell size of the grid 
on which the SGS model is computed. As noted below, this does not necessarily corre-
spond to the cell size of the grid on which the solution field is stored and updated.

As a result of the filtering process, all filtered nonlinear quantities must be modeled 
in terms of the individually filtered components. Explicitly modeled LES incorporates 
models developed for these filtered nonlinear terms, while implicit LES (ILES) relies on 
carefully designed characteristics of the numerical algorithm (e.g. numerical regulariza-
tion or dissipation) to provide the necessary modeling (Sagaut 1998; Grinstein et al. 2007; 
Karaca et al. 2012; Fernandez et al. 2017; Moura et al. 2017; de Wiart et al. 2015). The 
present study tests both ILES and explicitly modeled LES. The explicit LES model utilized 
is the stretched-vortex SGS model (Misra and Pullin 1997). This structural model has pro-
vided results consistent with experimental data for very-high-Reynolds-number flows (Gao 
et al. 2019). Numerical regularization in the form of either the piecewise parabolic method 
(PPM) limiter or hyperviscosity (introduced by fifth-order upwind face-value interpola-
tion) provides the basis of ILES simulations performed within this study.

The goal of the present study is to combine numerical regularization and explicit LES 
models in a compatible manner and, if possible, achieve grid-independence and scheme-
independence of large-scale solution data. Future studies of high-speed, compressible, tur-
bulent, reacting flows will require strong stabilization mechanisms independent of whether 
an explicit turbulence model is utilized. If the PPM limiter and hyperviscosity sufficiently 
simulate high-Reynolds-number turbulence, explicit turbulence models are unnecessary 
and would only increase computational cost. However, if an explicit model is required to 
achieve grid-independence of large-scale solution information, the turbulence model and 
the numerical regularization must interact in a compatible manner (i.e. each acts only 
where necessary). To achieve this, the current study computes the turbulence model terms 
on a coarsened solution field and then interpolates the model to the original solution field 
governed by the LES equations. This study uses a high-order finite-volume method (FVM) 
with adaptive mesh refinement (AMR) as a natural environment in which to test the coars-
ened SGS model computation.

Throughout this study, the Favre-filtered equations describing a compressible fluid flow, 
i.e. the conservation of mass ( � ), momentum ( �� ), and energy ( �e ), are considered. These 
equations are given as follows:

(1)G ⋆ 𝜙 = 𝜙̄(�, t) = ∫
∞

−∞ ∫
∞

−∞

𝜙(�, 𝜏)G(� − �, t − 𝜏) d𝜏 d�,
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where � is the identity matrix and � is the specific-heat ratio of the fluid under considera-
tion. The fluid is assumed to be a Newtonian, calorically perfect, ideal gas with heat flux, 
�̃ , approximated by Fourier’s law

where � is the thermal conductivity of the fluid, and T̃  is the Favre-averaged temperature. 
Additionally, the molecular stress, �̃  , is modeled by

where � is the molecular viscosity of the fluid. For the present study, it is assumed that 
�̃ sgs3

 is too small to necessitate modeling.
The rest of the paper is organized as follows. Section  2 details the stretched-vortex 

model as implemented in the current study. Section 3 describes the high-order FVM algo-
rithm in which the stretched-vortex model is implemented and tested. The test cases and 
data processing details are presented in Sect. 4. The results and discussion of simulations 
performed in the current study are presented in Sect. 5. Finally, Sect. 6 wraps up the study 
with conclusions and recommendations for future research.

2 � Stretched‑Vortex Turbulence Model

The stretched-vortex (SV) SGS model, is a structural LES model and is based on the 
assumption that, at high Reynolds numbers and sufficiently small length scales, stretched 
vortex tubes dominate the flow physics (Misra and Pullin 1997; Lundgren 1982).

The model closes the filtered momentum equation, Eq.  (3), using the SGS kinetic 
energy, K, and the SGS vortex orientation unit-vector, ��,

(2)
𝜕𝜌̄

𝜕t
+ � ⋅ (𝜌̄�̃) = 0,

(3)
𝜕

𝜕t
(𝜌̄�̃) + � ⋅

(
𝜌̄�̃�̃⊤ + �p̄

)
= � ⋅

(
�̃ − �̃sgs

)
,

(4)
𝜕

𝜕t
(𝜌̄ẽ) + � ⋅ (𝜌̄�̃ẽ + �̃p̄) = � ⋅ (�̃ ⋅ �̃ − �̃) − � ⋅

(
�� sgs1

+ �� sgs2
− �� sgs3

)
,

(5)p̄ = (𝛾 − 1)
(
𝜌̄ẽ −

1

2
𝜌̄ �̃ ⋅ �̃ − �� sgs4

)
,

(6)�̃sgs = 𝜌̄
[
���⊤ − �̃�̃⊤

]
,

(7)�� sgs1
= 𝜌̄

[
��e − �̃ẽ

]
, �� sgs2

= �p − �̃p̄, �� sgs3
= � ⋅ � − �̃ ⋅ �̃,

(8)�� sgs4
=

1

2
𝜌̄
[
�� ⋅ � − �̃ ⋅ �̃

]
,

(9)�̃ = −𝜅��T ,

(10)�� = 2𝜇
(
�� −

1

3
(� ⋅ �̃)�

)
, �� =

1

2

(
��̃ + (��̃)⊤

)
,
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Requiring K ≥ 0 , �� alone determines whether the SV model is dissipative or anti-dissipa-
tive. The present study uses Misra and Pullin’s “model 1b” (Misra and Pullin 1997), which 
depends on the resolved vorticity vector, �� , and the eigenvector, ��� , associated with the 
largest positive eigenvalue, �3 , of the strain-rate tensor, �̃ . A weighting factor, � , controls 
the influence of each vector in the model,

Using � = 1 guarantees a dissipative model (Chung and Pullin 2010; Mattner 2010, 2011), 
while incorporating �� decreases dissipation (Walters et al. 2019). Throughout the present 
study, all simulations employing the SV model use � = 1.

Among the proposed models for K  (Misra and Pullin 1997; Voelkl et al. 2000; Mattner 
2010; Chung and Pullin 2009, 2010), the model used by Chung and Pullin (2010) is applied 
in this study. The model requires the evaluation of the incomplete gamma function, Γ[⋅] , the 
grouped Kolmogorov constant, K′

0
 , and a cutoff wavenumber, �c , and has the form

The cutoff wavenumber, �c , is computed using

The Kolmogorov constant, K′
0
 is given by

In Eq. (15), {⋅} is an ensemble average of the variables over a spatial domain, Ω , encom-
passing N points, �i , neighboring �0

where, in this study, N = 26 . F2 is the second-order structure function

Additionally, Q is a weighting evaluated over all wavenumbers, k, given by

where J0 is the zeroth-order Bessel function of the first kind, and d is the planar distance 
from the cell center to the SGS vortex axis

(11)
(
���⊤ − �̃�̃⊤

)
= K

(
� − ��

(
��
)⊤)

.

(12)�v(�v)⊤ = 𝜎���
(
���

)⊤
+ (1 − 𝜎)��(��)⊤.

(13)K =
1

2
K

�
0
Γ
[
−
1

3
, �2

c

]
.

(14)𝜅c =
𝜋

𝛥c

√
2𝜈

3|ã| , ã =
(
���

)⊤
�̃��� , 𝜈 =

𝜇

𝜌̄
, 𝛥c = (𝛥x𝛥y𝛥z)1∕3 .

(15)K
�
0
=

{
F2

}
{
Q
(
�c, d

)} .

(16){�} =
1

N

∑

��∈� ; ��≠��
�
(
�0, �i

)
,

(17)F2 =
(
�̃
(
�0
)
− �̃

(
�i
))

⋅

(
�̃
(
�0
)
− �̃

(
�i
))

.

(18)Q
(
�c, d

)
= 4∫

�c

0

k−5∕3exp
(
−k2

)(
1 − J0

(
k

�c
�d

))
dk,

(19)d =
r

�c

, r2 =
[(
�0 − �i

)
⋅

(
�0 − �i

)]
−
[(
�0 − �i

)
⋅ ���

]2
.

Author's personal copy



Flow, Turbulence and Combustion	

1 3

Efficient means of computing K′
0
 , Γ[⋅] , and the eigenvalues/eigenvectors are presented by 

Voelkl and others (Voelkl et al. 2000; Chung and Pullin 2009; Shetty and Frankel 2013).
In addition to closing the filtered momentum equation, Eq. (3), the current study mod-

els �̃ sgs1
 and �̃ sgs2

 in the filtered energy equation, Eq. (4), following the methodology pre-
sented by Kosovic et al. (2002) and Hill et al. (2006). The results presented throughout this 
study do not use the model of Kosovic et al. (2002) and Hill et al. (2006) for the SGS stress 
correction, �̃ sgs4

 , in the pressure computation of Eq. (5). Comparisons of decaying turbu-
lence simulations with and without the pressure correction showed no observable differ-
ence between the two in globally summed quantities and in energy spectra. For these low 
Mach number flows, this observation is expected.

3 � Numerical Framework

3.1 � FVM Algorithm: Chord

All results presented in this study are obtained using the FVM algorithm, Chord (Gao et al. 
2014; Guzik et al. 2015, 2016; Gao et al. 2016; Owen et al. 2018), built upon the highly 
parallelizable (scaling to at least 1 ×105 cores) AMR framework  Chombo (Colella et  al. 
2009). Chord solves the governing equations for transient, compressible, turbulent, react-
ing and non-reacting fluid flows with complex geometry. It has been designed to achieve 
high levels of accuracy and performance for turbulence and combustion simulations on 
modern high-performance computing architecture. For smooth flows, Chord is fourth-
order accurate in space and time (using the standard four-stage Runge Kutta time-march-
ing method) (Gao et al. 2014, Guzik et al. 2015, Guzik et al. 2016, Gao et al. 2016, Owen 
et  al. 2018). For flows with strong discontinuities (e.g. shocks or detonation waves), the 
PPM limiter (Colella and Sekora 2008; McCorquodale and Colella 2011) is used for stabil-
ity. Chord is capable of additional stabilization by hyperviscosity through fifth-order face-
value interpolations. Chord’s turbulence modeling capabilities include unsteady Reynolds-
averaged Navier-Stokes (URANS), LES, and DNS. Additionally, Chord utilizes AMR 
in space and subcycling in time and accommodates complex geometry while preserving 
freestream conditions using generalized coordinate transformations.

In the present study, all spatially discrete operators are fourth-order accurate by default. 
However, numerical stabilization in the form of either the PPM limiter or hyperviscosity is 
tested in conjunction with the SV LES model.

3.2 � Fifth‑Order Interpolation/Hyperviscosity

In FVMs, flux evaluations at the faces of a computational cell are essential and require 
knowledge of face values. Reconstructing solution variables at cell faces is one of the fun-
damental operations in the algorithm and is a major difficulty in terms of stability. Low-
dissipation, high-order, centered interpolations can create spurious, high-frequency solu-
tion content and allow it to grow, especially near unresolved solution gradients. Adding 
a high-order viscosity term to the interpolation through a spatially-biased interpolant can 
help alleviate spurious high-frequency content (Chaplin and Colella 2017).

Interpolating the face-averaged primitive state, ⟨�⟩
i+

1

2
ed

 , from the cell-averaged primi-
tive state, ⟨�⟩

i
 , follows the process described in previous literature (Gao et al. 2014; Guzik 

et  al. 2015). A cell index is denoted by i on an integer lattice and ed is a unit-vector in 
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direction d. A cell face is reached by a shift of 1/2. A four-cell, fourth-order, centered 
approximation to ⟨�⟩

i+
1

2
ed

 is given by

while the right-biased, five-cell, fifth-order approximation is provided by

A reflection of Eq. (21) about the face provides a left-biased interpolation. Using both the 
left and right-biased values, the final face value is the solution of a Riemann problem.

Examining the difference between the two interpolations reveals the high-order, cell-
centered numerical dissipation term present in the fifth-order interpolant

It is through the high-order numerical dissipation term that the highest frequency content is 
detected and controlled.

3.3 � Piecewise Parabolic Method

The high-order piecewise parabolic method (PPM) is an extension of Godunov’s 
method  (Colella and Woodward 1984; Colella and Sekora 2008; McCorquodale and 
Colella 2011). Essentially, the PPM consists of two main steps. First, face values are 
interpolated using high-order finite-difference approximations based on the cell-averaged 
values. If necessary, the interpolants are limited to ensure monotonicity. Second, a para-
bolic profile is constructed in each cell and constrained to keep it monotone. If the local 
extremum is smooth, as determined by checking adjacent second derivatives, the limiter is 
not applied. A third-derivative condition is also checked to avoid limiting perturbations of a 
cubic in multidimensional problems (McCorquodale and Colella 2011). The PPM scheme 
delivers a more accurate representation of spatial gradients of smooth flows and a steeper 
representation of discontinuities. Additional techniques such as artificial dissipation and 
slope flattening are applied at shocks to suppress unwanted numerical oscillations. In the 
limit of a complete flattening, the scheme recovers the first-order Godunov method locally 
near the discontinuities. In the present study, the PPM scheme is implemented closely fol-
lowing the work by McCorquodale and Colella (2011).

3.4 � Numerical Implementation of the SV SGS Model

When applying the SV SGS model at a coarser length scale, �f  , than the grid filter, �x , 
existing AMR infrastructure is used within Chord. As shown in Fig. 1, the cell-averaged 

(20)⟨�⟩(4)
i+

1

2
ed
=

7

12

�
⟨�⟩

i
+ ⟨�⟩

i+ed

�
−

1

12

�
⟨�⟩

i−ed + ⟨�⟩
i+2ed

�
,

(21)
⟨�⟩(5)

i+
1

2
ed ,R

=
1

60

�
−3⟨�⟩

i−ed + 27⟨�⟩
i
+ 47⟨�⟩

i+ed − 13⟨�⟩
i+2ed

�

+
1

60

�
2⟨�⟩

i+3ed

�
.

(22)

⟨�⟩(5)
i+

1

2
ed ,R

− ⟨�⟩(4)
i+

1

2
ed

=
1

30

�
⟨�⟩

i−ed − 4⟨�⟩
i
+ 6⟨�⟩

i+ed − 4⟨�⟩
i+2ed + ⟨�⟩

i+3ed

�

≈
�x4

30

�4

�x4

�
⟨�⟩

i+ed

�
.
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primitive state on the original fine mesh at cell-index i , ⟨�⟩f
i
 , is averaged to a coarser 

mesh, ⟨�⟩c
i
 . The fine mesh has cell spacing �x.

Following the averaging procedure, the coarse cell-averaged value, ⟨�⟩c
i
 , is decon-

volved to obtain the cell-centered value, �c
i
 , to fourth-order accuracy using the decon-

volution (McCorquodale and Colella 2011)

where h is the cell spacing of the grid level. Working with the cell-centered state as 
opposed to the cell-averaged state preserves the order-of-accuracy of the numerical scheme 
and the SGS energy estimate in smoothly varying solution fields even when computing 
nonlinear terms. To use the cell-averaged quantities during the computation of nonlinear 
terms would not preserve the scheme’s order-of-accuracy in nonlinearly-evolving smooth 
regions of the flow unless rather complicated product-rules of averages were utilized. On 
the coarser mesh, with cell spacing �f  , the SGS kinetic energy estimate is computed using 
�c

i
 and then interpolated to the original mesh. From here, ⟨KSGS⟩f  is interpolated to the cell 

faces. On the cell faces, the orientation model is computed using �f

i
 and combined with 

K
f

SGS
 to obtain a conservative SGS momentum flux. The detailed steps as presented in an 

algorithm format are as follows: 

1.	 Average the fine cell-averaged primitive state to a coarser mesh and deconvolve it to 
obtain the coarse cell-centered primitive state: 

2.	 Compute the coarsened cell-centered SGS kinetic energy estimate from the cell-centered 
primitive state and average it over a coarse cell: 

3.	 Interpolate the cell-averaged SGS kinetic energy estimate to the fine mesh: 

(23)�c
i
= ⟨�⟩c

i
−
�

d

h2
d

24

�2⟨�⟩c
i

�x2
d

,

⟨�⟩f
i
→ ⟨�⟩c

i
→ �c

i

�c
i
→

�
KSGS

�c
i
→ ⟨KSGS⟩ci

⟨KSGS⟩ci → ⟨KSGS⟩
f

i

Fig. 1   Coarsened SGS kinetic 
energy estimate (example dem-
onstrates �f = 2�x)

〈W〉fi

〈W〉ci
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4.	 Interpolate the fine cell-averaged SGS kinetic energy estimate to the cell faces and 
deconvolve it to obtain the fine face-centered SGS kinetic energy estimate: 

5.	 Compute the fine face-centered turbulent flux using the interpolated SGS kinetic energy 
estimate and the orientation model computed on the fine mesh with fine mesh data.

As complex as this appears, even without optimizing the computational implementation, 
the SGS model costs less than 10% of the computation time when the coarsening ratio is 
4 ( �f = 4�x ), and approximately 35% of the computation time when �f = �x for a three-
dimensional simulation. In other words, applying the model at a coarser scale reduces the 
expense of computing the nonlinear filtered terms.

Using 𝛥f > 𝛥x for the SV model has previously been tested, as in the study of Chung 
and Matheou (2014). Furthermore, it was conclusively demonstrated that grid-converged 
LES results are obtainable for high Reynolds number, practical flow simulations. The cur-
rent study departs from the implementation methodology of Chung and Matheou in that 
the current study explicitly uses a coarser mesh when computing the SV model SGS kinetic 
energy estimate rather than implicitly incorporating the larger filter width through the �c 
parameter in Eqs. (13)–(15). This difference is utilized in order to enable the coupling of 
the SV model with numerical regularization. Without computing the SGS kinetic energy 
estimate on a coarser mesh, the smallest represented information necessary for the the SV 
model SGS kinetic energy calculation would still largely be affected by the numerical regu-
larization. As a result, the model would still register too low of an SGS kinetic energy 
estimate, even with the increased filter-width size being incorporated into the computa-
tions through �c . The SV model was originally designed to match an explicitly defined SGS 
kinetic energy spectra to the smallest representable-scale kinetic energy. Using numerical 
regularization, it is expected that the scales used to match the SGS kinetic energy spectra 
should no longer reside near the grid-cutoff, but rather at the scales associated with the 
equivalent filter size of the LES system.

4 � Test Cases

Throughout this study, three cases test the concepts and algorithms. The first is a tempo-
rally-evolving mixing-layer (Pantano and Sarkar 2002; Jackson and Grosch 1989; Mattner 
2011), while the second case is the decaying, inviscid Taylor–Green vortex where the 
Reynolds number is infinity (Bull and Jameson 2014). The last case is a decaying, homo-
geneous turbulence case based on the widely used Comte-Bellot and Corrsin experimental 
dataset of decaying, grid-generated turbulence (Comte-Bellot and Corrsin 1971).

4.1 � Time‑Evolving Mixing‑Layer

The time-evolving mixing-layer considered in the present study is configured as fully-peri-
odic double-shear as shown in Fig. 2.

The freestream velocities of streams 1 and 2 are U1,∞ = 34.03 m/s and U2,∞ = −U1,∞ , 
respectively, and the freestream pressures and densities of both streams are identical. The flow 

⟨KSGS⟩
f

i
→ ⟨KSGS⟩

f

i+
1

2
ed
→

�
KSGS

�f
i+

1

2
ed
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has a Mach number, M, of 0.1 based on the arithmetic mean of ||U1,∞
|| and ||U2,∞

|| , a Prandtl 
number, Pr = 0.71, a specific heat ratio, � = 1.4 , and a Reynolds number of 11650, based on

where �� is the initial vorticity thickness

with Ly being the domain length in the shear-layer normal direction, and �u being the 
magnitude of the difference between the two freestream velocities, �u = |U2,∞ − U1,∞| 
. The momentum thickness, �� , is ��∕4 . The computational domain size is, 
Lx × Ly × Lz = 137�� × 137�� × 68�� . The meshes consist of coarse resolutions with 
64 × 64 × 32 cells in the streamwise, shear-layer normal, and spanwise directions 
respectively, medium resolutions with 128 × 128 × 64 cells, and fine resolutions with 
256 × 256 × 128 cells.

The velocities in each stream were sinusoidally perturbed and computed from a stream 
function in order to achieve an analytically divergence-free initial velocity field. This stream 
function is defined as

where the factor � is defined as

and the velocities are computed analytically as

The i-th perturbation mode has phase shift �i , wavenumber �i , and magnitude bi . 
The parameter � controls the decay rate of the perturbations in the shear-layer normal 
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evolving double mixing-layer
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direction. For this study, � = 8�∕Ly . Perturbation modes with � = 8 , 4, 2, and 1 were cho-
sen for the streamwise and spanwise directions. The dominant mode with � = 8 was given 
b = 0.1

(
Ly∕2

)
 for the streamwise direction and b = 0.05

(
Ly∕2

)
 for the spanwise direction. 

All other perturbations were randomly provided magnitudes of either three percent or one 
percent of the half-domain height. Streamwise and spanwise phase shifts were randomly 
chosen. Density was initialized from the ideal gas law assuming constant pressure, identi-
cal freestream density values for both shear-layer streams, and using the Crocco-Busemann 
relation for temperature

Pressure was initialized assuming a constant pressure profile with correction for the veloc-
ity perturbations

where û is given by

The double-shear problem provides an anisotropic-turbulence test case in which the tur-
bulence is fed by a freestream, large-scale energy reservoir. This energy reservoir continu-
ally generates turbulence until the turbulence reaches the periodic boundaries, essentially 
mimicking a forced turbulence problem. At this point, the energy decays away. Although 
a relatively simple configuration, the double-shear case provides a test with flow features 
commonly encountered in real-world engineering problems. The large-scale anisotropy is 
common in almost any wall-bounded or jet-type flow as is the continual production of tur-
bulent energy from large-scale flow features that persist for long time-periods. For these 
reasons, the time-evolving shear-layer has been a favorite for testing LES models and algo-
rithms. The SV model has previously been tested with the time-evolving shear-layer by 
Mattner (2011). While Mattner used a Fourier spectral collocation scheme in the periodic 
streamwise and spanwise directions and an eighth-order finite-difference scheme in the 
slip-wall-bounded shear-layer normal direction, every coordinate direction in the present 
study uses the finite-volume discretization described in Sect. 3. Additionally, Mattner pre-
sented one-dimensional energy spectra while the current study presents three-dimensional 
energy spectra.

4.2 � Inviscid Taylor–Green Vortex

The Taylor–Green vortex flow is initialized in a fully-periodic cube of side-length D with a 
sinusoidal initial condition given by
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where U0 is the velocity fluctuation magnitude and n is the number of vortices contained in 
the domain in each coordinate direction. The flow has a Mach number based on U0 of 0.1, 
a Prandtl number of 0.71, and a specific heat ratio � = 1.4 . Cell counts of 643 , 1283 , and 
2563 were used for all of the Taylor–Green vortex cases.

In the limit of infinite Reynolds number, the Taylor–Green vortex provides an ideal test 
of algorithmic components examined in this study. The vortex evolution begins with “vor-
tex wrap-up”, eventually transitioning to a turbulent energy cascade process. It is apparent 
that all initial kinetic energy eventually resides at the subgrid-scale even though it is never 
dissipated in this inviscid problem. Once the kinetic energy resides at the subgrid-scale, it 
is indistinguishable from internal energy except through a model. As a result, the numeri-
cal algorithm must sufficiently dissipate represented-scale kinetic energy while correctly 
capturing the energy cascade process. This test case will demonstrate the dissipative char-
acteristics of the algorithms when physical viscosity is absent.

4.3 � Decaying Homogeneous Turbulence

Decaying, grid-generated turbulence is a classic test of the capabilities of LES models and 
multiple experimental datasets are readily available for this case  (Skeledzic et  al. 2018; 
Comte-Bellot and Corrsin 1971; Hearst and Lavoie 2015). This particular study simulates 
the Comte-Bellot and Corrsin experiment (Comte-Bellot and Corrsin 1971) following the 
numerical procedure outlined by Rozema et  al. (2015) and partially developed by Kang 
et al. (2003).

The experimental case consists of a bulk flow, Uref , of 10 m/s through a mesh with a 
spacing between wires, Lref , of 0.0508 m. A characteristic time, � , is defined as

where t is the true physical time. If a reference-frame is chosen to convect with the flow, a 
change in spatial location can be correlated with a change in time in the convecting refer-
ence frame. Measurements of the one-dimensional energy spectra were performed at spa-
tial locations corresponding with characteristic convecting reference frame times of 
� = 42, 98 , and 171 after the generation of the turbulence by the mesh. At the first meas-
urement station, 

√
u2
1
 was measured to be 0.222 m/s and the Kolmogorov scale was deter-

mined to be 2.94 × 10−4 m.
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To numerically simulate this case, a domain reference length, Dref , was chosen as 11Lref 
and a local turbulent velocity reference value of uref was chosen as 0.222

√
3∕2 m/s in order 

to match the experimental value of 
√

u2
1
 . All computational parameters were nondimen-

sionalized by Dref and uref as necessary. An algorithm-dependent, divergence-free initial 
condition with random phase shifts was fit to the energy spectrum measured at the first sta-
tion ( � = 42 ). Each case was run with the algorithm specific initial condition from � = 0 to 
� = 42 . The resulting flow fields were each rescaled following the method proposed by 
Kang et al. (2003) in order to act as the initial condition for the simulations in this particu-
lar study. In the present study, the cell-averaged field at � = 42 was deconvolved using the 
same method as presented in McCorquodale and Colella (2011) to obtain the point-value 
field that could be rescaled. Following the rescaling of the point values, the rescaled cell-
averaged field was computed using a box-filter convolution operator. The rescaled fields 
were then used as initial conditions to run from � = 42 to � = 171 . The Reynolds number 
based on uref and the domain size was 10400. Meshes of size 643 , 1283 , and 2563 are used 
for all decaying homogeneous turbulence simulations in the present study.

4.4 � Simulations and Data Analysis

A non-dimensional, characteristic time, � , is utilized for all the results presented. This 
“eddy turn-over” time is defined as

where U is a characteristic velocity and L is a characteristic length scale. For the shear-
layer case, the characteristic time scale is computed from the arithmetic mean of the abso-
lute values of the two stream velocities and the initial momentum thickness. For the invis-
cid Taylor–Green vortex the characteristic scales are chosen to be the turbulent velocity 
and the integral length scale, while for the decaying homogeneous turbulence case, these 
are the convective velocity and the mesh spacing. The shear-layer spectrum transitions to 
fully developed turbulence by � ≈ 20 . The decaying Taylor–Green cases transition to fully 
developed turbulence by � ≈ 10 . After this point, the kinetic energy decays away due to the 
energy cascade process.

The results of interest in this study are presented using the three-dimensional kinetic 
energy spectra from each case. All spectral data is computed from instantaneous flow data 
using the software package FFTW. To compute the three-dimensional energy spectra, the 
square of the Fourier-transformed velocity vector is shell-summed. The resulting kinetic 
energy is then normalized using the simulation domain volume and the initial sum of 
kinetic energy such that the sum of the kinetic energy presented in the spectrum plots is 
equal to unity at the start of the simulation. The wavenumber, k, is given with respect to the 
simulation domain such that k = 1 is the largest wave mode fully contained in the periodic 
simulation domain.

For each of the test cases presented, the kinetic energy spectrum results are broken into 
five distinct parts gathered into two separate figures. The first column of the first figure 
for each test case compares the use of three different numerically regularized algorithms: 
the fourth-order centered discretization with the SV model (explicit LES), the fourth-order 
PPM algorithm (implicit LES), and the fifth-order algorithm (implicit LES). The second 
column of the first figure presents the coupling between the SV model and the last two 

(38)� = t
U

L
,
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numerical regularization techniques presented in the first column. This particular set dem-
onstrates issues that arise from naive couplings of the LES SGS model with numerical 
regularization techniques (when �f = �x ). For the third column, the SV model is used with 
and without numerical regularization and specifically utilizes the coarsening method pro-
posed in this study ( �f ≠ �x ). The second figure of kinetic energy spectrum for each simu-
lation displays the comparison between the various schemes using the coarsened SV model 
at single mesh resolutions. The first row shows the kinetic energy spectra as previously 
described, while the second row displays the kinetic energy premultiplied by the wave-
number, k, and placed in a log-linear plot. This last presentation of the results is intended 
to specifically highlight the largest wave modes and demonstrate whether or not the simu-
lation results are grid-converged. The first two columns of spectra in the first figure are 
intended to show the baseline performance of the algorithms presented. The last column of 
the first figure highlights grid-independence achieved by the coarsened SV model compu-
tation. The second figure highlights scheme-independence achieved by the coarsened SV 
model computation, in that all numerical regularization approaches converge to the same 
result.

5 � Results and Discussion

5.1 � Time‑Evolving Mixing‑Layer

The double-shear-layer results presented in this section consist of a three-dimensional 
kinetic energy spectra plot demonstrating the kinetic energy evolution in Fig. 3, vorticity 
contours demonstrating the flow evolution in Fig. 4, and three-dimensional kinetic energy 
spectra in Figs. 5 and 6. 

As shown in Fig.  4, the double-shear-layer problem begins with the development of 
coherent vortices. These vortices rapidly break down and lead to full development of the 
kinetic energy spectrum by � ≈ 20 as seen with the use of the fourth-order centered dis-
cretization with the SV model and no numerical regularization in Fig. 3. The two layers 
continue to evolve in a turbulent manner and grow in the shear-layer normal direction until 
they begin interacting with one another at � ≈ 35 . Between � ≈ 20 and at least � ≈ 80 , the 
kinetic energy spectrum is in a quasi-steady state, mimicking artificially forced turbulence 
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Fig. 3   Double-shear-layer time evolution of kinetic energy spectrum using the fourth-order SV model and 
no numerical regularization on a 128 × 128 × 64 mesh with �f = �x
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Fig. 4   Evolution of double-shear-layer vorticity magnitude from � = 2 to � = 50 , mesh size 
512 × 512 × 256 . Rows from top to bottom display increasing simulation time while each column presents 
a different numerical scheme. The vorticity magnitude presented here is in grayscale contours ranging from 
white = 0 [s−1 ] to black = 75,000 [s−1]
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quite well. This quasi-steady state turbulence allows for the study of the various algorithms 
over long periods of time at moderate Reynolds numbers. 

Examining Fig. 4 provides a means of visualizing the differences between using numeri-
cal regularization without the SV model and using the SV model with no additional numer-
ical regularization. The first column presents the results from using the fourth-order PPM 
scheme with no turbulence model, while the second, third, and fourth columns present the 
results from using the SV model with �f = �x , �f = 2�x , and �f = 4�x respectively. From 
the results of the first column, it is observed that the PPM method dampens most high-
frequency solution content (as compared with the SV model results in the second column) 
while still allowing some small-scale flow features to develop. Examining column two of 
Fig. 4, it is readily apparent that the SV model with �f = �x allows more high-frequency 
data to remain than the PPM method . However, as the coarsening factor of the SV model is 
increased beyond unity ( 𝛥f > 𝛥x ), the solution field retains less high-frequency content as 
displayed in columns three and four of Fig. 4. Instead, only the larger-scale vortices remain 
and the resolvability of the flow field increases. This increase in resolvability decreases the 
likelihood that poorly resolved fluctuations will contaminate the well-resolved large-scale 
information. It is also important to note that the overall structure of the largest-scale vorti-
ces remains relatively unchanged as the �f∕�x ratio is increased for the SV model. The SV 
model only removes more of the small scales as the �f∕�x ratio increases, allowing for the 
potential of grid-independent solutions.
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Fig. 5   Kinetic energy spectra of double-shear-layer case at � = 50 . The first column presents three methods 
of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpolation (row 
3). The second column adds the SV model to the PPM method (row 2), and the biased interpolation (row 
3). The final column presents the same schemes except with a fixed �f  equivalent to 1/64th the streamwise 
length of the domain
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Figure 5 presents a comparison of several schemes used to simulate the double-shear 
case. The first column is a comparison of three methods of numerical regularization: the 
fourth-order SV algorithm (first row), the PPM method (second row), and fifth-order inter-
polation/hyperviscosity (third row). The second column adds the SV model to the PPM 
method (row 2), and the biased interpolation (row 3). In the third column, the SV model is 
applied at different ratios of �f∕�x with constant �f .

The fourth-order centered discretization with the SV model, presented in the first col-
umn of row one of Fig. 5, shows more consistency in the largest scales with decreasing 
�x than either of the other two numerically regularized schemes presented in the first col-
umn. It is evident that the fifth-order interpolation performs worse than the fourth-order 
PPM scheme when considering the largest scales. From these results, it would be natural to 
conclude that the fourth-order SV algorithm should be used in this simulation, especially 
when strong numerical regularization techniques are unnecessary for a low Mach number 
flow such as this case. However, as this study provides one piece of a foundation for future 
simulations of high-speed, compressible, reacting turbulent flows, numerical regularization 
must be tested and compared with the fourth-order SV results. Additionally, it is apparent 
that none of these methods provides the grid-independent or scheme-independent solutions 
which are sought within this study.

As previously noted, column two of Fig. 5 displays the results of naively coupling the 
SV model with the last two numerically regularized schemes of the first column. If the 
SV model with no additional numerical regularization performs somewhat well, it may be 
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Fig. 6   Kinetic energy spectra of double-shear-layer case at � = 50 : comparison between the fourth-order 
SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed �f  for the 
SV model. The first column presents the results using a 643 mesh with �f = �x , while the second column 
uses a 1283 mesh with �f = 2�x and the third column uses a 2563 mesh with �f = 4�x . The first row pre-
sents the results in log-log form while the second row premultiplies the kinetic energy by the wavenumber, 
k, and presents the results in log-linear form to highlight the largest scales of the simulation. The dashed 
gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model is com-
puted
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anticipated that adding the SV model to the fourth-order PPM method or the fifth-order 
interpolation would improve these results. But from the results presented in the second col-
umn of Fig. 5, it is seen that adding the SV model on top of the already existing numerical 
regularization does not significantly alter the results obtained using the stand-alone numer-
ically regularized schemes presented in the last two rows of the first column of Fig. 5. To 
make sense of this, the form of the SV model must be considered. The model adds dis-
sipation that is proportional in magnitude to the gradient squared. This is in contrast with 
methods that target only the highest frequency features in a simulation and are typically 
proportional to higher powers of the solution gradient. As a result, it is expected that the 
model dissipation affects more scales than just the smallest represented scales. The dissipa-
tion magnitude, however, is computed entirely using the smallest represented scales. When 
coupled with a small-scale-suppressing numerical regularization method, the SV model 
perceives almost no small scales and therefore assumes almost no SGS kinetic energy. In 
essence, the SV model works entirely on the assumption that locally unresolved veloc-
ity gradients will exist in unresolved turbulent flows, which is not always the case when 
numerical regularization techniques are used in the simulation. From the LES point-of-
view, the numerical regularization techniques used in this study increase the effective filter 
width of the complete LES system. To include the SV model in the system in a scheme-
consistent manner, the model terms must be computed at the proper effective filter width.

As seen in column three of Fig. 5, when the SV model is computed at a coarser scale 
than the base mesh ( 𝛥f > 𝛥x ) as proposed in the present study, the results display less vari-
ation across all scales than when the coarsening is not utilized. This phenomenon occurs 
independent of the scheme tested, but is most pronounced in the numerically regularized 
cases. To compare the impact of all schemes, Fig. 6 compiles the results on one plot for 
each base mesh size. Figure 6 convincingly demonstrates scheme-independent simulations 
over coarse and medium turbulent scales using the SV model and numerical regularization. 
Engineering analysis often only considers larger-scale dynamics and it is encouraging that 
by increasing �f  , these dynamics converge to the same result independent of the numerical 
regularization that is applied. Note that the result of the third column of Fig. 6 is not neces-
sarily the most accurate for this case (e.g. a smooth flow). The most accurate solution is 
probably that using mesh 2563 from the first row and column of Fig. 5. However, for flows 
with discontinuities, limiting or other stabilization must be added and the approach used 
for Fig. 6 becomes highly attractive.

5.2 � Infinite‑Reynolds‑Number Taylor–Green Vortex

Results of the infinite-Reynolds-number Taylor–Green vortex case are presented in Figs. 7, 
8 and 9, with Fig. 7 demonstrating the kinetic energy spectrum fill-in over time and Figs. 8 
and 9 showing the kinetic energy spectrum at � = 20.

As was mentioned in Sect. 4.4, the high-frequency information contained in the invis-
cid Taylor–Green vortex energy spectrum completely fills in by � ≈ 10 as shown in Fig. 7. 
After the high-frequency information is fully developed, the spectrum begins to decay 
away rather uniformly at the highest frequencies, while the lowest frequencies decay rather 
non-uniformly into the higher frequencies. The straight, temporally self-similar form of the 
energy spectrum is expected to continue at higher mesh resolutions and later simulation 
times due to the lack of physical dissipation.

Just as was seen in the previous test case, the results shown in column one of Fig. 8 lack 
large-scale grid-independence. The last two methods of numerical regularization seen in 
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the first column are typical of implicit LES schemes used to simulate physically complex, 
high-Reynolds-number flows. In cases of extremely-high-Reynolds-number flows, where 
DNS results are impractical or impossible to obtain, difficulties arise when attempting to 
determine the quality of the implicit LES results. A reasonable expectation is for conver-
gence in medium to large scale features as the grid is refined. This metric is used to judge 
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Fig. 7   The inviscid Taylor–Green vortex energy spectrum time-evolution from the fourth-order centered 
scheme using the SV model and no numerical regularization with �f = �x on a 1283 mesh
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Fig. 8   The inviscid Taylor–Green vortex kinetic energy spectrum at � = 20 . The first column presents three 
methods of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpola-
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the quality of the simulations in a meaningful way. As for the previous case, the fourth-
order SV scheme shown in the first column of the first row exhibits less overall variation 
with decreasing �x.

In contrast with the temporally-evolving shear-layer, column two of Fig. 8 shows some 
improvement in large-scale consistency when the SV model is coupled with the numerical 
regularization techniques. While the fifth-order discretization shows the most improvement 
from adding the SV model, the fourth-order PPM scheme shows some improvement as 
well. As this is an inviscid, infinite-Reynolds-number case, it is expected that the numerical 
regularization will not eliminate all energy at the smallest representable scales. For exam-
ple, if one considers a highly-compressible flow simulation which contains strong shocks, 
it will be noted that the smallest representable scales still contain significant energy, even 
with the use of numerical regularization. The SV model can still detect small-scale energy 
and use this to alter the large-scale information over time. As described in the temporally-
evolving shear-layer case, it is expected that matching the LES filter width to the equiva-
lent filter size of the numerical method would provide an even greater improvement in the 
results. These test cases are described next.

Column three of Fig. 8 shows the significant improvement provided by the coarsening 
method. For all three schemes tested, grid-independent LES solutions are obtained with 
all 1283 results nearly identical to 2563 results. The term “grid-independent solutions” is 
used here in the sense that the numerical errors have been isolated from the SV model 
effects. Clearly, the grid-independence being seen is due to an increase in grid resolution 
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Fig. 9   Inviscid Taylor–Green vortex kinetic energy spectrum at � = 20 : comparison between the fourth-
order SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed �f  
for the SV model. The first column presents the results using a 643 mesh with �f = �x , while the second 
column uses a 1283 mesh with �f = 2�x and the third column uses a 2563 mesh with �f = 4�x . The first 
row presents the results in log-log form while the second row premultiplies the kinetic energy by the wave-
number, k, and presents the results in log-linear form to highlight the largest scales of the simulation. The 
dashed gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model 
is computed
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while introducing little or no new physics to the flow field. Another form of grid-inde-
pendence would be to fix the filter width with respect to the discretization size and obtain 
converged solutions even as new physics at smaller scales are introduced to the simulation 
with an increasing mesh resolution. Ultimately, one expects convergence to DNS. Such a 
study evaluates both the model and its overall interaction with the CFD scheme. Similar to 
Chung and Matheou (2014), the current study does not perform such a grid-independence 
test.

Figure 9 displays scheme-independent results as were seen in the previous test case. The 
near complete agreement between the large scales of Fig. 9 points to the success of the SV 
model in properly regularizing high-Reynolds-number turbulent flows and to independence 
from additional numerical regularization.

This particular case demonstrates that large-scale scheme-independence of high-Reyn-
olds-number cases is achievable and that the effect of LES SGS models can be isolated 
without using an explicit-filtering approach. It is also possible that other structural LES 
SGS models could be used with the coarsening method presented here to obtain similar 
grid-independent results. With care, this method could be computationally less expensive 
than traditional explicit filtering methods used to evaluate LES SGS model performance. 
Instead of computing nonlinear model terms on the base mesh and then filtering the results, 
the model terms are naturally filtered when they are computed on the coarser mesh, leading 
to a reduction in the number of necessary computational evaluations. Utilized in the setting 
of a high-Reynolds-number turbulent flow, this method has the potential to provide an ideal 
test framework for the performance of various LES SGS models.

5.3 � Decaying Homogeneous Turbulence

Results of the decaying, homogeneous turbulence case are presented in Figs.  10 and 11 
which display the three-dimensional kinetic energy spectra at times corresponding with the 
experimental measurement stations. Figure 10 presents the kinetic energy premultiplied by 
the wavenumber, k, in log-linear format so as to accentuate the larger scales of the simula-
tion. Figure 11 compares the various schemes tested using a �f  fixed at an equivalent reso-
lution of 643.

As stated in Sect. 1, the current study aims to obtain results showing scheme-independ-
ence and grid-independence (if possible) while using both the SV model and numerical 
regularization. Even for low-Reynolds-number turbulent flows it may be necessary to 
incorporate numerical regularization in cases where strong discontinuities exist and where 
the physics is particularly vigorous as in reacting turbulent flows. While the current test 
case is not reacting and does not require numerical regularization, future studies of low-
Reynolds-number reacting flows will require regularization. As a result, this case continues 
the pattern of the previous test cases in scrutinizing the coupling of the SV model with 
various numerically regularized algorithms. 

Similar to the previous two test cases, column one of Fig.  10 demonstrates that the 
fourth-order PPM method and the fifth-order interpolation display significant variation 
in the large scales with changing mesh resolution. Additionally, given the experimental 
data, it is apparent that numerical regularization techniques tested here remove spurious 
high-frequency solution content while simultaneously retaining too much well-resolved 
kinetic energy. The resultant kinetic energy overshoot does decrease with increasing mesh 
resolution as would be expected, but it does not decrease to the point of matching the 
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experimental data. In contrast to this finding is the result obtained with the fourth-order SV 
scheme. This scheme shows much greater consistency among the scales as mesh resolution 
changes and is generally much closer to the experimental data than either of the numeri-
cally regularized schemes in column one. The comparisons in the first column demonstrate 
failings of ILES for this case versus a well-developed SGS model.

As was demonstrated in the first test case, it is seen from the results of the second 
column of Fig. 10 that the naive coupling of the SV model with the fourth-order PPM 
method or with the fifth-order interpolation makes little to no difference as compared 
with the regularized schemes without the SV model. It is interesting to note that this 
was the case with both low and medium-Reynolds-number tests, while the infinite-
Reynolds-number case showed some improvement when the SV model with �f = �x 
was added to the other two methods of numerical regularization.

When examining the cases utilizing the coarsened SV model as shown in the third 
column of Fig.  10, a substantial improvement over the second column of Fig.  10 is 
noted. In these figures, it must be noted that the simulations have the grid  cutoff in 
the dissipative range of the turbulent kinetic energy spectra, while the SV model is 
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Fig. 10   Kinetic energy spectrum for decaying homogeneous turbulence. The first column presents three 
methods of numerical regularization: the SV model (row 1), the PPM method (row 2), and biased interpola-
tion (row 3). The second column adds the SV model to the PPM method (row 2), and the biased interpola-
tion (row 3). The final column presents the same schemes as the second column except with a fixed �f  
equivalent to 1/64th the streamwise length of the domain. The initial conditions for � = 42 are all identical 
to one another and are cropped to emphasize differences in the other time scales
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computed at a length scale in the inertial range of the kinetic energy spectra. When 
�f = �x , the SV model well handles a filter cutoff in the dissipative range. Having 
𝛥f > 𝛥x , �f  in the inertial range, and �x in the dissipative range is a curiosity of this 
case. The result of the third column of Fig.  10 clearly shows that this is not a sig-
nificant cause for concern in the decaying, homogeneous turbulence case. The implica-
tions and effects of this will be more exhaustively studied in future work. Nevertheless, 
grid convergence is more apparent in column 3 versus column 2 for the solutions with 
numerical regularization.

Similar to the first two test cases, Fig. 11 shows that the coarsening method nearly 
achieves scheme-independent solutions when the separation between the numeri-
cal regularization and the SV model is sufficient to allow the SV model to operate 
appropriately. The results do show some small differences between the schemes even 
when �f = 4�x . Even for relatively low-Reynolds-number decaying turbulence cases 
such as this, the coarsened SV model provides an improvement over the numerically 
regularized algorithms, used both with and without the SV model. Again, note that 
the bare SV model (row 1, column 1 of Fig.  10) best fits the data. But if additional 
numerical regularization is necessary, there is strong evidence of scheme convergence 
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Fig. 11   Kinetic energy spectrum for decaying homogeneous turbulence: comparison between the fourth-
order SV algorithm, the fourth-order SV PPM algorithm, and the fifth-order SV algorithm with a fixed �f  
for the SV model. The first column presents the results using a 643 mesh with �f = �x , while the second 
column uses a 1283 mesh with �f = 2�x and the third column uses a 2563 mesh with �f = 4�x . The first 
row presents the results in log-log form while the second row premultiplies the kinetic energy by the wave-
number, k, and presents the results in log-linear form to highlight the largest scales of the simulation. The 
dashed gray vertical line at k = 32 in the plots of the first row displays the wavenumber at which the model 
is computed
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and moderate evidence of grid convergence when the SV model is applied at coarser 
scales. The coarsening method proposed in the current study shows that even though 
the SV model was designed for high-Reynolds-number flows, it has the capability of 
working in rather low-Reynolds-number flows if properly coupled with the existing 
algorithmic components.

6 � Conclusions

In the current study, it is shown that the new methodology of computing the SV model 
at a coarser scale than the base mesh achieves scheme-independence even when various 
numerical regularization techniques are included in the LES system. Additionally, grid-
independence of the large scales (in the sense of isolating numerical error from model 
effects) is achieved for high-Reynolds-number flows. Furthermore, this methodology 
introduces a new avenue for discerning the impact of the SGS model and the numerical 
regularization on the solution. This new avenue may be more robust and reliable than 
using explicit filtering.

Within the present study, the interaction of the various algorithmic components was 
seen to heavily influence the final simulation outcome. When the methods of numerical 
regularization used in the present study are incorporated into simulations, they suppress 
the highest-frequency information and prevent the SV model from detecting sufficient 
SGS kinetic energy. However, when the SV model is evaluated at a coarser resolution 
than the base mesh, it is more isolated from the numerical regularization and can add 
the proper dissipation to all scales of the system.

The temporally-evolving shear-layer was seen to achieve scheme-independence for 
all scales when �f = 4�x . It was also noted that the large-scale structures of the overall 
flow field remained the same as the �f∕�x ratio was increased.

In addition to the previously mentioned grid-independence, the infinite-Reynolds-
number Taylor–Green vortex case showed some improvement of the solution when the 
SV model using �f = �x was coupled with the fourth-order PPM method and the fifth-
order interpolation scheme. This was the only case that showed this improvement before 
implementing the coarsening method described in this study. Given that the SV model 
was developed for high-Reynolds-number flows, it was not surprising that this test case 
showed the best results.

While the decaying homogeneous turbulence case did not perform as well as the first 
two test cases, it demonstrated significant improvement using the new methodology. 
The case nearly reached scheme-independence across all scales.

This methodology reduces the computational expense associated with computing the 
SGS model as it requires approximately 3 

(
�f∕�x

)3 fewer evaluations of the actual SV 
model kinetic energy estimate. In the case of �f = 4�x , this corresponds to two orders 
of magnitude fewer computational evaluations of the SGS kinetic energy estimate. The 
necessary averaging and interpolation operators add relatively little overhead as they are 
already an essential part of the functionality in the AMR framework used in the current 
study. However, this should not be construed as a reason to set 𝛥f > 𝛥x . Rather, consider 
using 𝛥f > 𝛥x only if additional numerical regularization is to be combined with the SV 
model.

The findings presented in the current study pave the way for appropriately incor-
porating the SV model into future studies of highly compressible, reacting, turbulent 
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flows that contain strong discontinuities. Such studies have the potential to extend the 
new  coarsening method to SV wall-models and provide a more consistent coupling 
between wall-models and freestream LES SGS models.
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