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ABSTRACT: This paper is dedicated to M. Duff on the occasion of his 70th birthday.
I discuss some issues of M-theory/string theory/supergravity closely related to Mike’s
interests. I describe a relation between STU black hole entropy, Cayley hyperdeterminant,
Bhargava cube and a 3-qubit Alice, Bob, Charlie triality symmetry. I shortly describe my
recent work with Gunaydin, Linde, Yamada on M-theory cosmology [1], inspired by the
work of Duff with Ferrara and Borsten, Levay, Marrani et al. Here we have 7-qubits, a party
including Alice, Bob, Charlie, Daisy, Emma, Fred, George. Octonions and Hamming error
correcting codes are at the base of these models. They lead to 7 benchmark targets of future
CMB missions looking for primordial gravitational wave from inflation. I also show puzzling
relations between the fermion mass eigenvalues in these cosmological models, exceptional
Jordan eigenvalue problem, and black hole entropy. The symmetry of our cosmological
models is illustrated by beautiful pictures of a Coxeter projection of the root system of E7.
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1 Introduction

Inspiring ideas of Mike Duff have influenced my work over decades. Here I would like to
present two aspects of it, both rooted in Mike’s and in my work from long time ago, where
there is also a very recent progress.

The first story is about the black holes attractors [2] in N/ = 2 4d supergravity, origi-
nating from M-theory /string theory/11d supergravity. These black holes have interesting
properties which were initially understood in [3] and [4] where the STU black holes with
string theory triality symmetry were described. These were followed by [5] and [6] where
the STU black holes and their entropies were related to quantum information theory. In
these papers the relation between quantum entanglement in a 3-qubit system, Alice, Bob
and Charlie, and and 3-moduli STU black holes was discussed.

The recent stage of this story has to do with a renewed interest in mathematical aspects
of black holes in string theory/supergravity as studied in [7—10]. The relation between
STU black holes and Bhargava cube was observed and discussed earlier in [11, 12]. We
will add to the recent advances in all these papers the analysis of the triality symmetry,
which exists for these black holes in addition to the well known and well studied U-duality
[SL(2,7)]® symmetry. Basically triality symmetry is a statement that Alice, Bob and
Charlie are on equal footing. The aspects of Bhargava cube related to properties of the
Cayley hyperdeterminant will be discussed here. We will clarify the concept of equivalence
of black holes with the same entropy with U-duality symmetry [SL(2,Z)]3 x Ss.

It was noticed in [6] that the black holes in A/ = 8 4d supergravity can be brought to
a canonical basis. Their entropy formula defined in general by 56 charges in the quartic
Cartan-Cremmer-Julia E7(7) invariant, in the canonical basis depends only on 8 charges
and coincides with the Cayley hyperdeterminant defining the STU black holes area of

3

the horizon/entropy. In the Bhargava cube terminology this [SL(2,Z)]° invariant is a

discriminant of the associated binary quadratic forms.



The [SL(2,7)]? x S3 symmetry of the Cayley hyperdeterminant/Bhargava cube is also
a symmetry following from the K&hler potential which is given by

3
Kamoa = — 3 log (T" sz) . (1.1)
i=1
STU black holes can be associated with M-theory first truncated to 7 moduli, 7% i = 1,...,7
with [SL(2,Z)]” and S7 symmetry and the Kihler potential given by

7
Krmoa = — 3 log (T" +T") . (1.2)
=1

When 4 of the 7 moduli are truncated we have the remaining [SL(2,Z)]? duality as well as
triality permutation symmetry S3, and we recover the kinetic term of N' = 2 supergravity
STU model. A detailed derivation of the STU model from string theory/10d supergravity
was performed in [3].

The second story of this paper is about the new ideas in cosmology based on 7-moduli
model of M-theory compactified on a manifold with G holonomy and with [SL(2,Z)]"
symmetry and K&hler potential in eq. (1.2). M. Duff was the first to point out in [13]
that the maximal supersymmetry of M-theory is spontaneously broken down to N =1
supersymmetry in 4d when compactified on a manifold with G2 holonomy. More recently
11d M-theory /supergravity compactified on a twisted 7-tori with holonomy group Gy was
investigated in [14].

During the last few years I studied the issues in cosmology initiated by discussions
with S. Ferrara which resulted in our paper [15]. This work, in turn, originated from S.
Ferrara’s work with M. Duff and his collaborators [12, 16-19]. One of the central ideas in
all these studies is based on the fact that E;) (R) symmetry of N' = 8 4d supergravity has
a subgroup [SL(2,R)]7. For the discrete subgroups this becomes a following relation

Er(2)) 5 1SL2.7)| . (1.3)

When the relevant cosmological models were constructed in [15, 20-22], 7 targets for early
universe future searches of gravitational waves from inflation were proposed. These are
shown here in Fig. 1 by 7 purple lines.

The theoretical underpinning of the cosmological models in [15, 20-22] was very recently
proposed in my paper [1] with M. Gunaydin, A. Linde, Y. Yamada. The entangled 7-qubit
system corresponds to 7 parties: Alice, Bob, Charlie, Daisy, Emma, Fred and George, and
it is related to 7 imaginary units of octonions.

M. Duff had a long and deep appreciation of the fact that there are four normed division
algebras: the real numbers (R), complex numbers (C), quaternions (H), and octonions
(0). He and his collaborators have developed many new aspects of the relations between
octonions and physics, see for example [12]. T will show here how octonions, Fano planes



and error correcting Hamming (7,4) codes help to build cosmological models which will be
tested by future cosmological observations.
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Figure 1: This is a figure A.2 from the Astro2020 APC White Paper LiteBIRD: an all-sky cosmic
microwave background probe of inflation with a forecast of Litebird constraints in the ns - r plane [23]. The
7 purple lines in the figure, were derived most recently in [1] using M-theory compactified on G2, octonions,
Fano planes and error correcting codes.

I will also show that the mass eigenvalues of heavy scalars in cosmological models
in [1] described by a pair of cubic equations 2® — 72 — 7 = 0, y> — 7o — 7 = 0 have a
particular relation to exceptional Jordan' eigenvalue problem [24-28]. There is an interesting
connection between the product of the mass eigenvalues of fermions in cosmological models
and the entropy of the STU black holes. Both correspond to a determinant of a certain
relevant in each case Jordan matrix.

Another interesting feature of our cosmological models [1] is the symmetry of the
fermion mass matrix at Minkowski vacua. It is invariant under the O(7) symmetry and its
subgroups. The discrete subgroup of it is the Weyl group W (E;). We show the Coxeter
plane of the root system of W (Ey) in Figs. 7, 8. When one imposes the invariance of the
octonion algebra on the transformations one obtains a finite subgroup of G, the adjoint
Chevalley group G2(2) of order 12,096 as discussed in [29-32]. This is interesting since it is
expected that neutrino physics will require an extension of the standard model. Some of
these extensions might include discrete subgroups of G, see for example [33, 34].

Thus, both of these stories, STU black holes and M-theory cosmology 7-moduli models
have interesting connection to E7 symmetry. I would like to notice here that the current
status of 4d N/ = 8 supergravity and its perturbative UV behavior remain puzzling. Some
heroic efforts were made by Z. Bern et al in amplitude loop computations, see the review [35].
They have shown that maximal supergravity behaves in UV much better than expected. It
was suggested in [36-38], that Er;) symmetry together with maximal supersymmetry of

1Studies of octonions and Jordan algebras are based on the work of H. Freudenthal in ‘Oktaven,
Ausnahmegruppen und Oktavengeometrie’, Mathematisch Instituut der Rijksuniversiteit te Utrecht, 1951.
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perturbative maximal supergravity in 4d might explain the cancellation of UV infinities
observed in ‘theoretical experiments’ as described in [35]. It would be very interesting to
learn more about these exceptional symmetries and their role in physics.

2 STU black holes, triality and the Bhargava cube

A significant effort was dedicated over the years to understand the properties of black holes
in M-theory /string theory /supergravity. The STU black holes are sufficiently simple, there
are exact analytic solutions in classical N' = 2 supergravity with the prepotential

dijp X' X7 Xk X1X2X3
X0 T X0

F= (2.1)
in the so-called double extreme approximation, when the values of 3 moduli 2z = % near
the horizon are the same as the ones far away from the black hole, 2'|inf = 2*|por. The
solution depends on 8 charges, 4 electric and 4 magnetic. The area of the horizon/the
entropy of these black holes was computed in [4] in terms of the 8 black hole charges (p™, qa),
A =0,1,2,3, shown as corners of the 2x2x2 hypermatrix in Fig. 2. The entropy is the
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Figure 2: The 2x2x2 hypermatrix corresponding to supergravity black holes given in Fig.
2 of [6]. It represents the STU black hole solution in [4] with 8 charges p™ = p°, p', p?,p?
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and ga = qo, ¢1, ¢2, g3 where 3 moduli z', 22, 23 at the black hole horizon are functions of

these charges.

function of charges
S 1/2
== (wetan)” (2:2)

where
Wt an) = (- 0)° + 4(0'0) P*e) + 0'a) P3e) + 03a) W)

— 4p°q19243 + 4qop'p°p° (2.3)



and
_ 0 1 2 3
p-q=(p'q)+ P a)+ (p°e) + ®as) - (2.4)
The function W (p™, gz) is manifestly symmetric under transformations:
1 2 3
PPt Qe gs. (2.5)

Under [SL(2,7Z)]? transformations the charges and the moduli transform but the entropy is
invariant.

The values of the 3 complex moduli near the horizon, for each i = 1,2, 3, were computed

in [4]
; B /B —4AC'
where for each i =1,2,3
A =pqi = 3dijup’p® B'=p-q-0'q;  C'=—(p'qo +3d""q;q1) (2.7)
and
W =-D=B"-4A,C"' = B> - 44,0% = B® — 44303 (2.8)

It was pointed out in [5] that the classical expression for the entropy of the STU black holes
W (p™,qn) (2.3) can be represented in a very beautiful form:

SBPS:W\/W:g\/W7 Det ¢ < 0, (2.9)

where Det 1) is the Cayley’s hyperdeterminant of the vector with components 1);;, con-
structed in 1845. The dictionary between 8 charges p* and g5 and components of Yijk 1s
the following:

oot P P oo e e
(2.10)
Yooo —%o0o1 —%o10 —%P100 Y111 Y110 Y101 Yo11
Cayley hyperdeterminant of the 2x2x2 hypermatrix 1;; is defined as follows
1 il ! / / / /
Det ¢ = — 56“ 13" R e . PR s it it ok Vit (2.11)

The new aspect of the STU black holes associated with Bhargava cube developed in [7-10]
is the following. It is possible to attach a triple of quadratic forms

Aix? + By + Ciy? (2.12)

of the same discriminant D = Bi2 — 4A;C; to a cube, with the corners given by an octuple
a,b,c,d, e, f,g,h. We show this cube in Fig. 3. Even when only 2 of the forms are available,
one can construct the third one as well as the Bhargava cube. The dictionary between 8
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Figure 3: The Bhargava cube.

black hole charges in Fig. 2 and Bhargava octuple in Fig. 3 is

P’ 1’ —q p® —a3 p g0 —o
(2.13)
a b ¢ d e f g h

The cube has a 3-way slicing: up-down, left-right, front-back, and many interesting properties.
The discriminant of the cube is given by the following expression.

Dphe = a’h? +02¢% + 2 f? + d*e?
—2(abgh + cdef + acfh + bdeg + aedh + bfcg)

+4(adfg + beeh) . (2.14)
Using eqs. (2.3), (2.14) and the dictionary (2.10) we see that
Dpha = —W . (2.15)

The action of modular groups [SL(2,Z)]* on the Bhargava cube was studied in detail in
mathematical literature and recently applied in the context of STU black holes in [7—10].
However, the permutations symmetry of the discriminant of the Bhargava cube was not yet
revealed in most of these studies?. Namely, the 3 permutation permutation symmetries in
black hole solutions which preserve the entropy and reflect the symmetry between 3 moduli
2" at the horizon and the relevant charges, are

Aol 0 o plepr agee

2eB 0 pPepd g2 < Q3

?Examples with triality symmetry were given in [10], here we discuss a general case of triality symmetry
in the context of Bhargava cube.



2o 0 pPPopt g3 < q1 (2.16)

Therefore the 3 symmetries of the discriminant of the Bhargava cube which reflect the
corresponding black hole symmetries are

f<a ceh

d

Figure 4: Three permutation symmetries of the discriminant of the Bhargava cube Dpp,,
according to eq. (2.17)

2.1 The issue of black hole equivalence

Supersymmetric STU black holes are defined by their entropy as well as by the values of
the 3 moduli near the horizon. In the basis where all 3 moduli z* are on equal footing in the
prepotential given in eq. (2.1), entropy is shown in eq. (2.3) and the values of the moduli
2" are given in eq. (2.6). The N = 2 supergravity in this basis and the black hole solution
both have this symmetry. The symmetry of solutions is presented in eq. (2.16).

The permutation symmetry for black holes, a triality symmetry, is important when
the physical question is asked: what kind of STU black holes are equivalent? It is known
that the entropy might be the same for different set of 8 changes, for example (p*,qx)
and ((pA)’ , (qn)’ ) However, some of these 8 charges can be related to each other by a
U-duality symmetry [SL(2,7Z)]? x S3 transformation. In such case, these two sets of 8
charges belong to the same U-duality orbit. If however, they are not related to each other
by an [SL(2,Z)]® x S5 transformation, they belong to different orbits.



There is a significant progress in understanding the discrete properties of Bhargava
cube which may be useful in the context of string theory counting of states associated with
supersymmetric black holes with integer charges. To use these properties it would be nice
to take into account systematically also triality symmetry S3 of the discriminant of the
Bhargava cube, in addition to modular [SL(2,Z)]* symmetry which was already studied
extensively.

In the basis a, b, c,d, e, f, g, h which is standard in Bhargava cube literature, this Sj
symmetry (2.17) of the discriminant in eq. (2.14) is not obvious since it does not appear to
be related to a supergravity S3 invariant prepotential (2.1). However, it is present there.
The metric, and therefore the entropy of the STU black hole solution is U-duality invariant.
The S3 symmetry is therefore manifest in eq. (2.3) since it follows from the triality invariant
prepotential.

3 M-theory cosmology, octonions and error correcting codes

A short summary of the recent paper [1] suitable for this set up is the following. We have
proposed an expression for the effective N’ = 1 4d supergravity following from M-theory/11d
supergravity compactified on a manifold with Go structure. Starting with general type
(Go-structure manifolds one finds Minkowski vacua only in cases the twisted 7-tori are Ga-
holonomy manifolds. Here again it was a crucial early insight of M. Duff that the maximal
supersymmetry of M-theory is spontaneously broken by compactification to minimal N =1
supersymmetry in 4d [13] when the compactification manifold has a G holonomy.

Our choice of the superpotential is based on a split of the 7-qubit system, Alice, Bob,
Charlie, Daisy, Emma, Fred, George, into 3-qubits and 4-qubits. The 3-qubits codify the
multiplication table of octonions, there are 7 associated triads there. The 7 complimentary
4-qubits define our superpotential. The automorphism group of octonions is G, therefore
it is natural to define the superpotentials using octonions.

The effective N = 1 4d supergravity following from M-theory/11d supergravity is
defined as follows. The Kéahler potential is given in eq. (1.2). The superpotential in general
is given by a sum over 7 the 4-qubits {ijkl} of the form

. . 1 y
WO =Y (T"-T/)(TF-T') = M TT7 . (3.1)
{ijkl}
It appears to have 28 terms of the form 777, however, half of them cancels and we are left

with 14 terms. For example for Cartan-Shouten-Coxeter octonion conventions [39, 40]

6
W@ — Z(TT+2 _ TT‘+4)(TT+5 _ TT+6) . (32)
r=0



We can see these 7x4 terms in right hand side of eq. (3.5). But actually, the formula
simplifies to 14 terms

7
WO =-> " T7(T"" - 17+%). (3.3)
r=1

Explicitly the 14 terms are
WO = — (Tl (T? = T3 + T*(T* = T*) + T*(T* — T°) + TY(T° - T°)
ST — T+ TS — TV + T7(T — T2)> . (3.4)

The set of 7 terms in the superpotential in the form (3.2) is easy to compare with 7 octonion
associate triads, with 7 quadruples and with 7 codewords of the cyclic (7,4) Hamming error
correcting code. We show this relation in eq. (3.5).

Triads Codewords Quadruples = WO
(137) 1010001 (2456) (T? — TH)(T5 — T9)
(241) 1101000 (3567) (T3 —T5) (T8 - T7)
(352) 0110100 (4671) (T* —TS)(T" - TY)
WO = | (463) 0011010 (5712) (T5 =TT\ (T' —T?) (3.5)
(574) 0001101 (6123) (T6 — TH)(T? - T3)
(615) 1000110 (7234) (T7 —T%)(T3 - T%)
(726) 0100011 (1345) (T — T3)(T* - T°)

Let us show how the octonion triads are represented in the oriented Fano plane. Each
of the 7 lines has 3 points, the arrows show the order, with possible cyclic permutations.
For example the first one in eq. (3.5) is 137, we see it as the internal line going up and to
the right, it shows 371. The next one is 241, it is a set of points on a circle. One more, 352
is the one at the bottom, going to the left, it shows as 523, etc.

Figure 5: An oriented Fano plane, Fig. 1 in [41]. On each of the 7 lines (including the circle) there are 3
points e.g. 1,2, and 4 on a circle. The octonian multiplication rule is build into the Fano table. For example,
one can see from the oriented circle that e; - ex = e4.

~10 -



We studied Minkowski vacua in 7-moduli models with octonionic superpotentials (3.1).
We found that that these models have a Minkowski minimum at

M=1’=73=T7'=1"=71%=7"="T (3.6)
with one flat direction.

There are 480 different octonion conventions. We have presented a general formula of
the superpotential for any octonion convention in [1]. In all these cases, the matrix M;; in
eq. (3.1) can be computed either using the general formula or by performing a change of
v
0
0

P
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@)

SO H DD
SO P -
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— O H O D DH
O = PO D H H
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o o~ H
O O = O KR
O = H

Figure 6: Three sets of codewords with some terms excluded: they codify the superpoten-
tials WQ,, , where the corresponding terms in eq. (3.2) are absent. These superpotentials
lead to models with Minkowski vacua with two flat directions.

all these models with one and two flat directions are
K =—-mlog (T(l) + T(l)) —nlog (T(Q) + T(Q)) (37)

with m+n =7 and cases like m=0,n=7,m=1,n=6;m=2,n=>5m=3,n=4. The
superpotentials WQ,,, ,, at the vacuum have the following properties:

WO,,, =0, WO, =0 (3.8)

)

at

Based on these M-theory Minkowski vacua we have build N' = 1 supergravity phenomeno-
logical models with the potential

’ Woct | 2
g

7
V = F(T,T) (1 + ) + 3 (T 4 T oWt (3.10)
=1

- 11 -



where 1
W= — — WO. (3.11)
7 .
[Ti-, 2T7)
Along the supersymmetric Minkowski flat directions we have WOt = 9;/°¢t = (. Therefore
the full expression for the inflaton potential, for example in the simpletst T-models, is given

by an inflationary potential for the a-attractor models and a cosmological constant

1
V:A—l—mQtanhz\/@d). (3.12)

Inflation along various flat directions with these kinetic terms leads to 3a = 7,6,5,4,3,2,1
and therefore to 7 possible values of the tensor to scalar ratio r = 12a/N?2 in the range
1072 > r > 1073, which should be accessible to future cosmological observations. They are
shown by 7 purple lines in Fig. 1 here, taken from the LiteBIRD satellite mission forecast.

4 Properties of the mass matrix in octonion cosmological models

The octonion superpotentials for models in [1] with G5 holonomy and 7 moduli have 14
terms in the form 1
WO = §MijTiTj . (4.1)

The matrix M;; for the simplest case WO for Cartan-Shouten-Coxeter octonion notations is

0 -11 0 0 1 -1
-10-11 0 0 1
1 -10-11 0 0
Mg = 0 1 -10-11 0 (4.2)

0 01 -10 -11
1 0 0 1 -10 -1
-11 0 0 1 -10

One can see that it has the property M;; = > y M;; = 0,Vi. In Minkowski vacuum with
WO = WO ; = 0 the fermion mass matrix is

1 . .

The non-vanishing 6 eigenvalues of the M matrix, defining the fermion mass eigenstates in
Minkowski vacua solve a double set of cubic equations

T —-7=0, PP -Ty—-7=0. (4.4)

- 12 —



The eigenvalues of the fermion mass matrix are

z1 0 0 0000
0z 0 0000
0 0xz3 0000

MEY,=10 0 0y 000 (4.5)
0000y 00
00000GUY0
00000O0O

where z, = y, with a = 1,2, 3 are solutions of the cubic egs. (4.4). Numerically this gives
for a set of x1,y1; x2,y2; x3,ys and a massless one, the following values

3.0489, 3.0489; —1.6920, —1.6920; —1.3569, —1.3569; 0 (4.6)
as shown in [1]. It looks like the numerical sum of all 3 eigenvalues vanishes
3.0489 — 1.6920 — 1.3569 = 0. (4.7)

Meanwhile, can also solve eqs. (4.4) analytically. With z, = 2, = y, and § = Arctan 3-3/2

z21 = 2\/ZReei§
29 = 2\/zReei9+32W

2y = 2\/z Reel 5" (4.8)

21+ 204+ 23=0, (4.9)

the solutions are

Also one finds that

which means that indeed the sum of the 3 eigenvalues of the fermions mass matrix vanishes
exactly. A number of other relations can be seen in the exact solution:

z129 + 2923 + 2123 = —7
2’12’22327

B4 =27

3 3 3 _

Zl+22+23 —37

zf+z§+z§:2-72

5 5 5 __ 2

21+22+Z3—5‘7. (410)

We can compare the eigenvalues of the 3x3 part of the fermion mass matrix with the
eigenvalues of the 3x3 octonionic Hermitian matrix studied in [26, 27] which defines the
supersymmetric black hole entropy in 5d. This entropy was shown in [42] to be equal
to a square root of the cubic invariant I3 of Ege). In [26, 27] it was shown how this
cubic invariant is related to the Jordan algebra J§9 of the 3x3 hermitian matrices over the
composition algebra of octonions O.

~13 -



A generic element J of J$ has the form

o1 03 05
J=| 05 az o1 (4.11)
02 0] a3

where «, are real numbers and o, with a = 1,2, 3 are elements of O. The automorphism of
the split exceptional Jordan algebra is the non-compact Fy4) group. In case of the non-split
octonions the automorphism group is Fy. An element of J§9 can be brought to a diagonal
form by an Fy rotation [24-26, 28]. In case of the black holes the generic element of J has
eigenvalues Ay, a = 1,2, 3 and the cubic norm of J:? is, as shown in [26].

In case of non-split octonions, one also start with the element (4.11) and diagonalize it
using Fy transformation [24]. The 3 eigenvalues in this case were shown to satisfy certain
characteristic cubic equation [28]

—det(J — AI) = X* — (TrJ) A2 + Te(J x J) A — (det J)I =0 (4.12)

where in notation of [25]
JxJ=J 1 detJ. (4.13)

In our cosmological model the analogous cubic equation z® — 7o — 7 = 0 corresponds to the
choice
TrJ =0, TrJ t=-1I, det J=7 (4.14)

The choice TrJ = 0 according to [25] means that our matrix (4.11) depends only on 26
parameters and therefore it is a 26-dimensional representation of Fj. It is also explained
there that the invariants of Fy are

TrJ, Tr(J x J), det J . (4.15)

Thus we find that our fermion mass matrix eigenvalues are defined by a cubic equation
23 — 7x — 7 = 0 of the kind which defines the exceptional Jordan matrix eigenvalues [28]
with special Fy invariant properties.

TrJ=0, (JxJ)=-7, detJ=7. (4.16)

Meanwhile, the relation between the det of the fermion mass matrix Myg and black hole
entropy in the diagonal basis /T3 is

det Mlwo = z12273 I3 = Mo A3 = p1p2p3 . (4.17)

In 5d black holes the values of magnetic charges, p',p?, p> are less restricted, they do
not satisfy a cubic equation of the kind 2® — 7z — 7 = 0. In fact the entropy of 4d STU
black holes we started with in eq. (2.3) is the same as the one in 5d under condition that
P =g¢=qp=qg=0.

Thus, in addition to numerous relations between various BPS and non-BPS black holes,
we have observed here an interesting relation to octonion based cosmological models and
fermion mass matrix.

— 14 —



5 Discrete symmetry of fermions in cosmological models

The fermion mass matrix in eq. (4.3) at Minkowski vacua in cosmological models [1] can
be brought to a diagonal form as shown in eqgs. (4.5), (4.6). Since it is a 7x7 matrix,
its eigenvalues are invariant under the O(7) symmetry and its subgroups. The discrete
subgroup of it is the Weyl group W (E7). It is isomorphic to a finite subgroup of O(7) which
is the direct product Zs x SO7(2). The group SO7(2) is the adjoint Chevalley group of
order 1,451, 520. The Weyl group W (E7) has 2,903,040 symmetries. The root system of
the Weyl group W (E7) cannot be visualized since it is an object in 7 dimensions, but the
2-dimensional projections of them, the Coxeter planes, are well known. We present them in
Figs. 7, 8.

However, the Weyl group W (E;) does not preserve the octonion algebra. When one
imposes the invariance of the octonion algebra on the transformations of the Er roots one
obtains a finite subgroup of Ga, as expected, the adjoint Chevalley group G2(2) of order
12,096. We now review the analysis of E7 roots and its G2(2) symmetry following [29-32]
and show that it applies to the fermions in cosmological models of [1]. First we notice
that E8 roots can be defined by the integral octonions of the following form. We take
Cartan-Shoten-Coxeter octonion conventions, which we used in eq. (3.5). The triples are
124,235,346,457,561,672,713 and the quadruples are 3567, 4671, 5712, 6123, 7234, 1345,
2456. The set of 240 integer octonions is

+1, +e; (5.1)
1
5(:|:1 te te;tey) (5.2)
1
5(:&62' + €; + €L + el) . (53)

Here in (5.2) ijk belong to triples, so we have 7x16 = 112 and in (5.3) ijkl belong to
complementary quadruples, so we have again 7x16 = 112. To this we add 16 from eq. (5.1).
This gives the total of 240 integral octonions, which make the E8 roots, also called Cayley
integers or octavians. From the set of integral octonions above we keep only the ones in

1
:|:€i, §(i€2 + € + (% + el) . (54)

There are 14+7x16=126 integral octonions. It was shown in [31] that the set of transforma-
tions which preserve the octonion algebra of the root system of E7 in (5.4) is the adjoint
Chevalley group G2(2). It is possible to decompose these 126 imaginary octonions into 18
sets of 7 imaginary octonionic units that can be transformed to each other by the finite
subgroup of matrices. These lead to 18 sets of 7 which we see in Figs. 7, 8.

Thus it appears that the cosmological models in [1] derived from compactification of
11d supergravity on a manifold with G2 holonomy, have some hidden E7 symmetry. It
would be nice to understand a relation of all this to the maximal 4d supergravity with E7 (7
Symmetry.
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Figure 7: This is the root system of the Weyl group of E7 projected into the Coxeter plane as given by
John Stembridge. The Lie group E7 has a root system of 126 points in 7-dimensional space. One can see
these 126 points as 7 groups of 18 points. These 126 points are tightly packed together and this configuration
has a total of 2,903,040 symmetries.

Figure 8: The Coxeter projections of all exceptional root systems are given by Tomas Gorbe, including
the E7 case shown here. As in Fig. 7 we can see 7 circles with 18 points each, a total of 126 points

representing a root system of Fr.
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6 Discussion

The entanglement of 7 qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George) was
important in M. Duff’s studies of black holes in M-theory. In the context of M-theory
cosmology, it is not surprising that the concept of 7 qubits and the related tools like
octonions, Go symmetry, Fano Planes, (7,4) Hamming correcting codes also are playing an
important role. It would be interesting to develop more understanding of both black holes
and cosmological models in M-theory and of the role of octonions in physics.

Neutrino physics may also require some new ideas to satisfy the current and future
data. It was advocated in [33, 34] that some discrete subgroups of Ga, like PSL2(13) might
be useful for this purpose.

A nice feature of our cosmological models in [1] is that they describe a case of maximal
supersymmetry spontaneously broken down to a minimal supersymmetry. These models
will be tested by the future cosmological observations as we show in Figure. 1. The most
recent forecast of the CMB-S4 in [43] suggests that the ground based Stage-4 experiments
will achieve the science goals of detecting primordial gravitational waves for r > 0.003 at
greater than 5o, or, in the absence of a detection, of reaching an upper limit of r < 0.001
at 95% CL. Therefore the benchmark targets of cosmological models in [1] will be tested
during the next decade or two.
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