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Abstract—The sixth-generation (6G) of wireless communi-
cations systems will significantly rely on fog/edge network
architectures for service provisioning. To realize this vision,
Al-based fog/edge enabled reinforcement solutions are needed
to serve highly stringent applications using dynamically varying
resources. In this paper, we propose a cognitive dynamic fog/edge
network where primary nodes (PNs) temporarily share their
resources and act as fog nodes (FNs) for secondary nodes
(SNs). Under this architecture, that unleashes multiple access
opportunities, we design distributed fog probing schemes for
SNs to search for available connections to access neighbouring
FNs. Since the availability of these connections varies in time,
we develop strategies to enhance the robustness to the uncer-
tain availability of channels and fog nodes, and reinforce the
connections with the FNs. A robustness control optimization is
formulated with the aim to maximize the expected total long-term
reliability of SNs’ transmissions. The problem is solved by an
online robustness control (ORC) algorithm that involves online
fog probing and an index-based connectivity activation policy
derived from restless multi-armed bandits (RMABs) model.
Simulation results show that our ORC scheme significantly
improves the network robustness, the connectivity reliability and
the number of completed transmissions. In addition, by activating
the connections with higher indexes, the total long-term reliability
optimization problem is solved with low complexity.

Index  Terms—Fog/edge, latency, restless

multi-armed bandit (RMAB), robustness.

reliability,

I. INTRODUCTION

UTURE 6G wireless systems will be expected to fulfill
new communications, networking and computing require-
ments for a massive connectivity, mostly expecting low-latency
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and high-reliability, in a highly dynamic scenario [1], [2].
Fog/edge computing, which enables computing anywhere
along the cloud-to-thing continuum, is seen as the way forward
to meet these stringent requirements [3], [4]. In [31], fog learn-
ing is proposed to distribute machine learning (ML) model
training from devices to cloud servers and compensate the
limitations of centralized ML for battery-limited devices, and
latency-sensitive and privacy sensitive applications. These use
cases need reliable communication links that have low proba-
bility of failure to achieve low latency. Many works [32] have
analyzed the performance in terms of reliability but without
specific solutions to improve it. Akbar et al. [6] estimate the
reliability level of links using a k-nearest neighbor algorithm
and an adaptive decision mechanism to select the best path
for different types of applications. However, the dynamic
nature of fog/edge architectures with services hosted within
smartphones, gateways, and user-provided access points results
in uncertain link availability, which must be considered when
selecting a reliable path. Furthermore, with the rapidly increas-
ing connectivity demands, spectrum resources are becoming
scarce and thus, solutions to enhance the reliability must
account for spectrum availability as well.

The incorporation of cognitive radio capabilities into
fog/edge architectures has attracted much attention recently
due to its ability to increase spectrum efficiency and through-
put by unleashing multiple access opportunities at the network
edge [3], [7]-[8]. In our previous works [3], [S], [7] we
presented a self-organized data and spectrum trading algorithm
to harvest available resources at the network edge, improv-
ing significantly the revenue of the operator. Si ef al. [8]
studied proactive caching of popular video contents over
harvested bands to maximize the spectrum utilization. By a
proper design, the multiple access opportunities can be used
to increase the robustness of the network defined as the
probability that the network remains connected under traffic
dynamics. Achieving a high network robustness is crucial
to reconfigure the connections on time by jointly allocating
available channels and fog nodes to meet high reliability and
low latency requirements at the network edge.

Resource allocation and service provisioning under fog/edge
architectures have been studied in several works [9]-[12].
Gu et al. [9] investigated the joint radio and computational
resource allocation to satisfy user QoS and proposed a match-
ing game framework to solve the problem. Wang et al. [10]
studied joint computation offloading and content caching as a
convex problem, and solved it with the alternating direction
method of multipliers (ADMM). These problems are solved
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either in static environments or by adapting static algorithms
to the network dynamics and developing heuristic algorithms.
Recently, ML has emerged as a powerful tool to make fog/edge
computing highly adaptable and enable fast-reconfiguration
[13]-[16]. Abdulkareem et al. [13] addressed the use of
ML for autonomous intelligent management and operation
in fog-aided IoT. Chen ef al. [14] studied proactive network
association and anticipatory mobility management through
ML. In [15], a traffic-flow prediction algorithm based on a
long short-term memory (LSTM) was presented to predict
and control the mobile-traffic flow of the entire network.
Sun et al. [16] presented a task offloading algorithm for
vehicular edge computing systems based on Multi-Armed
Bandits (MAB) that enabled vehicles to learn the offloading
delay performance of their neighboring vehicles. However,
none of the above papers provided solutions to improve the
connection reliability in cognitive fog/edge networks given
the network dynamics nor to reduce the impact of the latter
on the latency. Predicting the connectivity availability will
reduce the number of reconfigurations needed and improve
the resource utilization since fewer resources will be wasted
due to link failures. Besides, we can reinforce the connections
by keeping channels and fog nodes with high availability
probability as backups to meet the most stringent requirements.

In this paper, we contribute to the reinforcement of fog/edge
networks by presenting a robustness control framework to
access dynamically varying resources at the network edge
using fog nodes, and serve applications with low-latency and
high-reliability requirements. In particular, the main contribu-
tions of this work are the following:

a) We design distributed fog probing schemes to search for
the availability of mobile edge devices to act as fog nodes, and
the availability of spectrum and computing resources. First,
an agnostic fog probing scheme is developed that assumes no
prior knowledge on the outage probability of the connection,
which may result into temporal recapturing of the channels
used by SNs and/or fog nodes due to PNs’ traffic. The process
is modelled as a two dimensional absorbing Markov chain.
The probability of successful transmission, which depends on
the activity of PNs and fog nodes, is quantified. This scheme
is used as a benchmark for comparison with the autonomous
schemes developed later.

b) Fog reinforcement strategies are presented to enhance
the robustness to the uncertain availability of channels and
fog nodes by probing multiple connections with high prob-
ability of success as backups. A comprehensive framework
to model and analyze these strategies is elaborated. The
robustness optimization problem is formulated as a stochastic
optimization problem. The aim is to maximize the expected
long-term network performance in terms of reliability defined
as the probability of transmitting successfully within a latency
bound. However, solving this optimization is complex since
it is a combinatorial problem and its complexity increases
exponentially with the network size.

¢) Restless Multi-Armed Bandits (RMAB) provide an
efficient way to derive an index-based robustness control
algorithm with low computational complexity. However, inves-
tigating the problem structure to cast it as an RMAB is
challenging [28]. By reducing our original Markov connectiv-
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ity state model, we reformulate the robustness control problem
in the form of a RMAB, which enables an autonomous
implementation. Without loss of generality, the reduced model
allows direct implementation of the Whittle index policy with
significantly low complexity. The problem is solved by an
online robustness control (ORC) algorithm that integrates
online fog probing and index-based connectivity activation
policy. We prove the indexability of the connectivity activation
policy theoretically and obtain the Whittle index in closed-
form. By relaxing the constraint of the number of connections
activated per slot, the Whittle index is the optimal solution to
our RMAB.

d) We evaluate our algorithms through numerous sim-
ulations. First, the evaluation is conducted in small-sized
networks to compare the performance with the original
problem formulation that requires high computational time
for large-sized networks. Then we evaluate the index-based
scheduling algorithm for large-sized networks. We compare
the performance with some typical scheduling algorithms.
The results demonstrate that our approach significantly out-
performs existing solutions.

The remainder of this paper is organized as follows.
Section II describes the related work. The system model is
elaborated in Section III. In Section IV, the fog reinforcement
framework and the agnostic fog probing scheme are described.
The robustness control optimization is formulated in Section V
and it is solved in Section VI using our proposed ORC algo-
rithm. Section VII evaluates the proposed algorithms through
simulations. Concluding remarks are provided in Section VIII.

II. RELATED WORK

Several works have investigated computing resource failures
in cloud and fog computing services. Yao and Ansari [17]
studied the reliability of virtual machines as their probability
of failures in fog nodes when processing computing tasks.
They formulated a multi-objective optimization problem to
assign computing tasks to virtual machines (VMs) in a fog
node. Dantu et al. [18] utilized smartphones as fog nodes
and designed a software architecture to provide reliability
and adaptability. Yao and Ansari [19] addressed the joint
optimization of power control and fog resource provisioning in
terms of the number of VMs to guarantee task completion time
requirements. Liao et al. [34] propose a scheme to balance
computing resources in edge IoT by monitoring computing
demand.

Some works have studied channel assignments in cognitive
networks through spectrum leasing [35], channel switching
and rerouting [36]-[37] but without reliability and latency
guarantees and with fixed access points. Recently, a few
works have addressed fog resource provisioning under network
dynamics in fog networks. Zhao er al. [20] presented a
multi-tier operations scheduler to optimize node assignments
at the control tier and resource allocation at the access tier
under dynamic constraints. They solved the problem using
Lyapunov optimization techniques and developed an online
scheduling algorithm that achieved at least half of the optimal
value. Omoniwa er al. [21] utilized fog nodes as relays
and proposed a relay scheme to minimize the transmission
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TABLE I a) PFN; b) (1.4 PFN;
NOTATION o T3 PEN, .?SL {36} PFN,
SN 2 3 SNy 23}
ij, b Index of SN, PN, and channel SN; 1 SN, 1.4
N,M,B Total number of SNs, PNs, and channels SN, SN; SN, SN
N, M, B Set of SNs, PNs, and channels SN, SN,
a Availability probability of channel b at link i—j
a; Auvailability probability of PFN j
4 Link availability probability between 7 and j on channel b
Cji Capacity of link i—j

b, - b ol -
7, T T, T, Access, transmission, and computing delay, and overall

O, O Total and remaining data required by task of SN i

x5, 0 Indicator connectivity constraint, and association between
/] Y . i 4 PR
P Robustness of the network under reinforcement strategy r
01],) Outage in the transmission between 7/ and j on channel b

P) Fog probing strategies
& Reliability of the transmission of SN i

Ney Ny Number of backup channels and backup fog nodes
R(),R(t) Reward of SN from activation and from probing
CirCh Cost of transmission failure and of probing

w, Belief of connection k&
S;, Sp, Sk, i State of PFN j, channel b, connection &, and SN i
v(s) Whittle Index in state s

outage that jointly optimizes mobility and power consumption.
Yang et al. [22] considered fog nodes equipped with cognitive
capabilities and studied the joint optimization of spectrum uti-
lization and energy efficiency in collaborative task offloading.
In our previous work [5], we presented a Robust Dynamic Net-
work Architecture (RDNA) together with a holistic cross-layer
approach to improve network robustness. In this paper, our
focus is on optimizing robustness under resource uncertainty
to meet latency and reliability requirements. A comprehensive
analytical framework is developed to model and analyze
robustness enhancement, which encompasses fog probing and
fog reinforcement strategies.

III. SYSTEM MODEL

In this section, we describe our proposed network architec-
ture, and the related communication and computing models.
The most important notations used in the paper are summa-
rized in Table I.

A. Network Architecture

We consider a cognitive, dynamic fog/edge network archi-
tecture, as illustrated in Fig. 1. A set of primary nodes (PNs)
M = {1,2, ..., M}, such as smartphones, tablets, etc., with
data storage, computation and packet forwarding capabilities
share their connectivities and act as primary fog nodes (PFNs).
The PFNs serve a set of secondary nodes (SNs) N = {1,
2, ..., N} with limited capabilities, such as smart sensor
nodes that collect data for machines, objects, etc. The PFNs
will collect the data from SNs, perform necessary compu-
tation and distribute it throughout the network. We assume
that SNs are equipped with cognitive capabilities to harvest
available frequency channels in the set 5 = {1, 2, ..., B}.
The network is operated by a primary operator (PO) that
incentivizes its users, whenever their terminals are idle, to act
as PFNs. The high density of user terminals provides many
connectivity alternatives and opportunities to establish backup

Fig. 1. Illustration of fog reinforcement (the selected connections have the
highest success probability as explained in Section V): a) conventional topol-
ogy without reinforcement; b) topology with backup channels; c) topology
with backup PFNs; and d) topology with backup channels and PFNs.

connections to improve the robustness of the network against
traffic dynamics.

B. Communication Model

We assume that SNs are equipped with one radio that can be
tuned into any available frequency channel for message deliv-
ery. The availability of frequency channels varies in time and
space as these channels may be occupied by PNs’ transmis-
sions. Thus, PNs activity will affect the performance of SNs’
transmissions. We assume slotted transmissions in the primary
and secondary networks with different arrival/departure times
in each network. Let a’i’j, i € N,j € M, denote the probability
that channel b at link ¢ — 7 is available for SN ¢ transmission
to PEN j and (1 — aﬁ-’j) the probability that channel b at link
i — 7 is occupied by a PN transmission, and thus, unavailable
for SN ¢ transmission. In addition, we denote the availability
of PEN j, j € M to act as an access point by «;. PFN j
is available to act as an access point and share its resources
when it is not transmitting/processing its own traffic.

To characterize the transmission/interference in the physical
layer, we adopt the widely accepted protocol model [23]. The
power propagation gain from SN ¢ to PEN j is g;; = 0 -
d;jx, where (3 is an antenna-related parameter, x is the path
loss factor, and d;; is the distance between the two nodes.
According to the Shannon-Hartley theorem, if SN 7, 1 € N
transmits data to PFN j, j € M, using available channel b,
the link capacity will be

Cij = Wlogy (1 + P; - gij/7) (1

where W° = W is the bandwidth of channel b, P; is the
transmission power at SN ¢ and v is the Gaussian noise
power at PFN j. In the following section, we will address
the transmission constraints to avoid interference.

If Q; is the amount of data required for the task of SN 4, the
transmission time needed to transmit its traffic is Tfj =Q./Cij
and the energy consumption is ef; = P;;.

C. Computation Model

Suppose f; is the computation capacity of PEN j in CPU
cycles per unit of time. Denote by w; its current workload —
the portion of processing capacity currently occupied by PFN
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j’s own tasks. Then the available processing capacity to share
with SNs is I'; = f;(1 — wj). In addition, we denote by
0; the amount of computing resource required by the task
of SN ¢ in CPU cycles. Accordingly, the execution time for
computing the task of SN ¢ at PEN j is 75 = 0;/T;, and
the energy consumption at PEN j is ej; = €;7;;, where ¢; is
the energy cost per CPU cycle [24]. Given the limitation of
mobile terminals in computational capacity, we assume that at
most one task is executed at a time.

IV. FOG REINFORCEMENT FRAMEWORK

By taking advantage of the high density of user terminals,
in the subsequent development we present the methods to
identify possible backup connectivities (and their constraints)
that could be used to reinforce the connections of SNs with
the fog under uncertainty of available channels and PFNs.

A. Interference Constraints and Connectivity Availability

We consider scheduling of SNs transmissions in the fre-
quency domain, i.e., channel assignments for transmission and
receptions to ensure that there is no interference at the same
node and among adjacent nodes.

Denote by B; C B the set of available channels at SN
i € N. Suppose that channel b is available at SN ¢ and PFN
j, i.e., Bij = Bz n Bj. Define

1,if SN ¢ can transmit data to PFN 5 on channel b
(2)

0, otherwise

For an SN 7 € A and a channel b € B, the set of PFNs
that can use channel b and are within the transmission range
RT of SN i is T, = {j|di; < RT,j #i,b € B;;}. Note that
a PFN j € M cannot receive from multiple SNs on the same

channel,
b
b < 1.
Z{zl‘]efflb} IE” - 1

Likewise, if SN ¢ uses channel b for transmitting data to
PFN j € 7., then any other SN that can interfere with PFN
J should not use this channel,

wi; + Z{me'ﬂ?} Tom S L€ Tjin i @)

where 70 = {n|d,; < R},n # j,b € Bn;, T} # 0} is the
set of SNs that can interfere with the reception of PEN j on
channel b, B,,; is the set of the licensed channels available
to SN n and PFN j, and 7, # () indicates that SN n has a
PFN to which it can transmit by interfering with reception at
PFN ;.

A feasible scheduling of SNs transmissions in frequency
channels must satisfy the previous interference constraints.
The scheduling of PNs transmissions is out of the scope of
this paper. Nevertheless, since the availability of channels for
SNs transmissions and the availability of PFNs depend on the
traffic in the primary network, we model PNs’ traffic as well
for completeness of the model.

Denote the set of PNs whose transmission on channel b
will interrupt SN ¢ transmission to PFN j as Cé? = {z|d;; <
RJI-, z # j,b € B,j, T? # 0} where channel b is available at

3)
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PNy | | “ —
I |
PN i bl
’ | | |
b
PN, -y
0,
b
PN, < i E ! E >
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Fig. 2. Tllustration of the scheduling process after a PN return.

PN z and PFN j. By slightly abusing the notation 7 # )
indicates that z has a destination to which it can transmit by
interrupting the transmission between SN ¢ and PFN j.

At the beginning of slot ¢, each SN probes the availability
of channels and fog nodes that satisfy its connectivity require-
ments. Let us elaborate the availability probability of channel
b for SN transmission. For analytical tractability of the model,
we assume that traffic arrivals follow a Poisson process [3].

The probability of having Z arrivals from PNs’ in the set C;?
—Aop At
within a time slot of duration At is pz(At) = e <

(Acv At)? /Z! where Aev = Y v Az Then, the availability
of channel b for SN ¢ transmission at slot ¢ is obtained as
the probability that channel b € B;; has not been recently
allocated (i.e., in the previous At) to any arrivals from PN
z € C;?,

) =1-3 2 )

z=1|Bij| ©
where At~ refers to the previous At and Z/|B;;| is the
probability that Z arrivals are allocated to a particular channel
(i.e., channel b) out of |B;;| . Here, we assume PNs can access
any channel with the same probability. Equation (5) can be
modified to capture other PN channel access policies. The
scheduling process after a PN return is illustrated in Fig. 2.
At the beginning of slot 1, SN; has a set Bij of available
channels to transmit to PFN j (found by probing), and selects
to transmit in channel b;. After the transmission is initiated,
PNj returns to channel b; interrupting the transmission. At the
beginning of the next slot, SN; finds the new set of available
channels and transmits in channel bo. It continues transmitting
in this channel until the transmission is interrupted by PNy in
slot 3. Finally, in slot 4 SN; finds the new set of channels
and transmits in channel bs. A similar behavior is followed
by SN2. For simplicity, we illustrate only the impact of PNs’
activity on channel availability but its extension to the fog
availability is straightforward.

A PN j is available as a PFN and performs computing
tasks for SN if it is not transmitting/processing its own traffic.
We denote by py(At) = e 72 (\p At)” /J! the probability
that PN j receives .J new requests from its own traffic with
arrival rate Ap, within At. Thus, the probability that PN j is
available to serve as a fog node in slot ¢ is the probability of
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not receiving any new request (J = 0) in At~
a;j(t) = pj=o(At™) (6)

Since the availability of fog nodes (and channels) changes
in time, a SN may transmit to different fog nodes and channels
in subsequent time slots. If a SN transmission is interrupted,
it will be repeated it in the next slot using the same or different
fog nodes depending on the availability.

Hence, the probability that the link between SN ¢ and PFN
7 on channel b is available at time ¢ is

17;(t) = ag; (t)o; (1) )

The connection will be successful if the link remains
available for the entire duration of the slot A¢. Denote the
outage O,li’j as the probability that the connection is interrupted
due to either a return of a PN to the currently allocated channel
b (as illustrated in Fig. 2) and/or a new request from PEN
j’s own traffic in At. Thus, the transmission between SN ¢
and PFN j on channel b at time ¢ will be successful with
probability

1,(t+ At) = 12,(t)(1 — OF;(At)) 8)

B. Reinforcement Strategies

Strategies to reinforce the connectivity with the fog and
increase the robustness of the network connections will be
presented. Robustness is the property of the end devices to
remain connected to the fog and providing service under
dynamically varying traffic. Dynamic traffic induces uncer-
tainty to the availability of connectivity (i.e., channels and
PFNs) which impacts on latency and reliability, as well as on
overall network performance.

Definition 1: The latency 7 refers to the time elapsed since
the data is transmitted until it is received by the destination.

The latency 7; between i and j on channel b includes the
access delay 7, ]“ of SN ¢ to PFN j and it will be elaborated
in Section V depending on the reinforcement strategy used,
the transmission time Tfj, and the computational time TfJ
Downlink time is negligible compared to uplink data offload-
ing time and computation, hence, it has not been considered

in the calculus [25],

T =Tt T T ©

Definition 2: Reliability £ refers to the probability of suc-
cessful transmission within a latency bound 7,,x. Therefore,
the reliability of the connection of SN ¢ is

& = Pr (Zj >, < Tmax,i)
b

where 77 is the latency.

In the following, we present our strategies to reinforce
the connectivity with the fog. We represent a reinforcement
strategy as the pair (n., n,) where the first element indicates
the number of backup channels and the second one is the
number of backup fog nodes. The selection of the specific
backup connections is explained in Section V. We define the
following four strategies: » = 0 —(0,0), r = 1 — (n.,0),
r =2 —(0, ng), r =3 — (n. n,) that indicate no

(10)

reinforcement, reinforcement through n. backup channels,
reinforcement through n, backup PFNs, and reinforcement
through both n. backup channels and n, backup fog nodes,
respectively. For simplicity in the sequel, we remove the time
dependency ¢ in the link availability probability (7).

a) No reinforcement ( = 0): It describes the conventional
connectivity option where an SN i € A/ probes the availability
of a PFN j € 7, on one channel b at a time. This is illustrated
in Fig. la. The probability that the link between 7 and j is
available on channel b under this strategy is obtained by (7)
as

(11a)

b) Backup channels (r = 1): An SN i € N probes a set
of backup channels ng C B;; to increase the probability that
there is a link available for transmission to a PFN j € 7.°. This
is illustrated in Fig. 1b. The probability that the link between
i and j is available either on channel b or on any backup
channel k € B}, out of n, = |B/;| backup channels is

bUB, . r=1 bor=0 b Ne 5
ijo __ b, .
L =L+ (1—ag;) Z a;;

k=1keB;;
k-1 .
X Hs:l (1— aij)

The first term is the link availability probability between
i and j on channel b with no reinforcement as in expres-
sion (11a). The second term indicates the probability that
channel b is not available and the probability that the link
between ¢ and j is available on a backup channel & where s
is the index of the backup trial.

¢) Backup PFNs (r = 2): An SN i € AN probes a set
of PFNs on channel b denoted by (7;°)’ C 7}, as shown
in Fig. Ic. By introducing n, = ‘(’];b)" backup PFNs, the link
availability probability between i and j U (7,%)" on channel b
is

br=0 _ b )
lij = a;;q;

(11b)

br=2  __ ;b,r=0 ] Na b
Gioey =15 H (=0 0y Gimm

m—1
X Hq:1 (1—ay)

The first term denotes the link availability probability with
no reinforcement as expressed in (11a), and the second term is
the probability that PFN j is not available and the probability
that there is a backup PFN m available to serve SN ¢ on
channel b. Index ¢ indicates the backup trial.

d) 2-level backup (r = 3): This strategy combines backup
channels and fog nodes as illustrated in Fig. 1d. Thus, an SN
1 € N probes 1 + n. channels to transmit to any of its 1 + n,
PFNs. The probability that there is a link available between
and j U (7;”)" on channel b U B;; under this strategy is given
in (11d). The first term is the probability of link availability
under reinforcement strategy r = 1 given in (11b). The second
term is the probability of link availability under reinforcement
strategy 7 = 3 as expressed in (11c). The third term is the
link availability under no reinforcement as in (11a). Finally,
the fourth term is the probability that the channel b and PFN
j are not available for SN ¢’s transmission multiplied by the
probability that SN ¢ has a connection available on a backup
channel k to a backup PFN m. The indexes s and ¢ are the
indexes of the channel and PFN backup trails, respectively.

(11c)
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Fig. 3. Fog access state transition diagram with Sq = (ja, ba).
states, where M is the number of fog nodes and B the
lbUB;J’ lbUB;’“ =1, jhr=2 [b.r=0 number of channels, and the two absorbing states “A” and
oz i + ifU(Tr) Vi “NA” indicating access and non-access to the fog, respectively.
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(11d)

For simplicity, we have limited our previous discussion
to obtaining the link availability probability li-’f(t) under
different reinforcement strategies. Its extension to obtaining
the probability of successful transmission li-’f(t—i— At) for each
strategy r is straightforward from (8).

Definition 3: The robustness of the network is defined as
the probability that the network remains connected under
dynamically varying traffic, which is given as the average
probability that users have at least one connection available
to transmit reliably,

o= oi/N=>" (1-TL IT, (1= t+a0) ) /v

12)

where r is the reinforcement strategy used, j € 7.°, and
li’]’-r(t + At) is the probability of successful connectivity (8)
under strategy r. Section V describes how SNs learn to probe
the set of connections that have high probability of successful
transmission.

C. Agnostic Fog Probing

We model SNs access to the fog network by using a fog
probing mechanism used to check the availability of channels
and adjacent fog nodes at the beginning of each slot. Initially,
we assume SNs do not have any preliminary knowledge about
whether the probed connections are successful. This scheme
is referred to as agnostic fog probing, which will be used
as a benchmark for comparison with fog probing schemes
that incorporate learning in Section V. The probing process is
represented by an absorbing Markov chain with MB transient

The fog network access state transition diagram is shown
in Fig. 3 where each transition state is given by the pair (j, b)
denoting the indexes of the PFN and the channel, respectively.

The agnostic fog probing protocol works as follows. At the
beginning of a slot, each SN 7 checks the availability of its
adjacent PFNs, starting with its most preferable one, and the
availability of each channel randomly. Let us assume that SN
1 starts checking the availability in state (1,1). If PFN j = 1 is
not available, the process moves rightward with probability
(1 - al)alll, whereas if channel b = 1 is not available,
the process moves upward with probability (1 — al})as.
Similarly, if neither PFN j = 1 nor channel b = 1 are available,
the process will move up along the diagonal with probability
(1 —ak)(1 — a1). If a PFN and a channel are available in
state S, = (Ja, ba), the process will move to the “A” state
with probability a};«;. Based on the reinforcement strategy,
this process may be repeated, starting from the next state S, +1
until the SN finds all available PFNs and channels. The process
will finish when all PFNs and channels are checked and there
are no more available, finishing in the “NA” state. If a PN
returns to a channel currently allocated to a SN or the allocated
PEN receives a new task from its own traffic, the connection
will be interrupted, and the process will be repeated to find
a new connection at the beginning of the next slot, as shown
in Fig. 3.

To obtain the access delay Tfj’a under the agnostic fog prob-
ing scheme, we define the transition probability matrix of fog
network access states S = ||.S(j, b; 5/, V)| = [|.S(m, m')|| with
indexesm = j+M((b—1)and m' = 5+ M (b’ —1), m, m' =
1, 2, ..., MB denoting the current and next state, respectively.
Following the theory of absorbing Markov chains [26], [27],
we arrange matrix S in a canonical form as

I0
“ns &
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with size Ng x Ng, where Ng is the number of states (i.e,
Ng = Na+ MB),1is a Ny x N4 unity matrix corresponding
to N4 absorbing states, 0 is a N4 X MB all-zero matrix, R is
an MB x N4 matrix of transition probabilities from transient
states to absorbing states, and S is an MB x MB matrix of
transition probabilities between transient states. These matrices
are outlined in the Appendix.

We define the fundamental matrix as N = (I — S)~! with
dimensions MB x MB. The mean access time for the process
to reach an absorbing state starting from transient state m is
the mth entry of the vector [26]

(r¢, ..., 70 5) = TN1 (14)
when the dwell time for any state m is the same, T = T,
and 1 is an MB x 1 column vector of all ones. The general-
ization to any dwell time is straightforward. The variance of

each 7, can be expressed as [26]

var 7y, = 2NTSNe + N(ey,) — (Ne)g,

where T is an MB x MB diagonal matrix with elements 7,,,
e is a column vector of the same elements, and || ||, is the

square of each component of ||||. The access delay 7, is
obtained as in (14) with 7" = 1 and the inverse mapping
(j;b) = m.

The probability that transient state m is absorbed to the
absorbing state n = {“A”, “NA”} is the (m,n)-entry of the
matrix
which provides the probability of available transmission in
state (j,b) < m or equivalently from SN 4 to PFN j on
channel b.

In the agnostic fog probing, SNs will probe all connec-
tions until they find an available one. This process is costly
since it consumes time and network resources, especially
if connectivity reinforcement strategies are used. Therefore,
as a next step we will incorporate learning in the fog
probing process to reduce the number of probed connec-
tions to those with the highest probability of transmission
success.

V. ROBUSTNESS CONTROL OPTIMIZATION

In this section, we formulate the robustness control opti-
mization problem to maximize the long-term reliability of
SNs’ transmissions. The problem is solved in two steps.
First, each SN ¢ probes a set of connections P;(t) at time ¢
based on its reinforcement strategy. After the fog probing
is completed, each SN notifies the secondary operator (SO)
on the availability of the probed connections. Let us recall
that SNs’ transmissions use the channels and PFNs from the
primary network whenever available. Once all notifications are
received, the SO decides which connections to activate in each
slot and receives a reward R; for each successful connection
of SN 4, which depends on the reliability. The objective for the
SO is to activate the connections to maximize the long-term
total discounted reward.

Poi

Pio

b)
Fig. 4. Markov connectivity state model: a) Original and b) Reduced.

A. Automatized Fog Probing and Reinforcement
Selection Strategy

By using the agnostic fog probing scheme described in
Section IV.C, SNs check the availability of the connections
in the current instant but they are unaware of the probability
of transmitting successfully (i.e., there is no outage in the
transmission) by using these connections. To improve the
selection of the connections, we present an automatized fog
probing scheme based on RMABs model [28], [29] that builds
a belief, based on previous experience, that the connection will
be successful. In the automatized fog probing, at the beginning
of time slot ¢, each SN ¢ chooses a set P;(t) C {1,2,...,K}
of connections to probe (1 < K < MB) and receives a reward
if the probed connections remain available. The objective
is to probe the links with the highest probability of being
available for the slot duration. We model the availability of
each connection (j,b) — k € P;(t) as a Markov process
with four possible states, depending on the availability “1” or
unavailability “0” of PEN j and channel b: S;(t) = (S;(t),
Sp(t)) = (0,0), (0,1), (1,0), or (1,1). The first index indicates
the state of PFN S;(¢) and the second one the state of channel
Sp(t). The state of each connection evolves from slot to slot
as a Markov chain with transition matrix P°"9 = [pg, . S},b]
as illustrated in Fig. 4a.

For tractability of the model and to cast our problem as
a RMAB and obtain the Whittle index, we elaborate an
equivalent reduced Markov model, as shown in Fig. 4b, with
two states, Sk(t) = 1 and Sk(t) = 0, depending on the
availability or unavailability of the connection k, respectively.
The state of the probed connection is now obtained as Sy (t) =
S;(t) - Sp(t), where S;(t) is the state of the PEN and Sj(t)
is the state of the channel. The transition matrix of the
reduced Markov model is P"*? = [pg, s, where the transition
probabilities of connection k& during slot ¢ are

Poo(t + At) = 1—12,(t)(1 — O (At)) (16)
por(t+ At) = 17,(t)(1 — OF;(At)) (17)
Plo(t + At) = O};(At) (18)
Ph(t+ At) = (1 — 0% (A)) (19)

where k is the index of the connection of SN ¢ to PFN j on
channel b. The probability of connection outage ij is defined
in Section IV.A. The transition probability p&,(t + At) from
Sk(t) = 0to Sk (t+At) = 0 is obtained as the probability that
the connection remains unavailable. The connection transition
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probability p§, (t + At) from state Sy () = 0 to state Sy (¢ +
At) =1 is equal to the probability of successful transmission.
The connection transition probability pi,(t + At) from state
Sk(t) =1 to state Sy (t + At) = 0 is equal to the connection
outage. Finally, the connection transition probability p¥, (¢ +
At) from state Si(t) = 1 to state Sy (t + At) = 1 is equal to
the probability of no connection outage.

Since the connection state Sj(t) is not observable until
when the availability of the connection is checked, we define
a belief matrix Q(t) = [w1(t),...,wk(t)], where wy(t) is the
conditional probability that S (¢) = 1. It has been shown that
the conditional probability that each connection is in state 1
given all past decisions and observations is a sufficient statistic
for optimal decision making [28]. Given the fog probing
selection P;(t) and the observation at time ¢, the belief state
in time t + 1 can be obtained recursively as

o ke P(t),Sk(t) =1
wi(t+1) = ¢ pi¥), k€ P(t), Sk(t) =0
T(wi(t)), k& P(t)

where T (wi(t)) = wi(t)p) + (1 — wi(t))pl? is the belief
operator when connection % has not been probed in the current
slot. If there is no prior information on the initial system state,
the kth entry of the initial belief vector 2(1) can be set to the
steady state probability that the reduced system is in state 1,

(k) . To calculate ng) next we analyze the relation between
the steady-state probabilities of the original system, shown
in Fig. 4a, and the reduced system, shown in Fig. 4b.

Denote by w9 = (w5, 7017, 7107 711Y) the steady
state distribution for the Markov chain with transition matrix
P9 = [pg, ,; Sj-,b] satisfying

(20)

oT9 — gOTIPOrI

21

77e?) the steady state distribution for the

[ps,s]

and by wed = (r5ed,
reduced Markov chain with transition matrix P7¢? =
satisfying

7.‘_red _ ﬂ_redPred

(22)

The equivalence between the original system and the
reduced system is described as

red __ WOTg

™ =T
red __ g org
o = oo + g+ (23)

where 754 + 77° =1 and 7507 + 7517 + 7! + mipd = 1.
Since the values of the transition matrix P°"9 can be obtained
from the traffic arrival and departure distributions, 7w°"9 is cal-
culated by solving the system (21). Then, w"? is obtained by
solving (23). Finally, by solving system (22) the steady-state
probabilities of the reduced system are calculated

k
P((n)

pél) + p(k)

By formulating the fog probing as an RMAB, each connec-
tion & represents an arm and the belief state wy(t) is the state
of the arm at time t. Each SN will choose a number of arms
K to probe at each slot while the other arms are unobserved.

® _ _ pio (k) _
o w1
Po1” + Pio
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The belief state shows the states of both probed and unprobed
arms.

Each SN ¢ receives a reward at time ¢t when a connection that
has probed successfully (i.e., available connection) is activated
by the SO minus the cost of probing the connections. Based
on the reinforcement strategy, each SN will probe K = (1 +
n.)(1 + n,) connections to increase the chances of finding
one with a high belief and, thus, increase the probability that
it will be selected by the SO and receive a reward,

/ — _ /
R0 =3, o tr(O(t) = Kc

where yy(¢) € {0,1}: yx(t) = 1, if the connection has been
selected by the SO, or y(t) = 0, otherwise, and ¢}, is the cost
of probing the connection. If SN ¢ has a reinforcement strategy
r = 0, then it will probe only K = 1 connections since the
number of backup channels n. and backup fog nodes n, will
be zero. In our fog probing problem, arms are stochastically
identical (i.e., all arms have the same Markovian dynamics
and reward structure). Thus, we focus on deriving the optimal
policy at an individual slot since it would remain the same for
different slots [28]. We define an online fog probing policy
obtained by probing K arms with the highest belief in each
slot. The online fog probing policy P;(t) is then given by

P;(t) = argmax R/ (t)
Pi(t)

(24)

(25)

B. Connectivity Activation Policy

Once the fog probing is completed, each SN sends the
information about the availability of the probed connections to
the SO. Given that all SNs share any available channels and
PENs to transmit, the SO will activate the SNs’ connections
to maximize the reward subject to the interference constraints
(3) and (4). The indicator yfj (t) = 1 is used to denote that
connection (j,b) — k € P;(t) has been allocated for SN
4 transmission, and yfj(t) = (0 otherwise. If the activated
connection k results in a successful transmission the SO
receives a reward . Otherwise, it receives a penalty cy.

The problem is to determine which connections to activate
at each time slot to maximize the expected total discounted
reward for the SO,

max E ZZ B R (s4(t

y?; (1)
subject to Z yij )<~+B
y?j(t) € {05 1}7 (],b) — ke Pq',(t)

where 3 (0 < 8 < 1) is the discount factor, R;(s;(t), yﬁ’j (1))
is the reward of the SO that will be elaborated in the next
section, and y7;(t) € {0,1} denotes the association between
SN i € N and PFN j € M on channel b € B for
data transmission and task computation in time ¢. Since the
available channels are shared among multiple SUs (B < N),
to avoid interference, the number of connections activated
simultaneously are constrained to a fraction ~y of the available
channels B. The fraction ~ can be obtained using an interfer-
ence graph [30] and considering the interference constraints
defined in (4) and (5) with yé’j (t) < xfj (t).

), 1 (t))

(26)
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Solving the previous optimization is complex since it is
a combinatorial problem [11]. To make it tractable, in the
next section we formulate (26) as a RMAB problem and
derive a connectivity activation index policy based on Whittle
Index [28], [29], [38].

VI. INDEX-BASED CONNECTIVITY ACTIVATION POLICY

By modelling the SO connectivity activation policy as a
RMAB problem, we view each connection as an arm. When
an arm is activated, the corresponding SN can transmit.
To formulate the RMAB, we define the decision epoch, state
space, state transition probability, and reward.

1) Decision Epochs: Time is divided into discrete time slots
and decisions are made each time ¢, t € {1,2,...,00}.

2) State Space: Recall that each SN ¢ wants to transmit an
amount of data Q; in Tyqz,; slots. We define the state of the
SN i transmission s;(t) = (Qr:(t), 7:(t)), indicating that SN
i has a remaining amount of data @, ;(¢) to transmit and 7, ; (¢)
remaining slots to complete it. The system state at decision
t consists of the states of all SNs s = (s1(¢),...,sn(t)).
At each time t, there are N SNs waiting to transmit in one
of their available probed connections. Note that the state s; of
the SN 7 is different from the state of the connection S} in
the previous section.

3) Action: At each decision epoch, the action yfj (t) taken by
the SO determines which SNs can transmit. If SO takes action
y2;(t) = 1 the connection (j,b) — k for SN i is activated,
otherwise y?;(t) = 0. Since there are B < N channels,
the action taken at any time ¢ should satisfy the constraint
>y (t) < 9B.

4) State Transition Probability: For each SN i, the state
s;(t) will transfer to different states with probability Pr{s,(¢t+
1)[s(t),y%(t)} depending on the action of the SO and the
uncertain availability of the links. When 7, = 1, assuming
that SN 7 have packets to transmit periodically, Pr{s;(t +
1)|si(t),yfj (t)} = 1 independently of the action yfj (t) taken
and the state will transfer to s;(t4+1) = (Qi, Tmax,i)- Similarly,
7 > 1 and @, = 0, independently of the action we have
Pr{s;(t + 1)|si(t),y§’j(t)} =1 with s;(t +1) = (0,7 — 1).
However, if 7. > 1 and ), > 0 and the connection is activated
the state will transfer to s;(t + 1) = (Qri(t) — Qi(t + 1),
7r,i(t) — 1) with probability w?; or to state sz(t +1) =
(Qri(t), 7ri(t) — 1) with probability 1 — w . The proba-
bility that the connection will be successful or belief w ] is
obtained as in (20). If the connection is not activated, Pr{s;
(t+1)|si(t),y§’j(t)} =1 with s;(t+1) = (Qri(t), 7i(t) —1).

5) Reward: The reward of SN 7 at time ¢ depends on the
current state and the action taken,

Ri(si(t)vy?j (t))
0, Qri(t) =0
= yfj (t)(wfj (t)ri')j (t) —(1- Wf] (t))cfj (t)) 27
+(1 =y (1)el; (1), Qri(t) > 0,7i(t) > 0

where w; «— wy, is the belief state as in (20), f;(t) «— cx
is the penalty incurred when the connection is not available
or it has not been activated, and rfj (t) « rp is the reward
of connection k obtained when the connection is successful.

To obtain the reward rfj (t) per slot ¢, we can rewrite the
reliability, defined in (10), as

DD I W HCRACLAC

(28)

Ei = p(Tz < Tmax, z

where r?;(t) = QY;(t)/Q; is the ratio of the amount of data
transmitted in time ¢ with respect to the overall amount of data
Q; that SN 4 aims to transmit.

A. Indexability and Whittle Index Policy

Whittle index policy is the optimal solution to a Lagrangian
relaxation of RMABs [28]. In our problem, this is achieved by
relaxing the constraint in (26) in which the number of activated
arms can vary over time given that their discounted average
over the infinite horizon equals v,

Based on the Lagranglan multiplier theorem, the RMAB
can be decomposed into a single-arm activation problem and
s0, it suffices to consider a single arm (i.e., connection),

SY pn

The aim is to decide whether to activate the arm at each
slot based on the concept of subsidy for passivity [28].
Let us construct a single-bandit process identical to the one
previously described except for a constant subsidy v that is
obtained when the arm is passive. The v-subsidy reward is
formally given by

Ri(si(1),y(t)) = Ri(si(t), y(1)) + v1(y(t) = 0)

where 1(-) equals 1 if the expression in the bracket is true,
and 0 otherwise. The SO decides whether to activate an arm or
not at each time ¢ to maximize the total discounted v-subsidy
reward

max, E

si(t),y(t)) — Ay(t))l

(29)

=3 BTIRY(si(1), (1) (30)

with initial state s. To simplify the notation, we drop the
subscripts ¢ and ¢ without loss of generality.

Let V(s) denote the value function that represents the max-
imum expected total discounted reward that can be accrued
from a single-arm bandit process when the initial state is s
and two actions, y = 0 and y = 1, are possible:

V(S) = maX{V(s, Y= 0)7 V(Sa Y= 1)}

where V (s;y) is the expected total discounted reward when
action y is taken at the first slot followed by the optimal policy
in future slots as

&1V}

V(s,y =0) = R(s,0) —l—u—i—Z (s']s,0) V" (s")
(32)
V(s,y=1) = R(s,1) +Z (s'|s, )V¥(s)  (33)

The term p(s’|s,y) denotes the probability that SN 4
changes from state s to next state s’ when decision y is
taken and V¥ (s’) is the total discounted future reward. In (32),
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V(s,y = 0) is given by the sum of the v-subsidy reward in
the first slot under action y = 0 and the total discounted future
reward. Likewise, V' (s,y = 1) is obtained.

Definition 4: The Whittle index v;(s) of an arm ¢ in state s is
the infimum subsidy v that makes the two decisions (activating
arm 7 or not) equally rewarding:

vi(s) = ir;f{l/ Vis,y=0)>V(s,y=1)} 34)
where V(s;y) is the expected reward when action y is taken
at state s.

Definition 5: An arm is indexable if the passive set Z(v) =
{v:V(s,y =0) > V(s,y = 1)} of the single-armed bandit
process with subsidy » monotonically increases as v increases
from —oco to +o0o0. An RMAB is indexable if every arm is
indexable.

To establish the indexability and derive the closed-form
expression of the Whittle index, we distinguish the following
cases in calculating the expected total discounted reward:

1) When 7, = 1, assuming that SNs have packets to transmit
periodically, p(s’|s,y) = 1 independently of the action y taken
and the SN will change to 8" = (Q, Tmax). The remaining time
to complete the transmission is initialized to 7y,,x and the SN
can start a new transmission in the next slot.

-If Q- = 0and y = 0 we have V((0,1),0) = v +
BV (Q, Tmax), whereas if y = 1 we obtain V((0,1),1) =
OV (Q, Tmax). Therefore, by (34) the Whitte index is
v(0,1) =0.

-If @, > 0 and y = 0, we have that V((Q,,1),0) = v —
¢+ BV (Q, Tmax), Whereas if y = 1 we have V((Q,,1),1) =
wr — (1 = w)e + BV (Q, Tmax). Then, the Whittle index is
v(Qr, 1) =wr + we.

The previous derivations establish the indexability of the
problem when 7. = 1.

2) When 7. > 1,

- If @, = 0 independently of the action y taken, p(s’|s,y) =
1withs" = (0,7.—1).Ify =0, V((0,7,),0) = v+5V (0, 7. —
1) is obtained, whereas if y = 1, we have V((0,7,.),1) =
BV (0,7, — 1) and the Whittle index is v(0,7,.) = 0.

-If Q- > 0 and y = 0, we have p(s'|s,y) = 1 with
s = (Qp,7 — 1). In this case, the expected reward is
V({(Qr,7r),0) =v —c+ BV (Qr, 7 — 1). On the other hand,
if y = 1, the user will change to state ' = (Q,, — Q', 7 — 1)
with probability w or to state s’ = (Q,., 7, — 1) with probability
1—w. Therefore, we obtain V ((Q,, 7,),0) = wr+fwV (Q, —
Q1 —1)—c(l—w)+ 81l —w)V(Qr, 7 — 1).

Next, we analyze the indexability when 7. > 1. Let us
define

MQr, ) = V((Qr,7),0) = V((Qr,7r), 1)
=v—wrtwc+ PwV(Qr, 1 — 1)

_V(QT’ - leTr - 1))

Differentiating h(Q,,7.) with respect to v, we obtain
oM@y, 1r)/0v = 1 + pwdf(r, — 1)/0v. Assuming that
of(ry)/ov > —1/Pw, we find that Oh(Q,,7,)/Ov > 0.
By definition 3, this implies indexability under state (Q,, 7;)
with @, > 0 and 7. > 1. Next, we prove that 9f(7,.)/0v >
—1/pw is true by induction. The expression of f(7,) is

(35)
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Algorithm 1 Online Robustness Control (ORC)

1: Input: 3, Qi, Tmaz,i> ¢ €

2: Initialization: Q), = Q;, 7, = Timax.i

3: while ¢ < max {742}

4: fori=1: N

5 SN i probes K* arms following policy P;(t) in (25)
and sends beliefs w, k= 1,..., K to SO.

6: SO calculates Whittle index v(s(t)) = v(Q,(t), 7-(t))
as in (37)

7: end

8: SO activates (yx(t) = 1)yB connections with highest

indexes, and computes (29)
: fori=1:N
10: SN i obtains reward (24) based on yi(¢) and updates
Qr = Zk Qk(t)» Tr = Tmaz,i — t

11: end
12 t=t+1
13: end

calculated as

f(TT) = V(QT) 7-7") - V(Qr - Ql; Tr)
wr — (1 —w)e
+08(1—w)f(r—1), ifr<0
=qwr—(l—-w)c—v
+01—w)f(r—1) if0<v<v(QTr)
—we+ Bf(r—1), if v>v(Qr, 1)

Since 0 < < 1and 0 < B(1 —w) < 1, it is easy to
see that Of (7, —1)/0v > —1/Pw for all three cases, which
demonstrates the indexability of the connectivity activation
problem.

Theorem 1: The connectivity activation problem formulated
as a RMAB is indexable.

Proof: See discussion above.

Theorem 2: The closed-form Whittle index v(s) of an arm
under state s = (Q., 7)) is

(36)

0, ifQ, =0
w(r+c), it Q>0

and 7 =1

v(s) = q wr
we—. ..~ we(l—w)™t |
1 Bo— .—6715)(1—2;)72’ it Q>0
and 7. > 1
(37)

Proof: By definition of the Whittle index, for a given state s,
we can obtain the Whittle index by solving (34). From the
closed-formed expressions of V(s,y = 0) and V(s,y = 1)
previously obtained, and (35)-(36), we have solved (34) and
obtained the Whittle index (37).

B. Online Robustness Control Algorithm

We define an Online Robustness Control (ORC) algorithm,
as described in Algorithm 1, that combines the online fog
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TABLE 11
SIMULATION PARAMETERS

Transmission power (P) 23 dBm
Duration of transmission slot (Af) 10 ms
Transmission bandwidth (W) 10 MHz

Path loss exponent (x) 4

Message data size (Q) [0.1 - 1] KB
Maximum latency (zuax) [50 — 100] ms
Noise power spectral density () -174 dBm/Hz
Message arrival rate (4p) [0 — 1] messages/slot
Computation capacity of the PFN (') [0.7 - 10] GHz
Number of required CPU cycles per message (6;) | [0.1 — 1] GHz
Computing energy consumption (g,) 1*¥107" J/cycle

probing algorithm (25) and the index-based connectivity acti-
vation policy (37). At each time slot, the SO calculates the
indices of all connections probed by every SN and activates
the vB connections with the highest indices. The complexity
of calculating all indices is O(NK) and sorting them has a
complexity of O(NKlog(NK)), with K = (1 4+ n.)(1 + n,)
where n. is the number of backup channels and n, is the
number of backup fog nodes. Therefore, the computational
complexity of the Whittle index-based activation policy is
O(NKlog(NK)).

VII. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the
performance of our schemes. The simulations are conducted
in Matlab. We simulate a wireless edge/fog network with N
SNs, M PENs, and B channels as described in Section III. The
rest of the simulation parameters are summarized in Table II.
We simulate three fog probing schemes: online, agnostic and
genie. The online fog probing is defined in (25) and builds a
belief on the connection availability. The agnostic fog probing
is described in Section I'V.C and assumes no prior knowledge
on the connection availability. Finally, the genie fog probing
assumes perfect prediction of connectivity availability and is
used for comparison purposes. We simulate the performance
of the robustness control framework by using these fog prob-
ing schemes and the connectivity activation policy based on
Whittle Index and solving the original formulation in (26)
with relaxed constraint. First, we evaluate the performance for
small-sized networks to compare the results with the original
problem formulation (26) that has increasingly exponential
complexity with network size and, thus, requires long com-
putational time in large-sized networks. Then, we evaluate the
online robustness control algorithm for large-sized networks
and show its log-linear scalability. In addition, the results are
compared with the least laxity first (LLF) algorithm [33] often
used as a benchmark for comparison in scheduling algorithms.

In Fig. 5 we show the robustness of the network p” as in
(12) and the average probability of successful transmission
(averaged with respect to (8)) for different reinforcement
strategies r. We set N =20, M = 10and B =5 (i.e.,upto M
x B = 10 x 5 possible connections per SN). An improvement
between 20% to 30% in the robustness was obtained with
1 backup channel and 1 backup PFN compared with no
reinforcement, leading to p” = 0.93 to 0.995, respectively.
Similarly, an improvement of up to 25% was obtained in the
average probability of successful transmission under the same
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scenario. By increasing the number of backup channels to 2,
a robustness p” = 1 was obtained and by further increasing
the backup PFNs to 3, the average probability of successful
transmission equaled to 1.

Next, we conducted Monte Carlo simulations over 10000
realizations of the network to calculate the number of com-
pleted transmissions and the reward of the SO. We set
N = 5, B = 5,2 PNs with A\ = 0.5 and varied M
from 1 to 9. Figure 6 shows the average number of com-
pleted transmissions (without reinforcement) using the original
robustness control formulation (26) with relaxed constraint
and the Whittle index for each of the three fog probing
schemes, online, agnostic, and genie. In the legend, the first
term denotes the fog probing and the second the robustness
control algorithm. The genie-aided fog probing corresponds
to the case when the SNs can predict with complete certainty
the connectivity availability, and thus its performance is the
best. The performance of our online fog probing scheme is
very close to that of the genie scheme which emphasizes
the relevance of our scheme in which the SNs select the
connection with the highest belief of availability at the current
slot. In the agnostic scheme, the probing starts from a random
connection and without prior information on the probability of
transmission success. We can see that the online fog probing
scheme completed 30% more transmissions than the agnostic
scheme. We also compare the SO activation policy solving the
original formulation in (26) with the Whittle index policy and
a priority policy based on the LLF algorithm [33] in which
SNs with more remaining data and fewer slots left had higher
priority to transmit. For clarity of presentation, we show the
results using the online fog probing. As expected, we observe
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that the Whittle index policy achieved the same performance as
solving (26) while the performance under the priority policy
is significantly worse. In the latter, the decision is made in
each slot without considering the future performance and thus,
fewer overall number of transmissions are completed. Similar
results were obtained with the other fog probing schemes.

In Fig. 7, the utility of the SO defined as the expected
total long-term reliability was obtained for a scenario of
N=M=DB = 5 and 2 PNs for different values of the
PNs’ traffic arrival rate A. By increasing )\, the availability
of channels and fog nodes decreases. It is worth noting that
even for high values of A\ (i.e., A € [0.6, 0.8]), the highest
deviation of the online fog probing scheme from the genie
scheme was about 3%. This demonstrates that our online fog
probing algorithm can estimate the belief even when there are
many interruptions and so, less past experience available in
probing these connections. When A > 0.8, there were rarely

IEEE/ACM TRANSACTIONS ON NETWORKING

—H— M=B=20

M=B=10

Fig. 10. Optimum number of connections K* vs. N.

any available connections, so SNs always chose the same
connections. As before, the Whittle index activation policy
provides the optimum solution to the original problem (26)
with relaxed constraint. In the agnostic scheme, under the opti-
mum selection policy, a higher amount of data was scheduled
compared with the online-priority scheme. Let us recall that
the latter is based on the LLF algorithm [33], which solves the
optimization per slot without considering future performance.
Next, we study the performance of the online robustness
control algorithm when online fog probing is used together
with the Whittle index policy under different reinforcement
strategies. In Fig. 8 and Fig. 9, the expected total long-term
reliability and the average number of completed transmissions
are presented versus N for three scenarios: M = B =
20, M = B = 10; and M = 10, B = 5. With the
optimum reinforcement strategy r*, we achieved up to 10%
improvement in terms of reliability and completed 15% more
transmissions compared to no reinforcement. The optimum
number of probed connections K* to obtain this improvement
is shown in Fig. 10. In the first scenario, a total reliability
of 0.998 was obtained for K* < 6 probed connections and
N < 20. Since this scenario has the highest number of options
for connectivity and backup (M = B = 20), the reliability and
the number of completed transmissions is significantly higher
than in the other two scenarios, especially when N > 20.
In the second scenario, a total reliability of 0.995 was obtained
for 4 probed connections and N < 10. In the third scenario,
by probing 2.5 connections on average, an expected total
reliability of 0.992 was achieved for N < 7. By increasing N
to 50, the expected total reliability was maximized for 12 and
6 probed connections in the first scenario, and in the second
and third scenarios, respectively, achieving a value of 0.987,
0.882 and 0.77. The numbers of completed transmissions in
this case, as shown in Fig. 9, were 47, 33 and 20, respectively.
Because of interference, fewer SNs could transmit packets
simultaneously and, thus, the number of completed transmis-
sions decreased with IN. Nevertheless, the improvement with
reinforcement strategies was significant in this case as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented an online robustness control
scheme to maximize the total long-term reliability of the
connections in a cognitive, dynamic fog/edge-aided wireless
network. The scheme consists of two steps. First, a fog probing
process is developed to check the availability of the users to act
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as fog nodes, and the availability of channels and computing
resources. An online fog probing algorithm has been presented
to maximize the probability that the probed connections are
successful (i.e., no transmission outage) during the trans-
mission period. Then, an index-based connectivity activation
policy based on RMABs has been proposed. By activating the
connections with highest indexes, the total long-term reliability
optimization problem is solved with low complexity. Extensive
simulations have been conducted to show that our robustness
control scheme achieves an expected total reliability very close
to the optimum. In addition, it significantly increases the
number of completed transmissions compared to an agnos-
tic scheme and a scheme with fixed transmission priorities.
Besides, by probing only one additional backup connection,
an improvement between 20% to 30% is obtained in terms of
network robustness compared with no reinforcement.

In our future work, we will investigate a probable com-
petitive performance ratio by analyzing which of the probed
connections the SO activates with a higher probability to
reduce the probing cost. Furthermore, we will extend our
scenario with heterogeneous IoT devices (SNs) and fog nodes
equipped with multiple wireless protocols in different or the
same wireless spectrum bands, such as cellular/LoRa (Sub
1GHz), WiFi, Bluetooth, and ZigBee, to collect heterogeneous
IoT data. We will study network robustness solutions under
heterogeneous traffic patterns and analyze how the traffic
changes would affect overall performance.

APPENDIX

State transition probability matrix S”¢ defined in (13) consist
of the matrixes, S and R as shown at the top of the page.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J.-A. Zhang, “The
roadmap to 6G: Al empowered wireless networks,” IEEE Commun.
Mag., vol. 57, no. 8, pp. 84-90, Aug. 2019.

W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” /[EEE
Netw., vol. 34, no. 3, pp. 134-142, May/Jun. 2020.

B. Lorenzo, F. J. Gonzalez-Castano, and Y. Fang, “A novel collaborative
cognitive dynamic network architecture,” IEEE Wireless Commun.,
vol. 24, no. 1, pp. 74-81, Feb. 2017.

S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of Internet of Things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46-59, Jan./Mar. 2018.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Lorenzo, J. Garcia-Rois, X. Li, J. Gonzalez-Castano, and Y. Fang, “A
robust dynamic edge network architecture for the Internet of Things,”
IEEE Netw., vol. 32, no. 1, pp. 8-15, Jan./Feb. 2018.

A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, and L. Wang, “SDN-
enabled adaptive and reliable communication in IoT-fog environment
using machine learning and multiobjective optimization,” IEEE Internet
Things J., vol. 8, no. 5, pp. 3057-3065, Mar. 2021.

B. Lorenzo, A. S. Shafigh, J. Liu, F. J. Gonzalez-Castano, and
Y. Fang, “Data and spectrum trading policies in a trusted cognitive
dynamic network architecture,” IEEE/ACM Trans. Netw., vol. 26, no. 3,
pp. 1502-1516, Jun. 2018.

P. Si, H. Yue, Y. Zhang, and Y. Fang, “Spectrum management for
proactive video caching in information-centric cognitive radio networks,”
IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2247-2259, Aug. 2016.
Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and
computational resource allocation in IoT fog computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 8, pp. 7475-7484, Aug. 2018.

C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924-4938, Aug. 2017.

X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974-983, Apr. 2015.

J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, and L. Hanzo, “Pricing
and resource allocation via game theory for a small-cell video caching
system,” IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2115-2129,
Aug. 2016.

K. H. Abdulkareem et al., “A review of fog computing and machine
learning: Concepts, applications, challenges, and open issues,” IEEE
Access, vol. 7, pp. 153123-153140, 2019.

K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, “Ultra-low
latency mobile networking,” IEEE Netw., vol. 33, no. 2, pp. 181-187,
Mar./Apr. 2019.

M. Chen, Y. Miao, H. Gharavi, L. Hu, and I. Humar, “Intelligent traffic
adaptive resource allocation for edge computing-based 5G networks,”
IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 2, pp. 499-508,
Jun. 2020.

Y. Sun et al., “Adaptive learning-based task offloading for vehicular
edge computing systems,” [EEE Trans. Veh. Technol., vol. 68, no. 4,
pp. 3061-3074, Apr. 2019.

J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
10T networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262-8269,
Oct. 2019.

K. Dantu, S. Y. Ko, and L. Ziarek, “RAINA: Reliability and adaptability
in Android for fog computing,” IEEE Commun. Mag., vol. 55, no. 4,
pp. 4145, Apr. 2017.

J. Yao and N. Ansari, “QoS-aware fog resource provisioning and mobile
device power control in IoT networks,” IEEE Trans. Netw. Service
Manage., vol. 16, no. 1, pp. 167-175, Mar. 2019.

S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C.-X. Wang,
“FEMOS: Fog-enabled multitier operations scheduling in dynamic wire-
less networks,” IEEE Internet Things J., vol. 5, no. 2, pp. 1169-1183,
Apr. 2018.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on August 04,2021 at 20:23:57 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14

[21] B. Omoniwa et al., “An optimal relay scheme for outage minimization
in fog-based Internet-of-Things (IoT) networks,” IEEE Internet Things
J., vol. 6, no. 2, pp. 3044-3054, Apr. 2019.

[22] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,

“MEETS: Maximal energy efficient task scheduling in homogeneous
fog networks,” IEEE Internet Things J., vol. 5, no. 5, pp. 4076-4087,
Oct. 2018.
[23] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.
[24] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-network
speed scaling for energy—delay tradeoff in smartphone applications,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647-1660, Jun. 2016.
S.-W. Ko, K. Huang, S.-L. Kim, and H. Chae, “Live prefetching
for mobile computation offloading,” IEEE Trans. Wireless Commun.,
vol. 16, no. 5, pp. 3057-3071, May 2017.
B. Lorenzo, I. Kovacevic, A. Peleteiro, F.-J. Gonzalez-Castano, and
J. C. Burguillo, “Joint resource bidding and tipping strategies in multi-
hop cognitive networks,” IEEE Trans. Cognit. Commun. Netw., vol. 2,
no. 3, pp. 301-315, Sep. 2016.
S. Glisic, B. Vucetic, Spread Spectrum CDMA Systems for Wireless
Communications. Norwood, MA, USA: Artech House, 1997.
K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Trans. Inf. Theory, vol. 56, no. 11, pp. 5547-5567, Nov. 2010.
[29] J. Xu and C. Guo, “Scheduling periodic real-time traffic in lossy wireless
networks as restless multi-armed bandit,” IEEE Wireless Commun. Lett.,
vol. 8, no. 4, pp. 1129-1132, Aug. 2019.
[30] A. Brzezinski, G. Zussman, and E. Modiano, “Distributed through-
put maximization in wireless mesh networks via pre-partitioning,”
IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1406-1419, Dec. 2008.
S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 4147, Dec. 2020.
[32] J. Xu and C. Guo, “Scheduling stochastic real-time D2D communi-
cations,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6022-6036,
Jun. 2019.
[33] Z. Yu, Y. Xu, and L. Tong, “Deadline scheduling as restless bandits,”
IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2343-2358, Aug. 2018.
S. Liao, J. Wu, S. Mumtaz, J. Li, R. Morello, and M. Guizani,
“Cognitive balance for fog computing resource in Internet of Things:
An edge learning approach,” IEEE Trans. Mobile Comput., early access,
Sep. 24, 2020, doi: 10.1109/TMC.2020.3026580.
I. A. M. Balapuwaduge, F. Y. Li, A. Rajanna, and M. Kaveh, “Channel
occupancy-based dynamic spectrum leasing in multichannel CRNs:
Strategies and performance evaluation,” IEEE Trans. Commun., vol. 64,
no. 3, pp. 1313-1328, Mar. 2016.
Q. Liang, X. Wang, X. Tian, F. Wu, and Q. Zhang, “Two-dimensional
route switching in cognitive radio networks: A game-theoretical frame-
work,” [EEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1053-1066,
Aug. 2015.
P.-K. Tseng and W.-H. Chung, “Local rerouting and channel recovery
for robust multi-hop cognitive radio networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2013, pp. 2895-2899.
A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the
optimality of the Whittle’s index policy for minimizing the age of infor-
mation,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1263-1277,
Feb. 2021.

[25]

[26]

[27]

[28]

[31]

[35]

[36]

(371

[38]

Beatriz Lorenzo (Senior Member, IEEE) received
the M.Sc. degree in telecommunication engineering
from the University of Vigo, Spain, in 2008, and the
Ph.D. degree from the University of Oulu, Finland,
in 2012. She is currently an Assistant Professor with
the Department of Electrical and Computer Engi-
neering, University of Massachusetts, Amherst. Her
research interests include Al for wireless networks,
network architectures and protocol design, mobile
computing, optimization, and network economics.
From 2016 to 2017, she received the Fulbright
Visiting Scholar Fellowship with the University of Florida. She is an Editor
for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. She served as
Co-Chair for WiMob Conference in 2019.

IEEE/ACM TRANSACTIONS ON NETWORKING

Francisco Javier Gonzilez-Castafio is currently
a Full Professor with the Telematics Engineering
Department, University of Vigo, Spain, where he
leads the Information Technology Group. He has
authored over 100 articles in international journals,
in the fields of telecommunications and computer
science, and has participated in several relevant
national and international projects. He holds three
U.S. patents.

Linke Guo (Senior Member, IEEE) received the
B.E. degree in electronic information science and
technology from the Beijing University of Posts
and Telecommunications in 2008, and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Florida, FL, USA,
in 2011 and 2014, respectively. From August 2014 to
August 2019, he was an Assistant Professor with the
Department of Electrical and Computer Engineering,
Binghamton University. Since August 2019, he has
been an Assistant Professor with the Department
of Electrical and Computer Engineering, Clemson University. His research
interests include wireless networks, the IoT, security, and privacy. He is
currently serving as an Editor for IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY. He also serves as the Poster/Demo Chair for IEEE INFOCOM
(2020-2021).

Felipe Gil-Castifieira is currently an Associate
Professor with the Department of Telematics Engi-
neering, University of Vigo. His research interests
include wireless communication and core network
technologies, multimedia communications, embed-
ded systems, ubiquitous computing, and the Internet
of Things. He has published over 60 articles in
international journals and conference proceedings.
He has led several national and international research
and development projects. He holds two patents in
mobile communications.

Yuguang Fang (Fellow, IEEE) received the M.S.
degree from Qufu Normal University, China,
in 1987, the Ph.D. degree from Case Western
Reserve University, Cleveland, OH, USA, in 1994,
and the Ph.D. degree from Boston University,
Boston, MA, USA, in 1997. He joined the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Florida, FL, USA, in 2000, where he
has been a Full Professor since 2005 and a Dis-
tinguished Professor since 2019. He received the
US NSF CAREER Award in 2001, the US ONR
Young Investigator Award in 2002, the 2015 IEEE Communications Society
CISTC Technical Recognition Award, the 2018 IEEE Vehicular Technology
Outstanding Service Award, and the 2019 IEEE Communications Society
AHSN Technical Achievement Award. He has been actively participating in
conference organizations such as serving as the Technical Program Co-Chair
for IEEE INFOCOM’2014 and the Technical Program Vice-Chair for IEEE
INFOCOM’2005. He has been serving on several editorial boards for journals,
including Proceedings of the IEEE since 2018, ACM Computing Surveys
since 2017, ACM Transactions on Cyber-Physical Systems since 2020, IEEE
TRANSACTIONS ON MOBILE COMPUTING since 2019. He was serving on
several editorial boards for journals, including IEEE TRANSACTIONS ON
MOBILE COMPUTING from 2003 to 2008 and from 2011 to 2016, IEEE
TRANSACTIONS ON COMMUNICATIONS from 2000 to 2011, and IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2002 to 2009.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on August 04,2021 at 20:23:57 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TMC.2020.3026580

