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Abstract—The risk for severe illness and mortality from
COVID-19 significantly increases with age. As a result, age-
stratified modeling for COVID-19 dynamics is the key to study
how to reduce hospitalizations and mortality from COVID-
19. By taking advantage of network theory, we develop an
age-stratified epidemic model for COVID-19 in complex con-
tact networks. Specifically, we present an extension of stan-
dard SEIR (susceptible-exposed-infectious-removed) compart-
mental model, called age-stratified SEAHIR (susceptible-exposed-
asymptomatic-hospitalized-infectious-removed) model, to capture
the spread of COVID-19 over multitype random networks with
general degree distributions. We derive several key epidemio-
logical metrics and then propose an age-stratified vaccination
strategy to decrease the mortality and hospitalizations. Through
extensive study, we discover that the outcome of vaccination
prioritization depends on the reproduction number R,. Specifi-
cally, the elderly should be prioritized only when R is relatively
high. If ongoing intervention policies, such as universal masking,
could suppress R, at a relatively low level, prioritizing the high-
transmission age group (i.e., adults aged 20-39) is most effective
to reduce both mortality and hospitalizations. These conclusions
provide useful recommendations for age-based vaccination pri-
oritization for COVID-19.

Index Terms—COVID-19, epidemic modeling, random net-
work, vaccination.

I. INTRODUCTION

Between January 2020 and November 30, 2020, about 1.47
million deaths from the novel coronavirus disease (COVID-19)
are reported worldwide [1]. On the one hand, COVID-19 is
much more deadly than most strains of flu. On the other hand,
many people infected with the coronavirus do not develop
symptoms, and hence they can transmit the virus to others
without being aware of it [2], which makes the pandemic
extremely difficult to contain.

To live with the COVID-19 pandemic, governments and
healthcare systems are always struggling to save lives and
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“flatten the curve”, i.e., reducing the mortality and the peak of
hospitalizations. Since severity and mortality rates of COVID-
19 greatly vary across age-groups and increase dramatically for
the elderly [3], [4], effective intervention policies to achieve
these two goals must prevent elderly, who are at high-risk for
severe clinical outcomes, from infections. For this reason, age-
stratified modeling for COVID-19 dynamics indeed serves as
the basis of accurately assessing the effectiveness of control
policies in decreasing illness severity and mortality. In this
respect, some age-stratified mathematical models have already
been proposed to analyze the spread of COVID-19 for different
purposes [5]-[8]. However, these models are based on an
oversimplified assumption that people are fully mixing, i.e.,
everyone contracting and spreading the virus to every other
with equal probability, within each age group, which clearly
fail to incorporate enough details in real-life contact networks.
In reality, people in the same age group still differ greatly in
the way of spreading the disease. As a consequence of this
heterogeneity, it is found that epidemic outcomes in complex
networks could deviate greatly from the results obtained from
fully mixing epidemiological models [9], [10].

Motivated by the aforementioned observations, in this pa-
per, we present a unified yet simple mathematical model
for COVID-19 spread analysis by accounting for both the
age-specific risk and the heterogeneity in contact patterns
within and across age groups. We take advantage of ran-
dom network theory to analyze the spread of COVID-
19 in contact networks with general degree distributions.
More specifically, we present an extension of standard
SEIR (susceptible-exposed-infectious-removed) compartmen-
tal model, called age-stratified SEAHIR (susceptible-exposed-
asymptomatic-hospitalized-infectious-removed) model to de-
scribe the disease progression for infected individuals, and
study the epidemic spreading process in multitype random
networks where each type of nodes is treated as an age group.
Some key epidemiological metrics, such as time-dependent
dynamics, steady-state epidemic size (which will be termed as
epidemic size throughout this paper), epidemic probability, and
reproduction number, are derived, allowing us to analyze the
epidemics and the impact of control policies in a thorough and
effective manner. Due to the consideration of stochasticity and
network structure, the proposed model is capable of offering
some useful epidemic results that the existing fully mixing
age-stratified models are unable to provide, like assessing the
impact of preferential isolation of nodes (e.g., immunizing
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Fig. 1: Mortality (the ultimate death toll over the whole popu-
lation) versus reproduction number Ry with 10% vaccination
coverage. Here, R denotes the reproduction number prior to
vaccination, where we control the level of NPIs to vary Ry
(the details are given in Section V-A). “20-39 prioritized” or
“60+ prioritized” means that these vaccine doses (enough to
vaccinate 10% population) are uniformly given to the adults
aged 20-39 or aged 60+. The simulation is based on real-world
age-stratified contact matrix for the United States [12].

essential workers first). Given that many contagious diseases,
including influenza, also exhibit distinct characteristics for
different groups of people [11], the proposed model can be
easily generalized to modeling many other infectious diseases.

While non-pharmaceutical intervention (NPI) policies, such
as masking and social distancing, are effective in reducing
the transmissions and mitigating the healthcare burden, it has
become increasingly clear that vaccination is the only way
to eliminate the pandemic worldwide. Unfortunately, vaccine
availability will be highly constrained for general population
during at least the first several months of the vaccine distribu-
tion campaign. Therefore, vaccination prioritization decision
will play a pivotal role in reducing the effects of COVID-
19 during such a period [13], [14]. Under our proposed
framework, we present an age-stratified vaccination strategy
for the considered multitype network. In simulations, we focus
on answering the following question: with limited doses avail-
able, who should be vaccinated first to reduce mortality and
hospitalizations as much as possible? Our simulation results
show that the answer depends on the value of reproduction
number Ry. The reason behind is that, the epidemic size (i.e.,
the fraction of population eventually getting infected) increases
slowly in large Ry region, while increasing steeply in small 7
region. As a result, vaccinating the high-transmission group
(adults aged 20-39) is highly effective in blocking COVID-
19 transmissions in small Ry region, which thus protects the
high-risk group (the elderly) indirectly. In contrast, in large
Ry region, even if high-transmission group is prioritized, it
will have little impact on epidemic size as long as the vaccine
supply is limited. Consequently, directly vaccinating the high-
risk group becomes the preferable strategy. We illustrate this
phenomenon in Fig. 1, where prioritizing young people aged
20-39 is preferable when Ry < 1.36, whereas prioritizing the
elderly is the better choice only when Ry > 1.36. Although
most studies estimate that Ry for COVID-19 is between 2-

3.5 under pre-intervention scenarios [15], it certainly can be
pushed to a relatively low level, e.g., below 1.36, via NPI
policies or even natural immunity (the latter only meaningful
for highly infected places [16]). Thus, our finding indicates
that vaccination prioritization should be customized for differ-
ent places by considering the ongoing NPI policies and other
effects that could suppress [?p. The key contributions of this
paper are summarized as follows.

o We employ multitype random network theory to develop
an age-stratified epidemic model for COVID-19. We de-
rive the time-dependent epidemic dynamics, where each
individual could belong to one of six compartments, i.e.,
susceptible, exposed, asymptomatic, hospitalized, infec-
tious and removed.

o To analyze the stochastic property and final state of
the epidemic, we derive other critical epidemiological
metrics, such as epidemic size, epidemic probability, and
reproduction number for the considered networks.

o We present an age-stratified vaccination strategy based
on the proposed model. The simulation results indicate
that high-risk age group should be vaccinated first to
diminish mortality and hospitalizations in large R, re-
gion. Conversely, when R is suppressed at a low level,
prioritizing the high-transmission age group becomes the
most effective strategy.

The reminder of this paper is organized as follows. In
Section II, we describe the related work. In Section III, we
introduce the network model, and derive the time-dependent
epidemic dynamics and other key epidemiological metrics.
In Section IV, we devise an vaccination strategy for the
considered networks. In Section V, we conduct simulations
to compare different age-specific vaccination prioritization
strategies. In Section VI, we draw our conclusions.

II. RELATED WORK

Some mathematical models for COVID-19 have been pre-
sented to account for the age-varying risks for mortality
and severe illness. In [5], Singh et al. use an age-stratified
SIR (susceptible-infective-removed) model to study the im-
pact of social distancing measures, including workplace non-
attendance, school closure, and lockdown, on the course of
the COVID-19 pandemic. In [6], Balabdaoui et al. propose
an age-stratified discrete compartmental model to describe the
day-by-day progression of an infected individual in modern
healthcare systems, e.g., in intensive care unit (ICU), with
the objective of precisely projecting the occupancy of health
care resources. In [7], Tuite et al. develop an age-stratified
COVID-19 model to identify intervention strategies that keep
the number of projected severe cases lower than the capacity
of local health care systems. The aforementioned models make
full-mixing assumption within each age group, which hence
fail to capture enough details of population heterogeneity. In
[17], Chang et al. propose an agent-based model to predict the
infected number in Australia by considering the age-dependent
effects. While agent-based models incorporate more realistic
factors, they demand computationally intensive simulations,
and generally offer limited insights into epidemic outcomes.



Random network theory allows us to model epidemics by
taking heterogeneous contact network structure into account
while bypassing computationally complicated simulations.
Epidemic propagation in networks can be exactly interpreted
as a bond percolation process, which hence can be analyzed
by well-understood physics models, such as percolation [18].
Although several works have applied percolation theory to
analyze the spread of COVID-19 [10], [19], [20], they have not
taken the age-varying effects into consideration. On the other
hand, given that an age-stratified population can be character-
ized as a multitype random network in which each type of
vertices correspond to an age group, one possible direction
is to directly map the epidemic spread to bond percolation in
multitype random graphs [21], [22]. Unfortunately, percolation
theory is mostly limited to analysis of final state of networks,
and cannot predict time-dependent transient dynamics. In
[23], Miller et al. propose an edge-based SIR compartmental
model to describe the time-dependent epidemic dynamics in
complex networks. Inspired by their approach, we solve the
time-dependent dynamics for COVID-19 in multitype random
networks, and then derive the expressions for epidemic size,
epidemic probability, and reproduction number by performing
analysis on the final state of the considered networks.

The design of vaccination prioritization strategies for
COVID-19 has also attracted some research attention.
Nonetheless, most of works draw the conclusion that vacci-
nating the older groups first is the robust strategy to mini-
mize mortality or hospitalizations during a vaccine shortage
[24]-[26]. This perhaps is because they fail to identify the
underlying relationship between the priority population and
the reproduction number Ry. Our finding coincides with these
works only when R is great. Recently, Jentsch et al. show that
prioritizing the high-transmission group will reduce the death
toll from COVID-19 most if vaccines become available late
next year for Ontario, because high level of natural immunity
may be already achieved in Ontario at that time [8]. Their
conclusion essentially shares the same observation with ours
as higher natural immunity leads to a lower I?y. Different from
their work, by taking advantage of our epidemic model, we
also study the impact of vaccination prioritization strategies on
hospitalizations, and the effectiveness of immunizing people
with high activity, i.e., the essential workers. Furthermore,
our simulation results show that vaccinating high-transmission
group is highly effective as long as IRy is small, which applies
to areas that are either hit hard as in [8] or only have few
infections but with relatively strict NPI policies, e.g., masking
mandate.

III. EPIDEMIC ANALYSIS
A. Network and compartmental model

Let us consider a multitype network which consists of M
types of nodes, each corresponding to an age group in a
population. We use w; to represent the fraction of the nodes
of type ¢ € [1,M]. The contact from a type-i node to
others follows degree distribution p;(ky, k2, ..., kar) 2 pi(k),
describing the joint probability for type-7 node to be connected
with k; type-1 node, ks type-2 node, ..., and ks type-M node,

Fig. 2: SEAHIR compartmental model for nodes of type 7.

where k = (k1,ks2,...,kn). The considered network can be
generated by the following procedure: 1) generate stubs for
every node following degree distribution p;(k), where each
stub contains the information about which type of node it
reaches. 2) randomly wire two matching stubs together to
create an edge and repeat this process until no stubs left.
Susceptible-Infected-Removed (SIR) and Susceptible-
Exposed-Infected-Removed (SEIR) compartmental models are
widely used for epidemic modeling. In SEIR compartmental
model, each individual can be in one of the four states,
i.e., Susceptible, Exposed, Infected, or Removed. Here, to
capture the salient features of COVID-19, we present a
novel compartmental model, i.e., SEAHIR model, which
adds two additional compartments, i.e., asymptomatic and
hospitalized, to the classic SEIR model. In SEAHIR model,
each individual can be in one of the six states: susceptible (S),
exposed (E), symptomatic and infectious (I), asymptomatic
and infectious (A), hospitalized (H), and removed (R). Both
new compartments are paramount to describe the dynamics
of COVID-19: the number of people in H state indicates
the hospitalizations, which must be kept lower than health
care capacity; patients in A state have different level of
infectivity compared with symptomatic ones [27]. We assume
that individuals in E state is not infectious because of low
virus load, and individuals in H state are properly isolated.
Individuals in I and A states are assumed to be infectious to
others, where the infection rate from a type-¢ source node to

a type-j node is A/ . or )\fj given the source node belongs to

I or A state. For C(;Jrlciseness, we do not distinguish recovery
and death in R state, but assume that an age-dependent
fraction of infected people will die. Furthermore, given the
fact that the cases of reinfection with COVID-19 are still
extremely rare, we do not consider the transition from R
state to S state. For type-i nodes, the transitions among the
compartments are illustrated in Fig. 2, where the symbols on
the arrows denote the corresponding transition rates from one
to another, which are all dependent on node type ¢ to account
for the age-dependent effects.

B. Time-dependent dynamics

Disease propagates from infectious nodes to its neighbors,
leading to an epidemic if the epidemic size is comparable to
the whole population. We employ the edge-based compartmen-
tal method to solve the equations of dynamics governing the
epidemic spread over random graph [23]. The core idea of the
edge-based method is to shift our attention from an individual
node to the status of its neighbor reached by an edge. To study



the impact of vaccination or natural immunity, we consider
that a fraction of population may be already immune at the
beginning of analysis: S;(k, 0) represents the fraction of type-
1 nodes with degree k that are initially susceptible. Besides,
we use 6,;(t) to denote the probability that a type-j neighbor
has not transmitted the disease to a type-¢ node by time ¢
given that the type-i node is susceptible at time 0. 6;;(¢) can
be interpreted as a state of a type-j neighbor of an initially
susceptible type-i node. It is noted that 6,;(0) = 1 according to
the definition. Based on Fig. 2, we can construct the following
equations to characterize the time-dependent epidemic process.

He 1)

k
&m:mmw—ﬁ&m, )
Li(t) = 6:Ei(t) — miIi(t) — v Ii(2), (3)
Hi(t) = nidi(t) =~ Hi(t), )
Ri(t) = 7 Ai(t) + ] Li(t) + 7/ Hi(1), ()
Ei(t) =1 - Si(t) — Ai(t) — Li(t) — Hi(t) — Ri(t), (6)

where S;(t), A;(t), I;(t), H;(t), R;(t), and F;(t) represent the
proportions of type-i nodes in the corresponding states at time
t, respectively. From Markov chain theory, when the network
size is sufficiently large, the fraction of nodes in A;, I;, H;, and
R; states can be described well by the differential equations
(2)-(5) due to the flow diagram in Fig. 2. Moreover, (6) is
obtained from S;(¢)+ A; (¢)+1; (¢)+ H; (¢)+ R; (t)+ E; (¢t) = 1.
For the initial conditions, we assume A;(0) = I;(0) =
H;(0) = E;(0) = 0 and R;(0) = 1—S5,(0). Obviously, one can
solve the above equations as long as the key probability, i.e.,
0;;(t), is derived. To calculate 6, (), following the approach in
[23], we break it into six parts, i.e., £5;(t), £ (1), A(t) 1),
(1), and €2(0). Specifically, €5(0). €5(0). €A(0). €L
1 (t), or R( ) represents the probability that the considered
type-j nelghbor isin S, F, A, I, H, or R state, respectively,
and has not transmitted the disease to the initially susceptible
type-i node by time ¢, satisfying

0i(t) = () + EL () + &5 () + €1 (1) + €L (1) + ().
7

A type-j neighbor in S state cannot infect the type-i node,
and hence JS‘Z(t) is simply equal to the probability that the
considered type-j neighbor is susceptible. The degree distri-
bution of the considered type-j neighbor is given by kip J(k),

where kj; = >, kipj(k) is the average degree leaving from
type-j node to type-i node, which normalizes the probability
distribution. This quantity is proportional to k;p;(k) because
type-7 nodes with more edges incident to type-i¢ nodes are
more likely to become the neighbors of type-i nodes [21]. We
can obtain ( ) by computing the probability that the type-j
neighbor is 1n1t1a11y susceptible and has not been infected by
any of its neighbors, except the considered type-i node, by
time ¢, i.e.,
k:S; (K, 0)p; (k) 1=
O e | YR U N

k Ji =1

where ¢;; is the Kronecker delta operator, with ¢;; = 1 only
when 7 = [, and J;; = 0 otherwise.

As mentioned before, two states in our compartmental
model, i.e., I and A states, are infectious. Thus, the decrease
in 6;; comes from two joint events: 1) the type-j neighbor is
A or [ state, and 2) it transmits the disease to the type-i node
with infection rate )\A or M i 1

—0;i(t) = (Mgt ()—rAfi (1)) ©9)

One can also interpret (9) in this way: there is a state
1 —6,;(t) (which corresponds to that the type-j neighbor has
transmltted the disease to the initially susceptible type-¢ node
by time ¢) receiving the flows from both Sﬁ (t) and &J;(t).

If staying in A, I or H state, the type-j neighbor transits
to R state with rate v/, v/ or 4/, which means

Ry AgA Il HeH
5i) =76 () + ;&) + ;7 &G (B)

The type-j neighbor progresses from I state to H state with
rate 7);, leading to

(10)

HORHAORRRHO! (11)
States £7(t) and £/, (t) receive the flows from state &5 ().

Besides, f 3(t) progresses to state 1 —0;;(t) and &ff(t), while

! it )progresses to state 1 —6,;(t), ﬁ(t), and ( ), yielding
&) = By (1) = 7 €50 (8) = A& (1), (12)
&) = 05 (6) = 7€ (1) = i (1) = Nai (). (13)

In summary, one can solve 6;;(t) from the following equa-
tions.

@l:Z@%M%Wﬁ%%mv
HMw:?MA +¥féﬁ
(1) = B (t) — % HORPWSHOH
§le(t) =0 ( ) — ”Yj ji( ) — nj ]Iz(t) - )\§i 711(15)7 (14)
() = mi&li () — e @),
ﬁ(t):”X ()+’Yj ji()""YJH ﬁ(t)v
&i(t) =0 () HORSHORSSHORSHAO)
- ji( )s

where £(0) = 1 -3, W’ 0;,(0) = 1, and

ﬁ(O) = £,(0) = &1(0) = 0. By plugging 6;;(t) into
(1), we can obtain the fraction of type-:z nodes in each com-
partment at given time from (1)-(6). As a result, the desired
age-stratified epidemic dynamics can be obtained by solving
O(M?) equations, where M is the number of age groups.
One can see that (1)-(6) and (14) account for considerably
more population structure than a fully mixing model by only
introducing marginally more complexity.

C. Epidemic size and epidemic probability

Epidemic size measures the fraction of people eventually
getting infected, and epidemic probability is defined as the



likelihood that the first infected patient sparks an epidemic [9].
SEAHIR model contains more compartments than traditional
SIR or SEIR models, which complicates the derivations of
these two key metrics. Fortunately, both metrics only depend
on final state of networks. From Fig. 2, it is intuitive to see that
the network progresses to an equilibrium when ¢ — oo, where
Ei(00) = A;(00) = I;(00) = Hi(o0) = 0. By using this fact,
we use a single compartment I to replace all the infected states,
ie., E, A, I, H states in the original SEAHIR compartmental
model. Here is our trick: although SIR model cannot be used
to capture the temporal dynamics of SEAHIR model, it can be
calibrated appropriately to share the same final network state,
ie., Si(00) and R;(oc0), with SEAHIR model. Let Tj; € [0, 1]
denote the probability that an infected type-j node ultimately
transmits the disease to an initially susceptible adjacent type-i
node. We assume that the STR model is with infection rate /A\ji
from type-j node to type-i node and transition rate 9;; from I
state to R state for a type-j neighbor of a type-7 node. Since

T}; for the SIR model is v Agi , the SIR model has exactly
the same final network state as the SEAHIR model as long as

# is set to the T}; in the SEAHIR model.

Let us first calculate 7)j; in the SEAHIR model, and then
derive the desired metrics based on the SIR model. An infected
type-j node may enter one of two 1nfect10us states, i.e., I state
or A state, with probability 5 Ji 5; or W Given that the
type-7 node in I or A state, suppose that there are two stages
that it will progress to, i.e., “infecting the adjacent type-i node”
and “leavmg current state” with rates /\I (or /\ﬂ) and 7); —|—'yj

(or ; 4, respectively. T}; is the probablhty that the considered
I
if the

ji
node enters the first stage, which equals Py

. . A
type-j node is in I state, and equals e + B if it is in A state,

yielding
o 5j )\L + ﬂj /\;41
TUB G M+ (D) B AL+

5)

In SIR model, we use 5 (1), ﬂ( ), or éﬁ(t) to represent
the probability that a type-j nelghbor of an initially susceptible
type-i node is in S, I, or R state and meanwhile has not
infected this type-i node by time ¢, and use éji(t) to denote
the probability that the type-j neighbor has not infected the
initially susceptible type-i node by time ¢, satisfying éjl- (t) =
Aﬁ-(t) + @Il(t) + Aﬁ(t). Notice that 0;(t) = 6,;(t) only when
t = oo, because SEAHIR and SIR model share the same final
network state while having different temporal dynamics. By
analogy with the preceding subsection, we can obtain

£.t) ZS (k. 0) ij He’” a4 (16)
.77f
i) =7(1 0O 4 eno), (17)
Jt
00(t) = = 3;s€j (1), (18)

(1) =05(t) — E5(1) — ERt)

M

:éji (t) - Z S (k, O)M H éZI dit (t)
k =1
_ M _ AR(O) (19)

i R
Aji "
where £(0) = 1-3,, w is the probability that the

type-j neighbor is initially removed (immune), and éjl- (0) =1.
The derivation of (16) and (18) is similar to that of (8) and (9).
Analogous to the preceding subsection, probability 1 — 6;; ()
corresponds to that the type-j neighbor has transmitted the
disease to the initially susceptible type-i node by time ¢. State
§H (t) transits to state 1 — 0;;(¢) with rate \;; while transiting
to state Aﬁ(t) with rate 4;;, leading to the relationship between
R(t) and 1—0j;(t) in (17).

Clearly, the epidemic dynamics can be governed by (18)
and (19). By taking (19) into (18), we have

éji(t) ;\jz 2(0) —|—)\le5 (k,0) ng H@kl ”

+(1— 05t ))%‘z‘ — Njibji(t).

Now the advantage of using SIR compartmental model
becgmes clearer: we arrive at (20) which is only related
to 0;;(t). Since the population is closed, the epidemic will
eventually go extinct, implying §Jﬂ»i(oo) = 0. Given that
é”(OO) = —/A\”@Il(oo) =0 and Hji(oo) = éji(oo), and recall
that )\— = Tj;, we can go back to the original SEAHIR
model andj obtain

(20)

M

=15 (1= 305,00, 0) 2 (1 T 0t (00))
k Jt

=1

0i(c0)

+ 1T}, 21

where Tj; can be calculated from (15). One can solve ;;(c0)
from the above equation. In fact, (21) can be explained in an
intuitive way: a type-i node has not been infected by a type-j
neighbor since ¢t = 0 either because it cannot be reached from
its neighbor with probability 1 — TY;, or it can be reached
from its neighbor with probability T%; but the neighbor has
not been infected since ¢ = 0. Thus, as ¢ — oo, the fraction
of type-¢ nodes that have been infected since ¢ = 0 is given
by Rl(OO) — Rl(O), i.e.,

1—23 k,0)pi(k
ZS k, 0)pi

He

(1= Si(k, 0)pi(k )(1—]_[91’?(oo>
=1

k
(22)
The epidemic size is therefore expressed as
M M
R=3w ( Sk, 0)pi(k) (1 - T 0 (oo))) .23
i=1 k =1

It is noted that when the population is fully susceptible, i.e.,
Si(k,0) =1 for all j and k, R solved from (21) and (23) is



the size of giant component in multitype networks obtained
by percolation theory [21], [22]. We can compute epidemic
probability in a similar way. Let j;;(00) denote the probability
that a type-¢ node (which is assumed to be infected) does not
spark an epidemic via a type-j neighbor. Analogous to (21),
the following argument is true: a type-: node does not ignite
an epidemic via a type-j node either because it cannot infect
its type-j neighbor, or it can infect its type-j neighbor but the
latter cannot spark an epidemic, which means

i (00 ( ZS (k,0) )( i

+1—TZ—J—.

lp]

iy (o))
(24)

As a result, the probability that an infected type-: node
ignites an epidemic is given by

M
Po=1-3 pilk) [l (o)
k =1

By randomly choosing a susceptible node to infect, we
define the likelihood that it starts an epidemic as the epidemic
probability:

(25)

(26)

M
P = Z w; Pi,
i=1

where w; = % is the probability that the

randomly chosen susceptible node is of type ¢, which reduces
to w; in a fully susceptible population.

D. Reproduction number

One of the fundamental parameters for an epidemic is its
reproduction number, i.e., the average number of secondary
cases caused by an infected individual. Again, since this
metric is unrelated to temporal dynamics, we can derive it
from SIR model to simplify our calculation. According to
the seminal work [28], the reproduction number is equivalent
to the spectral radius of the next generation matrix F'V 1,
where the (m,n) element of matrix F is the rate of new
infections entering infected state m caused by infected state
n, and (m,n) element of matrix V is the rate at which
infected state m transfers to infected state n, assuming that
the population remains near the disease-free equilibrium. In
our edge-based SIR model (18) and (19), @11 can be treated

as the infected state. Therefore, we have M? infected states
in total. Recall that there should be = = T};, where T};

is calculated from (15). To simplify the derlvatlons below, we
further assume that /\ﬂ ~+4;; = 1 (one can derive the same Ry
in (30) without this assumption, because R is only related to

). By differentiating (19) and taking (18) into it, we
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Then, to obtain the linearized subsystem for infected states
about the disease-free equilibrium, we linearize (27) at the

ki(ki — du)p; (k)
%

Ji

leé?j (t)
(28)

Then, we can construct F' as an M2 x M? matrix, with
(i —1)M + 4, (j —1)M +1) element equal to

ZS k? O 6zl)p.](k)

Ji
and construct V' as an M? x M? identity matrix. Reproduction
number Ry is therefore given by

Ro=p(FV™h) =

j_‘ljv Vz,],ZE[I,M], (29)

p(F), (30)

where p(-) represents spectral radius. From Theorem 2 in [28],
Ry = 1 marks the epidemic threshold in the sense that the
disease-free equilibrium is asymptotically stable if Ry < 1,
and is unstable if Ry > 1. In particular, in the case of
S;(k,0) = 1 for all j and k, Ry becomes the basic repro-
duction number, i.e., the average number of secondary cases
caused by an infected individual in a completely susceptible
population. In this special case, the epidemic threshold Ry = 1
is also in agreement with the threshold for multitype random
network obtained by percolation theory [21], [22].

IV. AGE-STRATIFIED VACCINATION

Under our proposed analytical framework, in this section,
we present an age-stratified vaccination scheme and study its
impact on epidemic outcomes. Considering a network with NV
nodes of type ¢, we use the following function to characterize
the immunization strategy for type-¢ nodes [29], [30]:

- ke
(I)i( kn) = 7"
Yon1 kg
n=1"n

where (bi(l%n) is the probability that a susceptible node n of
type ¢ with l%n-degree is chosen to be immunized, and « is
an exponent quantifying the immunization preference towards
nodes with high degree. We use the tilde operator on k to
represent the total degree of a node. A greater « indicates
that nodes with higher degree (e.g., essential workers) are
more likely to be immunized. In particular, o« = oo represents
a node immunization process in an entire descending order,
i.e., from the highest degree to the lowest degree. In contrast,
when o = 0, we have @Z(l}n) = %, implying a uniform
immunization strategy for nodes of type 7. Notice that since the
full knowledge of a contact network is generally unavailable,
immunizing nodes in a descending order is rather unrealistic.
The value of o depends on the strategy and knowledge of a
vaccine distributor.

Recall that S;(k,0) denotes the fraction of type-i nodes
with degree k that are initially susceptible. In our model,
studying the impact of the immunization strategy in (31)
only requires solving new initial conditions Sif (k,0), i.e., the
fraction of type-i nodes with degree k that are still susceptible
when only f fraction of type-i nodes remain susceptible after
implementing the immunization strategy, where f = .S;(0)—wv,

,—00 < a < 400, 31



with v being the fraction of type-i nodes immunized by
vaccination. Let P; l;:) be the probability that a type-i node
is with degree k, S/ (k,0) and A/ (k) be the fraction and the
number of type-¢ nodes with k degree that are still susceptible
when only f fraction of type-i nodes remain susceptible,
respectively. Due to the fact that (31) only depends on total
node degree k, the subsequent development is only related to
k instead of the vector of node degree k. According to the
definitions, we have the relationship

P;(k)S! (k,0) = #

After one susceptible node is immunized according to (31),
Alf(k:) becomes

(32)

1 . (ST (F 0V

Al () = Al (k) - Bilk)S; (k, Ok (33)

ke(f)

where
k()= Pik)s{ (k, 00k, (34)
E
In the limit of N — oo, (33) can be expressed as
F (T YOAY A L.

df ke (f)

Differentiating (32) in terms of f and plugging it into (35),
we obtain

ds! (k,0) _ ST (k,0)ke
4 ()

In the spirit of [29], we define a new function G, (x) =
>k P;(k)S;(k,0)z*" and introduce a new variable ¢ =
G (f) in order to solve (36), where S;(k,0) in G (z) is
the fraction of type-¢ nodes with degree k that are susceptible
before implementing the immunization strategy. One can find

that

(36)

S{(k,0) = t*" 5,(k, 0), (37)

exactly satisfies (36), which hence is the solution to (36).
Equivalently, considering the vector of node degree k with
k as the total degree, we have

S (k,0) = t*5,(k, 0), (38)

By simply replacing S;(k,0) with the new initial conditions
Sij (I::, 0), we can obtain the various epidemic outcomes in the
preceding section by taking the age-stratified immunization
into account.

V. SIMULATIONS
A. Parameter settings

We now study the impact of control policies, particularly
age-specific vaccination strategies, for the COVID-19 pan-
demic. We use the estimated social contact data by age
groups for the United States to conduct our simulations, where
C' = lci;] represents the contact matrix by age, with c¢;;
being the average number of contacts that a node of type
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Fig. 3: Epidemic size versus reproduction number Ry.

1 has with nodes of type j [12]. Notice, however, that the
conclusions drawn from our simulations are also generalizable
to many other countries, because age-stratified contact exhibits
similar patterns in most countries [12], [31]. The population is
partitioned into M = 6 age groups, i.e., populations of [0, 4],
[5,19], [20, 39], [40,49], [50,59] and 60+ years old.
Following [32], we assume that the susceptibility to infec-
tion for adults over 20 years is identical, and the susceptibility
to infection for individuals under 20 years old is half of that
for adults over 20 years old. Specifically, we set transmission
rate A}, = X for all i € [1,6] and j € [3,6], and A, = A
for all ¢ € [1,6] and j € [1,2]. We set /\f} = %x\{j
to account for the fact that asymptomatic people are less
infectious than symptomatic ones'. The course of an epidemic
is primarily governed by the basic reproduction number. Being
consistent with [15], we assume that the basic reproduction
number is Ry = 2.5, and derive the transmission rate A\ from
(30) accordingly. Given that young people develop milder
symptoms or no symptoms more frequently than the elderly,
the symptomatic probabilities are set to 20%, 20%, 30%,
40%, 50%, and 60%, and the probabilities of needing to be
hospitalized for symptomatic cases are set to 0.10%, 0.23%,
2.19%, 4.90%, 10.20%, and 20.82% from young age groups to
old age groups [3]. Furthermore, the infection fatality ratios are
set to 0.003%, 0.01%, 0.06%, 0.16%, 0.60%, and 3.64% from
the young to the elderly, respectively [3]. We set the average
time from the exposure to the onset of being infected (i.e., A
or I states) to 5 days, the average infection period to 7 days if
not admitted to hospital, and the average time stay in hospitals
to 10 days [33]. To compare the effectiveness of vaccination
prioritization strategies, we consider a completely susceptible
population before vaccination. Later, this assumption is relaxed
in Fig. 8 to demonstrate the consistency of our conclusion by
considering a population with a high level of natural immunity.
1) Modeling of Universal Masking: At the early stage of
vaccine distribution campaign, masking and/or social distanc-
ing measures are still needed. Thus, assessing the effectiveness
of an vaccination prioritization strategy requires the consid-
erations of ongoing NPI policies. We denote the population
contact matrix as C' = C" + C™ + C% + C°, where C", C™,

'Tt is commonly recognized that symptomatic patients are more infectious
than asymptomatic ones because cough and sneeze could help spread the
virus.



C?® and C° are the age-stratified contact matrices for home,
workplace, school, and other locations, respectively [12]. For
instance, the (i,7)-th element in C”, denoted by cfj, is the
average degree from a node of type i to nodes of type j at
home. By considering the NPIs, we modify the population
contact matrix C' as follows.

C=C"+g(C"+C*+C°), (39)

where g € [0,1] is the scaling factor accounting for the
change in transmission rate per contact due to the presence of
NPIs. We assume that widespread face masking in public (i.e.,
workplace, school, and other locations) are recommended.
Since reducing the transmission rate for an edge (contact) by
1 — g is equivalent to removing this edge with probability
1 — g for the spread of epidemic [9], we directly scale the
contact matrices C%, C?®, and C° to reflect the reduction
in transmission rates in these places. The value of g can
be estimated from mask coverage (the fraction of population
wearing masks) and mask efficacy (the fraction of effective
transmissions blocked by masking) [34]. In what follows, we
assume g 0.3 for illustrative purpose. By this scaling,
reproduction number Ry is pushed from 2.5 to 1.16. We will
compare different vaccination prioritization strategies under
no-masking scenario with ¢ = 1 and masking scenario with
g = 0.3. We remark that weaker mask use in conjunction with
other NPIs in public places (i.e., social distancing measures)
may have a similar effect on g. This is because social distanc-
ing also reduces the transmission opportunity between two
individuals, which has no difference with masking in terms of
mathematical modeling.

To demonstrate that our parameter ¢ = 0.3 is realistic,
we refer the readers to the reference [34]. According to Ref.
[34], when the product of mask coverage and mask efficacy
is 0.6, e.g., mask coverage is 0.75 and mask efficacy is
0.8, the relative transmission rate of COVID-19 reduces to
0.3 compared with the no-masking case. In the real world,
the efficacy of surgical masks is estimated to be about 0.8
[34]. Therefore, three quarters of population wearing surgical
masks in the public places (i.e., workplace, school, and other
locations) may lead to g = 0.3.

2) Impact of Population Structure Heterogeneity: Even
with the same R and contact matrix C' (containing average
contact number c¢;; across age groups), the epidemic may
still spread differently in networks because of the assumption
on degree distributions. Fig. 3 sheds light on the effects
of structural heterogeneity on epidemic outcome. Based on
the same contact matrix, we examine two types of degree
distributions: Poisson distribution and power law distribution
with the law’s exponent equal to 2.5 [9]. From the estimates
in [12], the contact numbers ¢;; are assumed to follow Poisson
distributions. Compared with Poisson distributions, power law
distributions have a quite “heterogeneous” structure: it con-
tains not only many nodes with few contacts, but also a handful
of “superspreaders” with very high degree. As illustrated in
Fig. 3, power law network shrinks the epidemic size compared
with Poisson network, which clearly reveals that the same R
and matrix of average contact number are still not enough to
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Fig. 4: Epidemic size versus different immunization prioriti-
zation strategies.
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Fig. 5: Mortality versus different immunization prioritization
strategies.

accurately forecast epidemic dynamics. In fact, the assumption
that contact networks follow Poisson distributions is rather
ideal, as it fails to capture the superspreader events that may
greatly drive the transmissions of COVID-19 [16]. An estimate
of degree distributions of real-world contact networks is still
needed in the future research to improve the precision of
projected epidemic results. However, noting that our mission
in this section is to seek the effective vaccination prioritization
policies rather than providing the exact or even best estimate
of epidemic dynamics, we assume that the contact network
follows Poisson distributions without loss of generality.

B. Effectiveness of Vaccination Prioritization Strategies

We intend to compare the effectiveness of age-specfic
vaccination prioritization strategies under two scenarios: no-
masking scenario and masking scenario. Unless specified
otherwise, we consider uniform vaccination within the same
age group by setting v = 0 in (38). Although we conduct
simulations by assuming the basic reproduction number Ry =
2.5, our conclusions below also hold for other reasonable
estimated Ry values for COVID-19, such as from 2 to 3.5.
We assume that the vaccine efficacy for individuals below
65 years old is 95.6%, and for individuals over 65 years
old is 86.4% according to the Moderna’s clinical trial data
[35]. In fact, our findings below also hold for Pfizer’s vaccine
efficacy, which is about 95% for all age groups [36]. Since the
elderly aged 60+ has the lowest average contact number but
the highest mortality and illness severity, while the adults aged
20— 39 have a high average contact rate and low mortality and



illness severity, we call the adults aged 20 — 39 as the high-
transmission group, and the elderly aged 60+ as the high-risk
group. We remark that, even though the children aged 5-19
have the highest average contact number among the population
[12], they are assumed to be less susceptible to the infection
as mentioned before, thus contributing less to the COVID-19
transmissions than the adults aged 20 — 39.

In Fig. 4, we compare the epidemic size under different
vaccination prioritization strategies by varying the fraction of
the whole population being vaccinated. In the figure, we use
“20-39 prioritized” (or other age ranges) to represent that the
vaccine doses are all given to the population aged 20-39.
In particular, since the children aged 0 — 4 only constitute
about 6% of the whole population, the remaining vaccines, if
all the children aged 0 — 4 get vaccinated (i.e., in the case
where 8% or 10% population is vaccinated in the figure),
are uniformly allocated to other age groups. As shown in the
figure, prioritization of the adults aged 20-39 is most effective
in blocking the transmissions and reducing the infections under
both no-masking and masking scenarios. However, we should
notice the difference: the reduction in epidemic size achieved
by prioritization of the high-transmission group under masking
scenario is much more significant than that of no-masking
scenario. As illustrated in Fig. 3, when around Ry = 2.5, i.e.,
under no-masking scenario, epidemic size decreases slowly
with Ry. As a result, no matter which vaccination strategy
is implemented, it will not affect the epidemic size much, as
observed from Fig. 4(a). In contrast, under masking scenario
with Ry = 1.16, epidemic size shrinks fast as Ry reduces. For
this reason, prioritizing the high-transmission group reduces
the epidemic size significantly as shown in Fig. 4(b).

In Fig. 5, we investigate which age-specific vaccination
prioritization strategy reduces the mortality (the death toll
over the whole population) most. This metric is calculated
from the epidemic size and the age-dependent mortality ratios.
As shown in Fig. 5(a), prioritizing the elderly achieves the
lowest mortality under no-masking scenario. This is due
to two facts: 1) no matter which prioritization strategy is
implemented, limited vaccine doses will not decrease the
epidemic size much when Ry is great. 2) The elderly people
have remarkably higher mortality risk than the remaining
population. Consequently, protecting the elderly directly is
a wise method in such a case. Nonetheless, under masking
scenario, inoculating the adults aged 20 — 39 becomes the
most effective strategy to reduce the mortality as illustrated in
Fig. 5(b). This is because prioritization of high-transmission
groups substantially blocks COVID-19 transmissions in small
Ry region as aforementioned, thereby in turn protecting the
elderly even though they have not been vaccinated. There
exist some related simulation studies in the literature. It is
shown in [8] that vaccinating high-transmission group is the
best strategy to minimize the death from COVID-19 when
the NPIs (for Ontario) is combined with high level of natural
immunity. Our results further illustrate that relatively strong
NPI strategies, even without natural immunity, could lead
to the same conclusion. In [24], the researchers show that
high-transmission group should be prioritized to minimize
death only when the vaccination covers a large proportion
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Fig. 7: Mortality versus different immunization prioritization
strategies with different a.

of the population (e.g., over 40% coverage when the vaccine
efficacy is 100%). This finding may be due to that they
have not combined vaccination with NPIs. As a consequence
of this difference, our results instead indicate that the high-
transmission group should be prioritized under the presence
of relatively strong NPIs, even if the vaccine coverage is very
limited, say, 2%, as shown in Fig. 5(b).

In Fig. 6, we evaluate how different vaccination prioriti-
zation strategies affect hospitalizations. Similar to the results
for mortality, vaccinating high-transmission group first is still
more effective under masking scenario, as shown in Fig. 6(b).
On the other hand, while both severity and mortality risks
increase with age, the disparity in severity ratio between the
elderly and younger groups is not as significant as the disparity
in the mortality ratio. As a result, under no-masking scenario,
vaccinating the adults aged 20 — 39 or 50 — 59 first even
slightly outperforms vaccinating the elderly first in terms of
reducing hospitalizations from COVID-19 as depicted in Fig.
6(a), because the former age groups have much higher average
contact rates than the elderly people.

Fig. 7 evaluates the performance of different age-specific
vaccination strategies versus . (38) with a > 0 corresponds to
a vaccine plan targeting at people with high activity level (e.g.,
essential workers) in that age group. Thus, it is not surprising
to see that the vaccination strategies with o = 5 outperform
the corresponding vaccination strategies with a = 0 in both
no-masking and masking scenarios. The effect of changing «
is more significant in Fig. 7(b) than Fig. 7(a), as the epidemic
results in small Ry region are more sensitive to the limited
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vaccination. In real world, « reflects the vaccine allocation
plan and the knowledge of the vaccine distributor towards the
population structure, which must be taken into account to fore-
cast the effectiveness of certain immunization strategies. This
preferential immunization for human networks with general
degree distributions, however, cannot be evaluated based on
traditional age-stratified homogeneous-mixing models.

Fig. 8 examines the consistency of our conclusions under a
hard-hitting scenario with 20% population naturally immune
before vaccination. To obtain the initial conditions S;(k,0)
for this case, we simulate the disease spread according to the
time-dependent dynamics in (1)-(6) until when around 20%
people get infected. Due to the natural immunity, Ry reduces
from 2.5 to 1.78 under the no-masking scenario. To sustain
Ry above 1, we set g = 0.5, which corresponds to a looser
masking measure, resulting in Ry = 1.1 under the masking
scenario. As can be observed from Fig. 8, vaccinating the
elderly still reduces the mortality from COVID-19 most in the
no-masking case, and vaccinating adults aged 20 — 39 still
decreases the mortality most in the masking scenario. This
phenomenon demonstrates that our conclusion still holds when
a high level of natural immunity has already been achieved.

C. Epidemic Probability

The proposed epidemic model is capable of capturing the
stochastic property of epidemics. For countries or areas that
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have no active cases inside, it is useful to estimate the probabil-
ity that a new import case, if not quarantined properly, sparks
an epidemic. In Fig. 9, we study how universal masking could
suppress the epidemic probability under both no-masking and
masking scenarios. Recall that the epidemic probability is
the likelihood that a zero patient randomly chosen from the
population starts an epidemic. Under the no-masking scenario,
it is shown that the epidemic probability is about 0.8 when
Ry = 2.5, implying that most new cases, if not isolated,
will give rise to an epidemic. Conversely, face mask wearing
effectively suppresses the epidemic probability to about 0.25.
As reported in China, import cold-chain food contamination
is even a source for COVID-19 resurgence, and therefore
it is nearly impossible to isolate all new (or import) case
properly. Consequently, taking some low-cost control policies,
such as universal masking, is still important for disease-free
areas to reduce or eliminate the risk of COVID-19 outbreak
or resurgence.

VI. CONCLUSION

To combat the COVID-19 pandemic, one of the most im-
portant research tasks is to find out how to effectively decrease
mortality and severe illness from COVID-19. To achieve this
goal, we present a unified analytical framework for COVID-
19 by considering both age-dependent risks and heterogeneity
in contact networks within and across age groups. Under this
framework, we use a novel age-stratified SEAHIR compart-
mental model to account for the distinct dynamics in a micro-
state level, and employ the multitype random network ap-
proach to characterize the spread of epidemics. Several critical
epidemiological metrics, including time-dependent dynamics,
epidemic size, epidemic probability, and reproduction number
are rigorously derived to capture essential features to be used
to manage the pandemic.

Based on our proposed epidemic model, we have also stud-
ied the vaccination problem. It turns out that what is the best
vaccination prioritization strategy to decrease mortality and
hospitalizations depends on the reproduction number Rj. In
other words, the effective strategies may vary across different
areas, and heavily depends on the level of local NPI policies,
such as masking, that suppress COVID-19 transmissions.
We conclude that vaccinating the high-risk group is only
effective in reducing mortality when Ry is relatively high,
e.g., under the no-masking scenario, whereas vaccinating the
high-transmission group turns out to be the wise strategy if
intervention policies have already suppressed R at a low level.
Although there are many social and ethical considerations
in vaccination allocation, our results provide the rationale
for vaccination prioritization at early stage of vaccination
campaign.

There are several promising directions for future research.
First, the COVID-19 reinfection can be incorporated into the
epidemic model. In this paper, we assume that once a person
becomes immune (either via getting infected or vaccinated),
the person will never contract the disease. In a relatively
short term (e.g., several months), this assumption may be
reasonable given the rare reports of reinfection and the current



understanding of the vaccination. However, how long the
protective antibodies last remains an open problem. To take
the possible reinfection into account, we need to break the
state R into recovery, vaccinated and death states, and consider
the transition from the recovery and vaccinated states to state
S. Under this case, we can still obtain the time-dependent
epidemic dynamics by using the proposed approach in Section
III-B. Nevertheless, since the final state of the network may
not be disease-free due to the existence of reinfection, other
fundamental epidemic metrics, such as epidemic size and
reproduction number, cannot be calculated via the proposed
approach, which is worth studying in the future. Second, it is
useful to evaluate many other NPIs based on our proposed
model. For instance, what is the impact of limiting some
gatherings or events, such as mass gatherings in bars, gyms,
and churches, on the epidemic spread? To answer these kinds
of questions, one can simulate a realistic contact network (e.g.,
with households, schools, bars, gyms, and churches), as in
[9], to discover the impact of different gatherings or events on
the network structure, and then perform the epidemic analysis
using our mathematical framework by removing the edges
contributed by these gatherings.
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