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Tschirnhaus transformations after Hilbert

Jesse Wolfson

Abstract. In this paper, we use enumerative geometry to simplify the formula for the roots
of the general one-variable polynomial of degree n , for all n . More precisely, let RD.n/
denote the minimum d for which there exists a formula for the roots of the general degree n
polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched
how the 27 lines on a cubic surface could be used to construct a 4-variable formula for
the general degree 9 polynomial (implying RD.9/ � 4 ). In this paper, we turn Hilbert’s
sketch into a general method. We show this method produces best-to-date upper bounds
on RD.n/ for all n , improving earlier results of Hamilton, Sylvester, Segre and Brauer.
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1. Introduction

�e goal of this paper is to use enumerative geometry to produce simplest-
to-date formulas for the roots of the general one-variable polynomial of degree
n , for all n . Consider the problem of �nding the roots of a polynomial

zn C a1z
n�1
C � � � C an D 0

in terms of the coe�cients a1; : : : ; an . A priori, the assignment

.a1; : : : ; an/ 7! ¹z j z
n
C a1z

n�1
C � � � C an D 0º

is an algebraic function of n (complex) variables, and it is natural to ask whether
there exists a formula using only algebraic functions of d or fewer variables. Call
the minimum such d the resolvent degree and denote this by RD.n/ (see Section 4
for a precise de�nition, and [FW] for a detailed treatment). At present, no nontrivial
lower bounds for RD.n/ are known. �e best general upper bounds in the literature
are due to Brauer [Bra2], who uses methods dating to Tschirnhaus [Tsch] to prove



490 J. Wolfson

that RD.n/ � n� r for n � .r � 1/ŠC 1 . As Brauer remarks, his bounds are not
optimal for small r .1

In this paper we take a di�erent approach to bounding RD.n/ , inspired by
a geometric argument of Hilbert. In [Hil2], Hilbert sketches how the 27 lines
on a cubic surface can be used to produce a 4-variable formula for the general
degree 9 polynomial, i.e., RD.9/ � 4 . We turn Hilbert’s sketch into a general
method, whereby lines on cubic surfaces are replaced by r -planes on degree d
hypersurfaces in Pm for appropriate choices of r , d and m . �is de�nes an
explicit increasing function F W N ! N (De�nition 5.4) for which we prove the
following:

�eorem 1.1. Let F W N ! N be the function de�ned in De�nition 5.4.
(1) For all r and all n � F.r/ , RD.n/ � n � r .
(2) For all r , n D F.r/ is the least value for which we know RD.n/ � n� r to

hold.2 In particular, the initial values are given by

r 1 2 3 4 5 6 7

F.r/ 2 3 4 5 9 41 121

(3) Writing B.r/ D .r � 1/ŠC 1 for Brauer’s bound, then

lim
r!1

B.r/=F.r/ D1:

�e �rst statement appears as �eorem 5.6 below, while the last two appear
as �eorem 5.8.

Remark 1.2. (1) �e construction of F, the proof that F.5/ D 9 and that this
implies RD.9/ � 4 marks the �rst rigorous construction of the 4-variable
formula for the general degree 9 sketched by Hilbert in [Hil2].3

(2) �e �rst improvement over prior bounds occurs at F.6/ D 41 . Previously,
Sylvester proved [Syl, p. 485] that for n � 44 , RD.n/ � n � 6 .

Besides the general interest in obtaining simpler formulas for polynomials, we
hope this paper spurs work on two questions. For the �rst, we quote Dixmier [Dix,
p. 90]4:

1Brauer’s �rst improvement over prior bounds occurs for r D 7 .
2 i.e., n D F.r/ is the least value for which RD.n/ � n � r is currently proven to hold in any

of the literature of which we are aware. Note that G. Chebotarev [Cheb] claimed to have extended an
argument of Wiman [Wim] to conclude RD.n/ � n � 6 for n � 21 . His proof has gaps similar to
those observed by Dixmier [Dix] in the arguments of Hilbert and Wiman, namely he takes for granted
that certain forms are generic, when they are not.

3Rigorous 4-variable formulas have been previously constructed by Segre [Seg1] and Dixmier [Dix].
4 n.b. Dixmier writes “s.n/” for our RD.n/ .
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“Every reduction of RD.n/ would be serious progress. In particular, it
is time to know if RD.6/ D 1 or RD.6/ D 2 .” (Dixmier, 1993)

While the present methods cannot touch Hilbert’s Sextic Conjecture (RD.6/ D 2 ),
they do contribute to Dixmier’s call to lower the possible values of RD.n/ . �ey
also contribute to a problem �rst posed (as far as we are aware) by Segre [Seg2,
III.5]:

Problem 1.3. Understand the large n behavior of RD.n/ .

As a clearer understanding of Segre’s problem comes into view, we look
forward to seeing the present bounds lowered in turn.

Remarks on the Proof. Given a polynomial

p.z/ D zn C a1z
n�1
C � � � C an D

nY
iD1

.z � zi /;

a Tschirnhaus transformation is a “change of variables”

y D

n�1X
jD0

bj z
j :

�is gives a new polynomial

q.y/ D
Y
i

.y �

n�1X
jD0

bj z
j
i / D y

n
C c1y

n�1
C � � � C cn;

and we can ask for Tschirnhaus transformations which normalize the resulting
polynomial so that, e.g.

(1.1) c1 D � � � D ck D 0:

�e space of all .b0; : : : ; bn�1/ such that the conditions (1.1) are satis�ed forms
an a�ne cone, and the projectivization gives a complete intersection

T n1���k � Pn�1I

when the superscript n is clear from context, we suppress it and write T1���k . If
we can �nd a point of T1���k over a convenient extension of C.a1; : : : ; an/ , e.g.
one de�ned using only algebraic functions of at most d variables, then we can
write a formula for the general degree n polynomial using only functions of at
most d variables and the algebraic function

.ckC1; : : : ; cn/ 7! ¹y j y
n
C ckC1y

n�k�1
C � � � C cn D 0º;
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�is, together with a �nal rational change of coordinates, gives an upper bound

RD.n/ � max¹d; n � k � 1º:

In [Hil2], Hilbert sketched how to use the 27 lines on a smooth cubic surface to
�nd points on T1234 for n D 9 : Here, T1 � P8 is a hyperplane, and thus T12 is
a quadric 6-fold in T1 Š P7 . Over a solvable extension L=C.a1; : : : ; a9/ , every
smooth quadric contains a 3-plane P in P7 . �e intersection of this 3-plane P
with T123 is a cubic surface, and this gives a map from Spec.L/ to the moduli
of cubic surfaces. Since every smooth cubic surface has 27 lines, and the moduli
space of cubic surfaces is 4-dimensional, the algebraic function which assigns
a line to a cubic surface is a function of at most 4-variables. Given a line on
our cubic surface P \ T123 , we can then intersect it with T1234 to get a quartic
polynomial in one variable, and by adjoining radicals, we can �nd a point on
T1234.L

0/ , where L0=C.a1; : : : ; a9/ is de�ned using algebraic functions of at most
d D 4 variables.

As Dixmier observed [Dix, S8], the argument above is incomplete. In particular,
Hilbert takes for granted that the family of cubic surfaces P \T123 is su�ciently
generic. Letting H3;3 denote the parameter space of cubic surfaces and M3;3

the (coarse) moduli space of smooth cubic surfaces, Hilbert essentially assumes
that the above map

Spec.L/! H3;3

lands in the locus where the rational map

H3;3ÜM3;3

is well-de�ned.5 �e principal geometric contribution of this paper is to show
that for all n , the family of “Tschirnhaus hypersurfaces” needed for Hilbert’s
argument (and its generalization to arbitrary degrees) is generically smooth; see
�eorem 2.12.

Beyond this, we need two fundamental post-Hilbert advances to convert
Hilbert’s sketch into a general method. �e �rst is Merkurjev and Suslin’s theorem
on Severi–Brauer varieties [MS, �eorem 16.1], which allows us to trivialize
the Severi–Brauer varieties which arise in Hilbert’s argument by adjoining
radicals.6 �e second is a theorem of Hochster–Laksov [HL] which allowed
Waldron [Wal, �eorem 1.6] (see also [Sta, �eorem 1.2]) to show that every
degree d hypersurface in PN contains an r -plane when an appropriate dimension
count is non-negative. Given these, we can generalize Hilbert’s sketch to explicitly
construct the function F and obtain the bounds on RD.n/ stated above.

5 n.b. Hilbert actually assumes that the generic member of the family P\T123 admits a “pentahedral
form”, but one can weaken this as above without any loss in the argument.

6Neither Hilbert nor Dixmier comment on this gap in Hilbert’s argument.
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Outline of the Paper. In Section 2 we introduce the Tschirnhaus complete
intersections and study their geometry. In Section 3, we recall the geometric
perspective on Tschirnhaus transformations, and connect this to the Tschirnhaus
complete intersections. In Section 4, we develop the necessary results about the
resolvent degree of a dominant map needed to implement Hilbert’s idea for general
degrees n . �is extends the treatment of resolvent degree of generically �nite
dominant maps in [FW]. In Section 5, we prove the upper bounds for RD.n/
and compare them to Brauer’s. In Appendix A, we give explicit values for the
function F.r/ discussed above. In Appendix B, we review the history of the search
for simple formulas for the general degree n polynomial and the summarize the
major prior work to date.

Conventions. �roughout the paper, by a variety over a �eld K or over Z ,
we mean a reduced, separated, not-necessarily irreducible K or Z -scheme. For
maps of varieties X ! Z and Y ! Z , we will use the notation Y jX to denote
the �ber product X �Z Y .

2. Tschirnhaus complete intersections

Given a polynomial

p.z/ D zn C a1z
n�1
C � � � C an D

Y
.z � xi /;

a Tschirnhaus transformation is a “change of variables”

y D

n�1X
jD0

bjx
j :

�is gives a new polynomial

q.z/ D zn C c1z
n�1
C � � � C cn D

Y
i

.z � yi /:

We are interested in Tschirnhaus transformations such that q.z/ is “better
normalized” than p.z/ , e.g. in the sense that for some i ,X

j

yij D 0;

or more generally such thatX
j

y
i1
j D � � � D

X
j

y
ik
j D 0
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for some i1; : : : ; ik . In this section, we study the collection of all b D
.b0; : : : ; bn�1/ such that the above normalizations hold. �ese are a�ne varieties
which we denote AT ni1���ik , and we refer to their projectivizations T ni1���ik as
Tschirnhaus complete intersections.

In this section, we introduce the varieties T ni1���ik as objects of interest in their
own right, i.e., via explicit equations. We relate them to classical examples of
interest, and study their geometry. In Section 3, we review the classical subject of
Tschirnhaus transformations for algebraic functions, and we identify the varieties
T ni1���ik considered here with the spaces of “normalized changes of variables”
described above.

Tschirnhaus complete intersections via explicit equations. Fix n � 0 . In
this section, we work over Z unless otherwise speci�ed, so that, e.g., An WD

Spec.ZŒa1; : : : ; an�/ . For ease of reading, we adopt the following notation.

Notation 2.1. Denote

a WD .a1; : : : ; an/ 2 An: j�j WD
P
i ki

b WD Œb0 W � � � W bn�1� 2 Pn�1 jj�jj WD
P
i i � ki

� WD .k0; : : : ; kn�1/ 2 Nn b� WD
Q
i b
ki
i

For j�j D i , recall the multinomial coe�cients 
i

�

!
WD

 
i

k0; : : : ; kn�1

!
WD

i Š

k0Š � � � kn�1Š
:

We also introduce two variants of the above.

Notation 2.2.

0b WD Œb1 W � � � W bn�1� 2 Pn�2

0� WD .k1; : : : ; kn�1/ 2 Nn�1

0b0 WD Œb1 W � � � W bn�2� 2 Pn�3

0�0 WD .k1; : : : ; kn�2/ 2 Nn�2

Mutatis mutandis, we will also write j0�j , jj0�0jj ,
�
i
0�

�
, etc. Note that the meaning

of jj � jj depends on whether the �rst coordinate is the zeroth coordinate or the
�rst coordinate. Our notation indicates that any tuple without a 0 preceding its
label starts with a zeroth coordinate, while any tuple with a 0 preceding its label
starts with a �rst coordinate.
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We now inductively de�ne polynomials in the ai by

p0 WD n;(2.1)

while, for 0 < k � n

pk WD kak C

k�1X
iD1

ak�ipi ;(2.2)

and for k > n

pk WD �

k�1X
iDk�n

ak�ipi :(2.3)

Remark 2.3. To interpret the polynomials pi , let �i denote the i th elementary
symmetric polynomial in formal variables x1; : : : ; xn . If we write ai D .�1/i�i ,
then Newton’s Identities give

pi D

nX
jD1

xij :

De�nition 2.4. For i; n � 1 , let the T ni � Ana � Pn�1b be the variety de�ned by
the vanishing of the polynomial

(2.4)
X

� s:t: j�jDi

 
i

�

!
pjj�jjb� :

Note that this polynomial is homogeneous of degree i in the b -coordinates.
Projecting onto the �rst factor gives a family of degree i hypersurfaces in Pn�1

T ni ! Ana

We refer to this family as the nth Tschirnhaus hypersurface of degree i . When
the superscript n is clear from context, we will suppress it for ease of reading.

De�nition 2.5. Fix n � 1 . For 1 � i1 < : : : < ik , de�ne the nth Tschirnhaus
complete intersection T ni1���ik (of multi-degree i1 � � � ik ) to be the variety de�ned
by the vanishing of the polynomials (2.4) for i D i1; : : : ; ik . Equivalently, de�ne

T ni1���ik WD T
n
i1
�Ana�Pn�1b

� � � �Ana�Pn�1b
T nik ! Ana :

De�ne the nth reduced Tschirnhaus complete intersection T n
0

i1���ik
(of multi-

degree i1 � � � ik ) by

T n
0

i1���ik
WD T ni1���ik \ ¹b0 D 0º � Ana � Pn�1b :
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Example 2.6. �e hyperplane T1.a/ � Pn�1b is given by the equation

nb0 C

n�1X
iD1

pibi D 0

Over ZŒ1=n� , we have an isomorphism

Ana � Pn�2 !Š T1�
a; Œb1 W � � � W bn�1�

�
7!

 
a;
�
�
1

n

n�1X
iD1

pibi W b1 W � � � W bn�1

�!
:

Likewise, the hyperplane T 01.a/ � Pn�2b is given by the equation

n�1X
iD1

pibi D 0

Over each locus ¹pi ¤ 0º � Ana for 1 � i < n , we have an isomorphism

Ana � Pn�3 !Š T1�
a; Œb1 W � � � W bOi W � � � W bn�2�

�
7!

0@a; �b1 W � � � W bi�1 W �1
pi

X
j¤i

pj bj W biC1 W � � � bn�2

�1A :
As a warm-up to �eorem 2.12 below, we prove the following.

Lemma 2.7. �e families of quadrics T12 ! Ana and T 012 ! Ana are generically
smooth.

Remark 2.8. �e statement of the lemma for T12 (and most likely for T 012 )
is classical, and follows from the fact that the discriminant of the quadratic
form de�ning T12.a/ is equal to 1

n
times the discriminant of the polynomial

xn C a1x
n�1 C � � � C an (see, e.g., [Syl, p. 468–469]). We give a di�erent proof

in order to warm-up for �eorem 2.12.

Proof of Lemma 2.7. �e quadric T12.a/ � Pn�2b is given, in coordinates Œb1 W
� � � W bn�1� by the equation

�
1

n

 
1

n

n�1X
iD1

pibi

!2
C

X
1�i<j�n�1

piCj bibj C

n�1X
iD1

p2ib
2
i D 0:

We now specialize to the radical pencil xn C a D 0 , i.e., a D .0; : : : ; 0; a/ . �en
T12.a/ WD T12.0; : : : ; a/ is given by the equation
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:̂
�2na

�Pn�1
2

iD1 bibn�i

�
D 0 n odd;

�na
�
b2n
2

C 2
Pn

2�1

iD1 bibn�i

�
D 0 n even:

(2.5)

�e partial derivatives of the de�ning polynomial of T12.a/ are given by

@bj T12.a/ D �2nabn�j :

We see that these vanish simultaneously if and only if bj D 0 for all j , i.e.,
T12.a/ is smooth over ZŒ1=2n� so long as a ¤ 0 (and thus T12 ! Ana is
generically smooth).

We now prove T 012 ! Ana is generically smooth. Using (2.2), the hyperplane
T 01.a/ is given by

.n � 1/abn�1 D 0:

Over ZŒ1=.n � 1/� , and a ¤ 0 , we can therefore use the coordinates

Œb1 W � � � W bn�2�

on T 01.a/ . In these coordinates, and abusing notation by writing the same symbol
for a hypersurface and its de�ning polynomial, we have

T 012.a/ D

8̂<̂
:
�2.n � 1/a

�Pn
2�1

iD1 bibn�1�i

�
n even;

�.n � 1/a.b2n�1
2

C

�Pn
2�1

iD1 bibn�1�i

�
n odd:

�e partial derivatives of T 012.a/ are given by

@bj T
0
12.a/ D �2.n � 1/abn�1�j :

We see that these vanish simultaneously if and only if bj D 0 for all j , i.e.,
T 012.a/ is smooth over ZŒ1=2.n � 1/� so long as a ¤ 0 (and thus T 012 ! Ana is
generically smooth).

Tschirnhaus hypersurfaces as spaces of maps. In Section 3, we explain the
origin of the Tschirnhaus complete intersections in the classical study of formulas
for the general degree n polynomial (beginning with [Tsch]). For the moment,
we just observe that several varieties of classical interest are closely related to
T ni for small i; n .

Let x WD .x1; : : : ; xn/ be coordinates on a�ne n -space, denoted Anx . Let �i .x/
denote the i th elementary symmetric function on the xi , and consider the map

q W Anx ! Ana

x 7!
�
��1.x/; : : : ; .�1/n�n.x/

�
:
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By Newton’s �eorem, this map realizes Ana as the quotient of Anx by the
permutation action of the symmetric group Sn on Anx . As remarked above,
Newton’s Identities imply that

pi
�
q.x/

�
D

nX
jD1

xij :

Let Qb WD .b0; : : : ; bn�1/ viewed as a�ne coordinates on An
Qb
. �e relative a�ne

cone on the pullback Ti jAnx ! Anx is given by

ATi jAnx WD
8<:.x; Qb/ 2 Anx �An

Qb j
X X

� s:t: j�jDi

 
i

�

!0@ nX
jD1

x
jj�jj
j

1A Qb� D 0
9=; :

Consider the map

ev W Anx �An
Qb ! Anx�

x; Qb
�
7!

0@n�1X
jD0

bjx
j
1 ; : : : ;

n�1X
jD0

bjx
j
n

1A :
Lemma 2.9. In the notation above,

ATi jAnx D ev�1
�²

x 2 Anx j
X
j

xij D 0:

³�
:

Proof. We prove this by explicit computation. For i � 0 , write

pi .x/ WD
nX
`D1

xi`:

In particular, p0.x1; : : : ; xn/ D n . Let ev.x; Qb/` WD
Pn�1
jD0 bjx

j

`
. By the Multi-

nomial �eorem,

pi
�
ev.x; Qb/

�
D

X
`

ev.x; Qb/i` D
X
`

0@n�1X
jD0

bjx
j

`

1Ai

D

X
`

0@ X
� s:t: j�jDi

 
i

�

!
b�xjj�jj

`

1A
D

X
� s:t:j�jDi

 
i

�

!
pjj�jjb�(2.6)

where, in the �nal line, we use Newton’s Identities to identify the power sums
with the polynomials pjj�jj in the ai de�ned in Equations (2.1)–(2.3).

Setting the form (2.6) to 0, we obtain the hypersurface eT ni as claimed.
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Example 2.10. Let S � P4 be the Clebsch diagonal surface, i.e., the complete
intersection

S WD

²
Œx1 W � � � W x5� 2 P4 j

5X
iD1

xi D

5X
iD1

x3i D 0

³
:

Let eS � A5x be the a�ne cone over S . �en

BT 513jA5x D ev�1.eS /:
As observed by Klein [Klei3, Part II, Ch. 2], BT 513jA5x can be understood as a
space of S5 -equivariant maps of A5x ! eS .

Example 2.11. Let F � P6 be the symmetric Fano sextic 3-fold as in [Bea], i.e.,
the complete intersection

F WD

²
Œx1 W � � � W x7� 2 P6 j

7X
iD1

xi D

7X
iD1

x2i D

7X
iD1

x3i D 0

³
:

Let eF � A7x be the a�ne cone over F . �en

CT 7123jA7x D ev�1. eF /:
�ough not remarked upon in [Bea], the symmetric Fano sextic arises as the
“root space” of the normal form for the general degree 7 polynomial considered
by Hilbert in his 13th problem [Hil1]:

z7 C az3 C bz2 C cz C 1 D 0:

�e variety CT 7123jA7x can be understood as a space of S7 -equivariant maps of
A7x ! eF , equivalently of ways of converting the general degree 7 polynomial
into Hilbert’s normal form.

Geometry of Tschirnhaus complete intersections. We can now state our main
geometric theorem.

�eorem 2.12. Let p be a prime. Let i D pr C 1 < n for some prime power pr
with r > 0 .
(1) If p − n , the family of Tschirnhaus complete intersections

T12i ! Ana

is generically smooth (i.e., there is a Zariski open U � Ana such that for all
a 2 U , T12i .a/ is a smooth complete intersection).
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(2) If p j n , the family of reduced Tschirnhaus complete intersections

T 012i ! Ana

is generically smooth.

Deferring the proof for a moment, let K be a �eld of characteristic 0, now
and throughout this paper.

We now record a special case of Kleiman’s Bertini �eorem [Kle]; for ease
of reading, we include the proof below.

Proposition 2.13 (Bertini for isotropics). Let K be algebraically closed. Let X be
a K -variety. Let Q � PnX be a smooth family of quadrics over X . For k � bn�1

2
c ,

let Gr.k;Q/! X denote the relative Grassmannian of k -dimensional isotropic
subspaces in Q , and let L ! Gr.k;Q/ denote the tautological bundle. Let
Y � PnX be a smooth family of varieties over X such that the family Q�Pn

X
Y ! X

is smooth over some dense open V � X . �en there exists a dense open
U � Gr.k;Q/jV such that the family LjU �Pn

X
Y jV ! X is smooth.

Combining �eorem 2.12, Lemma 2.7 and Proposition 2.13, we obtain the
following.

Corollary 2.14. Let Gr.T12/! Ana denote the relative Grassmannian of maximal
isotropics in the family of quadrics T12 ! Ana , and let L! Gr.T12/ denote the
tautological bundle (with similar notation for the analogous objects for T 012 ). Let
p be a prime and let i D pr C 1 for some r > 0 .

(1) If p − n , there exists a dense open V � Gr.T12/ such that

LjV �Ana�Pn�1b
T12i ! Ana

is smooth (i.e., for the generic polynomial, the intersection of T12i .a/ with
a maximal isotropic in T12.a/ is smooth).

(2) If p j n , there exists a dense open V � Gr.T 012/ such that

LjV �Ana�Pn�20b
T 012i ! Ana

is smooth.

Proof. Note that to prove the existence of an open dense V , it su�ces
to restrict all of the varieties over Z above to a geometric generic point
Spec.K/ ! Spec.Z/ . �e result now follows immediately from �eorem 2.12,
Lemma 2.7 and Proposition 2.13.
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Remark 2.15. Corollary 2.14 (for the case p D 2; i D 3; n D 9 ) �lls the gap in
Hilbert’s argument remarked upon by Dixmier [Dix, S8].

Proof of Proposition 2.13. We recall Kleiman’s proof [Kle]. Consider the canon-
ical map

pr2 W L! Q

(coming from the construction of L as an incidence variety L � Gr.k;Q/�XQ ).
Observe that this map is smooth: indeed, the relative group scheme O.Q/ acts
transitively over X on both L and Q (i.e., it acts transitively on �bers over X )
and the map L! Q is an O.Q/ -equivariant �ber bundle, with �ber at v 2 Q
given by StabO.Q/.v/=StabO.Q/.L; v/ , (n.b. the stabilizer of an isotropic point v
is a maximal parabolic, and the stabilizer of the �ag v 2 L is a sub-parabolic).

Let V � X be a dense open such that Q �Pn
X
Y ! X is smooth over V .

Shrinking V as necessary, we can assume without loss of generality that V is
a smooth variety over K (note that we are using characteristic 0 here), and thus
.Q �Pn

X
Y /jV is also a smooth K -variety. Now consider the �ber product

.L �Pn
X
Y /jV

f //

g

��

.Q �Pn
X
Y /jV

�

��
LjV

pr2 //

�

��

QjV

Gr.k;Q/jV

�e map f is smooth because pr2 is smooth. Because .Q�Pn
X
Y /jV is a smooth

K -variety, the K -variety .L�Pn
X
Y /jV is smooth. We therefore have a dominant

map of smooth K -varieties

q D � ı g W .L �Pn
X
Y /jV ! Gr.k;Q/jV :

By generic smoothness (e.g. ,[Har, Corollary III.10.7]), there exists a nonempty
open subset U � Gr.k;Q/jV such that q W .LjU �Pn

X
Y jV /! U is smooth, and

thus the composite .LjU �Pn
X
Y jV /! U ! V is smooth as well.

We now prove �eorem 2.12.

Proof of �eorem 2.12. We prove the two cases separately, via parallel arguments.
As in the proof of Lemma 2.7, if it will not cause confusion, we will abuse
notation by writing the same symbol to denote a complete intersection and its
de�ning polynomials.
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Case 1: p − n . �e complete intersection T12i .a/ is smooth if and only if the
3 � n matrix 0B@ @b1T1.a/ � � � @bn�1T1.a/

@b1T2.a/ � � � @bn�1T2.a/
@b1Ti .a/ � � � @bn�1Ti .a/

1CA
has full rank for all b 2 T12i .a/ . Choosing coordinates on T1 , we can equivalently
check whether the 2 � .n � 1/ matrix given by the partials of T12 and T1i has
rank 2 for all b 2 T12i .a/ . To show generic smoothness, it su�ces to �nd a
single a for which this holds. Further, because the matrix above is de�ned over
Z , to show it is nonsingular in characteristic 0, it su�ces to �nd a prime p for
which its reduction mod p is nonsingular.

We specialize to the locus of radical polynomials, i.e., those of the form

p.x/ D xn C a

i.e., a D .0; : : : ; 0; a/ . It su�ces to show there exists a such that T12i .a/ WD
T12i .0; : : : ; a/ is smooth. Note that, restricting to xn C a , the hyperplane T1.a/
is given by

nb0 D 0:

We can therefore use the coordinates

Œb1 W � � � W bn�1�

on T1.a/ as above. As in (2.5), the form T12.a/ is given in these coordinates by

T12.a/ D

8̂̂<̂
:̂
�2na

�Pn�1
2

iD1 bibn�i

�
n odd

�na
�
b2n
2

C 2
Pn

2�1

iD1 bibn�i

�
n even

and the partial derivatives are given by

@bj T12.a/ D �2nabn�j :

Similarly, using Notation 2.2, the form T1i .a/ is given by

T1i .a/ D n �

0@ i�1X
`D1

.�1/`a`

0@ X
0� s:t:j0�jDi;jj0�jjD`n

 
i
0�

!
0b
0�

1A1A
�e partial derivatives of T1i .a/ are given by

@bj T1i .a/ D in �

0@ i�1X
`D1

.�1/`a`

0@ X
0� s:t: j0�jDi�1;jj0�jjCjD`n

 
i � 1
0�

!
0b
0�

1A1A :
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De�ne

Tj;12.a/ WD abn�j

Tj;1i .a/ WD

i�1X
`D1

.�1/`a`

0@ X
0� s:t: j0�jDi�1;jj0�jjCjD`n

 
i � 1
0�

!
0b
0�

1A :
�en, in characteristic 0, the matrix 

@b1T12.a/ � � � @bn�1T12.a/

@b1T1i .a/ � � � @bn�1T1i .a/

!
is singular if and only if the matrix 

T1;12.a/ � � � Tn�1;12.a/

T1;1i .a/ � � � Tn�1;1i .a/

!
is singular. Because this matrix is de�ned over ZŒa� , to show that it is generically
nonsingular in characteristic 0, we can reduce mod p and �nd some a 2 Fp for
which it is nonsingular.

Let Tj;12.a/ and Tj;1i .a/ denote the reduction of the above forms mod p .
Recall that Legendre’s formula implies that a prime p divides all the

multinomial coe�cients ¹
�

`
k1;:::;km

�
j kj < ` for all j º if and only if ` D pr .

�erefore, reducing the forms Tj;1i .a/ mod p , and using i � 1 D pr , Legendre’s
formula implies that .

Tj;1i .a/ D

i�1X
`D1

.�1/`a`

0@ X
1���n�1;pr�CjD`n

bp
r

�

1A(2.7)

(n.b. as we remark just below, only one term in the above sum is nonzero). Now,
because p − n , pr 2 .Z=nZ/� . �erefore, multiplication by p�r determines a
permutation of ¹1; : : : ; n � 1º D Z=nZ � ¹0º , which we denote by

�.j / WD p�r � j 2 Z=nZ � ¹0º D ¹1; : : : ; n � 1º:

In this notation, we have

Tj;12.a/ D ab�j

Tj;1i .a/ D .�a/
pr�.�j/Cj

n b
pr

�.�j /

where ˙j and �.˙j / denote the corresponding elements of ¹1; : : : ; n�1º . Now,
multiplication by p�r on Z=nZ�¹0º generates a cyclic group, and so a partition
of ¹1; : : : ; n � 1º into m orbits O˛ of size s˛ . Let j˛ denote the least element
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of the orbit O˛ . For ease of notation, denote

�˛.t/ WD
pr�t .j˛/C n � �

t�1.j˛/

n
:

Reorder the columns of the matrix we are considering so that it is of the form

M WD
�
M1 � � � Mm

�
(2.8)

where each M˛ denotes the 2 � s˛ matrix

M˛ WD

 
abj˛ ab�.j˛/ � � � ab�s˛�1.j˛/

.�a/�˛.1/b
pr

�.j˛/
.�a/�˛.2/b

pr

�2.j˛/
� � � .�a/�˛.s˛/b

pr

j˛

!
:

Note that, by construction, for each j , all monomials containing bj appear in
precisely one M˛ .

Now the matrix (2.8) is singular at b 2 Pn�2 and a 2 Fp if and only if its
two rows are linearly dependent. Equivalently, there exists � 2 F

�

p such that for
all ˛ and 0 � t � s˛ � 1

(2.9) ab�t .j˛/ D �.�a/
�˛.tC1/b

pr

�tC1.j˛/
:

Restrict to a 2 F
�

p . �en, by induction on t , we obtain that for all j 2 O˛

bj D .��/
Ps˛
tD1

p.t�1/r .�a/
Ps˛
tD1

p.t�1/r .�˛.t/�1/b
ps˛r

j :

�erefore, for any bj ¤ 0 for j 2 O˛ (and such a j and ˛ must exist since
b 2 Pn�2 ), we have

b
ps˛r�1
j D .��/�

Ps˛
tD1

p.t�1/r .�a/�
Ps˛
tD1

p.t�1/r .�˛.t/�1/

DW c˛.a/

But, if j D �t .j˛/ , then by Equation (2.9),

c˛.a/ D b
ps˛r�1
j D .��.�a/�˛.tC1/�1/p

s˛r�1c˛.a/
pr :

Expanding the de�nition of c˛.a/ in terms of � and a , we obtain

.��/�
Ps˛
tD1

p.t�1/r .�a/�
Ps˛
tD1

p.t�1/r .�˛.t/�1/

D .��/p
s˛r�1�

Ps˛
tD1

ptr .�a/.p
s˛r�1/.�˛.tC1/�1/�

Ps˛
tD1

ptr .�˛.t/�1/

D .��/�
Ps˛
tD1

p.t�1/r .�a/.p
s˛r�1/.�˛.tC1/�1/�

Ps˛
tD1

ptr .�˛.t/�1/:

�erefore, for all 0 � t � s˛

1 D .�a/.p
s˛r�1/.�˛.tC1/�1/�

Ps˛
tD1

p.t�1/r .pr�1/.�˛.t/�1/
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In particular,

(2.10) a2.p
s˛r�1/.�˛.tC1/�1/�

Ps˛
tD1

p.t�1/r .pr�1/.�˛.t/�1/ D 1:

But, s˛; �˛.t/; p; r 2 N are �xed once and for all by our choice of p and n . In
particular, there exists N 2 N such that

N > max
˛

ˇ̌̌̌
2.ps˛r � 1/.�˛.t C 1/ � 1/ �

sX̨
tD1

p.t�1/r .pr � 1/.�˛.t/ � 1/

ˇ̌̌̌
:

But, then for any primitive N th root of unity a 2 Fp , Equation 2.10 is never
satis�ed. �erefore, the matrix M.a/ D .M1.a/ � � �Mm.a// of (2.8) has full rank
for all 0b 2 Pn�2 as claimed.

Case 2: p j n . �is case is similar. We specialize to the pencil xn C ax D
0 , i.e., a D .0; : : : ; 0; a; 0/ . It su�ces to show there exists a such that
T 012i .a/ WD T

0
12i .0; : : : ; a; 0/ is smooth.

As noted in the proof of Lemma 2.7, over ZŒ1=.n � 1/� , and a ¤ 0 , we can
use the coordinates

Œb1 W � � � W bn�2�

on T 01.a/ . We follow Notation 2.2. In these coordinates and this notation, the
partial derivatives of T 012.a/ are given by

@bj T12.a/ D �2.n � 1/abn�1�j

(as noted in the proof of Lemma 2.7). Similarly, we have

T 01i .a/ D.n � 1/ �

0@ i�1X
`D1

.�a/`
X

0�0 s:t: j0�0jDi;jj0�0jjD`.n�1/

 
i
0�0

!
0b0.0�0/

1A

@bj T
0
1i .a/ Di.n � 1/ �

0@ i�1X
`D1

.�a/`
X

0�0 s:t: j0�0jDi�1;jj0�0jjCjD`.n�1/

 
i � 1
0�0

!
0b0.0�0/

1A
De�ne

T 0j;12.a/ WD abn�1�j

T 0j;1i .a/ WD

i�1X
`D1

.�a/`
X

0�0 s:t: j0�0jDi�1;jj0�0jjCjD`.n�1/

 
i � 1
0�0

!
0b0.0�0/
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Just as in Case 1, the matrix 
@b1T12.a/ � � � @bn�2T12.a/

@b1T1i .a/ � � � @bn�2T1i .a/

!
is everywhere nonsingular in characteristic 0 for some a if and only if the matrix 

T 01;12.a/ � � � T 0n�2;12.a/

T 01;1i .a/ � � � T 0n�2;1i .a/

!
is everywhere nonsingular for some a . We now reduce this matrix mod p .
Because i D pr C 1 , the mod p reduction of T 0j;1i .a/ is given by

T 0j;1i .a/ D

i�1X
`D1

.�a/`
X

0�0 s:t: j0�0jDi�1;jj0�0jjCjD`.n�1/

 
i � 1
0�0

!
0b0.0�0/

In particular, because i � 1 D pr , and pr 2 .Z=.n� 1/Z/� , the same arguments
as above allow us to de�ne a permutation � 	 ¹1; : : : ; n�2º D .Z=.n�1/Z/�¹0º
by

�.j / D p�rj 2
�
Z=.n � 1/Z

�
� ¹0º D ¹1; : : : ; n � 2º:

Using � , we have

T 0j;1i .a/ D .�a/
pr�.j/Cj
n�1 b

pr

�.j /
:

Mutatis mutandis, we now complete the argument by the same reasoning as for
Case 1.

Remark 2.16. A similar argument shows that the Tschirnhaus hypersurface
Ti ! Ana itself is generically smooth for i D pr C 1 and r � 0 . More generally,
we see no reason not to expect this, as well as �eorem 2.12, to hold without
restriction on i < n . In principle, this comes down to checking whether an
appropriate discriminant identically vanishes on Ti (resp. T12i ), i.e., checking
a polynomial condition on the form de�ning Ti . However, this discriminant is
a polynomial of degree .n � 1/.d � 1/n�1 in the coe�cients of the form, and
the number of terms in this polynomial grows so quickly as to make direct
computation impossible except for very small d and n .

3. Algebraic functions and Tschirnhaus transformations

In this section, we recall the theory of Tschirnhaus transformations of algebraic
functions and relate this to the Tschirnhaus complete intersections studied above.



Tschirnhaus transformations after Hilbert 507

Let X be an irreducible K -variety. We write K.X/ for the rational functions
on X . More generally, for a (not necessarily reducible) K -variety Y with
irreducible components ¹Yiº , let K.Y / WD

Q
i K.Yi / .

Recall that an algebraic function ˆ on X is a �nite rational correspondence
XÜ1Wn A1 , i.e., ˆ is given by a span

Eˆ
z //

�

��

A1

X

where � is a dominant, quasi-�nite map and z is a regular function. We say ˆ

is irreducible if Eˆ is an irreducible K -variety and z is a primitive element
of the �nite �eld extension K.Eˆ/=K.X/ . As a bridge to the classical literature,
we will also denote K.Eˆ/ as K.X/.ˆ/ to emphasize that K.Eˆ/ is obtained
from the �eld K.X/ by adjoining the values of ˆ .

Let Mon.ˆ/ denote the monodromy group of ˆ , equivalently the Galois
group of the normal closure of K.X/.ˆ/=K.X/ . Let

mˆ.z/ WD z
n
C a1z

n�1
C : : :C an

denote the minimal polynomial of z , where the ai 2 K.X/ (i.e., mˆ.z/ is
the monic generator of the ideal of K.X/Œz� corresponding to the extension
K.X/.ˆ/ ). A classical perspective describes ˆ as the assignment

(3.1) x 7!
®
z 2 NK j mˆ.x/.z/ D z

n
C a1.x/z

n�1
C : : :C an.x/ D 0

¯
:

For any �eld extension K.X/ ,! L , write

L.ˆ/ WD L˝K.X/ K.X/.ˆ/:

Note that since ¹1; z; : : : ; zn�1º is a basis for K.X/.ˆ/ over K.X/ , it is also
a basis for L.ˆ/ over L . Given this, for each w 2 L.ˆ/ , there exist unique
b0; : : : ; bn�1 2 L such that

w D

n�1X
iD0

biz
i :

Moreover, Qb D .b0; : : : ; bn�1/ 2 Ln determines an L -linear transformation

TQb W L.ˆ/! L.ˆ/

given by (extending L -linearly) the assignment TQb.z
j / WD wj for each 0 � j �

n� 1 . Note that TQb is an automorphism if and only if w is a primitive element
of the extension L.ˆ/=L .
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De�nition 3.1. Let X be an irreducible K -variety. Let ˆ be an irreducible
algebraic function on X with primitive element z 2 K.X/.ˆ/ . A Tschirnhaus
transformation T of ˆ is a K.X/ -linear automorphism

T W K.X/.ˆ/! K.X/.ˆ/:

of the form

zj 7! wj D

 
n�1X
iD0

biz
i

!j
for b0; : : : ; bn�1 2 K.X/ . We say the transformation is rational over X if
b0; : : : ; bn�1 2 K.X/ . More generally, we say it is rational over L=K.X/ if
all bi 2 L .

Picking an integral model Y ! X for K.X/. Qb/=K.X/ , (i.e., a map of K -
varieties Y ! X and an isomorphism K.Y / Š K.X/. Qb/ as extensions of K.X/ ),
we denote by T .ˆ/ the algebraic function on Y determined by the primitive
element w 2 K.Y /.ˆ/ .

Now let ˆ be an algebraic function as above, and T a Tschirnhaus
transformation of ˆ . Let w D T .z/ , and let the minimal polynomial of
multiplication by w on K.X/.ˆ/ be given by

mT.ˆ/.w/ WD w
n
C c1w

n�1
C : : : cn

where ci 2 L D K.Y / . �e algebraic function T .ˆ/ on Y is given by the
assignment

y 7!
®
z 2 K.X/ j mT.ˆ/.y/.z/ D z

n
C c1.y/z

n�1
C : : :C cn.y/ D 0

¯
:

Recall that AnX WD X �Spec.K/ AnK , viewed as a variety over X .

Lemma 3.2. Let X be irreducible, and let ˆ be an irreducible, generically
n -valued algebraic function on X . �en there is an open subvariety

Tˆ � AnX ;

such that for all �nite extensions L=K.X/ , Tˆ.L/ is the set of Tschirnhaus
transformations of ˆ which are rational over L . In particular, the map

Tˆ � � //

!!

AnX

��
X

is smooth. Equivalently the parameter space of Tschirnhaus transformations
Tˆ ! X is smooth over X .
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Proof. We begin by constructing the variety Tˆ . Denote the set of K.X/ -rational
Tschirnhaus transformations of ˆ by Tˆ.K.X// . We will show that this embeds as
an explicit Zariski open subset of K.X/n D AnX .K.X// , and that its complement
is de�ned over K.X/ ; we thus conclude that Tˆ.K.X// is the set of geometric
generic points of a variety Tˆ � AnX .

Let z 2 K.X/.ˆ/ be the primitive element determined by ˆ . Given
Qb 2 K.X/n , we have a K.X/ -linear endomorphism

TQb W K.X/.ˆ/! K.X/.ˆ/

given by

zj 7!

 
n�1X
iD0

biz
i

!j
:

Moreover, the assignment Qb 7! TQb de�nes a Gal.K.X/=K.X// -equivariant map

T W An
�
K.X/

�
! EndK.X/

�
K.X/.ˆ/

�
Š An

2�
K.X/

�
:

By de�nition, Tˆ.K.X// is in bijection with the set°
Qb 2 K.X/n j TQb 2 AutK.X/

�
K.X/.ˆ/

�±
i.e.,

Tˆ
�
K.X/

�
D T �1

�
AutK.X/

�
K.X/.ˆ/

��
:

Since AutK.X/.K.X/.ˆ// is the pullback to K.X/ of an open subvariety of
An

2

Z (i.e., the locus ¹det ¤ 0º/ ) and T is de�ned over K.X/ , we conclude that
Tˆ.K.X// � An.K.X/ is Zariski open and de�ned over K.X/ as claimed. �e
remaining claims follow by direct inspection.

Corollary 3.3. Let ˆ be an irreducible n -valued algebraic function on X such
that K.X/.ˆ/=K.X/ has no intermediate sub�elds. Let AnX be given coordinates
.b0; : : : ; bn�1/ as above, and let A1X;0 � AnX denote the b0 -axis. �en

Tˆ D AnX �A1X;0:

Proof. Because K.X/.ˆ/=K.X/ has no intermediate sub�elds, y 2 K.X/.ˆ/ is
a primitive element if and only if y … K.X/ , i.e., if and only if y is of the form
y D

Pn�1
iD0 biz

i with bi ¤ 0 for some i > 0 .

Example 3.4. Let X D Ana , viewed as the parameter space for monic, degree n
polynomials (parametrized by their coe�cients a WD .a1; : : : ; an/ ). Let Pn be the
general degree n polynomial, i.e.

mPn.z/ D z
n
C a1z

n�1
C : : :C an:
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�en the degree n extension K.Ana/.Pn/=K.A
n
a/ has no intermediate sub�elds,

because it corresponds to the maximal subgroup Sn�1 � Sn D Mon.Pn/ . In
particular, the space of Tschirnhaus transformations of the general degree n

polynomial is given by

TPn D AnX �A1X;0

WD An
Qb �Ana �A1b0 �Ana

D .An
Qb �A1b0/ �Ana :

Now let ˆ be an irreducible algebraic function on X , and let T be a
Tschirnhaus transformation of ˆ as above, with minimal polynomial

mT.ˆ/.y/ WD y
n
C c1y

n�1
C : : : cn

Observe that the assignment

x 7!
�
c1.x/; : : : ; cn.x/

�
determines a rational map

XÜ An

which �ts into a pullback square

Eˆ //

�

��

EPn

��
X // An

In particular, the Tschirnhaus transformation T transforms ˆ into a function of
d D dim.Image.XÜ An// variables.

We now study loci of interest in the space of Tschirnhaus transformations.
�e basic observation (essentially going back to Tschirnhaus [Tsch]) is as follows.
First, the collection of n -valued algebraic functions on X is given by AnX , where
a D .a1; : : : ; an/ 2 AnX corresponds to the function ˆa of (3.1), i.e., the function

x 7!
®
z 2 NK j mˆa.x/.z/ D z

n
C a1.x/z

n�1
C : : :C an.x/ D 0

¯
:

Next, the assignment .ˆa; Qb/ 7! TQb.ˆa/ determines an “evaluation” map

AnX;a �An
X;Qb !

ev AnX;a

.a; Qb/ 7! TQb.a/

(where we write .�/a and .�/Qb to distinguish the di�erent roles of the a and
Qb coordinates). �e coordinates of TQb.a/ can be computed explicitly as follows.



Tschirnhaus transformations after Hilbert 511

By de�nition, Qb 2 AnX corresponds to the assignment

z 7!

n�1X
iD0

biz
i
D y

for z a value of ˆa . Passing to a Galois closure of K.X/.ˆ/ , the transformation
T maps the roots zi of mˆ to yi given by

yi D

n�1X
jD0

bj z
j
i :

In particular, the polynomial mT.ˆ/ is given by

mT.ˆ/.y/ D

nY
iD1

.y � yi /:

i.e., the coordinates of Tˆ are obtained (up to sign) by expanding the elementary
symmetric polynomials in the yi as polynomials in b with coe�cients given
by polynomials in the coordinates a . In particular, the j th coe�cient is a
homogeneous polynomial of total degree j in the coordinates Qb .

As a result, every Zariski closed subvariety Z � AnX;a determines a Zariski
closed subvariety

ev�1.Z/ � AnX;a �An
X;Qb;

Specializing to a particular algebraic function ˆ , and its space of Tschirnhaus
transformations Tˆ � An

X;Qb
, we obtain a Zariski closed subvariety (concretely

Tˆ \ ev�1.Z/ ), which, by abuse of notation, we denote again by

ev�1.Z/ � Tˆ:

By construction, this subvariety parametrizes Tschirnhaus transformations of ˆ
such that T .ˆ/ (or more precisely, the coe�cients of its minimal polynomial)
lie in Z � AnX;a .

We can now make contact with the Tschirnhaus complete intersections
introduced in Section 2. For 1 � i1 < : : : < ik , de�ne

Zi1���ik WD
®
a 2 Ana j pi1.a/ D � � � D pik .a/ D 0

¯
where the pi s are as in Section 2.

De�nition 3.5. Let n > 0 . For 1 � i1 < : : : < ik , de�ne the a�ne Tschirnhaus
complete intersection QTi1���ik .Pn/ to be

QTi1���ik .Pn/ WD ev�1.Zi1���ij / � TPn � .AnQb �A1b0D0/ �Ana :

Projecting onto Ana gives the family QTi1���ik .Pn/! Ana .
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Similarly, de�ne the Tschirnhaus complete intersection

Ti1���ik .Pn/ �
�
Pn�1b �

®
Œ1 W 0 W � � � W 0�

¯�
�Ana

to be the (�berwise) projectivization of the family QTi1���ik .Pn/! Ana .
De�ne the reduced a�ne Tschirnhaus complete intersection by

QT 0i1���ik .Pn/ WD Ti1���ik \ ¹b0 D 0º:

Similarly, de�ne the reduced Tschirnhaus complete intersection

T 0i1���ik .Pn/ � Pn�20b �Ana

to be the (�berwise) projectivization of the family QT 0i1���ik ! Ana .

Lemma 2.9 can now be equivalently restated as follows.

Lemma 3.6. For all n and all 1 � i1 � � � � � ik , we have

Ti1���ik .Pn/ D T
n
i1���ik

as subvarieties of Ana �Pn�1b , where the right hand side denotes the Tschirnhaus
complete intersection of De�nition 2.5.

Similarly, we have

T 0i1���ik .Pn/ D T
n0

i1���ik

as subvarieties of Ana � Pn�20b .

4. �e resolvent degree of a dominant map

Recall the following (see [Bra2, AS, FW]).

De�nition 4.1 (Resolvent degree). Let Y ! X be a generically �nite dominant
map of K -varieties. Its resolvent degree RD.Y ! X/ is the minimum d for
which there exists a dense Zariski open U � X and a tower of generically �nite
dominant maps

Er ! � � � ! E1 ! E0 D U

such that Er ! U factors through a dominant map Er ! Y and such that for
each i � 0 , there exists a pullback diagram

Ei //

��

QZi

��
Ei�1 // Zi

where QZi ! Zi is a generically �nite dominant map with dim.Zi / � d .
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Example 4.2. Consider the space Ana of monic degree n -polynomials. �is has
a canonical n -sheeted branched cover EPn ! Ana where EPn is the space of
monic degree n polynomials with a choice of root, and the map forgets the root.
By de�nition

RD.n/ WD RD.EPn ! Ana/:

We now extend the notion of resolvent degree to general dominant maps. We
adopt the following convention to avoid pathologies.

Convention 4.3. By a dominant map, we mean a map Y ! X that is both
dominant, and is such that every irreducible component of Y maps dominantly
onto some irreducible component of X .

De�nition 4.4 (Rational multi-section). Let Y !� X be a dominant map of K -
varieties. A rational multi-section is a subvariety U � Y such that the restriction
�jU W U ! X is a generically �nite dominant map.

Lemma 4.5. Every dominant map Y ! X admits a dense set of rational multi-
sections, i.e., the closure of their union is all of Y .

Proof. First assume that X is irreducible. Let K.X/ be an algebraic closure of
the rational functions of X . �en every point of Y.K.X// is a germ of a rational
multi-section, and, by Hilbert’s Nullstellensatz, the closure of the union of all of
these contains the generic �ber of Y ! X ; in particular it is dense. For the general
case, the argument above exhibits a dense set of rational multi-sections over each
irreducible component. �eir union gives a dense set of rational multi-sections of
Y ! X .

It will be useful to extend the de�nition of resolvent degree from generically
�nite dominant rational maps to all dominant rational maps.

De�nition 4.6 (Resolvent degree of a dominant map). Let Y !� X be a dominant
map of K -varieties. �e resolvent degree of the dominant map, RD.Y ! X/

is de�ned to be the minimum d for which there exists a dense set of rational
multi-sections ¹U˛ � Y º with RD.U˛ ! X/ � d for all ˛ .

We will need a few basic facts about the resolvent degree of a dominant map.
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Lemma 4.7. Let Y ! X be a dominant map of K -varieties.

(1) RD.Y ! X/ � dim.X/ .
(2) Let Z ! X be any dominant map of K -varieties. �en

RD.Y �X Z ! Z/ � RD.Y ! X/:

(3) If Y ! X is birationally equivalent to W ! Z , then

RD.Y ! X/ D RD.W ! Z/:

(4) If X D
S
Xi is a union of irreducible components, write ¹Yi;j º for the set

of irreducible components of Y which dominate Xi . �en

RD.Y ! X/ D max
i;j

®
RD.Yi;j ! Xi /

¯
:

Proof. �ese follow immediately from the de�nition and the analogous properties
for resolvent degree of generically �nite dominant maps (cf. [FW, Lemmas 2.5,
2.6]).

Lemma 4.8. Let Y ! X be a surjective map (on geometric points). Let Z ! X

be any map. �en
RD.Y jZ ! Z/ � dim.X/:

Proof. Let W � X be the Zariski closure of the image of Z ! X . By
construction, the map Z ! W is dominant. �e surjectivity of Y ! X implies
that the restriction

Y jW ! W

is dominant. �erefore, by Lemma 4.7,

RD.Y jZ ! Z/ � RD.Y jW ! W /

� dim.W /
� dim.X/:

Lemma 4.9. Let Y ! X be a generically �nite dominant map. �en De�nition
4.6 specializes to De�nition 4.1 for Y ! X , i.e., they give equivalent notions of
resolvent degree.

Proof. By Lemma 4.7 4 and [FW, Lemma 2.6], it su�ces to prove this when
Y is irreducible. In this case, any rational multi-section U � Y of Y ! X

must be dense in Y . In particular, it must be birational to Y . From the
birational invariance of RD for generically �nite dominant maps, we conclude
that RD.U ! X/ D RD.Y ! X/ (as generically �nite dominant maps). �e
lemma follows.
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Lemma 4.10. Let Z !�1 Y !�2 X be a pair of dominant maps of K -varieties.
�en

RD.Z ! X/ � RD.Y ! X/

and

RD.Z ! X/ � max
®
RD.Z ! Y /;RD.Y ! X/

¯
:

with equality when either Z ! Y or Y ! X is generically �nite.

Proof. For the �rst inequality, let ¹U˛ � Zº be a dense set of rational multi-
sections of Z ! X with RD.U˛ ! X/ � d for all ˛ . �en, shrinking each U˛

as necessary (e.g., restricting to the preimage in U of an a�ne open in Y ), its
(scheme theoretic) image V˛ WD Image.U˛ ! Y / is a subscheme of Y , and thus
a rational multi-section of Y ! X . Since Z ! Y is dominant, that ¹U˛ � Zº is
dense implies that ¹V˛ � Y º is dense. By [FW, Lemma 2.7], we conclude that
RD.U˛ ! X/ � RD.V˛ ! X/ . Minimizing over all ¹U˛ � Zº , we conclude that

RD.Z ! X/ � RD.Y ! X/:

For the second inequality, let ¹U˛ � Zº be a dense set of rational multi-sections
for Z ! Y and ¹Vˇ � Y º a dense set of rational multi-sections for Y ! X .
�en

¹W˛;ˇ WD U˛ �Y Vˇ � Zº

is a dense set of rational multi-sections for Z ! X . By [FW, Lemmas 2.5, 2.7],

RD.W˛;ˇ ! X/ � max
®
RD.U˛ ! Y /;RD.Vˇ ! X/

¯
:

Minimizing over all such collections ¹U˛º; ¹Vˇ º , we conclude

RD.Z ! X/ � max
®
RD.Z ! Y /;RD.Y ! X/

¯
:

To show the equalities when dim.Y / D dim.X/ or dim.Z/ D dim.Y / , it su�ces,
by Lemma 4.7(4), to prove the case when X and Y are irreducible. Under this
assumption, if dim.X/ D dim.Y / or if dim.Z/ D dim.Y / , then any rational
multi-section U for Z ! Y is a rational multi-section for Z ! X and vice
versa. In particular,

RD.U ! Y / � RD.U ! X/

and taking the minimum over dense subsets of such, we see that RD.Z ! Y / �

RD.Z ! X/ . �e equality

RD.Z ! X/ D max
®
RD.Z ! Y /;RD.Y ! X/

¯
follows from what we have shown above.
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Special cases of the following are implicit in [Seg1, Bra1, Bra2].

Proposition 4.11. Let Y ! X be a dominant map of K -varieties. Let S ! X be
a map such that the generic �ber is a Severi–Brauer variety over K.X/ , and let
K.X/ be an algebraic closure of K.X/ . Suppose that there exists an embedding
over X

Y ,! S

such that the closure of the geometric generic �ber Y jK.X/ in S jK.X/ Š Pn
K.X/

has degree d . �en
RD.Y ! X/ � RD.d/ < d:

Proof. By the Merkurjev–Suslin theorem [MS, �eorem 16.1], using that K is
a �eld of characteristic 0, there exists a solvable extension L:=K.X/ such that
S jSpec.L/ Š PnL . Because we are in characteristic 0, the extension L=K.X/ is
separable, so picking a primitive element z and writing L Š K.X/.z/ , we can,
by clearing denominators in the minimal polynomial for z over K.X/ and using
that the discriminant of this minimal polynomial is not identically 0, realize L as
K.E/ for E � A1X a locally closed subvariety such that the projection E ! X is
solvable and étale. Shrinking E as needed, we can extend the above isomorphism
S jSpec.L/ Š PnL to an isomorphism S jE Š PnE . We conclude that the embedding
Y ,! S pulls back to an embedding

Y jE ,! S jE Š PnE

whose closure is a degree d subvariety. Points of Y jE are thus of degree at
most d over K.E/ (and the generic point is of degree d ). �erefore, by [FW,
Lemma 2.9], Y jE admits a dense set of rational multi-sections ¹U˛ � Y jE º

with RD.U˛ ! E/ � RD.d/ . �e images of these rational multi-sections in Y ,
¹V˛ � Y º are thus a dense set of rational multi-sections, and by [FW, Lemma 2.6],
we have

RD.V˛ ! X/ � RD.U˛ ! E ! X/

D max
®
RD.U˛ ! E/;RD.E ! X/

¯
� max

®
RD.d/; 1

¯
D RD.d/ < d:

Now let X be a variety, and let AnX;a be the parameter space for n -valued
algebraic functions on X as in Section 3. Observe that the action of Gm on
algebraic functions by rescaling their values corresponds to a weighted action
Gm 	 AnX;a where

� � .a1; : : : ; an/ D .�a1; : : : ; �
nan/:
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Moreover, if Z � AnX;a is weighted homogeneous with respect to this action, then
ev�1.Z/ � Tˆ is homogeneous (with respect to the diagonal action of Gm on
An
X;b ).

Lemma 4.12. Let X be an irreducible K -variety. Let ˆ be an algebraic
function on X . Let Z � AnX;a be a Zariski closed subvariety which is weighted
homogeneous (relative to the above action). Let

U � ev�1.Z/ � Tˆ

be any rational multi-section for ev�1.Z/! X . �en

RD.ˆ/ � max
®
RD.U ! X/; dim.Z/ � 1

¯
:

Proof. �e multi-section U ! ev�1.Z/ determines a Tschirnhaus transformation
T of ˆjU which is rational over K.U / . By the observations above, we have a
pullback square

.Eˆ/jU //

��

.EPn/jZ

��
U // Z

Since Z is weighted homogeneous, we can projectivize .EPn/Z ! Z to obtain
a pullback square

.Eˆ/jU //

��

P .EPn/jP.Z/

��
U // P .Z/

where P .Z/ � P .Ana/ and P .Ana/ now denotes the weighted projective space.
�e result now follows by applying Lemmas 4.7 and 4.10.

5. Hilbert’s formula for the degree 9 and new general upper bounds

We now apply the results of the previous sections to complete and extend
Hilbert’s argument from [Hil2]. We work throughout this section over an
algebraically closed �eld K of characteristic 0.

Let Hd;N denote the parameter space of degree d hypersurfaces in PN ,
i.e., Hd;N Š P .

NCd
d /�1 . Let Md;N denote the coarse moduli space of smooth

hypersurfaces, i.e
Md;N D .Hd;N �†/=PGLNC1
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where † denotes the locus of singular hypersurfaces. Let Hr
d;N

denote the
space of such hypersurfaces with a choice of r -plane on them, i.e., Hr

d;N
is the

incidence variety

Hr
d;N WD

®
.X;L/ 2 Hd;N �Gr.r C 1;N C 1/ j L � X

¯
:

Similarly to above, let Mr
d;N

denote the moduli of smooth degree d hypersurfaces
equipped with an incident r -plane, i.e.

Mr
d;N D .H

r
d;N �

Q†/=PGLNC1;

where Q† � Hr
d;N

denotes the locus where the hypersurface is singular.
We will need the following theorem of Waldron [Wal, �eorem 1.6] (see

also [Sta, �eorem 1.2]).

�eorem 5.1 (Waldron). Let d � 3 . �e map

Hr
d;N ! Hd;N

is surjective for r , N such that

.r C 1/.N � r/ �

 
d C r

r

!
� 0:

Motivated by this theorem, we introduce the following notation:

Notation 5.2. Given .d; k/ 2 N�3 �N , de�ne

 .d; k/0 D k:

For 0 � i < d � 2 , de�ne

 .d; k/iC1 D

�
 .d; k/i C

 
 .d; k/i C d � i

 .d; k/i

!
=. .d; k/i C 1/

�
:

Finally, de�ne

 .d; k/d�1 D 2 .d; k/d�2 C 1:

By Waldron’s �eorem, for all 0 � i < d � 2 , the map

H .d;k/i
d�i; .d;k/iC1

! Hd�i; .d;k/iC1

is surjective. Similarly, by the classical theory of quadratic forms, the locus of
smooth quadrics is contained in the image of the map

H .d;k/d�2
2; .d;k/d�1

! H2; .d;k/d�1
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In words, the integers  .d; k/i are de�ned so that every smooth quadric in
a P .d;k/d�1 contains a  .d; k/d�2 plane, every cubic hypersurface in this
 .d; k/d�2 plane contains a  .d; k/d�3 plane, every quartic in this  .d; k/d�3
plane contains a  .d; k/d�4 plane, and on down until we arrive at a  .d; k/1

plane such that every degree d hypersurface inside it contains a k -plane.

Lemma 5.3. For all d � 2 and all k � 1 ,

dim.M3; .d;k/d�2/ � max
®
dim.Hd�i; .d;k/iC1/

¯d�3
iD0

and

dim.M3; .d;k/d�2/C d C k C 1 �  .d; k/d�1 C 2:

Proof. For each i ,

dim.Hd�i; .d;k/iC1/ D

 
d � i C  .d; k/iC1

d � i

!
� 1

From the de�nition of the  .d; k/i s, we conclude for all i that

dim.Hd�i; .d;k/iC1/ � dim.Hd�iC1; .d;k/i /

and thus

dim.H4; .d;k/d�3/ D max
®
dim.Hd�i; .d;k/iC1/

¯d�4
iD0

:

Similarly,

dim.M3; .d;k/d�2/ D max
´
0;

 
3C  .d; k/d�2

3

!
� . .d; k/d�2 C 1/

2

µ
:

From the de�nition, this is a maximum of a ceiling function of a monotone
increasing degree 6 polynomial in  .d; k/d�3 , all of whose derivatives are
monotone increasing in the domain  .d; k/d�3 � 1 , while dim.H4; .d;k/d�3/ is
a monotone increasing quartic, all of whose derivatives are monotone increasing
in the same domain. �erefore, the inequality

dim.M3; .d;k/d�2/ � dim.H4; .d;k/d�3/

for all .d; k/ follows from the equality for .d; k/ D .3; 1/ and direct inspection
of the higher derivatives of the sextic and quartic polynomials in the interval
 .d; k/d�3 � 1 (for which both left and right hand side equal 4; note that the
inequality is vacuously true for .d; k/ D .2; 1/).
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Finally, from the de�nition,

 .d; k/d�1 C 2 D 2 .d; k/d�2 C 3:

By the same reasoning as above, the inequality

dim.M3; .d;k/d�2/C d C k C 1 �  .d; k/d�1 C 2

for all .d; k/ 2 N�2 � N>0 follows from the inequality for .d; k/ D .2; 1/ (in
which case the left hand side is 8 and the right hand side is 4).

�e lemma implies that for d � 3 , dim.M3; .d;k/d�2/ gives a coarse upper
bound on the resolvent degree of the surjective maps

M .d;k/d�3
3; .d;k/d�2

!M3; .d;k/d�2

H .d;k/i
d�i; .d;k/iC1

! Hd�i; .d;k/iC1 :

�is motivates the following de�nition.

De�nition 5.4. Given .d; k/ 2 N�2 �N>0 , de�ne

ˆ.d; k/ WD max
²
.d C k/Š

d Š
C 1; dim.M3; .d;k/d�2/C d C k C 1

³
For r 2 N�4 , de�ne

(5.1) F.r/ WD 2
�
1

2
�

�
min

dCkC1Dr
ˆ.d; k/

��
C 1:

For r � 3 , de�ne F.r/ D r C 1 .

Lemma 5.5. For all r 2 N , F.r C 1/ > F.r/ , i.e., F is monotone increasing.

Proof. �e maximum of two monotone increasing functions is monotone increas-
ing, as is any linear combination with positive integer coe�cients of the integer
part of a monotone increasing function.

We can now state our �rst main theorem.

�eorem 5.6. Let F W N ! N be the monotone increasing function (5.1). For
all n � F.r/ ,

RD.n/ � n � r:

Example 5.7. Observe that

F.5/ D ˆ.3; 1/ D max
²
4Š

3Š
C 1; dim.M3;3/C 5

³
D max¹5; 9º D 9:

�e theorem thus asserts that for n � 9 , RD.n/ � n�5 , as �rst stated by Hilbert.
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We can compare the upper bounds of �eorem 5.6 to Brauer’s bounds as
follows. Both the previous theorem and Brauer’s theorem prove the existence, for
each r , of an explicit cut-o� (for n ) after which RD.n/ � n� r . More precisely,
de�ne

B.r/ WD .r � 1/ŠC 1:

Brauer proved [Bra2, �eorem 1] that for n � B.r/ ,

RD.n/ � n � r:

�e cut-o� functions B.r/ and F.r/ are related as follows.

�eorem 5.8. Let B.r/ and F.r/ be as above. �ere exists a monotone increasing
function ' W N ! N , such that '.2/ D 5 , and such that for r � '.d/ ,

B.r/=F.r/ � dŠ

In particular, F.r/ � B.r/ for all r and

lim
r!1

B.r/=F.r/ D1:

Remark 5.9. (1) As remarked above, Brauer’s bound B.r/ gives the best prior
general bound once r � 7 ; in this range, �eorem 5.8 shows that F is the
best current bound. For r D 6 , Sylvester [Syl] proved that the bound n D 44
is su�cient, while for r D 5 , Segre and Dixmier proved that n D 9 su�ces.
In Appendix A, we give explicit computations of F.r/ for r up to 15 (at
which point F.r/ is approximately 3.6 billion). In particular, we see that
F.5/ D 9 recovers the Hilbert-Wiman-Segre-Dixmier bound, and F.6/ D 41
improves Sylvester.

(2) We do not expect that the upper bounds of �eorem 5.6 are themselves
sharp for two reasons: �rst, we expect that further optimizations to the
present method should be possible; and second, we have not made contact
in this paper with the methods introduced by Sylvester and Hammond [Syl,
SH1, SH2] in their study of Hamilton’s work [Ham].

It remains to prove �eorems 5.6 and 5.8.

5.1. Proof of �eorem 5.6. Our proof follows the strategy outlined by
Hilbert [Hil2]. We recall a classical lemma on quadrics.

Lemma 5.10. Let K be a �eld of characteristic 0, let K � K be an algebraic
closure, and let K2-solv � K denote the quadratic closure of K . For any smooth
quadric Q over K , with maximal isotropic Grassmannian Gr.Q/ , the inclusion

Gr.Q/.K2-solv/ � Gr.Q/.K/
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is Zariski dense. Moreover, for any x 2 Gr.Q/.K2-solv/ , the associated Severi–
Brauer variety over K2-solv is trivial.

Proof. �e proof is classical, and goes back at least to work of Sylvester. Recall
that by completing the squares, every nonsingular, de�nite quadratic form Q over
K admits a K -rational change of coordinates to one of the form

(5.2) Q0.x1; : : : ; xn/ D a1x
2
1 C � � � C anx

2
n

for ai 2 K� . For example, see [For] for explicit formulas for the ai in terms of
minors of the matrix associated to the quadratic form (n.b. Fort states the results
for real de�nite forms, but the method holds over any base �eld).

Let L D K.pa1; : : : ;
p
an/ � K

2-solv . �e L -rational change of coordinates

xi DW
yi
p
ai

converts the above quadratic form (5.2) to

Q00.y1; : : : ; yn/ D y
2
1 C � � � C y

2
n:

Finally, let L0 D L.
p
�1/ � K2-solv . �en the quadratic form Q00 vanishes

identically on the linear subspace ƒ de�ned by

y2i�1 D
p
�1y2i

for i D 1; : : : ; bn
2
c . Counting the dimension, ƒ is a maximal isotropic, i.e.,

ƒ 2 Gr.Q/.L0/ � Gr.Q/.K2-solv/:

Using that Gr.Q/ is a homogeneous space for the algebraic group O.Q/ , and
that K (and thus L0 ) is an in�nite �eld, we conclude that the O.Q/.L0/ orbit of
ƒ is dense in Gr.Q/. NK/ as claimed. Finally, because ƒ has an L0 point (e.g.,
for n even Œy1 W � � � W yn� D Œ

p
�1 W 1 W � � � W

p
�1 W 1� , with the analogous formula

if n is odd), the Severi–Brauer variety associated to ƒ over L0 splits completely.
We conclude the same for every point in the O.Q/.L0/ orbit of ƒ .

Corollary 5.11. Let X be a variety over a �eld K of characteristic 0. For any
generically smooth family of quadrics Q ! X , the solvable multi-sections of
Gr.Q/! X are Zariski dense in Gr.Q/. NK.X// .

Proof of �eorem 5.6. Because F is a monotone increasing function (by
Lemma 5.5), if n � F.r/ , then n � 1 � F.r � 1/ . We can therefore induct
on r .
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For n � 4 , solutions in radicals imply RD.n/ D 1 . �at RD.n/ � n � 4 for
n � 5 follows from Bring [Bri] and Hamilton [Ham]. We reprove this Bring-
Hamilton bound as the base of our induction, in order to show the uniform general
method; simple modi�cations of the below can be used to re-derive the bound
F.r/ for r � 3 .

For n � 5 we have a generically smooth family of quadrics T12 ! Ana (by
Lemma 2.7) of dimension at least 2. By Lemma 5.10, there exists a solvable
branched cover

U1 ! Ana

with a map over Ana to the relative Grassmannian of maximal isotropics Gr.T12/ ,
i.e., there exists a linear embedding

L W U1 � P b
n�3
2 c ! T12jU :

Because n � 5 , the dimension of the linear subspaces is at least 1. We can
therefore intersect with T3jU1 to get a rational map

U1Ü A3

u 7! L.u/ \ T3:

Adjoining the solution of this family of cubics, we get a solvable branched cover

U2 ! U1

and a map U2 ! T123 . By Lemma 4.12, we conclude that

RD.n/ � max
®
RD.U2 ! Ana/; dim.An�3a1Da2Da3D0

/ � 1
¯

D max¹1; n � 4º D n � 4:

For the induction step, let r � 5 and assume that we have shown that for all
s < r , n � F.s/ implies that RD.n/ � n � s . Let n � F.r/ . Note that if
mindCkC1Dr ˆ.d; k/ is odd, then the de�nition of F implies that

F.r/ D min
dCkC1Dr

ˆ.d; k/:
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Conversely, if mindCkC1Dr ˆ.d; k/ is even, then

F.r/ D min
dCkC1Dr

ˆ.d; k/C 1:

Consequently, if n is odd, then

n � min
dCkC1Dr

ˆ.d; k/;

while if n is even

n � min
dCkC1Dr

ˆ.d; k/C 1:

Let .d; k/ be such that

ˆ.d; k/ D min
d 0Ck0C1Dr

ˆ.d 0; k0/:

If n is odd (and thus n � ˆ.d; k/), we will explicitly construct a rational
multi-section

U ! T1���dCk

for T1���dCk ! Ana with

RD.U ! Ana/ � max
²
RD

�
.d C k/Š

d Š

�
; dim.M3; .d;k/d�2/

³
:

If n is even (and thus n � ˆ.d; k/ C 1 ), mutatis mutandis the same argument
will produce a rational multi-section

U ! T 01���dCk

with RD.U ! Ana/ � max¹RD. .dCk/Š
dŠ

/; dim.M3; .d;k/d�2/º .

Case 1: n odd. Let U1 D Ana . By Lemma 2.7, the family T12 ! Ana is
generically smooth. By Corollary 2.14, there exists a dense open V � Gr.T12/ ,
such that

LjV �Pn
Ana
T123 ! Ana

is smooth (i.e., for the generic polynomial, the intersection of T123.a/ with a
generic maximal isotropic in T12.a/ is smooth).

By Corollary 5.11,
RD.V ! Ana/ D 1

More precisely, there exists a multi-section U2 � V such that U2 ! U1 is a
solvable cover of its image, and such that

LjU2 Š P
n�3
2

U2
:
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Now, by Lemma 5.3 and our assumption on n ,

n � ˆ.d; k/ �  .d; k/d�1 C 2

D 2 .d; k/d�2 C 3:

�erefore,

n � 3

2
�  .d; k/d�2

If n�3
2
D  .d; k/d�2 , then we obtain a map

U2 !M3; .d;k/d�2

x 7! Ljx �Pn�2 T123jx :

If n�3
2
>  .d; k/d�2 , by the Bertini �eorem for isotropics (Proposition 2.13),

there exists a dense open

V 0 � Gr
�
 .d; k/d�2;LjU2

�
such that the family of cubic hypersurfaces in P .d;k/d�2 given by

V 0 �LjU2
.T123 �Pn�2

U1

LjU2/! U2

is generically smooth. Because rational points are dense in Grassmannians, perhaps
after shrinking U2 , we obtain a section U2 ! V 0 . As above, we again obtain a
map

U2 !
\T123 M3; .d;k/d�2 :

Note that, from the construction above, RD.U2 ! U1/ D 1 .
By Waldron’s �eorem (�eorem 5.1) and the de�nition of the numbers

 .d; k/i , the map
M .d;k/d�3

3; .d;k/d�2
!M3; .d;k/d�2

is surjective. �erefore, the map

M .d;k/d�3
3; .d;k/d�2

jU2 ! U2

is surjective, and by Lemma 4.8,

RD
�
M .d;k/d�3

3; .d;k/d�2
jU2 ! U2

�
� dim.M3; .d;k/d�2/:

Let U 0 �M .d;k/d�3
3; .d;k/d�2

jU2 be any rational multi-section such that

RD.U 0 ! U2/ D RD
�
M .d;k/d�3

3; .d;k/d�2
jU2 ! U2

�
:
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Let NL!M .d;k/d�3
3; .d;k/d�2

denote the tautological  .d; k/d�3 -plane bundle. By the
Merkurjev–Suslin �eorem [MS, �eorem 16.1], there exists a solvable étale map
U3 ! U 0 such that

NLjU3 Š P .d;k/d�3U3
:

By Lemma 4.10 and the construction above,

RD.U3 ! U2/ D max
®
RD.U 0 ! U2/; 1

¯
� dim.M3; .d;k/d�2/:

Further, intersecting with the Tschirnhaus hypersurface T4 , we obtain a map

U3 !
\T4 H4; .d;k/d�3

x 7! .T123jx �U3
NLjU3/ �Pn�1

U3

T4jU3 :

By induction, we now construct, for each 4 � i � d , a quasi-�nite dominant map

Ui ! Ui�1

such that
(1) RD.Ui ! Ui�1/ � dim.Hi; .d;k/d�iC1/ ,
(2) we have a commuting diagram

Ui //

��

H .d;k/d�i
i; .d;k/d�iC1

��
Ui�1

\Ti // Hi; .d;k/d�iC1

with a trivialization
LjUi Š P .d;k/d�iUi

;

where L! H .d;k/d�i
i; .d;k/d�iC1

denotes the tautological  .d; k/d�i -plane bundle;
(3) and the assignment

x 7!
�
T1���i jx �Ui Li; .d;k/d�iC1 jUi

�
�Pn�1

Ui

TiC1jx

de�nes a map
Ui !

\TiC1 HiC1; .d;k/d�i :

�e construction proceeds along the same lines as the construction of U3 above.
Given Ui�1 with the map

Ui�1 !
\Ti Hi; .d;k/d�iC1 ;

by the de�nition of the  .d; k/j s and Waldron’s �eorem (�eorem 5.1), the map

H .d;k/d�i
i; .d;k/d�iC1

! Hi; .d;k/d�iC1
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is surjective. �erefore, the map

H .d;k/d�i
i; .d;k/d�iC1

jUi�1 ! Ui�1

is surjective, and by Lemma 4.8,

RD
�
H .d;k/d�i
i; .d;k/d�iC1

jUi�1 ! Ui�1
�
� dim.Hi; .d;k/d�iC1/:

Let U 0 � H .d;k/d�i
i; .d;k/d�iC1

jUi�1 be any rational multi-section such that

RD
�
U 0 ! Ui�1

�
D RD

�
H .d;k/d�i
i; .d;k/d�iC1

jUi�1 ! Ui�1
�
:

Let L! H .d;k/d�i
i; .d;k/d�iC1

denote the tautological  .d; k/d�i -plane bundle. By the
Merkurjev–Suslin �eorem [MS, �eorem 16.1], there exists a solvable étale map
Ui ! U 0 such that

LjUi Š P .d;k/d�iUi
:

By Lemma 4.10 and the construction above,

RD.Ui ! Ui�1/ D max
®
RD.U 0 ! Ui�1/; 1

¯
� dim.Hi; .d;k/d�iC1/:

Finally, to complete the induction step, we observe that, by intersecting with the
Tschirnhaus hypersurface TiC1 , we obtain a map

Ui !
\TiC1 HiC1; .d;k/d�i

x 7! .T1���i jx �Ui LjUi / �Pn�1
Ui

TiC1jUi :

�is completes the induction step. We have thus constructed a tower of maps

Ud ! � � � ! U4 ! U3 ! U2 ! U1 D Ana :

Further, from the inductive construction and Lemmas 4.10 and 5.3, we have

RD.Ud ! Ana/ � dim.M3; .d;k/d�2/:

Now let L ! Hd; .d;k/1 denote the tautological k -plane bundle (n.b. k D
 .d; k/0 ). �en, by construction, we have an isomorphism

LjUd Š PkUd :

For i1 < : : : < ik , and N , let
Hi1���ik ;N

denote the parameter space of complete intersections of degree .i1; : : : ; ik/ . Let

I ! Hi1���ik ;N
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denote the tautological family of complete intersections. By Proposition 4.11,

RD.I ! Hi1���ik ;N / � RD.i1 � � � ik/:

By our inductive construction, we have a map

Ud !
\T.dC1/���.dCk/ H.dC1/���.dCk/;k

x 7! .T1���d jx �Ud LjUd / �Pn�1
Ud

T.dC1/���.dCk/jUd :

Because, I ! H.dC1/���.dCk/;k is surjective, by Lemma 4.8,

RD.IjUd ! Ud / � RD
�
.d C k/Š

d Š

�
:

Let UdC1 � IjUd be a rational multi-section of IjUd ! Ud such that

RD.UdC1 ! Ud / � RD
�
.d C k/Š

d Š

�
:

�en, by construction, UdC1 carries a canonical map

UdC1 ! T1���.dCk/

making it a rational multi-section of the Tschirnhaus complete intersection. Further,
by the above construction and Lemma 4.10,

RD
�
UdC1 ! Ana

�
� max

²
RD

�
.d C k/Š

d Š

�
; dim.M3; .d;k/d�2/

³
:

By assumption, n � F.r/ D ˆ.d; k/ � .dCk/Š
dŠ
C 1 . Lemma 5.5 thus implies that

.dCk/Š
dŠ
� F.r � 1/ . �erefore, by the inductive hypothesis,

RD
�
.d C k/Š

d Š

�
�
.d C k/Š

d Š
� .r � 1/:

Moreover, from the de�nition of ˆ.d; k/ , n � ˆ.d; k/ implies that n �

dim.M3; .d;k/d�2/C r .
By Lemma 4.12, we therefore conclude that

RD.n/ � max
°
RD

�
UdC1 ! Ana

�
; dim

�
ev.T1���.dCk//

�
� 1

±
� max

²
.d C k/Š

d Š
� .r � 1/; dim.M3; .d;k/d�2/; n � r:

³
D n � r:



Tschirnhaus transformations after Hilbert 529

Case 2: n even. Let U1 D Ana . By Lemma 2.7, the family T 012 ! Ana is
generically smooth. By Corollary 2.14, there exists a dense open V � Gr.T 012/ ,
such that

LjV �Pn
Ana
T 0123 ! Ana

is smooth (i.e., for the generic polynomial, the intersection of T 0123.a/ with a
generic maximal isotropic in T 012.a/ is smooth).

By Corollary 5.11,
RD.V ! Ana/ D 1

More precisely, there exists a multi-section U2 � V such that U2 ! U1 is a
solvable cover of its image, and such that

LjU2 Š P
n
2�2

U2
:

Now, by Lemma 5.3 and our assumption on n

n � 1 � ˆ.d; k/ �  .d; k/d�1 C 2

D 2 .d; k/d�2 C 3:

�erefore,
n

2
� 2 �  .d; k/d�2

If n
2
� 2 D  .d; k/d�2 , then we obtain a map

U2 !M3; .d;k/d�2

x 7! Ljx �Pn�2 T
0
123jx :

If n
2
� 2 >  .d; k/d�2 , by the Bertini �eorem for isotropics (Proposition 2.13),

there exists a dense open

V 0 � Gr
�
 .d; k/d�2;LjU2

�
such that the family of cubic hypersurfaces in P .d;k/d�2 given by

V 0 �LjU2

�
T 0123 �Pn�2

U1

LjU2
�
! U2

is generically smooth. Because rational points are dense in Grassmannians, perhaps
after shrinking U2 , we obtain a section U2 ! V 0 . As above, we again obtain a
map

U2 !
\T 0
123 M3; .d;k/d�2 :

Note that, from the construction above, RD.U2 ! U1/ D 1 . �e remainder of the
proof now proceeds exactly as in the case of n odd.
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5.2. Proof of �eorem 5.8.

Proof of �eorem 5.8. We deduce the theorem from the following:

Claim 1. �ere exists a monotone increasing function � W N ! N such that
(1) for k � �.d/ ,

.d C k/Š

d Š
C 1 D ˆ.d; k/

� ˆ.d � 1; k C 1/

(i.e., both conditions hold for k � �.d/ );
(2) for all k < �.d/ , either

ˆ.d; k/ > ˆ.d � 1; k C 1/:

or
.d C k/Š

d Š
C 1 ¤ ˆ.d; k/

(i.e., �.d/ is the least integer such that both conditions hold).

Granting the claim, let '.d/ WD �.d C 1/C d C 2 . From De�nition 5.4, we
see that �.3/ D 2 , and thus '.2/ D 6 . However, F.5/ D 9 while B.5/ D 25 , so
we can modify ' by setting '.2/ WD 5 as claimed. Moreover, for r � '.d/ , we
have

k WD .r � 1/ � .d C 1/

� '.d/ � .d C 2/

� �.d C 1/

As a result,

F.r/ D
.r � 1/Š

.d C 1/Š
C 1

and therefore,

B.r/=F.r/ D
.r � 1/ŠC 1

.r � 1/Š=.d C 1/ŠC 1

� dŠ

We now prove Claim 1 by asymptotic estimates; more precisely, we show that
for each d , dim.M3; .d;k/d�2/ grows polynomially in k , while .dCk/Š

dŠ
grows

superexponentially. Precise formulas for the function � require a more detailed
analysis.

Continuing to follow Notation 5.2, we claim the following:
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Claim 2. Fix d . �en as a function of k ,

O
�
.d C k/Š

�
� max

°
O
�
dim.M3; .d;k/d�2/

�
;O
�
dim.M3; .d�1;kC1/d�3/

�±
;

where O.f / denotes the asymptotic growth of a function f .

Granting the claim, we see that for k >> d ,

ˆ.d; k/ D
.d C k/Š

d Š
<
.d C k/Š

.d � 1/Š
D ˆ.d � 1; k C 1/:

Note that by de�nition,

ˆ.d; k/ D max
²
.d C k/Š

d Š
C 1; dim.M3; .d;k/d�2/C d C k C 1

³
�erefore Claim 1 follows from Claim 2. To prove Claim 2, recall Stirling’s
formula (cf. [Rob])

p
2�mmC

1
2 e

1
12mC1

�m
� mŠ �

p
2�mmC

1
2 e

1
12m�m

�is implies that

O
�
ln
�
.d C k/Š

��
D O

��
d C k C

1

2

�
ln.d C k/

�
:

It su�ces to prove that

max
°
O
�
dim.M3; .d;k/d�2/

�
;O
�
dim.M3; .d�1;kC1/d�3/

�±
D O.k˛d /

for some ˛d , as then

max
²
O
�
ln
�
dim.M3; .d;k/d�2/

��
;O
�
ln
�
dim.M3; .d�1;kC1/d�3/

��³
D O

�
˛d � ln.k/

�
� O

�
.d C k C

1

2
/ ln.d C k/

�
D O

�
ln.d C k/Š

�
:

Recall that  .d; k/0 D k and for i > 0 ,

 .d; k/i D

&
 .d; k/i�1 C

 
 .d; k/i�1 C d � .i � 1/

 .d; k/i�1

!
=. .d; k/i�1 C 1/

'
:

�erefore

 .d; k/i �
.d � i C 1C  .d; k/i�1/ � � � . .d; k/i�1 C 2/

.d � i C 1/Š
� . .d; k/i�1/

d�i :
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Because  .d; k/1 � kd�1 , by induction, we obtain

dim.Hd�i; .d;k/iC1/ D

 
d � i C  .d; k/iC1

 .d; k/iC1

!
� 1

�  .d; k/d�iiC1

� k.d�i/
.d�1/Š
.d�i�2/Š :

Similarly,
dim.M3; .d;k/d�2/ � k

3.d�1/Š:

By the same argument,

dim.M3; .d�1;kC1/d�3/ � .k C 1/
3.d�2/Š

� k3.d�2/Š;

and, thus, as functions of k ,

O
�
.d C k/Š

�
� max

°
O
�
dim.M3; .d;k/d�2/

�
;O
�
dim.M3; .d�1;kC1/d�3/

�±
as claimed.
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A. Explicit bounds

Table 1
Upper Bounds on RD.n/ . In the rightmost column above, k is the dimension
of the linear subspace on the degree d hypersurface that we use to construct
the necessary Tschirnhaus transformation, e.g., for r D 5 , .d; k/ D .3; 1/

and we are using a line on a cubic surface à la Hilbert to prove F.5/ D 9 .

r F.r/ Best Prior Bound B 0.r/ Source of B 0.r/ B 0.r/=F.r/ .d; k/

2 3 3 Babylonians 1
3 4 4 Ferrari 1
4 5 5 Bring [Bri] 1 (2,1)
5 9 9 Segre [Seg1] 1 (3,1)
6 41 44 Sylvester [Syl] 1.07 (3,2)
7 121 721 Brauer [Bra2] 5.95 (3,3)
8 841 5041 " 5.99 (3,4)
9 6721 40321 " 5.99 (3,5)
10 60481 362881 " 5.99 (3,6)
11 604801 3628801 " 5.99 (3,7)
12 6652801 39916801 " 5.99 (3,8)
13 78485043 12ŠC 1 " 6.10 (4,8)
14 320082459 13Š+1 " 19.45 (4,9)
15 3632428801 14Š+1 " 24 (4,10)

B. Historical background

�e theory has been a plant of slow growth.
Sylvester and Hammond, 18877

Tschirnhaus [Tsch] introduced his transformation to show that RD.n/ � n�3 ,
improving upon the linear change of variables used by the Babylonians to set
the �rst coe�cient of the general polynomial to 0. A century later, Bring [Bri]
improved this for n D 5 to show that RD.5/ D 1 . Hamilton [Ham] was the �rst
to show that

lim
n!1

n � RD.n/ D1:

More precisely, he showed the existence a monotone increasing function H W N !
N , such that n � RD.n/ � r for n � H.r/ .8 Hamilton computed the initial

7 [SH1, p. 286]
8�e numbers H.r/ are listed as the “Hamilton numbers” in the Online Encyclopedia of Integer

Sequences.
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values of H (for r � 7 ). Five decades later, Sylvester [Syl] extended Hamilton’s
computations to give:

r 4 5 6 7 8 9

H.r/ 5 11 47 923 409; 619 83; 763; 206; 255

Sylvester then sharpened Hamilton’s bounds slightly (see [Syl, p. 485])9, and
Sylvester and Hammond [SH1], [SH2] gave a generating function for H .

Preceding Sylvester (and apparently unbeknownst to him at the time of [SH1]),
Klein [Klei1] initiated a new approach to solving polynomials, linking it with
group theory, representation theory, projective geometry, classical invariant theory,
and the theory of elliptic and automorphic functions. Fundamental to Klein’s
vision was the goal of reducing a given algebraic function to a simplest possible
“normal form”, with the ideal being a normal form given by the action of the
monodromy group of the function on a projective space of minimal dimension.10
For n D 5; 6; 7 , this program allowed Klein [Klei3, Klei3, Klei6] to reproduce the
Bring/Hamilton bounds of RD.n/ � n� 4 with substantial simpli�cations in both
the algebra of the formulas and the geometry of the normal forms involved. Klein
also popularized the problem of �nding simplest solutions of polynomials [Klei7,
Second Part, Ch. II], was the �rst, or among the �rst, to explicitly consider the
problem of lower bounds for RD [Klei5, Klei6], and worked, over a 50 year
span, to anchor this problem �rmly within the central mathematical concerns of
his time (see also [Klei4, Klei2], and more generally [Klei8, Fri]).

In his 1900 address at the Universal Exposition in Paris, Hilbert [Hil1, Problem
13] explicitly posed the problem of the non-existence of 2-variable formulas for
the general degree 7 polynomial. Hilbert’s address cements two decisive shifts for
the problem: �rst, he explicitly called attention to the question of lower bounds
on resolvent degree, made conjectures as to lower bounds, and advocated for
this as the fundamental problem. Second, Hilbert built upon Enriques’ 1897 ICM
address [Enr] by generalizing the problem to encompass formulas using analytic
functions and even continuous ones; he then proved by a dimension count that
the general three variable analytic function does not admit a formula in analytic
functions of two or fewer variables. Hilbert returned to this problem at the end of
his career in [Hil2], where he explicitly conjectured that RD.6/ D 2 , RD.7/ D 3 ,
RD.8/ D 4 , and then sketched a beautiful geometric idea to lower RD.9/ to
at most 4. Shortly after, Wiman [Wim] sketched another approach to showing
RD.n/ � n � 5 for n � 9 . As Dixmier observed [Dix], there are gaps in both

9Writing S.r/ for Sylvester’s sharpening, the initial values are S.4/ D 5 , S.5/ D 10 , S.6/ D 44 ,
S.7/ D 905 .

10As Wiman proved, this program cannot produce a solution in RD.n/ variables for the general
degree n polynomial once n is at least 8 .
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Hilbert and Wiman’s proofs due to their assuming certain forms are su�ciently
generic.

Progress on the general problem of bounding RD.n/ stalled after Hilbert. N.
Chebotarev highlighted this and related questions in his 1932 ICM address [Che3],
and in several papers in the 1930s and 1940s [Che1, Che2, Che4, Che5]. However,
by the mid-20th century, much of the 19th century work appears to have been
forgotten. Segre [Seg1], building on Hilbert, provided the �rst rigorous proof
that RD.n/ � n � 5 for n � 9 , and proved that for n � 157 , RD.n/ � n � 6
(n.b. Hamilton proved this for n � 47 , while Sylvester proved it for n � 44 ). G.
Chebotarev (N.’s son) worked to extend Wiman’s methods to show RD.n/ � n�6
for n � 21 [Cheb], but his proof is incomplete.11 Segre (loc. cit.) conjectured
that in the limit

lim
n!1

n � RD.n/ D1:

(i.e., precisely what Hamilton had showed over a century earlier). Brauer [Bra1]
and Segre each reproved this statement, but without giving e�ective bounds à la
Hamilton (see also [Seg2]).

In 1957, Arnold (then 19 years old) published a theorem which he described
as a “complete solution of the 13th problem of Hilbert” [Arn1]. A strengthening
of Arnold’s theorem, published soon after by Kolmogorov [Kol], states that
for any continuous map f W Œ0; 1�n ! R , there exist continuous functions
gj ; 'ij W Œ0; 1�! R such that

f .t1; : : : ; tn/ D

2n�1X
jD1

gj

 
kX
iD1

'ij .ti /

!

To apply this to Hilbert’s problem, one must interpret Hilbert as having asked
for an obstruction to expressing a single-valued branch of the general degree 7
polynomial as a composition of (single-valued) continuous functions of two or
fewer variables. Following Arnold and Kolmogorov, work on the problem in all
of its forms largely collapsed, this despite Arnold’s e�orts over a four decade
span [Arn2, Arn3, Arn4, AS, Arn5] to call attention to and solve Hilbert’s (still
open!) thirteenth problem.12

11As remarked above, Chebotarev’s argument has the same gap that Dixmier [Dix] observed in
Hilbert and Wiman, namely certain non-generic forms are assumed to be generic.

12 See also [Arn6, Problems 1972-27, 1976-34, 1979-10, 1980-10, 1985-18]
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In 1971, Khovanskii [Kho] showed that if one prohibited the use of division
in a formula (i.e., one only allowed “entire” algebraic functions), then the quintic
was not solvable in 1-variable functions.13 Khovanskii emphasized that, more than
anything else, this result shows the importance of division.14

In 1975, Brauer [Bra2] gave the �rst rigorous de�nition of resolvent degree
in the literature (followed soon after by Arnold and Shimura [AS]). Brauer then
proved that for n � .r � 1/Š C 1 , RD.n/ � n � r . �is improves Sylvester and
Hamilton’s bounds for r � 7 , and for such r provides the best upper bound, of
which we are aware, prior to this paper.

While not strictly on RD.n/ , McMullen’s work on iterative algorithms [McM]
and his iterative solution of the quintic with Doyle [DM] represent one of the major
outgrowths of Arnold’s e�orts to obstruct solutions of polynomials. More recently,
Buhler–Reichstein’s formalization of the Kronecker–Klein resolvent problem [BR1,
BR2], and the broader theory of essential dimension that this given rise to, provides
the closest contemporary body of work (see, e.g., [Rei], [Mer], [FKW1]).

�e interested reader can �nd other discussions of the history of the problem
in Sylvester and Hammond [SH1], in Klein [Klei9], or more recently in the surveys
by Dixmier [Dix] and Vitushkin [Vit]. For a contemporary treatment of resolvent
degree and its relation to classical problems see also [FW, FKW2].
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comments. Supported in part by NSF Grant DMS-1811846.

13A late paper of Abhyankar [Abh], apparently unaware of Khovanskii’s result, proves the analogous
theorem for the sextic.

14 Lin has also extensively investigated what one can say for the general degree n polynomial if one
rules out division and possibly imposes further restrictions, see the papers [Lin1, Lin2, Lin3].
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