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Resolvent degree, Hilbert’s 13th Problem and geometry
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Abstract. We develop the theory of resolvent degree, introduced by Brauer [Brau2] in
order to study the complexity of formulas for roots of polynomials and to give a precise
formulation of Hilbert’s 13th Problem. We extend the context of this theory to enumerative
problems in algebraic geometry, and consider it as an intrinsic invariant of a �nite group.
As one application of this point of view, we prove that Hilbert’s 13th Problem, and his
Sextic and Octic Conjectures, are equivalent to various enumerative geometry problems,
for example problems of �nding lines on a smooth cubic surface or bitangents on a smooth
planar quartic.
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1. Introduction

In a never-cited 1975 paper [Brau2], Brauer introduced for a �eld extension
L=K an integer-valued invariant RD.L=K/ that we call resolvent degree. Applying
RD to function �elds gives an invariant RD.Y Ü X/ of rational covers1
(e.g., �nite branched covers) of complex algebraic varieties. �e resolvent degree
RD.eP n ! Pn/ of the root cover of the universal family Pn of degree n

polynomials has the interpretation:

RD.ePn ! Pn/ D the least d for which there exists a formula in algebraic
functions of at most d variables for the roots of a
polynomial in terms of its coe�cients.

While the formal de�nition seems to have waited until Brauer, the study of
“reduction of parameters” for polynomials was initiated by Tschirnhaus [Tsch]
in 1683. It was developed and re�ned by Hamilton, Sylvester, Klein, Hilbert,
Segre and others. As we explain below, RD allows one to go beyond the
solvable/unsolvable dichotomy provided by Galois theory; in particular, it was
introduced by Brauer to give a precise formulation of Hilbert’s 13th Problem (see
below).

In this paper we pick up where Brauer left o�. We extend the scope of
RD from polynomials to classical enumerative problems, placing Hilbert’s 13th
Problem in a broader context and restoring the geometric perspective pioneered
by Klein in his study of quintic equations [Kle2]. One use of resolvent degree
is that it gives a uniform framework for stating and relating disparate classical
results. As an example, we prove (�eorem 8.1) an equivalence of Hilbert’s Sextic
Conjecture to seven other problems, for example relating it to �nding lines on
cubic surfaces and �nding �xed points for hyperelliptic involutions on genus 2
curves. We prove similar theorems for Hilbert’s 13th problem (�eorem 8.3), and
Hilbert’s Octic Conjecture (�eorem 8.4).

In [Wol], this viewpoint is used to extend a beautiful but little-known trick
of Hilbert (who used the existence of lines on a smooth cubic surface to give an
upper bound on RD.eP 9 ! P9/ ) to improve the upper bounds on RD.eP n ! Pn/
given by Hamilton, Sylvester, B. Segre, Brauer and others.

1.1. Resolvent degree. We start with a problem central to classical (and modern)
mathematics.

1 See De�nition 1.2 below.
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Problem 1.1. Find and understand formulas for the roots of a polynomial

(1.1) P.z/ D zn C a1z
n�1
C � � � C an

in terms of the coe�cients a1; : : : ; an .

It is well known that if n � 5 then no formula exists using only radicals
and arithmetic operations in the coe�cients ai .2 Less known is Bring’s 1786
theorem [Bri] that any quintic can be reduced via radicals to a quintic of the
form Q.z/ D z5 C az C 1 (see [CHM] for a contemporary translation). In 1836,
Hamilton [Ham] extended Bring’s results to higher degrees, showing, for example,
that any sextic can be reduced via radicals to Q.z/ D z6Caz2CbzC1 , making it
a 2 -parameter (a and b ) problem. He also proved that any degree 7 polynomial
can be reduced via radicals to one of the form

(1.2) Q.z/ D z7 C az3 C bz2 C cz C 1;

and that any degree 8 polynomial can be reduced via radicals to one of the form
Q.z/ D z8 C az4 C bz3 C cz2 C dz C 1 . Hilbert conjectured explicitly that one
cannot do better: solving a sextic (resp. septic, resp. octic) is fundamentally a
2 -parameter (resp. 3 -parameter, resp. 4 -parameter) problem. Of course we need
to know the exact rules of the game here; that is, we need to give a precise
de�nition of what it means to reduce a problem to r parameters. Surprisingly,
a precise de�nition was only written down in 1975, by Brauer [Brau2], and a
year later by Arnol’d–Shimura [AS], apparently unaware of Brauer’s paper. For
motivation, let’s look at an example.

Let Pn Š Cn be the space of monic, degree n complex polynomials, and leteP n be the root cover of Pn :

eP n WD ¹.P; �/ W P.�/ D 0º � Pn �C:

�e map .P; �/ 7! P gives an n -sheeted branched cover eP n ! Pn , with branch
locus precisely the subset of Pn consisting of polynomials with a repeated root,
given by the zero-set of the discriminant �n.a1; : : : ; an/ , a polynomial in the
coe�cients ai .

Recall that a rational map f W X Ü Y between irreducible varieties is
dominant if the image of f is Zariski dense in Y ; it is generically �nite if the
generic �ber is �nite. For such a map there are Zariski opens U � X; V � Y so
that the restriction f W U ! V is a �nite cover.

2�is was claimed by Ru�ni in 1799; a complete proof was given by Abel in 1824.
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De�nition 1.2 (Rational cover). Let X and Y be irreducible varieties.3 A rational
cover f W XÜ Y is a generically �nite dominant rational map.

With this de�nition in hand, “solving an arbitrary degree n polynomial by
radicals” means precisely that there is a sequence of rational covers

XrÜ � � �Ü X0 D Pn

such that Xr Ü Pn factors through a rational cover Xr Ü eP n , and where
each XiC1Ü Xi is birationally a pullback

XiC1 //

��

P1

��

z_

��
Xi // P1 zdi

�e fact that each cover XiC1 Ü Xi is a pullback from P1 re�ects the fact
that it is speci�ed by dimC P1 D 1 parameter, namely taking a di -th root, and
so “solving by radicals” is a process involving only 1 parameter at a time. �e
�nal map XrÜ eP n is crucial. For example, for Cardano’s solution in radicals
of the cubic, this map has degree 2 , re�ecting the fact that Cardano’s formula
actually produces 6 solutions (with multiplicity), not just 3 . While such towers
of radicals exist only for n � 4 , Bring’s reduction of quintics mentioned above
gives for n D 5 a tower with each XiC1Ü Xi either a radical, or the pullback
of the “Bring curve” C ! P1 (see [Gre] for a beautiful treatment of this genus 4
curve); in particular we see that solving a general quintic is also a 1 -parameter
problem. More precisely, we have the following.

De�nition 1.3 (Resolvent degree). Let k be a �eld of characteristic 0 and let
Y Ü X be a rational cover of k -varieties. �e essential dimension edk.Y Ü X/

is the minimal d so that Y Ü X is the “rational pullback” of a rational
cover of d -dimensional varieties: there exists a rational cover fW Ü W with
dim.W / D d , a Zariski open U � X , and a morphism f W U ! W such that
f �fW Š Y jU .

�e resolvent degree RDk.Y Ü X/ is the minimal d for which there exists
a tower of rational covers

(1.3) XrÜ Xr�1Ü � � �Ü X1Ü X0 D X

with edk.Xi Ü Xi�1/ � d for all i and with a dominant map of X -schemes
XrÜ Y .

3 See Convention 2.2 for the case of reducible varieties.



Resolvent degree, Hilbert’s 13th Problem and geometry 307

De�nition 1.3 is equivalent to Brauer’s original, purely �eld-theoretic de�nition;
see §2.1 below. One can easily check 4 that RD.eP n ! Pn/ is the minimal number
of parameters to which one can reduce a general degree n polynomial in order
to �nd a formula for the roots. In this language, the results mentioned above on
reduction of parameters can be restated succinctly as:

RD.eP n ! Pn/ D 1 8n � 5; and RD.eP n ! Pn/ � n � 4 8n > 5:

Remark 1.4. �e theory of essential dimension has been developed by Buhler–
Reichstein, Merkurjev and others into a beautiful and widely applicable theory;
see Reichstein’s 2010 ICM paper [Rei] for a survey. �is disallowing of so-called
“accessory irrationalities” captures more of the arithmetic of the function �eld of
the base, whereas RD captures more of the intrinsic complexity of the branched
cover. For the problems we are considering, forcing a solution in a single step
does not give the correct measure. For example, there are �nite covers eX ! X

that are solvable (hence RD. eX ! X/ D 1 ) but with ed. eX ! X/ as large
as one wants; and for example ed.eP 4 ! P4/ D ed.eP 5 ! P5/ D 2 , even
though (as mentioned above) it was known by 1786 that these problems reduce
to 1 parameter.

1.2. Hilbert’s problems. As already noted by Brauer [Brau2], Hilbert’s conjec-
ture (explicitly asked by Hilbert in [Hil1, p.424] and [Hil2, p.247]) that Hamilton’s
reduction of parameters for the general polynomial of degree 6; 7 , or 8 is optimal,
can now be stated precisely, as can the problem for all degrees. Both Klein and
Hilbert worked on this general problem for decades (see [Kle3, Hil1, Hil2]).

Problem 1.5 (Klein, Hilbert, Brauer). Compute RD.eP n ! Pn/ . In particular:
Hilbert’s Sextic Conjecture ([Hil2], p. 247): RD.eP6 ! P6/ D 2.
Hilbert’s 13th Problem ([Hil1], p. 424): RD.eP7 ! P7/ D 3.
Hilbert’s Octic Conjecture ([Hil2], p. 247): RD.eP8 ! P8/ D 4.

Amazingly, no progress has been made on any of these three conjectures since
Hilbert stated them. In 1957, Arnol’d and Kolmogorov proved (see [Arn]) that
there is no local topological obstruction to reducing the number of variables;
however, as Arnol’d and many others have noted, the global problem remains
open. A lot of work has been done on �nding upper bounds on RD.eP n ! Pn/ .
�is includes (in other language) theorems of Tschirnhaus (1683), Bring (1786),
Hamilton (1836), Sylvester (1887), Klein (1888), Hilbert (1927), and Segre (1945).

�e best general upper bound on RD.eP n ! Pn/ , prior to the present, was
given by Brauer [Brau2]. He proved for n � 4 that RD.eP n ! Pn/ � n� r once

4�is is somewhat more clear via Brauer’s de�nition.
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n � .r � 1/Š C 1 . Brauer’s method was to systematize the classical method of
Tschirnhaus transformations. In [Wol], the point of view developed here is used
to give a signi�cant improvement on Brauer’s bound. One of the key ideas is to
expand the context of resolvent degree.

1.3. Expanding the context. Since Hilbert, resolvent degree has been considered
primarily for root covers of polynomials. However, as Klein �rst realized [Kle3],
RD is much more widely applicable. After all, many algebraic problems can be
reformulated in terms of a rational cover .P; s/ 7! P from the space eX of pairs
.P; s/ of input parameters P and solutions s to the space X of parameters P ,
and

RD.eXÜ X/ = minimal number of parameters of any algebraic formula
for s in the coe�cients of P .

As Klein himself realized [Kle1], this general setup includes not only roots of
polynomials eP n ! Pn (see §7), but also a second fundamental source of
examples, namely incidence varieties (see §6).

Incidence varieties. Problems in enumerative geometry are typically set up with
the following data:

(1) a pair of moduli spaces M; C of algebraic varieties;

(2) a subvariety fM �M � C , called an incidence variety, consisting of pairs
.M;C / satisfying a given incidence relation; and

(3) a rational cover � W fM ÜM de�ned by �.M;C / WDM .

We restrict to characteristic 0 throughout this paper. By the de�nition of a
rational cover, for each component M0 of M there exists n � 1 so that � is an
n -sheeted covering space over some Zariski open U �M0 . In particular for each
M 2 U there is a set ��1.M/ D ¹C1; : : : ; Cnº of n varieties in C , satisfying the
given incidence relation, varying in an algebraic way with M . Here are some
examples.

Examples 1.6. Let Hd;n denote the moduli space of smooth, degree d hyper-
surfaces in Pn .

(1) 27 lines on a smooth cubic surface:

H3;3.1/ WD
®
.S; L/ W S a smooth cubic surface, L � S a line

¯
and � W H3;3.1/! H3;3 is a 27 -sheeted cover. See §4 for precise de�nitions.
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(2) 28 bitangents on a smooth planar quartic:

H4;2.1/ WD
®
.C;L/ W C � P2 a smooth quartic,

L � P2 a line tangent to C at 2 points
¯

and � W H4;2.1/! H4;2 is a 28 -sheeted cover. See §5 for precise de�nitions.
(3) 3264 conics tangent to 5 given conics: Let W be the linear system of conics

in P2 and W0 � W the Zariski open consisting of smooth conics. �en we
can de�ne

Y WD
®
.C1; : : : ; C5; C / W C is tangent to each Ci

¯
2 W 5

�W0

and � W Y ! W 5 is a 3264-sheeted dominant map.

A �rst goal of enumerative problems is to �nd such fM ÜM and then to
compute the degree n . One then wants to �nd points in ��1.M/ in terms of
the data needed to specify M . “Find” can have several meanings.

Example 1.7 (Finding a line on a cubic surface). Cayley–Salmon proved in 1856
that a smooth cubic surface has 27 lines. How hard is it to �nd such a line? all
27 lines given one of them? Let H3;3.r/ (resp. Hskew

3;3 .r/ ) denote the moduli
space of .rC1/ -tuples .S IL1; : : : ; Lr / where S 2 H3;3 and ¹Liº are lines (resp.
disjoint lines) in S ; see §4 for precise de�nitions. Harris [Har] proved:5

� �e monodromy group of the 27 -sheeted cover H3;3.1/! H3;3 is the Weyl
group W.E6/ ; in particular it is not solvable. Harris [Har, p. 718] deduces
that “there does not exist a formula for the 27 lines of a general cubic
surface.”

� �e monodromy group of H3;3.27/ ! Hskew
3;3 .r/ is solvable for r D 3 but

not for r < 3 . �us there is a formula in radicals for the 27 lines, given 3

disjoint ones, but no fewer.

�e question remains: how hard is it to �nd a line on a smooth cubic surface?
or 27 lines given 1? We just saw examples where a formula in radicals does
not exist, and indeed this is typical for enumerative problems; this is the main
theme of [Har]. But, in contrast to Harris’s conclusion, algebraic formulas not-in-
radicals do exist, and indeed have been an object of study since the 17th century.
Resolvent degree allows us to move beyond the solvable/unsolvable dichotomy
to give a quantitative measure of the possible complexity of such formulas. In
particular it allows us to ask: what is RD.H3;3.r/! H3;3.s//? Here is a simple
but illustrative example.

5�e �rst statement was known to Camille Jordan.
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Example 1.8. RD
�
H3;3.27/! H3;3.1/

�
� RD.eP 5 ! P5/ D 1 .

Example 1.8 follows from a beautiful classical trick: given a line L on a
smooth cubic surface S , each plane in the pencil containing L intersects S in
L union a conic, and this conic degenerates into a union of two lines at the roots
of the discriminant �L of this pencil of conics. �L is a one-variable polynomial
of degree 5 , which by Bring [Bri] has RD D 1 . One then gets 5 pairs of distinct
lines on S , and gets the other 16 via radicals, by Harris’s theorem.

Conjecture 1.9 (�e line-�nding conjecture).

RD
�
H3;3.27/! H3;3

�
D RD

�
H3;3.1/! H3;3

�
D 3:

�e upper bound of 3 comes from work of Klein and Burkhardt [Kle3, Bur].
We give a concise proof in �eorem 4.3 below.

In §6 we will see how theorems from classical geometry can be used to
relate the resolvent degrees of di�erent problems. For example, we use the result
described in Figure 1 to prove the following.

256 CHAPTER 10. APPLICATIONS TO CLASSICAL TOPICS

Figure 10.2: Portion of V 0 with its 27 lines (from below)

10.5.2 Relation with del Pezzo surfaces

A del Pezzo surface X (at least over an algebraically closed field) is either P1⇥P1

or the blow-up of P2 in m points (m = 1, . . . , 8), usually taken in general position.
(In comparison, recall that a rational elliptic surface is the blow-up of P2 in nine
points, but not in general position, since they are the base points of a cubic
pencil.) The degree d of X is defined to be

d = K2
X = 9�m.

For our purposes, the small degree cases d = 1, 2, 3 are of particular interest
since they naturally give rise to the root lattice E9�d by way of considering
the orthogonal complement K?

X inside NS(X) (which is even by the adjunction
formula from Theorem 4.9, and thus isomorphic to E9�d for classification reasons).
Indeed, one can obtain an elliptic surface from X by blowing up another d points.
Here a word of care may be in order; namely, these d points are not at all
independent of the others. For instance, if d = 1, then the 8 points blown-up in
P2 already determine a cubic pencil in P2. This pencil has one further base point
determined by the given 8 which we thus have to blow-up in order to obtain a
rational elliptic surface from X.

Here comes the easiest example of a del Pezzo surface not obviously given in
the above model: a smooth cubic surface V ! Indeed, it was classically known
that V is isomorphic to P2 blown-up in 6 points. Here is a rough idea how to

Figure 1
�e projection � W Blp.S/ ! P2 of the blowup at a point p of a smooth
cubic surface S is a 2 -sheeted branched cover, branched over a smooth
plane quartic C . �e branching locus in S is the inner rim of each of the
four holes in S , two of which go o� to in�nity in the left-hand picture. �e
image �.C / of each of the 27 lines in S is a bitangent of C . Here we see
(the real points of) a branched cover given by projection to the plane of the
paper. �e left part of the �gure is taken from [SS]; the right from [PSV].
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�eorem 1.10. Any minimal algebraic formula for the 27 lines on a smooth cubic
surface (in terms of its coe�cients) has the same number of parameters as any
minimal algebraic formula for the 28 bitangents on a plane quartic curve, given
one of them:

RD
�
H3;3.27/! H3;3

�
D RD

�
H4;2.28/! H4;2.1/

�
:

We discuss in depth lines on smooth cubic surfaces and bitangents on smooth
plane quartics in §4 and §5, respectively. We focus on these examples because of
their richness and their close relationship to Hilbert’s problems (see below). In §6
we discuss RD of some other enumerative problems. It is our hope that others
will work out the resolvent degree story for these problems (and many more).

Remark 1.11 (Explicit formulas). Part of the usefulness of the Galois criterion for
solvability in radicals is that one can prove it without �nding such a formula explic-
itly. Similarly, one can give an upper bound for the resolvent degree of a problem
without �nding an explicit formula. At the same time, the answers given by non-
explicit methods can sometimes help indicate where to look for explicit formulas.

1.4. �e scope of Hilbert’s problems. As with many of Hilbert’s problems,
the 13th Problem and the Sextic and Octic Conjectures are meant to indicate
a fundamental phenomenon whose understanding should have implications far
beyond the original problem. Hilbert was clearly interested in, and worked on
(see, e.g., [Hil1, Hil2]), the general problem of determining RD.eP n ! Pn/ , the
cases n D 6 , n D 7 , and n D 8 being the �rst open cases. In §8 we prove the
equivalence of the Sextic Conjecture with seven other statements, the equivalence
of Hilbert’s 13th Problem with four other statements, and the equivalence of the
Octic Conjecture with six other statements.

�e point is both to exhibit how rich these problems are, and also to recast
them in ways that may be more amenable to solution. As a sample, here is an
abridged version of �eorem 8.1 below; for de�nitions see §8.

�eorem 1.12 (�e geometry in Hilbert’s Sextic Conjecture). �e following
statements are equivalent:

(1) Hilbert’s Sextic Conjecture is true: RD.eP 6 ! P6/ D 2 .
(2) RD D 2 for the problem of �nding the 27 lines on a cubic, given a “double

six” set of lines (unordered) (see §4.1 and Figure 2):

RD
�
H3;3.27/! H3;3.6; 6/

�
D 2:

In fact, the resolvent degrees of the above problems coincide.
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Figure 2
A double-six of lines on (the real points of) a smooth cubic surface.
�e intersection pattern is given in (4.3), with the ai colored blue
and bj colored red (see the ebook version for a full color image).
One can ask for a formula for the other 15 lines on a smooth
cubic given a double-six. �e resolvent degree of this problem is
2 if and only if Hilbert’s Sextic Conjecture is true. Figure taken
from www.mathcurve.com/surfaces.gb/clebsch/doublesix.shtml.

For further equivalences, as well as for problems about G -varieties with
G D W.E6/; S7; S8 or W.E7/ , see §8.

Our approach to proving �eorem 1.12 (and the versions for other G ) is to
de�ne RD as an intrinsic invariant of a �nite group, in this case S6 and S2�S6
respectively. We do this in §3. We then show that each of the speci�c covers
in the theorem realizes the resolvent degree of their Galois group. Finally, we
show that if a group contains as subgroups all the simple factors in its Jordan-
holder decomposition, then its resolvent degree is the maximum of these simple
factors (�eorem 3.3). From a classical perspective, a G -variety X gives an
algebraic function expressing X in terms of coordinates on X=G . �e proof of
�eorem 1.12 proceeds by showing that RD.G/ D RD.X ! X=G/ when X is a
“versal” G -variety, for an appropriate notion of “versal”, and then to prove the
versality of the varieties listed above. What “versality” means, in this context, is
that, up to accessory irrationalities, all G -varieties are birationally pullbacks of
any versal one. See §3.2 for details. We give a similar treatment for Hilbert’s 13th
Problem and S7 , Hilbert’s Octic Conjecture and S8 , as well as for various W.E6/
and W.E7/ -varieties. For a more detailed treatment of versality in connection
with modular functions, see [FKW].

https://www.mathcurve.com/surfaces.gb/clebsch/doublesix.shtml
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1.5. Lower bounds. �eorems on resolvent degree to date have exclusively
concerned providing upper bounds. As Dixmier concludes in his 1993 paper
[Di] (using ‘s.n/ ’ for RD.eP n ! Pn/ ):

Terminons sur une note dramatique, qui prouve notre incroyable igno-
rance. Bien que cela paraisse improbable, il n’est pas exclu que s.n/ D 1
pour tout n ! : : : Toute minoration de s.n/ serait un progrès sérieux.
En particulier, il serait temps de savoir si s.6/ D 1 ou s.6/ D 2 .”6

In fact, we still cannot solve the following problem, implicit in Klein, Hilbert
and Brauer, and stated more explicitly by Arnol’d-Shimura [AS].

Problem 1.13 (Arnol’d-Shimura). Prove that there exists eX Ü X with

RD. eX Ü X/ > 1:

In fact, we believe that the following stronger statement should hold.

Conjecture 1.14. RD.eP n ! Pn/!1 as n!1 .

Along with Hilbert’s Sextic and Octic Conjectures and Hilbert’s 13th Problem,
these are clearly among the most important conjectures about resolvent degree.
While we make no de�nite progress in this paper toward solving these problems,
we hope that with renewed attention to them, and to the broader framework of
resolvent degree, future progress may be more forthcoming.

1.6. Historical Remarks. �e concept of resolvent degree originates with the
classical problem of solving polynomials. It emerged in the 17th century with
the work [Tsch] of Tschirnhaus.7 In 1786, Bring [Bri] proved RD D 1 for the
problem of solving the quintic, and in 1836 Hamilton [Ham] gave a general
sequence of upper bounds on RD.eP n ! Pn/ for increasing n . Hamilton’s
work was picked up by Sylvester and his student Hammond [Syl, SH1, SH2], by
Klein [Kle3, Kle2], and by Hilbert [Hil1, Hil2]. Sixty-four years after Hamilton’s
work, Hilbert brought to the fore the fundamental issue: no lower bounds for
RD.eP n ! Pn/ had ever been shown. Hilbert’s Sextic Conjecture, Hilbert’s 13th
Problem 8, and Hilbert’s Octic Conjecture pose the challenge of proving that
RD.eP 6 ! P6/ D 2 , RD.eP 7 ! P7/ D 3 , and RD.eP 8 ! P8/ D 4 respectively.

6 In English : “Let’s end on a dramatic note, which proves our incredible ignorance. Although this
seems unlikely, it is not excluded that s.n/ D 1 for all n ! : : : Any lower bound for s.n/ would be
serious progress. In particular, it’s time that we know whether s.6/ D 1 or s.6/ D 2 .”

7 See [KK] for a discussion of Tschirnhaus’ work and the relevant correspondence with Leibniz.
8We will state what is sometimes called the “algebraic version” of this problem. Hilbert’s original

phrasing of the problem leaves room for various interpretations.
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Resolvent degree was �rst de�ned explicitly in 1975 by Brauer [Brau2] in
order to make precise Hilbert’s 13th Problem. Brauer also gave new upper bounds
on RD.eP n ! Pn/ for all n ; see §7 below. A year later Arnol’d-Shimura [AS],
apparently unaware of Brauer’s paper, gave an equivalent de�nition of RD, also
in order to make precise Hilbert’s 13th. �e de�nition of RD seems to have lain
dormant until the paper [Di] of Dixmier, who helped publicize the concept of
resolvent degree. �is concept was also discussed in passing by Buhler–Reichstein
[BR2] and Chernousov–Gille–Reichstein [CGR]. �e present paper is the �rst to
cite [Brau2]. �e problem of �nding any extension L=K with RD.L=K/ > 1

remains open.

2. �e resolvent degree of a rational cover

In this section we study the basics of resolvent degree RD. After giving the
de�nition of RD of a rational cover, we establish some basic properties of RD,
we prove that our de�nition is equivalent to Brauer’s original de�nition in [Brau2]
of the resolvent degree of a �nite �eld extension, and we prove a number of
technical foundational results that are useful for computations. More speci�cally,
we relate RD of an extension to that of its Galois closure, and we prove a crucial
result on “accessory irrationalities”, a classical concept studied by Kronecker,
Klein and others, that is a key feature of RD.

2.1. De�nitions of resolvent degree. For expositional reasons, we state the results
in this paper in the language of k -varieties. For the reader who prefers to work
with schemes, we will signal when a result or proof does not trivially extend to
this case.

Convention 2.1.
(1) Unless otherwise speci�ed, throughout this paper we take the base �eld k

to be an arbitrary �eld of characteristic 0.
(2) By a k -variety we mean a reduced, possibly reducible k -scheme of �nite

type.
(3) When the ground �eld k is clear we will generally omit the subscript k and

simply write RD.�/ .
(4) A solid arrow X ! Y denotes a regular map of varieties; a dashed arrow

XÜ Y denotes a rational map of varieties.
(5) Given a rational cover eX Ü X , we will refer to a tower (1.3) as in

De�nition 1.3 as a “tower solving eX Ü X in d variables”, or as a
“tower solving eX ” for short.
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(6) We say that f W XÜ Y is a “rational pullback” of g W W Ü Z if there
exist dense opens U 0 � X , U � Y , V 0 � W , V � Z and a pullback square
of regular maps

U 0 //

f jU
��

V 0

gjV
��

U // V

(7) �e “domain” of a rational map f W X Ü Y is the largest U � X for
which f jU is a regular. map. �e “image” of f is de�ned to be f .U / .

Convention 2.2 (Rational cover of a reducible variety). Let eX and X be a
(possibly reducible) varieties. By a rational cover eX Ü X we mean a rational
map eX Ü X with which restricts on each irreducible component eX i � eX to
a dominant rational map eX iÜ Xj for some irreducible component Xj � X ;
some Zariski open of each Xj lies in the image of some eX i ; and for each j the
generic �ber of eX over Xj is �nite. In particular, we want to avoid pathologies
such as X

`
¹xº ! X (where dim.X/ > 0 and x 2 X.k/ ).

Recall that we de�ned in De�nition 1.3 the resolvent degree of a rational
cover. We can also de�ne it in terms of �eld extensions.

De�nition 2.3 (Resolvent Degree of a �eld extension). Let K ,! L be a �nite
extension of �elds over k . �e resolvent degree RDk.L=K/ is the minimal d
for which there exists a �nite sequence of �nite extensions

K D L0 ,! L1 ,! � � � ,! Lr

with L ,! Lr (as extensions of K ) and for all i D 1; : : : ; r ,

Li D Li�1 ˝Fi
QFi

where Fi ,! Li�1 is a sub�eld with tr: degk.Fi / � d and where Fi ,! QFi is a
�nite extension. Here tr: degk.Fi / denotes the transcendence degree of Fi over
k .

�e de�nition of resolvent degree in terms of rational covers and in terms of
�eld extensions are equivalent.

Proposition 2.4 (Equivalence of de�nitions). If eX Ü X is a rational cover of
irreducible k -varieties then

RD. eX Ü X/ D RD.k. eX /=k.X//:

We defer the proof until we have assembled basic properties of RD (as de�ned
in De�nition 1.3) in the next section.
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Comparison with essential dimension. Essential dimension has its origins in
work of Hermite [He], Kronecker [Kro], Joubert [Jou] and Klein [Kle2]. �e
theory was revived, and de�nitions made explicit, around twenty years ago by
Buhler–Reichstein in [BR1]. It has been studied intensively ever since. See [Rei]
and [Mer2] for recent surveys.

A central feature of the theory of essential dimension are the invariants
edk.�Ip/ . �ese measure the prime-to-p essential dimension; that is, any auxiliary
tower of covers of degree prime to p is allowed before one �nds a dominant
map to a variety of minimal dimension. One could de�ne the analogous invariant
RDk.�Ip/ by saying that in the tower giving a solution, one allows arbitrary
prime-to-p covers, but for covers whose degree is divisible by p , only those
of edk.�/ � d . Field theoretically, this amounts to working over the prime-to-p
closure of the function �eld of the base; that is, base-changing to Spec of the
�xed �eld of a p -Sylow of the absolute Galois group of k.X/ . Since p -groups
and pro-p groups are solvable, we immediately see that RDk.�Ip/ � 1 for all
k and all p . �is is in strong contrast to the case of essential dimension, and
shows that the study of resolvent degree is a strictly “Type 2” problem in the
dichotomy of [Rei, §5].

2.2. Basic properties. In this section we establish some of the basic properties
of RD.

Lemma 2.5 (Easy upper bounds). Let eX Ü X be a rational cover of k -
varieties.
(1) RD. eX Ü X/ � ed. eX Ü X/ � dim.X/ .
(2) Let k ,! k0 be any �eld extension. �en

RDk0. eX �k k0Ü X �k k
0/ � RDk. eX Ü X/:

(3) Let Y Ü X be any dominant rational map of k -varieties. �en

RD. eX �X Y Ü Y / � RD. eX Ü X/:

(4) If the rational map eX Ü X is birational over k to eY Ü Y ; that is, ifeX � //

��

eY
��

X
� // Y

for some birational horizontal maps, then

RD. eX Ü X/ D RD. eY Ü Y /:
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Proof. �e �rst statement is immediate from the de�nitions. �e second, third
and fourth statements follow from base change: e.g., given a tower solvingeX Ü X over k , by base change we obtain an analogous tower over k0

solving eX �k k0Ü X �k k
0 . �is shows that any upper bound for towers over

k immediately gives one over k0 as well. �e argument for the third and fourth
is analogous.

Many natural branched covers are reducible; indeed such covers arise in
Cardano’s solution to the cubic; these components are responsible for so-called
“parasitic roots” in the solution. �e following lemma allows us to reduce the
study of RD to irreducible components.

Lemma 2.6 (Irreducible components). Let eX Ü X be a rational cover. Let
¹Xi � Xº be the set of irreducible components of X , and let ¹ eX i;j � eX jXi º
be the set of irreducible components of eX jXi Ü Xi . �en

RD. eX Ü X/ D max
i;j

®
RD. eX i;j Ü Xi /

¯
:

Proof. From the de�nition of resolvent degree, if X D
`
i Xi , then

RD. eX Ü X/ D max
i

®
RD. eX jXi Ü Xi /

¯
:

Let X D
S
Xi , and let X� D

S
i¤j Xi \ Xj be the set of points contained

in more than one irreducible component. �en X � X� is a disjoint union of
irreducible components, and X � X� is birationally equivalent to X . Because
resolvent degree is a birational invariant (Lemma 2.5), it su�ces to assume that
X is irreducible, and that eX D`i

eX i .
�e inequality

RD. eX Ü X/ � max
i

®
RD. eX iÜ X/

¯
is clear. Indeed, given a tower solving eX i Ü X for each i , we construct a
tower solving eX Ü X as follows, �rst if r is the length of the longest tower
solving one of the eX i Ü X , we extend all the other towers (for j ¤ i ) to
towers of length r by adding identity maps after the �nal stage. Next, we form
a tower over X whose `th stage is the disjoint union of the `th stages of the
towers for the eX i s. By construction, each stage of this tower is pulled back from
something of dimension at most maxi¹RD. eX iÜ X/º . It remains to show that

RD. eX Ü X/ � RD. eX iÜ X/

for any i . �is follows from a standard argument in covering space theory
(equivalently the étale fundamental group). Without loss of generality, take i D 1 .
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A simple induction reduces us to the case where eX is the disjoint union of two
irreducible components. Write eX D eX 1

` eX 2 . Shrinking X as necessary, we
can further assume that X and eX are regular (since, here and throughout this
paper, we work in characteristic 0). Suppose now that we have a tower of rational
covers

YrÜ � � �Ü Y0 D X

solving eX Ü X in functions of at most d variables. Let Ui � Yi be smooth
dense opens such that we have a tower of regular étale maps

Ur ! � � � ! U0 � X;

a dominant regular map p W Ur ! eX , and for each i , a pullback diagram

Ui //

��

QZi

��
Ui�1 // Zi

where dimZi � d . Let Ur;i be the union of irreducible components mapping
dominantly onto eX i . Let s be the greatest integer for which Us is irreducible
(note that by assumption, U0 � X is irreducible). We induct on r � s . For the
base, r � s D 1 , we have a pullback diagram

Ur //

��

QZr

��
Ur�1 // Zr

where Ur�1 is irreducible, and without loss of generality Zr is too. If the
branched cover QZr can be partitioned as QZr;i with Ur;i Š Ur�1 �Zr

QZr;i , then,
by replacing Ur with Ur;1 , we obtain a tower solving eX 1 in the same number
of variables as the tower solving eX . Suppose therefore that QZr is connected.
�erefore, the connected generically étale map QZr ! Zr splits when pulled back
along Ur�1 ! Zr . Equivalently, �xing a geometric point �! Ur�1 ! Zr , the
image

�et1 .Ur�1; �/! �et1 .Zr ; �/! Perm. QZr j�/

lies in a subgroup of the form Perm.A1/ � Perm.A2/ � Perm. QZr j�/ . Let
H � �et1 .Zr ; �/ be the pre-image of Perm.A1/ � Perm.A2/ , and let

QZH ! Zr

denote the corresponding étale map. Because �et1 .Ur�1; �/ factors through the
inclusion H � �et1 .Zr ; �/ , the map Ur�1 ! Zr factors through QZH . By
construction, the pullback QZr �Zr QZH splits as
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. QZr �Zr
QZH /1

a
. QZr �Zr

QZH /2

with . QZr �Zr
QZH /i �ZH Ur�1 Š Ur;i . Because dim.ZH / D dim.Zr / , we have

reduced to the case where the cover QZr ! Zr is disconnected, and thus have
exhibited a tower solving eX 1 ! X with the same bounds as the tower solvingeX ! X . �is completes the base of the induction. �e inductive step follows
from the same construction. If r � s > 1 , then applying the above construction
in sequence, we obtain a tower

U 0r ! � � �U
0
sC1 ! U 0s D Us ! � � � ! U0 � X

solving eX 1 ! X , which agrees with the tower solving eX ! X for i � s , and in
which U 0i ! U 0i�1 for i > s is pulled back from a variety of the same dimension
which Ui ! Ui�1 is. We conclude that RD. eX Ü X/ � RD. eX 1Ü X/ .

Proof of Proposition 2.4. �e inequality RD. eX Ü X/ � RD.k. eX /=k.X//

follows from pulling back any tower solving eX Ü X along the map
Spec.k.X//! X , and then applying Lemma 2.6.

For the reverse inequality, let

k.X/ D L0 ,! L1 ,! � � � ,! Lr

be any tower solving k. eX /=k.X/ . For each i , pick varieties Yi , Zi and QZi
such that k.Yi / D Li , k.Zi / D Fi and k. QZi / D QFi respectively. �en we obtain
a tower of rational covers

YrÜ � � �Ü Y1Ü Y0 D X

such that YrÜ X factors through a rational cover YrÜ eX Ü X , and such
that each Yi sits in a birational pullback diagram

Yi //

��

QZi

��
Yi�1 // Zi

Because dim.Zi / D tr: deg.Fi / , the upper bound on RD.k. eX /=k.X// provided
by the tower over k.X/ carries over to give an identical upper bound on
RD. eX Ü X/ . Taking the minimum over all such towers gives

RD. eX Ü X/ � RD
�
k. eX /=k.X/

�
as desired.
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Lemma 2.7 (RD of a composition). Let ZÜ Y Ü X be a pair of rational
covers of k -varieties. �en

RD.ZÜ X/ D max
®
RD.ZÜ Y /;RD.Y Ü X/

¯
:

Proof. �e de�nition immediately implies that RD.ZÜ X/ � max¹RD.ZÜ
Y /;RD.Y Ü X/º and RD.ZÜ X/ � RD.Y Ü X/ . To see that RD.ZÜ
X/ � RD.ZÜ Y / , note that

RD.ZÜ X/ � RD.Z �X Y Ü Y /

and, because ZÜ Y embeds as a collection of components of Z �X Y Ü Y ,
Lemma 2.6 implies

RD.Z �X Y Ü Y / � RD.ZÜ Y /:

De�nition 2.8. A rational cover eX Ü X is generically n-to-1 if n D Œk.Xi / W

O. eX jSpec.k.Xi ///� for each irreducible component Xi � X .

While the resolvent degree RD.eP n ! Pn/ of the root cover of the space of
degree n polynomials is a speci�c example, it is universal in the following sense.

Lemma 2.9 (Universality of eP n ! Pn ). Let eX Ü X be a generically n-to-1
rational cover. �en

RD. eX Ü X/ � RD.eP n ! Pn/:

Proof. By the �eorem of the Primitive Element (using that we are in character-
istic 0), there exists ˛ 2 k. eX / such that

k. eX / Š k.X/.˛/ Š k.X/Œz�=p˛.z/

where
p˛.z/ D z

n
C a1z

n�1
C � � � C an

is a minimal polynomial for ˛ . Let U � X denote the largest Zariski open for
which all the coe�cients ai 2 k.X/ are regular functions. �e polynomial p˛
determines a map

U !p˛ Pn
u 7!

�
a1.u/; : : : ; an.u/

�
and this map determines a pullback square
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eX jU //

��

ePn
��

U
p˛ // Pn

�erefore, by Lemma 2.5,

RD. eX Ü X/ D RD. eX jU ! U/ � RD.eP n ! Pn/:

�is universal property will show up in many of the examples and computations
below.

2.3. Galois closures and resolvent degree. In this subsection we will relate the
resolvent degree of L=K with the resolvent degree of various related extensions,
for example the Galois closure of L over K . �is often will allow us in practice
to reduce to the case of Galois covers.

De�nition 2.10 (Galois theory terminology for rational covers). Let eX Ü X

be a rational cover of k -varieties.

(1) If eX is irreducible, then the map eX Ü X is Galois if the associated
extension of function �elds k.X/ ,! k. eX / is Galois. We write Gal. eX Ü
X/ for the Galois group of the associated extension of function �elds.

(2) If eX is irreducible, we say that a map eX 0Ü X is a Galois closure ofeX Ü X if it factors as eX 0Ü eX Ü X and if k.X/ ,! k. eX 0/ is a
Galois closure of k.X/ ,! k. eX / .

(3) Given ZÜ Y Ü X irreducible, with ZÜ X Galois, the Galois closure
of Y Ü X in Z Ü X is any integral model of the Galois closure of
k.X/ ,! k.Y / in k.Z/ .

(4) If eX is reducible, we say eX Ü X is Galois if the restriction of the map
to each irreducible component of eX is Galois. Similarly, we say eX 0Ü X

is a Galois closure of eX Ü X if there is a bijection between the set
of irreducible components of eX 0 and of eX such that the restriction of
the map eX 0Ü X realizes each component of eX 0 as a Galois closure
of the corresponding component of eX . Given Z Ü Y Ü X with Z

Galois, a Galois closure of Y in ZÜ X is union of Galois closures of
the components of Y .

�e following lemma will allow us to pass to Galois closures when computing
RD. �e analogous lemma for ed is Lemma 2.3 of [BR1].
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Lemma 2.11 (RD is preserved under Galois closure). Let eX Ü X be a rational
cover of k -varieties. Let eX 0Ü X be a Galois closure of eX . �en

RD. eX Ü X/ D RD. eX 0Ü X/:

Proof. By Lemma 2.6, it su�ces to prove this in the case where eX is irreducible.
For this, we induct on the degree of the map eX Ü X . For the base case, n D 2 ,
every quadratic extension (in characteristic 0) is already Galois, so the lemma
holds trivially.

For the induction step, assume the lemma holds for all rational covers of
k -varieties of degree less than n .

Let eX Ü X be a rational cover of degree n . Consider the compositioneX �X eX Ü eX Ü X

�e �ber product eX �X eX splits as eX ` eX 1 (at the level of function �elds, this
follows from the Primitive Element �eorem), where eX ! eX is the identity,
and eX 1Ü eX is a rational cover of degree n�1 . By the inductive hypothesis,

RD. eX 01Ü eX / D RD. eX 1Ü eX /

for any Galois closure eX 01Ü eX of eX 1Ü eX . By Lemma 2.6,

RD. eX 1Ü eX / � RD. eX Ü X/:

�erefore, by Lemma 2.7,

RD. eX 01Ü X/ D max
®
RD. eX 1Ü eX /;RD. eX Ü X/

¯
D RD. eX Ü X/:

But, by construction, we see that eX 01Ü X is a Galois closure of eX Ü X ,
and this completes the induction step.

2.4. Accessory irrationalities. We now give two results about resolvent degree
of �eld extensions; we defer stating the corresponding results for rational covers
of k -varieties to below. We adopt this presentation to make use of constructions
such as compositum and intersection of sub�elds which are easier to state in the
setting of �eld extensions than for covering spaces, where they correspond to
greatest lower bounds and least upper bounds in a lattice of covering spaces.

�e following allows one to pass to towers of Galois covers when analyzing
RD.

Lemma 2.12 (Improving towers). Let K ,! L be a �nite extension of k -�elds.
�en without loss of generality, in any tower realizing RD.L=K/ , we can assume
that the extension at each stage is Galois. More precisely, for any d > 0 (e.g.,
d D RD.L=K/ ), let

K D K0 ,! K1 ,! � � � ,! Kr
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be any sequence of extensions with L ,! Kr (as �elds over K ) and such that
ed.Ki=Ki�1/ � d for all i . �en there exists a diagram of sequences of extensions

(2.1) K
� � // K1

� � //
� _

��

K2
� � //

� _

��

� � �
� � // Kr� _

��
K

� � // K 01
� � // K 02

� � //
� _

��

� � �
� � // K 0r� _

��
K

� � // QK1
� � // QK2

� � // � � � �
� // QKr

such that for all i ,

(1) K 0i is Galois over K 0i�1 ,

(2) QKi is a Galois closure of Ki over K ,

(3) ed.K 0i=K 0i�1/ � d for all i , and

(4) RD. QKi=K/ D RD.Ki=K/ � d for all i .

Proof. Because we work in characteristic 0, all extensions are separable. �erefore,
for the bottom row of (2.1), de�ne QKr to be a Galois closure of Kr over K , and
for i < r , let QKi denote the Galois closure over K of Ki in QKr . Lemma 2.11
implies that

RD. QKi=K/ � RD.Ki=K/ � d:

To construct the middle row, we prove by induction that for any 1 � j � r

there exists a diagram of sequences of extensions of the form (2.1) in which
ed.K 0i=K 0i�1/ � ed.Ki=Ki�1/ for all i , and in which K 0i is Galois over K 0i�1 for
i � j . For the base case j D 1 , let K 01 D QK1 . �is is Galois over K0 . For the
induction step, suppose that we have de�ned K 0j for j � i . De�ne K 0iC1 to be
the Galois closure (in QKr ) of the compositum (in QKr ) of KiC1 with K 0i over
Ki . �en the de�nition of essential dimension and [BR1, Lemma 2.3] imply that

ed.K 0iC1=K 0i / � ed.KiC1=Ki /

as required to complete the induction step.

�e following proposition is quite useful when analyzing the resolvent degree
of G -covers (and their subcovers) for G simple. In particular, it shows that a
general solution can always be put into a reduced form where the monodromy of
the original rational cover occurs precisely at the last stage.
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Proposition 2.13 (Accessory irrationalities). Let G be a �nite simple group. Let
K ,! L be a Galois extension of k -�elds with Gal.L=K/ D G . Fix d � 0 . Let

(2.2) K D K0 ,! K1 ,! � � � ,! Kr

be a sequence of extensions such that
(1) ed.Ki=Ki�1/ � d for all i , and
(2) L ,! Kr as �elds over K .
�en, there exists s < r and a modi�ed tower

K D K0 ,! K1 ,! � � � ,! Ks ,! K 0s

such that
(1) K 0s is a sub�eld of the Galois closure of KsC1 over Ks ,
(2) ed.K 0s=Ks/ � ed.KsC1=Ks/ � d ,
(3) L ,! K 0s as K -�elds, and under this embedding, Ks ˝K L!Š K 0s .

Proof. De�ne s to be the maximum i such that the absolute Galois group of
Ki surjects onto G , i.e.

s WD max
®
i j Gal.K=Ki /� G

¯
:

Let QKsC1 denote the Galois closure of KsC1 over Ks . �en

Gal.K= QKsC1/ E Gal.K=Ks/

and, by Lemma 2.11

ed. QKsC1=Ks/ D ed.KsC1=Ks/:

Because Gal.K=Ks/� G is a surjection, it must take Gal.K= QKsC1/ to a normal
subgroup of G . By the de�nition of s , Gal.K= QKsC1/ � Gal.K=KsC1/ does not
surject onto G . �erefore, because G is simple, Gal.K= QKsC1/ must be in the
kernel of the map to G . �is implies that L is contained in QKsC1 , because

L D K
Gal.K=L/

D K
ker.Gal.K=K/!G/

� K
Gal.K= QKsC1/

D QKsC1:

�erefore, we have L ,! QKsC1 but L is not contained in Ks . De�ne

N WD ker
�
Gal. QKsC1=Ks/� G

�
:

De�ne
Ks0 WD . QKsC1/

N :

Observe that ed.Ks0=Ks/ � ed.KsC1=Ks/ D ed. QKsC1=Ks/ , because if QKsC1 D
Ks ˝F QF , then Ks0 WD Ks ˝F QF

N . Finally, because Gal.K=Ks/ surjects onto
G D Gal.L=K/ , we conclude that

Ks0 D Ks ˝K L:
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Corollary 2.14. Let G be a �nite simple group. Let L=K be any �nite extension
of k -�elds for which the Galois closure has Galois group G . �en RD.L=K/
equals the minimal d for which there exists a tower

K D K0 ,! K1 ,! � � � ,! Kr�1 ,! Kr

for which

(1) ed.Ki=Ki�1/ � d , and

(2) Kr Š Kr�1 ˝K L .

Proof. For any tower solving the Galois closure QL of L over K , we can apply
Proposition 2.13. Let H � G be the subgroup such that L D QLH . Applying
Proposition 2.13 and Lemma 2.11, RD.L=K/ is the minimal d for which there
exists a tower

K D K0 ,! K1 ,! � � � ,! Kr�1 ,! Kr

for which

(1) ed.Ki=Ki�1/ � d , and

(2) Kr Š Kr�1 ˝K QL .

Replacing Kr by KHr Š Kr�1˝K L , we obtain a tower of the desired form.

Remark 2.15. An accessory irrationality to a rational cover QX Ü X is any
rational cover E Ü X which does not factor through QX . If RD.L=K/ ¤
ed.L=K/ , then accessory irrationalities are intrinsic features of any solution
of L=K in d < ed.L=K/ variables. �e notion of accessory irrationality �rst
appeared in work of Kronecker and received intensive study in Klein’s lectures
on the icosahedron [Kle2] (see also the appendix to [DM]). In particular, Klein
proved that

ed.eP 5 ! P5/ D 2 ¤ RD.eP 5 ! P5/ D 1

and thus that accessory irrationalities are an inescapable feature of solutions of
the quintic in one variable.

Question 2.16. Let K ,! L be a �nite extension of k -�elds. Among towers
solving L=K in the minimal number of variables, can we always �nd one in
which the stages of the tower have monotone increasing essential dimension?

�e geometric statement of Lemma 2.12 is the following.
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Corollary 2.17 (Improving towers, geometric version). Let eX Ü X be a
rational cover. �en without loss of generality, in any tower solving eX Ü X in
d variables, we can assume that the map at each stage is Galois. More precisely,
for any d > 0 (e.g., d D RD. eX Ü X/ ), let

YrÜ � � �Ü Y1Ü Y0 D X

be a tower of rational covers with Yr Ü X factoring through eX and such
that for all i , Yi Ü Yi�1 is pulled back from a rational cover of varieties of
dimension at most d . �en there exists a diagram of sequences of rational covers

(2.3) QYr //

��

� � � // QY2 //

��

QY1 // X

Y 0r
//

��

� � � // Y 02

��

// Y 01
//

��

X

Yr // � � � // Y2 // Y1 // X

such that for all i ,
(1) Y 0i Ü Y 0i�1 is Galois,
(2) QYiÜ X is a Galois closure of YiÜ X ,
(3) ed.Y 0i Ü Y 0i�1/ � d , and
(4) RD. QYiÜ X/ D RD.YiÜ X/ � d .

�e geometric statement of Proposition 2.13 is the following.

Corollary 2.18 (Geometric accessory irrationalities). Let G be a �nite simple
group. Let eX Ü X be a rational cover for which the Galois closure has Galois
group G . �en RD. eX Ü X/ equals the minimal d for which there exists a
tower

YrÜ � � �Ü Y1Ü Y0 D X

for which
(1) Yr Š Yr�1 �X eX , and
(2) for each i , YiC1Ü Yi is pulled back from a map of varieties of dimension

at most d , i.e. there is a rational pullback square with dimk.Zi / � d

YiC1 //

��

eZi
��

Yi // Zi
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3. �e resolvent degree of a �nite group

In this section we de�ne the resolvent degree RD.G/ of a �nite group G .
�is intrinsic invariant of G gives a uniform upper bound on the complexity of
all G -covers of all varieties. Just as with the theory of essential dimension from
which it was inspired, RD.G/ will be quite useful.

3.1. De�nition and basic properties. �roughout this section we �x a ground
�eld k of characteristic 0. We will consider �nite groups G with G -actions by
automorphisms on varieties X , so that X=G is a variety. We say that a G -variety
X is primitive if G acts transitively on the set of irreducible components of X .
We say that X is faithful if the representation G ! Aut.X/ is injective.

De�nition 3.1 (Resolvent degree of a �nite group). Let G be a �nite group. �e
resolvent degree RD.G/ of G is de�ned to be

RD.G/ WD sup
®
RD.X ! X=G/ W X is a primitive, faithful G -variety over k

¯
:

While RD.G/ gives a universal upper bound on any RD.X ! X=G/ , it does
not in general provide any lower bound on any particular G -cover; see below.
On the other hand we will prove that RD.G/ D RD.V ! V=G/ for any faithful
linear G -variety V , and more generally for any “versal” G -variety. Replacing
RD by ed in De�nition 3.1 gives the de�nition of Buhler–Reichstein [BR1] for the
essential dimension of a �nite group. Indeed, the two invariants of G -varieties
compare as follows.

Lemma 3.2. Let G be any �nite group. �en

RD.G/ � ed.G/ <1:

Proof. For any rational cover XÜ Y we have by de�nition RD.XÜ Y / �

ed.XÜ Y / . In particular, if X is any faithful G -variety then

RD.X ! X=G/ � ed.X ! X=G/

� ed.AG ! AG=G/(by �eorem 3.1 of [BR1])
D ed.G/ <1

where AG denotes the regular representation of G viewed as a faithful linear
G -variety.

�eorem 3.3. Let G be a �nite group, and let ¹GiºniD1 denote the set of simple
factors in its Jordan–Hölder decomposition. �en

RD.G/ � max
1�i�n

®
RD.Gi /

¯
:
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Moreover, if Gi ,! G for all i , then

RD.G/ D max
1�i�n

®
RD.Gi /

¯
:

�e analogue of �eorem 3.3 for essential dimension is false, even in simple
examples: take G1 D G2 D Z=2Z and G D G1 � G2 . Note too that ed.G=H/
can be much larger than ed.G/ for normal subgroups H C G ; see �eorem 1.5
of [MR]. We do not know if the hypothesis in �eorem 3.3 that Gi � G for
all i is necessary.

Proof. If Gi ,! G for all i , then by Lemma 3.13 below, RD.G/ � maxi¹RD.Gi /º .
To show the opposite inequality in general, we induct on the number of simple
factors (with multiplicity). For the base of the induction n D 1 , there is nothing
to show. Assume therefore that we have shown it for n � 1 . Let

0 E H1 E � � � E Hn D G

be a composition series for G with Hi=Hi�1 D Gi . Let X be a primitive faithful
G -variety.

�e map X ! X=G factors as

X ! X=Hn�1 ! X=G:

If X is not primitive as an Hn�1 -variety, then the set of Hn�1 -orbits on the set
of irreducible components of X partitions X into a union of primitive Hn�1 -
varieties. Moreover, because the G -action is primitive and Hn�1 E G , the union
of the Hn�1 -quotients is a primitive Gn D G=Hn�1 -variety. Lemma 2.6 implies
that

RD.X ! X=Hn�1/ D max
j

®
RD.Xj ! Xj =Hn�1/

¯
where the maximum is taken over the set of primitive Hn�1 -varieties in the above
partition of X . In particular,

RD.Hn�1/ � RD.X ! X=Hn�1/:

�erefore

max
®
RD.Gn/;RD.Hn�1/

¯
� max

®
RD.X ! X=Hn�1/;RD.X=Hn�1 ! X=G/

¯
D RD.X ! X=G/(by Lemma 2.7)

Passing to the supremum and invoking the induction hypothesis, we obtain the
desired inequality

max
1�i�n

®
RD.Gi /

¯
� RD.G/:
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As a simple application of �eorem 3.3, we have the following.

Corollary 3.4. Let G be an “almost solvable” group, i.e. a group whose simple
factors are cyclic or A5 . �en RD.G/ D 1 .

Proof. By �eorem 3.3,

RD.G/ � max
®
¹RD.Z=nZ/ºn2N ;RD.A5/

¯
:

Because G is nontrivial, there exists a faithful, geometrically connected G -variety
X of dimension � 1 . Because X is geometrically connected, there is no faithful
G -equivariant rational map XÜ Z for Z any faithful 0-dimensional G -variety.
We conclude that RD.G/ � 1 .

By Bring’s bound and item 1 of Corollary 3.17 1 below,

1 D RD.eP 5 ! P5/ D RD.S5/ D RD.A5/

where the last equality follows from �eorem 3.3. �e result now follows from
the equality

RD.Z=nZ/ D 1 for all n � 2

which follows from the classical fact that any characteristic 0 �eld extension with
solvable Galois group is solvable in radicals.

Corollary 3.4 follows from the primary cases of simple groups where RD is
currently known exactly (i.e., cyclic groups and A5 ).9 In general, we have at best
upper bounds, e.g., RD.A6/ � 2 and RD.A7/ � 3 . �eorem 3.3 indicates the
importance of computing the resolvent degree of �nite groups.

Problem 3.5 (RD.G/ for G �nite simple). Compute the resolvent degree of all
�nite simple groups G .

3.2. Versal G -varieties. It is useful to have a model (not always unique) G -
variety to which all other G -varieties can be compared. Such varieties, called
“versal G -varieties”, play a crucial role in the theory of essential dimension.
After recalling the de�nition (cf. [DR1]) and some variations that arise naturally
when studying resolvent degree, we give some examples.

De�nition 3.6 (Versal G -variety). A faithful G -variety X is versal if for every
G -invariant Zariski open U � X and every faithful G -variety Y , there exists a
G -equivariant rational map Y Ü U .

9Klein also proved that RD.PSL2.F7/ D 1/ . See [FKW, Proposition 4.2.4] for a contemporary
treatment.
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Our interest in versality comes from the following.

Proposition 3.7. Let X be a versal G -variety. �en
(1) ed.X ! X=G/ D ed.G/ .
(2) RD.X ! X=G/ D RD.G/ .

Proof. �e proof for essential dimension is standard; we recall it here as we will
use it. Let X be a versal G -variety. Recall that ed.G/ D sup¹ed.Y ! Y=G/º

where the supremum is over all faithful G -varieties Y . Let U � X be a dense
G -invariant Zariski open which admits a G -equivariant dominant map U ! Z

to a faithful G -variety Z with dim.Z/ D ed.X ! X=G/ . By the de�nition of
versality, there exists a G -equivariant rational map Y Ü U . Composing with
U ! Z , we obtain a G -equivariant rational dominant map Y Ü Z , which
implies

ed.Y ! Y=G/ � dim.Z/ D ed.X ! X=G/:

�erefore ed.X ! X=G/ D ed.G/ .
We now prove the statement for resolvent degree. By de�nition, RD.X !

X=G/ � RD.G/ . It remains to prove that RD.X ! X=G/ � RD.Y ! Y=G/ for
any faithful G -variety Y . Let

X

��
Xr

44

// � � � // X1 // X=G

be a solution of X ! X=G . Let NU � Image.Xr Ü X=G/ be a Zariski open,
and let U � X be its pre-image under the map X ! X=G . By the de�nition of
versality, there exists a G -equivariant map

V ! U

for some dense Zariski open V � Y . Since both G -varieties are faithful, this
determines a pullback diagram

V //

��

U

��
V=G // U=G

and we can pull back the above solution of X ! X=G to V ! V=G . Since every
solution in d -variables of X ! X=G gives rise to a solution in d -variables of
V ! V=G , and since V ! V=G is birational to Y ! Y=G , we conclude, from
the de�nition, that RD.X ! X=G/ � RD.Y ! Y=G// .
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�e notion of versal is stronger than we strictly need for resolvent degree.

De�nition 3.8 (Solvably-versal, RD-versal). Let G be a �nite group. A faithful
G -variety X is:
(1) solvably-versal if, for every G -invariant Zariski open U � X and any faithful

G -variety Y , there exists a rational covereY Ü Y=G

with k.Y=G/ ,! k. eY / a solvable extension, and a G -equivariant rational
map eY �Y=G Y Ü U I

(2) RD -versal if, for every G -invariant Zariski open U � X and any faithful
G -variety Y , there exists a rational covereY Ü Y=G

with RD. eY Ü Y=G/ � RD.X ! X=G/ and a G -equivariant rational mapeY �Y=G Y Ü U:

Note that solvably-versal implies RD-versal; we do not know if the converse
is true or not.

Example 3.9 (Klein). Klein [Kle2] proved a “Normalformsatz” for the group
A5 , showing that perhaps after passing to an intermediate degree 2 cover, every
A5 -cover is pulled back from the canonical A5 -cover of P1 ! P1=A5 Š P1 . In
our language, this shows that P1 with its standard A5 action is solvably versal.

RD-versal G -varieties realize the resolvent degree of G .

Proposition 3.10. Let G be a �nite group, and let X be an RD -versal G -variety.
�en

RD.X ! X=G/ D RD.G/:

Proof. �e proof is similar to that of Proposition 3.7. It su�ces to show that
RD.X ! X=G/ � RD.Y ! Y=G/ for any faithful G -variety Y . Let

X

��
Xr

44

// � � � // X1 // X=G
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be a solution of X ! X=G . Let NU � Image.Xr Ü X=G/ be a Zariski open,
and let U � X be its pre-image under the map X ! X=G . By the de�nition of
RD-versality, there exists a rational cover

eY Ü Y=G

with RD. eY Ü Y=G/ � RD.X ! X=G/ and with a G -equivariant map

V ! U

for some dense Zariski open V � eY �Y=G Y . Since both G -varieties are faithful,
this determines a pullback diagram

V //

��

U

��
V=G // U=G

and we can pullback the above solution of X ! X=G to V ! V=G . Since every
solution in d -variables of X ! X=G gives rise to a solution in d -variables
of V ! V=G , and since V ! V=G is birational to eY �Y=G Y Ü eY , we
conclude, from the de�nition, that RD.X ! X=G/ � RD. eY �Y=G Y Ü eY / .
By Lemma 2.7,

RD.eY �Y=G Y Ü Y=G/ D max
®
RD.eY �Y=G Y Ü eY /;RD.eY Ü Y=G/

¯
� RD.X ! X=G/:

3.3. Criteria for versality. In this section we give some basic properties of
versality, as well as criteria for detecting it. To start, a G -compression (i.e.,
G -equivariant dominant rational map) of a versal G -variety is versal.

Lemma 3.11 (Compressions of versal are versal). Let X be a faithful G -variety,
and let Y be a versal G -variety. If there exists a G -equivariant dominant rational
map f W Y Ü X , then X is versal.

Proof. Let U � X be a G -invariant Zariski open, and let Z be any faithful
G -variety. �en f �1.U / � Y is a G -invariant Zariski open, and by the de�nition
of versality, there exists a G -equivariant rational map ZÜ f �1.U / . Composing
with f , we obtain a G -equivariant rational map ZÜ U as desired.

Versal G -varieties are also versal for subgroups.



Resolvent degree, Hilbert’s 13th Problem and geometry 333

Lemma 3.12 (Versality descends). Let G be a �nite group. If X is a versal
G -variety, then X is also a versal H -variety for any subgroup H � G .

Proof. By the de�nition of versal, we must show that for every H -invariant
Zariski open U � X and every faithful H -variety Y , there exists an H -
equivariant rational map Y Ü U . Given U , let U 0 � U be the maximal
G -invariant Zariski open contained in U (i.e., U 0 D

T
g2G g � U ). Consider the

G -variety
G �H Y WD G � Y= �

where � is the equivalence relation given by .g; hy/ � .gh; y/ , and the G -action
given by

g0 � Œ.g; y/� WD Œ.g0g; y/�:

It is straightforward to check that because Y is a faithful H -variety, the variety
G�H Y is a faithful G -variety. Because X is versal, there exists a G -equivariant
rational map

(3.1) G �H Y Ü U 0

One can check explicitly that the map

Y ! G �H Y

y 7! Œ.e; y/�

is H -equivariant. Composing this with (3.1), we obtain an H -equivariant rational
map

Y Ü U 0 � U

as required.

Lemma 3.12 has the following consequence.

Lemma 3.13. Let H � G be a subgroup. �en RD.H/ � RD.G/ .

Proof. Let X be a versal G -variety. �en X is a versal H -variety by Lemma 3.12.
By Proposition 3.7 and Lemma 2.7,

RD.G/ D RD.X ! X=G/

D max
®
RD.X ! X=H/;RD.X=H ! X=G/

¯
D max

®
RD.H/;RD.X=H ! X=G/

¯
� RD.H/:
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�ere exist criteria to check whether a given G -variety is versal.

Lemma 3.14 (Versality criterion). Let X be a faithful G -variety. Suppose both
of the following statements hold.

(1) For every faithful, closed G -invariant subvariety Z1 � X , and any closed
(not necessarily faithful) G -invariant subvariety Z2 ¨ X , there exists a
G -equivariant rational map ˛ W XÜ X such that Z1 is not contained in
the indeterminacy locus of ˛ and such that ˛.Z1/ ª Z2 .

(2) For any faithful G -variety Y , there exists a G -equivariant rational map
Y Ü X .

�en X is versal.

Proof. Let U � X be a G -invariant Zariski open. Denote by Z2 WD X � U .
Let Y be a faithful G -variety. By Assumption 2, there exists a G -equivariant
rational map f W Y Ü X . Let Z1 WD f .Y / . By Assumption 1, there exists a
G -equivariant rational map ˛ W X Ü X such that the restriction of ˛ to Z1

is de�ned, and such that ˛.Z1/ ª Z2 . �en ˛ ı f restricts to a G -equivariant
rational map Y Ü U as desired.

Example 3.15. Let AG denote the regular representation of G . �en AG is
a versal G -variety. Indeed, Lemma 3.1(b) of [BR1] shows that AG satis�es
Assumption 1 of Lemma 3.14, while Lemma 3.4 of [BR1] shows that AG satis�es
Assumption 2.

3.4. Examples of versal G -varieties. In this section we use the tools from §3.3
to give examples of versal G -varieties. We begin with a result essentially proven
by Buhler–Reichstein in [BR1]; we include a proof for completeness.

Proposition 3.16 (Linear varieties are versal). Let G be a �nite group. Let V
be any faithful linear G -variety. �en V is versal.

Proof. Because AG is versal, it su�ces to prove that for any proper G -invariant
closed subvariety Z � V , there exists a G -equivariant map f W AG ! V such
that f .AG/ ª Z . Let v 2 V �Z be any point such that jG � vj D jGj . De�ne

fv W A
G
! VX

g2G

cgg 7!
X
g2G

cg.g � v/:

�en fv is a G -equivariant linear embedding, and f .AG/ ª Z as claimed.
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We highlight a speci�c instance of the above: while Hilbert asked about the
resolvent degree of the permutation representation C7 of S7 , Proposition 3.16
implies that that one can equivalently consider any faithful representation of S7 .
�is gives an equivalent rephrasing of Hilbert’s 13th problem, one for each faithful
Sn -representation.

Corollary 3.17. �e following statements are true.

(1) Let n � 1 . Let V be any faithful representation of Sn; n � 2 . �en

RD.Sn/ D RD.V ! V=Sn/ D RD.eP n ! Pn/:

In particular, RD.eP n ! Pn/ � RD.eP nC1 ! PnC1/ .
(2) (Universality of RD.Sn/ ) Let eX Ü X be a generically n -to-1 rational

cover. �en
RD. eX Ü X/ � RD.Sn/:

Proof. Proposition 3.16 gives the �rst equality of item 1, and shows that
RD.V ! V=Sn/ D RD.W ! W=Sn/ for any two faithful representations V

and W . In particular, we can take W D An to be the standard permutation
representation. Since An ! An=Sn is the normalization of the branched covereP n ! Pn , the second equality of Item 1 follows from Lemma 2.11. Item 2 now
follows from Lemma 2.9.

Another equivalent restatement of the problem of computing RD.eP n ! Pn/
comes from the following. Denote by M0;n the moduli of n distinct ordered
points in P1 . More generally, let Cn.Pm/ WD ..Pm/�n � �/=PGLmC1 , where
� � .Pm/�n denotes the “fat diagonal”, i.e., the locus of n -tuples in which at
least two points coincide.

Corollary 3.18. For n � 5 , the moduli of marked, genus 0 curves M0;n is a
versal Sn -variety. In particular,

RD.Sn/ D RD.M0;n !M0;n=Sn/:

More generally, Cn.Pm/ is a versal Sn -variety for all n � max¹5;mC 3º .

Proof. �ere exists a dominant Sn -equivariant rational map An Ü M0;n .
More generally, consider the m -fold direct sum .An/m of the permutation
representation of Sn . �is admits a dominant Sn -equivariant rational map
.An/mÜ ..Pm/�n � �/=PGLmC1 DW Cn.Pm/ . �e corollary now follows from
Lemma 3.11 and Proposition 3.16 once we verify that the Sn -action on Cn.Pm/
is faithful, but this follows from the assumptions that n � max¹5;mC 3º .
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4. Lines on smooth cubic surfaces

Since the problem of �nding lines on smooth cubic surfaces connects with
so many other problems, we devote an entire section to it. We also look at this
one example in depth because it demonstrates how resolvent degree can be an
organizing principle that gives a single framework for many classical results.

4.1. �e moduli space of smooth cubic surfaces, and its covers. Let H3;3

denote the moduli space of smooth cubic surfaces. �is is a 4 -dimensional
quasi-projective variety, the quotient of a hypersurface complement .P19 � †/
by the action of PGL4 induced from its action on P3 . Let Gr.2; 4/ denote the
Grassmannian of projective lines in P3 . Let

H3;3.1/ WD
®
.S; L/ 2 .P19 �†/ �Gr.2; 4/ W L � S

¯
=PGL4

be the moduli space of smooth cubic surfaces S equipped with a line; here PGL4
acts diagonally. Cayley and Salmon proved that the projection � W H3;3.1/! H3;3

given by �.S;L/ WD S is a 27 -sheeted covering, and so its monodromy is a
subgroup of S27 . However, the monodromy must preserve the intersection pattern
of the 27 lines. Camille Jordan proved (see, e.g., [Dol] or [Har] for a modern
treatment) that the monodromy group of � W H3;3.1/! H3;3 is isomorphic to the
Weyl group W.E6/ . Recall that this is the re�ection group given by the Dynkin
diagram:

E6

Here each vertex represents (re�ection in the hyperplane perpendicular to) a root,
and W.E6/ has presentation with a generator s˛ for each vertex of the diagram,
with relations given by:

� s2˛ D 1 for all ˛ .

� .s˛sˇ /
2 D 1 if ˛ and ˇ are not connected by an edge.

� .s˛sˇ /
3 D 1 if ˛ and ˇ are connected by an edge.

W.E6/ is a group of order 51840 ; it contains the unique �nite simple group
of order 25920 as an index 2 subgroup; we denote this group by W.E6/

C . Let
H3;3.27/ denote the Galois closure of � W H3;3.1/! H3;3 ; this is the (connected)
Galois cover of H3;3 with deck group W.E6/ , corresponding to the kernel of the
monodromy representation �1.H3;3/ � W.E6/ . We use the notation H3;3.27/

since this cover corresponds to the moduli space of 28 -tuples .S IL1; : : : ; L27/
of smooth cubic surfaces equipped with 27 lines with a choice of labelling of
the intersection graph of the set of 27 lines.
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Let

(4.1) Hskew
3;3 .r/ WD

®
.S IL1; : : : ; Lr / 2 .P

19
�†/ �Gr.2; 4/r W

Li � S; Li \ Lj D ¿ 8i ¤ j
¯
=PGL4 :

denote the moduli space of smooth cubic surfaces S with a choice of r � 6

skew (i.e., disjoint) lines on S . We remark that Hskew
3;3 .6/ is connected; this

follows for example from the fact that it is isomorphic to the moduli of 6 generic
points in P2 (cf. Section 4.4 below). �ere is a cover Hskew

3;3 .r/! H3;3 given by
.S IL1; : : : ; Lr / 7! S . �is projection gives a (typically non-Galois) �nite covering
map Hskew

3;3 .r/! H3;3 .
�e action of W.E6/ on H3;3.27/ is free on a Zariski open. W.E6/ Š

Aut.Pic.S// , and for any class ŒL0� of a line we have:

Stab.ŒL0�/ Š W.D5/ Š .Z=2Z/4 Ì S5

where the S5 action on .Z=2Z/4 is given by the standard 4 -dimensional
irreducible permutation representation of S5 . �e action of S5 on a marking
is given by permuting the divisor classes of the 5 lines L1; : : : ; L5 disjoint
from L0 . Further, W.D5/ is generated by this S5 together with a Cremona
transformation. Since the monodromy W.E6/ acts transitively on the set of lines
of any basepoint cubic, this implies that

(4.2) H3;3.1/ D H3;3.27/=W.D5/:

We will see throughout this paper how many classical problems about smooth
cubic surfaces can be rephrased as understanding various (branched) covers of
H3;3 ; for problems about lines the covers are intermediate between H3;3.27/!

H3;3 . For now we give one example.

Schä�i’s double sixes. One of the more well-studied types of con�gurations of
lines on a smooth cubic surface S is the so-called (Schlä�i) double six: it consists
of two pairs ¹aiº and ¹bj º of 6 disjoint lines on S with intersection pattern
given (in Schlä�i’s original notation):

(4.3)
´
a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

µ
where any line does not meet any of the lines in the same row or column, but
does meet the other 5 lines. See Figure 2 on Page 312.

�e group W.E6/ acts transitively on the set of 6 -tuples of disjoint lines
on S , with stabilizer the symmetric group S6 . �ere are thus ŒW.E6/ W S6� D
51840=720 D 72 choices of such 6 -tuples. Each such 6 -tuple determines a
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unique double-six, and since any double-six contains 2 such 6 -tuples, there are
72=2 D 36 double-sixes. Denote the moduli of smooth cubic surfaces equipped
with a double-six by

H3;3.6; 6/ WD
®
.S;D/ W S 2 H3;3 and D is a double-six in S

¯
:

�e stabilizer of a double-six is the maximal subgroup S6 � Z=2Z � W.E6/

(cf. [Dol, Proposition 9.4, �eorem 9.5.2]). We can thus make the identi�cation

(4.4) H3;3.27/=.S6 � Z=2Z/ D Hskew
3;3 .6/=.S6 � Z=2Z/ D H3;3.6; 6/

where the �rst equality comes from (4.6) below.

4.2. Finding 27 lines from a given line. In this section we consider the following
problem: given a single line on a smooth cubic surface, how hard is it to �nd more
lines? We will prove that given one line, the problem of �nding the other 27 lines
has resolvent degree 1 , by which we mean RD.H3;3.27/ ! H3;3.1// D 1 . �is
result is essentially 100 years old. For a nice modern reference, see Dolgachev’s
book [Dol], Page 480.

Proposition 4.1 (Finding lines on a cubic surface, given a line). With notation
as above:

RD.H3;3.27/! H3;3.1// D 1:

�is is in contrast to Harris’s �eorem [Har] that H3;3.27/! H3;3.1/ is not
solvable by radicals.

Proof. We take the argument from the classic [Hilt], page 349. Suppose that we
are given a smooth cubic surface S D V.f / and a line `0 on S . �e line `0

is given as a zero set of two linear forms : `0 D V.A1; A2/ . Since `0 � S this
gives

f D A1Q1 C A2Q2

for quadratic forms Q1;Q2 . Consider the pencil of planes

….�1; �2/ D V.�1A1 � �2A2/

through the line `0 . Each plane in this pencil intersects S in the union of `0 and
a conic C.�1; �2/ on S . One can check that the discriminant of each C.�1; �2/ is
a homogeneous polynomial P.�1; �2/ of degree 5 , and that the general P.�1; �2/
has 5 distinct roots. Each of these solutions gives a reducible conic on S . Since
S is smooth none of these is a double line.

We thus have found �ve distinct pairs of distinct lines `i ; `0i ; 1 � i � 5 , and in
fact all 10 of these lines are distinct from each other and from `0 , giving 11 lines
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on S . �e important thing for us is to observe that the `i are pairwise disjoint
for 0 � i � 5 . Since we obtained these with a degree 5 polynomial it follows
that

RD
�
Hskew
3;3 .5/! H3;3.1/

�
� RD.fP5 ! P5/ D 1:

We can repeat the above procedure with `0 replaced by any `i or `0i to �nd the
remaining 27 lines; that is, to prove

(4.5) RD
�
H3;3.27/! Hskew

3;3 .5/
�
� 1

Alternately, Harris proves in [Har] that the monodromy of the cover H3;3.27/!

Hskew
3;3 .3/ is in fact solvable, hence so is the monodromy of H3;3.27/! Hskew

3;3 .5/ ,
giving (4.5). Lemma 2.7 (on RD of a tower) then implies

RD
�
H3;3.27/! H3;3.1/

�
� max

®
RD

�
H3;3.27/! Hskew

3;3 .5/
�
;

RD
�
Hskew
3;3 .5/! H3;3.1/

�¯
D max¹1; 1º D 1

giving the proposition.

4.3. Finding a single line. �e following fundamental problem still remains.
As we will see throughout this paper, it relates to many other problems about
resolvent degree.

Problem 4.2. Determine RD.H3;3.1/! H3;3/ .

While there is a vast literature on lines on smooth cubic surfaces, and
while much of it concerns relationships between various intermediate covers
of H3;3.27/! H3;3 , there are far fewer results on Problem 4.2. �e best results
of which we are aware are due to Burkhardt [Bur], following a suggestion of
Klein (see [Hu, Ch. 4.3.2] for a modern treatment).

�eorem 4.3 (Burkhardt, Klein). Let k be any �eld of characteristic ¤ 2; 3 .
�en

RDk
�
H3;3.1/! H3;3

�
� 3:

�e proof of �eorem 4.3 will use the following proposition, the �rst part of
which we learned from [DR1, Lemma 6.1].

Proposition 4.4 (Finding the 27 lines is versal). For any G � W.E6/ , the
k -variety H3;3.27/ is a versal G -variety. In particular

RDk
�
W.E6/

�
D RDk

�
H3;3.27/! H3;3

�
:
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Proof. Let h denote a Cartan subalgebra of any simple Lie k -algebra of type
E6 . Let W.E6/ act on h via the de�ning representation, and let A.h/ denote the
corresponding faithful linear W.E6/ -variety. �en by [DR2, Lemma 6.1], there
exists a W.E6/ -equivariant dominant rational map

A.h/Ü C06.P2/Ü H3;3.27/:

Applying Proposition 3.16 and Lemma 3.11, the proposition follows.

Proof of �eorem 4.3. Recall that W.E6/ Š W.E6/C Ì Z=2Z . By �eorem 3.3,

RD
�
W.E6/

�
D max

®
RD

�
W.E6/

C
�
;RD.Z=2Z/

¯
D RD

�
W.E6/

C
�
:

�e group W.E6/C has an action on P3 de�ned over ZŒ
p
�3� (see, e.g., [Atl]);

therefore after adjoining
p
�3 to k (RD D 1 ), this action is de�ned over k . By

Proposition 3.10, it su�ces to prove that P3 is solvably-versal for W.E6/C . Note
that there is an isomorphism Sp4.F3/=F�3 Š W.E6/

C and the W.E6/C -action on
P3 lifts to a faithful linear action of Sp4.F3/ on A4 de�ned over ZŒ

p
�3� .

Given any W.E6/C -variety X , the obstruction to realizing it as a quotient of a
faithful Sp4.F3/ -variety is the associated Brauer class in H 2

et .k.X=W.E6/
C/I�2/ .

However, by Merkurjev’s �eorem [Mer1], any class in H 2
et .k.X/

W.E6/
C

I�2/

trivializes over some multi-quadratic extension of k.X=W.E6/C/ . We conclude
that there exists a faithful Sp4.F3/ -variety eX such that eX =Sp4.F3/ Ü
X=W.E6/

C is a generically 2-to-1 rational cover. By Proposition 3.16, A4 is a
versal Sp4.F3/ variety, and by the de�nition of versality, there exists an Sp4.F3/ -
equivariant rational map eX Ü A4 . Composing with the projection A4Ü P3 ,
we obtain a W.E6/C -equivariant rational map eX =Z=2ZÜ P3 . But this shows
that P3 is W.E6/C -solvably versal as claimed. We conclude

RD.H3;3.1/! H3;3/ D RD
�
H3;3.27/! H3;3

�(by Lemma 2.11)

D RD
�
W.E6/

�
(by Proposition 4.4)

D RD.W.E6/C/
D RD

�
P3 ! P3=W.E6/

C
�
� dim.P3/ D 3:

4.4. Moduli of 6 points in P 2 . Let † � .P2/6 denote the subvariety of 6 -
tuples of distinct points in P2 that are non-generic; that is, with either 3 colinear
or with all 6 points lying on a conic. Let

C06.P2/ WD
�
.P2/6 n†

�
=PGL3
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be the moduli space of generic 6 -tuples in P2 . For any (orbit representative of)
.z1; : : : ; z6/ 2 C06.P2/ , blowing up P2 at each zi gives a smooth cubic surface
S.z1;:::;z6/ equipped with a 6 -tuple .L1; : : : ; L6/ of 6 skew lines corresponding
to the exceptional divisors. Every smooth cubic surface arises in this way, and
indeed it is classical that the map

 W C06.P2/! Hskew
3;3 .6/

de�ned by  .z1; : : : ; z6/ WD .S.z1;:::;z6/IL1; : : : ; L6/ is birational, where Hskew
3;3 .6/

is de�ned in 4.1. It is classical that 6 skew lines L1; : : : ; L6 on a smooth cubic
surface S determine via explicit formulas the other 21 lines on S ; see, e.g.,
§4 of [Hu]. �e ordering on the Li determines an ordering on the set of all
27 lines, from which we deduce that there is an isomorphism

(4.6) � W Hskew
3;3 .6/

Š
! H3;3.27/:

Composition thus gives an isomorphism

� ı  W C06.P2/
Š
! H3;3.27/:

�e permutation action of S6 on .P2/6 leaves invariant † and induces a well-
de�ned action of S6 on C06.P2/ . As explained in, e.g., [Sek, §3], this action
extends (via adding a birational automorphism induced by an explicit Cremona
transformation) to an action by birational automorphisms of W.E6/ on C06.P2/
for which the isomorphism � ı  is W.E6/ -equivariant. We remark that the
W.E6/ action on C06.P2/ is not regular.

As a corollary to Proposition 4.4 and �eorem 4.3, we have the following.

Corollary 4.5. Let k be a �eld of characteristic ¤ 2; 3 . For any G � W.E6/ ,
the k -variety C06.P2/ is a versal G -variety. In particular,

RD
�
C6.P2/Ü C06.P2/=W.E6/

�
D RD

�
W.E6/

�
� 3:

4.5. Pentahedral form. Pentahedral form is a classical normal form for smooth
cubic surfaces. We now consider this form from the point of view of resolvent
degree.

For any �xed Œa0 W � � � W a4� 2 P4 the equations

(4.7)
a0X

3
0 C a1X

3
1 C a2X

3
2 C a3X

3
3 C a4X

3
4 D 0

X0 CX1 CX2 CX3 CX4 D 0

determine a cubic surface in P3 . Any permutation of the ai gives an isomorphic
cubic surface. We thus have a family P4=S5 of cubic surfaces. �e elementary
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symmetric functions �1; : : : ; �5 in the ai give coordinates on P4=S5 . �e open
subset

P WD
®
Œ�1 W � � � W �5� W �5 ¤ 0

¯
� P4=S5

is the family of smooth cubic surfaces admitting a (proper) pentahedral form,
and the classifying map � W P ! H3;3 is an open embedding (see, e.g., [EJ,
Lemma 3.5]). �e hyperplane complement

eP WD P4 �
4[
iD0

¹ai D 0º D P4 �P4=S5 P

is the space of smooth cubic surfaces in proper pentahedral form. We can pull
back the cover H3;3.27/! H3;3 along the map

eP ! P !� H3;3

to obtain a cover eP .27/! eP .

Proposition 4.6. Pentahedral form is an accessory irrationality: the covereP .27/! eP has Galois group W.E6/ . Further, the total space eP .27/ has two
connected components, each component is preserved by the index two subgroup
W.E6/

C � W.E6/ , and the components are permuted under the action of the full
group W.E6/ .

Proof. �e cover
H3;3.27/=W.E6/

C
! H3;3

corresponds to adjoining a square-root of the discriminant of the cubic. Note that
the discriminant of the cubic equals the discriminant of each of its pentahedral
forms (cf. [Dol, §9.4.5]). As a consequence, the map eP ! H3;3 factors through
the cover eP ! H3;3.27/=W.E6/

C:

�e map eP ! H3;3.27/=W.E6/
C is a Galois A5 -cover of its image. On the

other hand, because W.E6/ only has proper, nontrivial quotients of order 2 ; in
particular A5 is not such a quotient. We conclude that eP ! H3;3.27/=W.E6/

C

and H3;3.27/! H3;3.27/=W.E6/
C share no intermediate covers, and thus

H3;3.27/ �H3;3.27/=W.E6/C
eP ! eP

is a connected Galois W.E6/C cover. From the above, each of the two components
of eP .27/ is isomorphic to this connected W.E6/

C cover, with the full group
W.E6/ interchanging the two components.
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4.6. Hexahedral form. �e following is taken from Example 3.7 of [EJ]. Let
H Š P4 be the hyperplane in P5 given by a0C� � �Ca5 D 0 . �e group S6 acts
on H with quotient isomorphic to the weighted projective space P .2; 3; 4; 5; 6/ .
�e key thing is a sequence of maps (using our notation as above):

(4.8) H3;3.27/
t1
! H

t2
! H=S6

t3
! H3;3

where t1 is an unrami�ed 2 -sheeted cover, t3 is an unrami�ed 36 -sheeted cover,
and t2 is a generically 720 -to-1 branched cover. Note that the fact that t1 is
2 -sheeted, so that RD.H3;3.27/! H/ D 1 , corresponds to the classical fact that,
given a smooth cubic surface S in hexahedral form, one can write down explicitly
(as a linear function in the coe�cients of S ) a formula for 15 of the lines on S

(see, e.g., [Dol], Section 9.4). One can obtain the remaining 12 lines by adjoining
a square root. By the classi�cation of maximal subgroups in W.E6/ (see [Dol,
�eorem 9.5.2]), the stabilizer of an unordered hexahedral form is isomorphic to
S6 �Z=2Z . As a consequence, the moduli of unordered hexahedral forms H=S6
is isomorphic over H3;3 to the moduli of cubics equipped with a double-six:

H=S6
Š //

##

H3;3.6; 6/

yy
H3;3

:

Moreover,

RD
�
H3;3.27/! H3;3

�
D max

®
RD.H ! H=S6/;RD.H=S6 ! H3;3/

¯
� max

®
2;RD.H=S6 ! H3;3/

¯
where the last inequality follows from

RD.H ! H=S6/ D RD.S6/(by Proposition 3.16 and Lemma 3.11)
� 2:(by Hamilton’s bound)

5. Bitangents to plane quartics

�e story of 28 bitangents on a smooth plane quartic is analogous to that for
the 27 lines on a smooth cubic surface, and indeed the two are directly related,
as we will see in §5.3 below.

5.1. �e moduli space of smooth planar quartics, and its covers. Let H4;2

denote the moduli space of smooth quartic curves in P2 . �is is a 6 -dimensional
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quasi-projective variety, the quotient of a hypersurface complement .P14 � †/
by the action of PGL3 induced from its action on P2 . Let Gr.2; 3/ denote the
Grassmannian of projective lines in P2 . Jacobi proved in 1850 that any smooth
plane quartic C has precisely 28 bitangents; that is, lines T � P2 that are
tangent to C at two points (counted with multiplicity). Let

H4;2.1/ WD
®
.C;L/ 2 .P14 �†/ �Gr.2; 3/ W L bitangent to C

¯
=PGL3

be the moduli space of smooth plane quartics equipped with a bitangent; here
PGL3 acts diagonally. �e map .C;L/ 7! C is a 28 -sheeted covering space. Let
H4;2.28/ denote the Galois closure of � W H4;2.1/! H4;2 ; this is a (connected)
Galois cover of H4;2 . We use the notation H4;2.28/ since this cover corresponds
to the moduli space of 29 -tuples .C IL1; : : : ; L28/ of smooth plane quartics
equipped with 28 lines with a choice of labelling of the intersection graph of
the set of 28 lines.

�e deck group of the Galois cover H4;2.28/ ! H4;2 is the same as the
monodromy group of the cover H4;2.1/ ! H4;2 . �is group is isomorphic to
the unique simple group of order 1; 451; 520 , which we denote W.E7/C . �ere
exists a split injection W.E7/

C ,! W.E7/ , the Weyl group of type E7 . Recall
that W.E7/ is the re�ection group with Dynkin diagram:

E7

It is given by order 2 generators s˛ , one for each vertex, satisfying the same
relations as W.E6/ given above. W.E7/ has order 2; 903; 040 , and is a direct
product of Z=2Z with W.E7/

C . �e action of W.E7/C on H4;2.28/ is free on
a Zariski open. W.E7/C Š Aut.Pic.C /Œ2�/ , and for any class ŒL0� of a line we
have:

Stab.ŒL0�/ Š W.E6/
�is action is most easily seen as follows (cf. [DO, Chapter IX.2]). �e moduli
H4;2.28/ is the target of a generically 2-to-1 dominant rational map

C7.P2/Ü H4;2.28/:

Concretely, given 7 points ¹x1; : : : ; x7º � P2 in general position, form the degree
2 Del Pezzo surface V.x1; : : : ; x7/ by blowing up P2 at these points. �e anti-
canonical map

(5.1) V ! P2:

realizes V as a 2-fold branched cover, branched over a quartic curve C , and
takes every exceptional curve on V to a bitangent of C . By Proposition 1 of
[DO, Chapter IX.2], this gives a 2-fold covering map
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(5.2) U ! H4;2.28/

where U � C7.P2/ is the locus of points in general position, and the map sends
V with its exceptional curves to C with its 28 bitangents. �e Weyl group W.E7/
acts on C7.P2/ (via the Coble representation) and this action factors through the
projection

W.E7/ Š Z=2Z �W.E7/
C� W.E7/

C:

�e map (5.2) is equivariant for this action (see [DO, Chapter IX], esp. p. 194,
for a veri�cation of this equivariance). Under the map (5.2), the stabilizer
of a bitangent lifts to the stabilizer of a marked point on C7.P2/ , i.e., to
W.E6/ � W.E7/

C � W.E7/ .
Just as for lines on cubics, we will see throughout this paper how many

classical problems about smooth quartic curves can be rephrased as understanding
various (branched) covers of H4;2 ; for problems about bitangents the covers are
intermediate between H4;2.28/! H4;2 . We now give several examples.

Aronhold sets. One of the more well-studied types of con�gurations of bitangents
on a smooth plane quartic curve C is the so-called Aronhold set. Recall that
a collection of n � 3 bitangents on a smooth plane quartic is asyzygetic (resp.
syzygetic) if the collection of 2n points of contact of the bitangents with the
quartic are not (resp. are) contained in a conic.

De�nition 5.1 (Aronhold set of bitangents). An Aronhold set A on a smooth
plane quartic C is an asyzygetic, unordered set of seven bitangents ¹T1; : : : ; T7º
on C . An Aronhold basis is an Aronhold set with an ordering of its elements.

Let H4;2. eA / denote the moduli of smooth plane quartics equipped with an
Aronhold basis, and let H4;2.A/ denote the moduli of smooth plane quartics
equipped with an Aronhold set. Note that the forget-the-ordering map is a Galois
S7 -cover

H4;2. eA /! H4;2.A/:

Aronhold sets have been studied for over a century (for recent treatments, see, e.g.,
[DO] or [Dol, Chapter 6.1.2]). One of the reasons is that an Aronhold basis on C
determines the other 21 bitangents to C , i.e., we have an W.E7/

C -equivariant
isomorphism

H4;2. eA /!Š H4;2.28/:

Perhaps even more surprising, an Aronhold basis in fact determines the equation
for C itself [Leh]. �e group W.E7/

C acts simply transitively on the set of
Aronhold bases, and thus acts transitively on the set of Aronhold sets, with
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stabilizer the symmetric group S7 . �ere are thus ŒW.E7/C W S7� D 288 choices
of Aronhold sets. �e complexity of �nding an Aronhold basis, given an Aronhold
set, as measured by resolvent degree, is equivalent to Hilbert’s 13th problem, as
we show in �eorem 8.3.

Steiner Complexes. A second well-studied type of con�guration of bitangents
on a smooth quartic curve is the Steiner complex (cf. [Hilt, Chapter XIX.3] and
[Dol, Chapter 6.1.2]).

De�nition 5.2 (Steiner complex of bitangents). A Steiner complex of bitangents
on a smooth plane quartic C is an unordered collection of six unordered pairs
of bitangents ¹.˛1; ˇ1/; : : : ; .˛6; ˇ6/º such that any two pairs give a syzygetic
collection of bitangents.

Any two bitangents determine a Steiner complex, and any one of the six pairs of
a Steiner complex determine the same complex, so there are

�
28
2

�
=6 D 378=6 D 63

Steiner complexes. Denote the moduli of smooth plane quartics equipped with a
Steiner complex by

H4;2.S/ WD
®
.C; S/ W C 2 H4;2 and S is a Steiner complex for C

¯
:

�e group W.E7/
C acts transitively on the set of Steiner complexes, and the

stabilizer of a Steiner complex is isomorphic to W.D6/ Š .Z=2Z/�5 ÌS6 , where
the action of S6 is via its standard 5-dimensional permutation representation. We
can thus make the identi�cation

(5.3) H4;2.S/ D H4;2.28/=W.D6/ D H4;2. eA /=W.D6/:
where the second equality comes from the fact that an Aronhold basis determines
the remaining 21 lines.

Cayley Octads. A third con�guration of classical interest is the Cayley octad
(cf. [Dol, Chapter 6.3.2]).

De�nition 5.3. A Cayley octad is a collection of 8 distinct unordered points in
P3 that arises as a complete intersection of 3 quadrics. Denote the moduli space
of Cayley octads by Cay.

�ere is a close relationship between Cayley octads and smooth plane quartics,
which is summed up in the [Dol, Chapter 6.3] (especially Corollary 6.3.12). In
particular, the moduli of plane quartics equipped with an Aronhold set H4;2.A/
admits an 8-to-1 covering map to the moduli space of Cayley octads, which is in
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turn birational to the moduli space of smooth plane quartics equipped with an
even � -characteristic:

H4;2.A/!8W1 Cay ' H4;2.�
ev/:

Moreover, the group W.E7/
C acts transitively on the set of Cayley octads,

respectively even � -characteristics, and the stabilizer of an octad, respectively
even � -characteristic, is S8 .

5.2. �e resolvent degree of �nding bitangents to plane quartics. In this
subsection we consider the resolvent degree of the problem of �nding bitangents
on smooth plane quartics.

Proposition 5.4 (Finding 28 bitangents, given 2 ). With the notation as above:

RD
�
H4;2.28/! H4;2.2/

�
D 1:

�e proof of Proposition 5.4 that we now give should feel similar to the proof
of Proposition 4.1, and indeed we formalize this similarity as a precise statement
in §5.3. We include the proof here for its beauty and historical interest.

Proof. Now, since the Ti are distinct, any two intersect in a single point. Let

H04;2.2/ WD
®
.C IT1; T2/ 2 H4;2.2/ W T1 \ T2 62 C

¯
:

�is is a Zariski open subset of H4;2.2/ . It is enough to prove the theorem for
the pullback cover H04;2.28/! H04;2.2/ . �e advantage of H04;2.2/ is that it gives
us 4 points of contact, 2 each from T1 \ C and T2 \ C . We can then perform
a classical construction, which we take from the 1920 book [Hilt], which posits
(see p. 334 of [Hilt]):

�rough the four points of contact of two bitangents of a non-singular
quartic pass �ve conics each of which passes through the points of
contact of two more bitangents.

More precisely, let .C IT1; T2/ 2 H04;2.2/ be given. We consider P2 with
coordinates Œx W y W z� . By picking representatives in the PGL3 orbit of
.C IT1; T2/ , we can assume that T1 and T2 are given by the equations x D 0

and y D 0 , respectively. �e assumption that C has a bitangent given by x D 0

and a bitangent given by y D 0 puts the equation of C in a very special form,
namely:

(5.4) C WD
®
Œx W y W z� 2 P2 W xy.U C 2kV C t62xy/ � .V C txy/2 D 0

¯
for some t , where U D 0 and V D 0 are conics. Consider the condition that
U C 2kV C t2xy factors as a product of linear forms p.x; y; z/ and q.x; y; z/ .
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One can check that this condition is a degree 5 polynomial in t . For such t the
equation (5.4) for the quartic C then becomes

xyp.x; y; z/q.x; y; z/ �W 2
D 0

where W WD V C txy . It is then clear that the lines given by p D 0 and q D 0

are both bitangent to C . Further, the conic W D 0 passes through the eight
points of contact of the four bitangents x D 0; y D 0; p D 0; q D 0 . We have
thus proven that

(5.5) RD
�
H04;2.4/! H04;2.2/

�
� RD.eP 5 ! P5/ D 1

where H04;2.4/ is the pullback to H04;2.2/ of the cover H4;2.4/ ! H4;2.2/ .
Although we will not need it, we remark that there are 5 distinct roots of the
degree 5 polynomial determining such t , and so this gives us 5 additional pairs
of bitangents to C , for a total of 2C 5 � 2 D 12 bitangents.

Harris [Har] proves the following: given any three bitangents whose points
of contact lie on a conic, or any four whose points of contact do not, we can
solve for the remaining ones in radicals; further, no smaller sets su�ce. �is in
particular gives that the cover H04;2.28/ ! H04;2.4/ is solvable by radicals, and
so has resolvent degree equal to 1 . Combining this with (5.5) thus gives

RD
�
H4;2.28/! H4;2.2/

�
D 1

as desired.

Proposition 5.4 naturally suggests the following fundamental problem.

Problem 5.5 (Finding bitangents on smooth quartics). Compute the following:

(1) RD
�
H4;2.28/! H4;2.1/

�
.

(2) RD
�
H4;2.1/! H4;2

�
.

In the next section, we relate this to the problem of �nding lines on cubic
surfaces, and in Section 8, we put this problem in the context of Hilbert’s 13th
problem and Hilbert’s Octic Conjecture.

5.3. Relating lines on cubic surfaces to bitangents on plane quartics. In this
subsection we relate the resolvent degrees of two classical problems: �nding a
line on a smooth cubic surface and �nding a bitangent on a smooth quartic curve
in P2 . We then relate these to the resolvent degrees of other problems.
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�eorem 5.6. For any subgroup G � W.E6/ � W.E7/
C ,

RD.G/ D RD.H3;3.27/! H3;3=G/ D RD.H4;2.28/! H4;2=G/:

In particular:

(1) RD
�
W.D5/

�
D RD

�
H3;3.27/! H3;3.1/

�
D RD

�
H4;2.28/! H4;2.2/

�
D 1 .

(2) RD
�
W.E6/

�
D RD

�
H3;3.27/! H3;3

�
D RD

�
H4;2.28/! H4;2.1/

�
� 3 .

Similarly, for any other subgroup G � W.E7/
C ,

RD.G/ D RD.H4;2.28/! H4;2=G/

In particular:

(1) RD.S7/ D RD
�
H4;2.28/! H4;2.A/

�
� 3 .

(2) RD.S8/ D RD
�
H4;2.28/! H4;2.�

ev/
�
� 4 .

(3) RD
�
W.E7/

C
�
D RD.H4;2.28/! H4;2/ .

We will deduce �eorem 5.6 from the following, which should be compared
with Proposition 4.4 above.

Proposition 5.7 (Versality of the bitangents problem). For any G � W.E7/
C ,

the k -variety H4;2.28/ is a versal G -variety.

Proof. We recall a construction due to Dolgachev–Ortland [DO, Chapter IX],
which in its essentials dates to Coble. We claim there exists a sequence of
W.E7/ -equivariant dominant rational maps

(5.6) A.h/Ü P .h/Ü C7.P2/Ü H4;2.28/

where A.h/ denotes the variety given by a Cartan subalgebra of a simple Lie group
of type E7 , with its canonical W.E7/ -action. By Proposition 3.16, A.h/ is a versal
W.E7/ variety, and in fact a versal G -variety for all G � W.E7/ . By Lemma
3.11, all the varieties in (5.6) dominated by A.h/ are also versal G -varieties for
all G � W.E7/ which act faithfully on them. Since the action of W.E7/ on all
but A.h/ factors through the projection W.E7/ Š Z=2Z �W.E7/C� W.E7/

C

(cf. [DR2, Remark 7.2]), we conclude the result.
It remains to construct the diagram (5.6). �e rational map

C7.P2/Ü H4;2.28/

was constructed above as (5.2). �e map

A.h/Ü P .h/
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is just the projectivization, and is thus manifestly W.E7/ -equivariant. It remains
to construct the map

P .h/Ü C7.P2/
We again follow [DO, Chapter IX]. We begin by identifying P .h/ with the set of
ordered points ¹x1; : : : ; x7º in the non-singular locus of a �xed cuspidal cubic, up
to projective equivalence (cf. Pinkham [Pin]). Since there are 21 cuspidal cubics
through a general collection of 7 points in P2 , forgetting the cubic gives the
above 21-sheeted map. �is concludes the construction of (5.6) and the proof.

Proof of �eorem 5.6. By Proposition 5.7, the variety H4;2.28/ is versal for
any G � W.E7/

C . By Proposition 4.4, the variety H3;3.27/ is versal for any
G � W.E6/ � W.E7/

C . Proposition 3.7 therefore implies that for any G � W.E6/

RD.G/ D RD
�
H3;3.27/! H3;3.27/=G

�
D RD

�
H4;2.28/! H4;2.28/=G

�
and that for any subgroup G � W.E7/

C not contained in W.E6/ ,

RD.G/ D RD
�
H4;2.28/! H4;2.28/=G

�
:

�e special cases above now follow from the discussions of the quotients of
H3;3.27/ and H4;2.28/ of classical interest in Sections 4.1 and 5.1.

�e bound

RD
�
W.D5/

�
D RD

�
H3;3.27/! H3;3.1/

�
D RD

�
H4;2.28/! H4;2.2/

�
D 1

now follows alternately from �eorem 3.3, Proposition 4.1, or Proposition 5.4.
�e bound

RD
�
W.E6/

�
D RD

�
H3;3.27/! H3;3

�
D RD

�
H4;2.28/! H4;2.1/

�
� 3

follows from �eorem 4.3. �e bounds

RD.S7/ D RD
�
H4;2.28/! H4;2.A/

�
� 3;

RD.S8/ D RD
�
H4;2.28/! H4;2.�

ev/
�
� 4

follow from Corollary 3.17 1, and the Bring–Hamilton bounds RD.eP 7 ! P7/ � 3
and RD.eP 8 ! P8/ � 4 .

We now use a classical construction to give a more explicit proof of the �rst
equality of �eorem 5.6.

�e classical construction. Let S be a smooth cubic surface containing lines
L1; : : : ; L27 . A choice of a point p 2 S � [27iD1Li determines via projection a
morphism

�p W Blp.S/! P2

from the blowup Blp.S/ to the plane P2 . �is setup has the following remarkable
properties:
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(1) �p is a 2 -sheeted branched cover, branched over a smooth quartic curve
Cp � P2 .

(2) �e 27 images �p.Li /; 1 � i � 27 are 27 of the 28 bitangents of Cp ,
with the 28th bitangent to Cp being the image under �p of the exceptional
divisor in Blp.S/ .

(3) For every smooth quartic curve C in P2 there exists S and p 2 S as above
so that C is the branch locus of �p , as above.

See Figure 1 on Page 310.

Modular interpretation. We can interpret this classical construction in terms of
Del Pezzo surfaces of degree 2 and 3, and thus of maps of moduli spaces and
their covers.

Consider the universal family

S // U3;3
�

��
H3;3

of smooth cubic surfaces. Note that U3;3 can also be thought of as the moduli
space of pairs ¹.S; p/ W S 2 H3;3; p 2 Sº and the projection �.S; p/ WD S .

We now give a second presentation of U3;3 . Recall that

H3;3.27/ Š Hskew
3;3 .6/ Š C06.P2/

Adding the data of a point on a cubic, we get birational maps

C7.P2/Ü' U skew
3;3 .6/ Š U3;3.27/

where U skew
3;3 .6/ (resp. U3;3.27/ ) denotes the space of cubic surfaces equipped

with an ordered set of 6 skew lines (resp. an ordered set of 27 lines) and a
point on the surface. �ese isomorphisms are equivariant with respect to the
W.E6/ � W.E7/ action on C7.P2/ and the W.E6/ actions on U skew

3;3 .6/ (resp.
U3;3.27/ ). In particular there is an open embedding

C7.P2/=W.E6/ � U3;3

onto the cubics equipped with a point not lying on any of the 27 lines.
On the other hand, as discussed above, we have a generically 2-to-1 W.E7/ -

equivariant dominant map

C7.P2/Ü H4;2.28/:
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�erefore, for any G � W.E6/ , we obtain a pullback diagram in which the
horizontal maps are generically 2-to-1 rational covers

U3;3.27/ //

��

H4;2.28/

��
U3;3.27/=G // H4;2.28/=G

�is diagram shows that, at the cost of adjoining a square root, any explicit
solution for H4;2.28/! H4;2.28/=G determines one for U3;3.27/! U3;3.27/=G ,
and vice versa.

It remains to relate this to solutions of

H3;3.27/! H3;3.27/=G:

One direction is trivial: because we have a pullback diagram in which all maps
are dominant

U3;3.27/ //

��

H3;3.27/

��
U3;3.27/=G // H3;3.27/=G

any solution to H3;3.27/! H3;3.27/=G immediately pulls back to give one for
U3;3.27/ ! U3;3.27/=G . For the other direction, given an explicit tower solving
U3;3.27/! U3;3.27/=G

(5.7) U3;3.27/

��
Xr //

33

� � � // X1 // U3;3.27/=G

Let Z � U3;3.27/=G be the closure of the complement of the image of Xr in
U3;3.27/=G . Because XrÜ U3;3.27/=G is dominant, Z is a proper subvariety.

Fix a line L � P3 and let U � H3;3.27/=G be the Zariski open consisting
of cubic surfaces which intersect L transversely. De�neeU L WD

®
. QS; p/ W QS 2 U � H3;3.27/=G; p 2 S \ L

¯
By Bezout’s �eorem, the projectioneU L ! U

is a 3-to-1 dominant map. Because Z � U3;3.27/=G is a proper closed subvariety,
for a generic choice of L � P3 , the embedding
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eU L � U3;3.27/=G

is not contained in Z . We can therefore pull back the solution (5.7) along this
embedding to get a tower solvingeU L �H3;3.27/=G H3;3.27/! eU L

We conclude from Lemma 2.7 and Corollary 3.17 2 that

RD
�
H3;3.27/! H3;3.27/=G

�
� max

®
RD

�eUL �H3;3.27/=G H3;3.27/! eUL�;
RD.eUL ! U/

¯
� max

®
RD

�
U3;3.27/! U3;3.27/=G

�
; 1
¯

D RD
�
U3;3.27/! U3;3.27/=G

�
:

Remark 5.8. �e construction above using Bezout’s theorem suggests a general
method. We develop this further in Section 6.2 below.

�e proof of �eorem 5.6 also implies the following.

Corollary 5.9 (RD for Double-Sixes and Steiner Complexes). �e resolvent degree
of �nding an ordered sixer given a double-six equals the resolvent degree of �nding
an Aronhold basis given a Steiner complex equals the resolvent degree of S6 ,
i.e.,

RD.S6/ D RD
�
Hskew
3;3 .6/! H3;3.6; 6/

�
D RD

�
H4;2. eA /! H4;2.S/

�
:

Proof. By �eorem 5.6,

RD.S2 � S6/ D RD
�
Hskew
3;3 .6/! H3;3.6; 6/

�
and, because H4;2. eA / Š H4;2.28/ as W.E7/C -varieties, �eorem 5.6 also gives

RD
�
W.D6/

�
D RD

�
H4;2.eA/! H4;2.S/

�
:

Because W.D6/ D .Z=2Z/�5 Ì S6 , �eorem 3.3 gives

RD
�
W.D6/

�
D max

®
1;RD.S6/

¯
D RD.S2 � S6/ D RD.S6/:

6. �e resolvent degree of some enumerative problems

Consider an enumerative problem fM Ü M as in the introduction. As
mentioned there, a typical �rst goal is to prove that this is a branched cover. One
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then tries to �nd its degree. �e third step is to compute the Galois group of (the
normal closure of) the covering. Computing RD.fM ÜM/ can be interpreted
as computing the number of parameters needed to specify a point in fM given a
point of M . �is seems to us like a fundamental problem. We worked through the
explicit examples of lines on a smooth cubic surface and bitangents on a smooth
quartic in Sections 4 and 5. In this section we present a few more examples.

6.1. Tangency problems for plane curves. Steiner’s 5 conics problem. A
classical problem of Steiner asks how many conics in P2 are tangent to 5 given
conics. After many incorrect answers and a long, rich history, the problem was
answered around 40 years ago; see, e.g., [EH] and the references contained therein.
�e answer is 3264 . But how to �nd these conics given the original 5 , given by
the coe�cients of their de�ning equations?

Harris proves in [Har, IV] that this problem is not solvable by radicals, as
follows. Let W Š P5 denote the linear system of conics in P2 , and let W0
denote the Zariski open subset of smooth (i.e., non-degenerate) conics. Let

Y WD
®
.C1; : : : ; C5; C / 2 W

5
�W0 W C is tangent to each Ci

¯
:

Consider the map � W Y ! W 5 be �.C1; : : : ; C5; C / WD .C1; : : : ; C5/ . �en � is a
3264 -sheeted branched cover. Harris (see §IV of [Har]) computes the monodromy
group of this cover to be the full symmetric group S3264 . As this group is not
solvable, Harris deduces that there is no formula in radicals for the coe�cients
of C in terms of the coe�cients of the Ci .

Problem 6.1 (Re�nements of Steiner’s problem). Determine the monodromy of
the natural branched covers of W 5 lying between Y and W 5 . Determine which
if any are solvable by radicals. For these, determine explicit formulas.

Problem 6.2 (Resolvent degree of the 5 conics problem). Compute RD.Y !
W 5/ .

�ere are many generalizations of Steiner’s Problem, for many of which the
associated monodromy group has been computed; see, e.g., [EH, HS]. It would
be interesting to work out bounds on the resolvent degree for these problems.

Curves through speci�ed points. �ere are many more such enumerative
problems. For example, we have the following. Let Pd � .P2/3d�1=S3d�1 be the
parameter space of .3d � 1/ -tuples of distinct points in P2 in general position.
A dimension count gives that the number nd of degree d rational curves that
pass through 3d � 1 such points in P2 is �nite. It was known classically that
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n2 D 1; n3 D 12 and n4 D 620 . In the early 1990’s the following recursive
formula for nd was given by Kontsevich–Manin and Ruan–Tian (see, e.g., [EH]
and the references contained therein):

nd D
X

d1Cd2Dd;d1;d2>0

nd1nd2

 
d21 d

2
2

 
3d � 4

3d1 � 2

!
� d31 d2

 
3d � 4

3d1 � 1

!!
:

Let Xd WD PGL2 nRatd .P1;P2/=PGL3 denote the moduli space of degree d

rational curves. Let

Yd WD ¹.p1; : : : ; p3d�1; C1; : : : ; Cnd / W pj 2 Ck 8j; kº � Pd �Xndd :

Denote by �d W Yd ! Pd the natural projection. �en �d is an nd -sheeted
branched cover.

Problem 6.3. Compute the monodromy of �d , as well as of the intermediate
covers. Compute RD.�d / .

Among many other variations, we mention the following.

Problem 6.4. All general degree n curves through 1
2
n.nC3/�1 �xed points pass

through 1
2
.n � 1/.n � 2/ other �xed points (see, e.g., p. 191 of [Hilt]). Compute

RD for the problem of �nding one of the 1
2
.n � 1/.n � 2/ other points, as well

as its monodromy.

6.2. Finding a point on a projective subvariety. In relating di�erent problems
about varieties in projective space, it will sometimes be useful to pick a basepoint
on a variety in a way that varies algebraically over a parameter space. �e following
proposition, which we isolate because it might be useful in other contexts, states
that to compute RD for any algebraic problem for degree d varieties of a �xed
dimension in Pn , one can add the data of a basepoint at the cost of �nding a
root of a degree d polynomial.

Proposition 6.5 (Finding a point on a subvariety of Pn ). Let X be any variety
over k , and let

S

##

// X � Pn

��
X
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be any family of r -dimensional, degree d varieties in Pn such that S ! X is
a dominant map. Let

(6.1) Y //

��

eX
��

S // X

be any pullback diagram with vertical maps being rational covers. �en

RD.Y Ü S/ � RD. eX Ü X/ � max
®
RD.Y Ü S/;RD.Sd /

¯
:

Proof. �e �rst inequality follows from Lemma 2.5. We now prove the second
inequality. Fix an n � r -dimensional linear subspace L � Pn . Let U � X be
the Zariski open consisting of all x 2 X such that the variety Sx intersects L
transversely. De�ne

U1 WD .U � L/ \ S:

By Bezout’s theorem, the map U1 ! U given by projection is a generically
d -to-1 rational cover. �erefore, by Lemma 2.9,

RD.U1 ! U/ � RD.eP d ! Pd / D RD.Sd /:

By construction, we have a commuting triangle

S

��
U1 //

>>

X

Form the pullback
U1 �S Y //

��

Y

��
U1 // S

By construction,
U1 �S Y Ü U1 ! X

is a tower solving eX Ü X . �e de�nition of resolvent degree and Lemmas 2.5
and 2.7 imply that

RD.eXÜ X/ � RD.U1 �S Y Ü X/

� max
®
RD.U1 �S Y Ü U1/;RD.U1 ! X/

¯
� max

®
RD.Y Ü S/;RD.ePd ! Pd /

¯
as claimed.
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6.3. Resolvent degree and Bezout’s theorem. Recall that Hr;2 denotes the
moduli space of smooth degree r curves in P2 . Fix r; s � 1 . Bezout’s �eorem
gives that for each pair of curves C;C 0 � P2 of degrees r and s , the intersection
C \ C 0 has rs points, where each p 2 C \ C 0 is counted with the intersection
multiplicity Ip.C; C

0/ . Let

H.r;s/;2 WD

��
P .

rC2
2 /�1 �†r

�
�

�
P .

sC2
2 /�1 �†s

��
=PGL3

denote the moduli of pairs of smooth plane curves .C; C 0/ with deg.C / D r ,
deg.C 0/ D s (where †r , and †s denote the loci of singular curves). Let Ur;s
denote the Zariski open

Ur;s WD
®
.C; C 0/ W Ip.C; C

0/ D 1 8p 2 C \ C 0
¯
� H.r;s/;2

and consider the coveringeU r;s WD ®.C; C 0; p/ W p 2 C \ C 0¯ � Ur;s � P2

�
?y

Ur;s

given by �.C;C 0; p/ WD .C; C 0/ . Note that ��1.C; C 0/ D C \C 0 � P2 . Bezout’s
�eorem implies that � W eU r;s ! Ur;s is an rs -sheeted cover. It is known that
the monodromy of this cover is the full symmetric group Srs ; see, for example,
[HS, Corollary 1]. �us there is a formula in radicals for the intersection of two
curves of degrees r; s � 2 , but there is no such formula when rs > 4 . It is
natural to ask for the minimal number RD. eU r;s ! Ur;s/ of parameters for any
formula for an intersection point of two smooth curves, given the coe�cients
de�ning those curves. By the computation of the monodromy, we have

(6.2) RD. eU r;s ! Ur;s/ � RD.Srs/:

Problem 6.6. For which r and s does equality hold in (6.2)?

6.4. Finding �expoints. Let C be a degree d � 2 plane curve. For a generic
point p 2 C , the tangent line p̀ to C at p intersects C with multiplicity
mp.C � p̀/ D 2 . Recall that p is a �ex point of C if mp.C � p̀/ � 3 ; it is
a simple �ex if mp.C � p̀/ D 3 . It is known that any degree d curve C has
3d.d � 2/ �ex points, counted with multiplicity. Recall that Hd;2 denotes the
moduli space of smooth degree d curves on P2 . Let Hd;2.�ex/ � Hd;2 �P2 be
the moduli space of pairs .C; p/ where p 2 C is a �ex point. �e projection
map Hd;2.�ex/ ! Hd;2 given by .C; p/ 7! p is a 3d.d � 2/ -sheeted covering
when restricted to the Zariski open in Hd;2 consisting of those degree d curves
C all of whose �ex points are simple.
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�e monodromy of H3;2.�ex/! H3;2 is solvable (see [Har, II.2]), so that

RD
�
H3;2.�ex/! H3;2

�
D 1:

In contrast, Harris proves in II.3 of [Har] that for d � 4 , the monodromy of
Hd;2.�ex/ ! Hd;2 is S3d.d�2/ , which is not solvable if d � 4 . While Harris
concludes from this that there is no formula in radicals for the �ex points of a
general degree d � 4 smooth plane curve, the basic question remains as to how
complicated any formula not-in-radicals actually is.

Problem 6.7 (Finding �expoints). Compute the resolvent degree for the problem
of �nding a �expoint on a smooth degree d � 4 plane curve; that is, compute
RD.Hd;2.�ex/! Hd;2/ .

It is a classical fact that for a degree d curve C , the �expoints of C are
precisely the intersection points of C with its associated Hessian curve HC ,
which has degree 3.d � 2/ . However, Problem 6.7 is quite di�erent than the
situation considered in §6.3. Indeed, while the map

Hd;2 !
H Ud;3.d�2/

C 7! .C;HC /

�ts into a pullback square

Hd;2.�ex/ //

��

eU d;3.d�2/
��

Hd;2
H // Ud;3.d�2/

;

the codimension of H.Hd;2/ � Ud;3.d�2/ is always positive and grows quadrati-
cally in d .

7. �e resolvent degree of the roots of a polynomial

While the problem of simplifying the formulas needed to solve a general
polynomial has been central to the mathematical tradition since the Babylonians,
the study of the resolvent degree of polynomials essentially originates with work
of Tschirnhaus [Tsch] in the 17 th century. Tschirnhaus introduced the Tschirnhaus
transformation, which remains essentially the only method for providing general
upper bounds on RD.eP n ! Pn/ . We review Tschirnhaus transformations from
a geometric standpoint below, and then we treat several of the classical upper
bounds from this perspective.
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7.1. Tschirnhaus transformations and classical solutions of polynomials.

Elementary perspective. Consider the general degree n polynomial

p.x/ WD xn C a1x
n�1
C � � � C an D 0;

with roots x1; : : : ; xn . A Tschirnhaus transformation T .b0; : : : ; bn�1/ (for some
b0; : : : ; bn�1 ) sends the roots xi to

T .b0; : : : ; bn�1/.xi / WD b0x
n�1
i C b1x

n�2
i C � � � C bn�1:

�e Tschirnhaus transformation of the polynomial p.x/ is de�ned by

T .b0; : : : ; bn�1/.p/.x/ WD
Y
i

�
x � T .b0; : : : ; bn�1/.xi /

�
:

Because the assignment xi 7! T .b0; : : : ; bn�1/.xi / is symmetric in the roots,
the coe�cients of T .b0; : : : ; bn�1/.p/ are polynomials in the ai and the bj .
Accordingly, by solving polynomials in the bj whose coe�cients are polynomials
in the ai , we can �nd special Tschirnhaus transformations which convert our
original polynomial p.x/ into a polynomial whose coe�cients satisfy special
conditions, e.g., some collection of the coe�cients are zero.

Note that, given the roots of T .b0; : : : ; bn�1/.p/ , we can recover the roots of
p by a rational transformation. See [Hu, Lemma 4.2.1] for a clear treatment.

As covariants. Tschirnhaus transformations can also be de�ned as Sn -equivariant
maps

T W An ! An

In the setting above, we have an auxiliary a�ne space parametrizing Tschirnhaus
transformations

AnT WD
®
.b0; : : : ; bn�1/

¯
and a map

AnT ! AlgSn.A
n;An/

from the a�ne space parametrizing Tschirnhaus transformations to the space of
maps of Sn -varieties An ! An .

Geometric perspective. Equivalently, we have an Sn -equivariant “evaluation”
map

An �AnT !
" An

where Sn acts trivially on the AnT factor, and via the permutation representation
on each An . Passing to the quotients, we obtain a commuting square
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An �AnT
" //

��

An

��
Pn �AnT

N" // Pn

To bound the resolvent degree of eP n ! Pn via a Tschirnhaus transformation,
one now speci�es

(1) a Zariski closed Sn -invariant subvariety V � An , and

(2) a rational cover UÜ Pn along with a section

"�1.V /

��
U

<<

// Pn

Given these data, one obtains

RD.eP n ! Pn/ � max
®
RD.UÜ Pn/; dim.V /

¯
:

Remark 7.1. Standard examples of V are given by

V1���i WD

i\
jD1

¹�j D 0º � An;

where the �j are the elementary symmetric functions. Finding UÜ Pn with a
map UÜ "�1.V1���i / over Pn is just to �nd a Tschirnhaus transformation which
sets the �rst i coe�cients of the general degree n polynomial to 0.

We now illustrate this procedure in several classical examples.

7.2. �e Bring–Hamilton 4 -parameter reduction. In 1786 Bring [Bri] proved
the following, which was independently discovered by Hamilton [Ham].

�eorem 7.2 (Bring–Hamilton 4 -parameter reduction). For any n � 5 :

RD.eP n ! Pn/ � n � 4:

From the above perspective, Bring’s proof is as follows.

Proof. First, restrict to the space of quartic Tschirnhaus transformations, i.e.

T .b0; : : : ; b4/.xi / D b0x
4
i C � � � C b4:
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Next, observe that the �berwise projectivization of "�1.V1/ ! Pn is a trivial
P3 bundle, since the condition that the �rst coe�cient vanish is linear in the
bj , and this 3-plane bundle admits a rational section. �erefore, the �berwise
projectivization of "�1.V12/! Pn is a bundle of quadric surfaces in P3 . Denote
by H2;3 the moduli of quadric surfaces and let H2;3.L/ � H2;3 � Gr.2; 4/ be
the moduli of quadric surfaces equipped with a line, so that the two connected
components of H2;3.L/ (corresponding to the two rulings of the quadric) each
give a P1 -bundle over H2;3 . We have a map

Pn ! H2;3

p 7! "�1.V12/jp

By the classical theory of quadratic forms (for a detailed contemporary treatment,
see, e.g., [Wol, Lemma 5.2]), after passing to a branched cover U1 ! Pn of
degree 24 (i.e., by adjoining 4 square roots of polynomials in the coe�cients),
we can diagonalize the associated quadratic form, i.e.,

V12jU Š V

 
3X
iD0

L2i

!
for rational hyperplanes Li � P3U . �en ¹L0 C

p
�1L1 D 0;L2 C

p
�1L3 D 0º

de�nes a line on the quadric. In other words, there exists a lift of the map
U1 ! H2;3

H2;3.L/

��
U1 //

L

;;

H2;3

By intersecting the family of cubics "�1.V3/ with this line, we obtain a map

U1 ! P3
u 7! L.u/ \ "�1.V3/ju

Forming the pullback
U2 //

��

eP3
��

U1 // P3
we obtain a branched cover U2 ! Pn and a section

"�1.V123/

��
U2 //

::

Pn
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By construction,

RD.U2 ! Pn/ D max
®
RD.U2 ! U1/;RD.U1 ! Pn/

¯
� max

®
RD.eP3 ! P3/; 1

¯
D 1:

�erefore

RD.ePn ! Pn/ � max
®
RD.
p
�/;RD.eP3 ! P3/;RD.V123 ! An�3/

¯
where the �nal space An�3 is the moduli space of all monic degree n polynomials
of the form

xn C a4x
n�4
C � � � C an�1x C an D 0:

Restricting to locus U � An�3 where an�1 ¤ 0 ¤ an , we can de�ne a linear
Tschirnhaus transformation

T .xi / WD
an�1

an
xi

to set the last two coe�cients to be equal. �is de�nes a pullback diagram

V123jU
T //

��

V123;.n�1/Dn

��
U

NT // An�4

where An�4 denotes the space of all polynomials of the form

xn C b4x
n�4
C � � � C bn�1x C bn�1 D 0:

We conclude that, for n � 5 ,

RD.ePn ! Pn/ � max
®
RD.
p
�/;RD.eP3 ! P3/;RD.V123;.n�1/Dn ! An�4/

¯
� n � 4

as desired.

As a consequence of the Bring–Hamilton theorem, we obtain the upper bounds
in Hilbert’s Sextic and Octic Conjectures Hilbert’s and 13th Problem.

Corollary 7.3. RD.eP 6 ! P6/ D RD.S6/ � 2 , RD.eP 7 ! P7/ D RD.S7/ � 3 ,
and RD.eP 8 ! P8/ � 4 .
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7.3. Brauer’s bounds. Hamilton [Ham] was the �rst to show that

lim
n!1

n � RD.eP n ! Pn/ D1:

More precisely, he showed the existence of a function H W N ! N , such that for
n � H.r/ , n � RD.eP n ! Pn/ � r , and he computed the initial values of H :

r 4 5 6 7 8 9

H.r/ 5 11 47 923 409; 619 83; 763; 206; 255

By the mid-20th century, Hamilton’s work appears to have been forgotten.
Segre [Seg1], building on Hilbert’s work on the degree 9 equation, proved that
RD.eP n ! Pn/ � n � 6 for n � 157 . He further conjectured that

lim
n!1

n � RD.eP n ! Pn/ D1I

that is, he conjectured precisely what Hamilton had shown over a century
earlier. Shortly after, in 1945, Brauer [Brau1] and Segre each reproved this
statement, but without giving e�ective bounds. �ree decades later, Brauer [Brau2]
proved the following theorem, which provides the best general upper bounds on
RD.eP n ! Pn/ to date.

�eorem 7.4 (Brauer [Brau2]). Let n > 3 . For any r � 2

RD.eP n ! Pn/ � n � r for all n � .r � 1/ŠC 1:

We include a streamlined version of Brauer’s proof of �eorem 7.4 for
completeness.

Proof. We prove this by induction on r . �e base case r D 1 follows from the
Babylonians: RD.n/ � n � 1 for all n � 2 , via a linear translation of the roots.

For the inductive step, consider the full space of Tschirnhaus transformations
Pn�1T . Observe that

N"�1.V1���.r�1//! Pn
is a bundle of .n � r C 1/ -dimensional , degree .r � 1/Š subvarieties of Pn�1T .
By construction, there is an isomorphism of varieties over N"�1.V1���.r�1// :eP n �Pn N"

�1
�
V1���.r�1/

�
Š N"�1

�
V1���.r�1/

�
�An�.r�1/

eP njAn�r�1

where An�.r�1/ � Pn denotes the space of all monic polynomials with the �rst
.r � 1/ coe�cients vanishing. �erefore

RD
� eP n �Pn N"

�1
�
V1���.r�1/

�
! N"�1

�
V1���.r�1/

��
� RD

� eP njAn�.r�1/ ! An�.r�1/
�
:
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Proposition 6.5 then implies

RD.ePn ! Pn/ � max
°
RD

�ePn �Pn N"
�1
�
V1���.r�1/

�
! N"�1

�
V1���.r�1/

��
;

RD.eP.r�1/Š ! P.r�1/Š/
±

� max
°
RD

�ePnjAn�.r�1/ ! An�.r�1/
�
;RD

�eP.r�1/Š ! P.r�1/Š
�±
:

An analogous linear Tschirnhaus transformation to that in Bring and Hilbert shows

RD
� eP njAn�.r�1/ ! An�.r�1/

�
� n � r:

�e inductive hypothesis then gives

RD
� eP .r�1/Š ! P.r�1/Š

�
� .r � 1/Š � .r � 1/ � n � r;

completing the proof of the induction step.

Remark 7.5. Note that Brauer’s proof does not make use of the Bring–
Hamilton idea. Moreover, Hilbert [Hil2] sketched an approach using lines on
cubic surfaces to show that RD.9/ � 4 . Brauer needs n � 25 in order to
conclude RD.eP n ! Pn/ � n � 5 . In [Wol], an extension of Hilbert’s argument
leads to a substantial improvement over Brauer’s bounds for general n .

8. �e equivalence of Hilbert’s conjectures to classical geometry
problems

As with many Hilbert problems, the speci�c statement of Hilbert’s Sextic
Conjecture, 13th Problem and Octic Conjecture (see Problem 1.5) turns out to be
much broader and more widely connected to other problems than one might at
�rst glance guess. �e goal of this section is to use the theory we have developed
so far to prove the equivalence of each of these problems with many other natural
problems of both geometric and arithmetic natures. We give each statement in
English form, and name the corresponding problem in terms of moduli spaces
when we have already named them explicitly.

We organize things into �ve groups of examples, according to the group that
is acting. �e �ve classes of examples are ordered in complexity via:

RD
�
W.E6/

�
RD.S6/ � � RD

�
W.E7/

�
RD.S7/ � RD.S8/
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8.1. S6 -varieties and Hilbert’s Sextic Conjecture. We start with the Sextic
Conjecture.

�eorem 8.1 (RD of S6 varieties). �e following statements are equivalent:

(1) Hilbert’s Sextic Conjecture is true: RD.eP 6 ! P6/ D 2:
(2) RD.S6/ D 2 .
(3) RD.V ! V=S6/ D 2 for any faithful, linear S6 -variety V .

(4) RD.M0;6 !M0;6=S6/ D 2 .

(5) RD D 2 for the problem of �nding a �xed point for the Z=3Z action on
a genus 4 curve of the form y3 D P.x/ , where P.x/ is a square-free
polynomial of degree 6 :

RD
�eC3;6 ! C3;6

�
D 2:

(6) RD D 2 for the problem of �nding a �xed point for the hyperelliptic involution
on a genus 2 curve:

RD
�
M2. e� /!M2

�
D 2:

(7) RD of �nding the 27 lines on a cubic, given a double-six:

RD
�
H3;3.27/! H3;3.6; 6/

�
D 2:

(8) RD of �nding the 27 lines on a smooth cubic surface S given the unordered
hexahedral form of S :

RD
�
H3;3.27/! H=S6

�
D 2:

In fact, the resolvent degrees of all of the above problems coincide.

Proof. We prove the theorem via chains of equivalences.

Equivalence of 1, 2, 3, and 4. �e equivalence of the �rst four follows from
Corollary 3.17 1 together with Corollary 3.18.

Equivalence of 4, 5. Consider the moduli space C3;6 of isomorphism classes of
algebraic curves of the form y3 D P.x/ where P has is a square-free polynomial
of degree 6 . �ese are genus 4 curves equipped with a Z=3Z action, the quotient
giving a branched cover †4 ! P1 branched over 6 points, each of order 3 .
Let eC3;6 denote the moduli of curves in C3;6 equipped with an ordering of the
Z=3Z -�xed points. �e forgetful map
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eC3;6 ! C3;6

is a Galois S6 -cover. By mapping the �xed points to P1 under the Z=3Z -quotient,
we obtain the commutative diagram

(8.1) eC3;6 //

��

M0;6

��
C3;6 // M0;6=S6

in which the horizontal arrows are birational, equivariant with respect to the S6
actions, and the bottom row is the quotient of the top row by the S6 action.
�e stabilizer of a �xed point is S5 � S6 , and thus eC3;6 ! C3;6 is the Galois
closure of the cover parametrizing curves in C3;6 with a single choice of �xed
point. Together with Lemma 2.11, this proves the equivalence of 4, and 5.

Equivalence of 4 and 6. �e Segre cubic threefold X3 is the threefold in P5

given by

X3 WD

²
Œx0 W � � � W x5� 2 P5 W

5X
iD0

xi D 0 D

5X
iD0

x3i

³
:

�e permutation action of S6 on P5 leaves invariant X3 , permuting its 10 nodes.
It’s classically known that X3 ŠM0;6 as S6 -varieties.

Hunt proves in [Hu, �eorem 3.3.11] that the dual variety to X3 is the so-called
Igusa quartic I4 , which is the moduli space of 6 points on a conic in P2 . �e
two varieties X3 and I4 are S6 -equivariantly birational. �e Igusa quartic I4 is
the Satake compacti�cation of the moduli space M2. e� / of hyperelliptic curves
of genus 2 with a marking of the 6 branch points. �e group S6 acts by
permuting these marked points. We thus obtain a commutative diagram in which
all horizontal arrows are birational equivalences

(8.2) M0;6
� //

��

I4

��

M2.e�/�oo

��
M0;6=S6

� // I4=S6 M2
�oo

�us each of the rational covers in (8.2) have equal resolvent degree.

Equivalence of 2, 7 and 8. As explained in (4.4), the moduli space of pairs
.S;D/ where S 2 H3;3 and D is a double-six in S can be identi�ed with
H3;3.27/=S6 . �us the problem of �nding all 27 lines on a smooth cubic surface
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given a double-six is RD.H3;3.27/! H3;3.27/=S6/ . By Proposition 4.4, H3;3.27/

is versal for any G � W.E6/ . �erefore, by Proposition 3.7,

RD
�
H3;3.27/! H3;3.27/=S6

�
D RD.S6/;

proving the equivalence of 2 and 7 .
Now recall from §4.8 that the moduli space of unordered hexahedral forms

for smooth cubic surfaces �ts in to the sequence of branched covers (see (4.8)) :

H3;3.27/
t1
! H

t2
! H=S6

t3
! H3;3

where t1 is an unrami�ed 2 -sheeted cover, t3 is an unrami�ed 36 -sheeted cover,
and t2 is a generically 720 -to-1 branched cover. �e composite is a Galois
branched cover, with deck group S2 � S6 � W.E6/ , i.e.

H=S6 D H3;3=.S2 � S6/

Proposition 4.4 therefore implies

RD
�
H3;3.27/! H=S6

�
D RD.S2 � S6/ D RD.S6/;

proving the equivalence of 8 and 2.

8.2. W.E6/ -varieties and lines on a smooth cubic surface. In this section
we summarize the equality of the resolvent degree of di�erent W.E6/ -varieties
proven above.

�eorem 8.2 (RD of W.E6/ varieties). �e following are equal:

1. RD
�
W.E6/

�
.

2. RD
�
V ! V=W.E6/

�
for V any faithful representation of W.E6/ .

3. RD of �nding all 27 lines on a smooth cubic surface:

RD
�
H3;3.27/! H3;3

�
:

4. RD of �nding a line on a smooth cubic surface:

RD
�
H3;3.1/! H3;3

�
:

5. RD of �nding 28 bitangents on a smooth plane quartic, given one of them:

RD
�
H4;2.28/! H4;2.1/

�
:

Further, all of the above are at most 3.

Proof. We prove the theorem in chains of equivalences.
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Equivalence of 1, 2, 3 and 4. �is follows from the proof of �eorem 4.3.
Moreover, from �eorem 4.3, we obtain the upper bound of 3.

Equivalence of 3 and 5. �is is the statement of �eorem 5.6 above.

8.3. S7 -varieties and Hilbert’s 13th Problem. We now prove the equivalence
of Hilbert’s 13th problem with various other problems. Recall that Cn.Pm/ denotes
the moduli space of ordered n -tuples of distinct points in Pm modulo the action
of PGLmC1 .

�eorem 8.3 (RD of S7 varieties). �e following are equivalent:

(1) Hilbert’s 13th problem: RD.eP 7 ! P7/ D 3 .
(2) RD.V ! V=S7 D 3/ for any faithful linear representation V of S7 .

(3) RD.S7/ D 3 .

(4) RD.C7.Pn/! C7.Pn/=S7/ D 3 for n � 4 ; in particular

RD.M0;7 !M0;7=S7/ D 3:

(5) RD D 3 for the problem of �nding the 28 bitangents on a smooth quartic C ,
given an Aronhold set on C :

RD
�
H4;2.28/! H4;2.A/

�
D 3:

In fact, the resolvent degrees of all of the above problems coincide.

Proof. Equivalence of 1, 2, 3 and 4. �is follows from Corollary 3.17 1 together
with Corollary 3.18.

Equivalence of 3 and 5. �e equivalence of 3 and 5 follows from �eorem 5.6.

8.4. S8 -varieties and Hilbert’s Octic Conjecture. We now prove the equiva-
lence of Hilbert’s Octic Conjecture to several problems about plane quartics and
genus 3 curves.

�eorem 8.4 (RD of S8 -varieties). �e following are equivalent:

1. Hilbert’s Octic Conjecture: RD.eP 8 ! P8/ D 4 .
2. RD.V ! V=S8 D 4/ for any faithful linear representation V of S8 .

3. RD.S8/ D 4 .
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4. RD.C8.Pn/! C8.Pn/=S8/ D 4 , for n � 5 ; in particular

RD.M0;8 !M0;8=S8/ D 4:

5. RD D 4 for the problem of �nding the 28 bitangents on a smooth quartic
C , given an even � -characteristic:

RD
�
H4;2.28/! H4;2.�

ev/
�
D 4;

6. RD D 4 for the problem of �nding an Aronhold set on a smooth plane
quartic C given an even � -characteristic:

RD
�
H4;2.A/! H4;2.�

ev/
�
D 4;

7. RD D 4 for the problem of �nding the 28 bitangents on a quartic, given a
Cayley octad:

RD
�
H4;2.28/! Cay

�
D 4:

In fact, the resolvent degrees of all of the above problems coincide.

Proof. �e equivalence of (1), (2) and (3) follows from Corollary 3.17 1.
For the equivalence of (3), (4), and (5), observe that there exists a diagram

of W.E7/C -equivariant maps

(8.3) A.h/Ü P .h/Ü C7.P2/Ü H4;2.28/

Indeed, the sequence

A.h/Ü P .h/Ü C7.P2/Ü H4;2.28/

was constructed as (5.6) in the proof of Proposition 5.7. Because W.E7/
C is

simple, all the varieties in (8.3) are faithful W.E7/C -varieties. By Proposition
3.16 and Lemma 3.11, we conclude that all of these varieties are versal G -varieties
for any G � W.E7/

C , in particular for G D S8 . �e equivalence of (3), (4),
and (5) now follows from Proposition 3.7. �e equivalence of (5) and (6) follows
from Lemma 2.11 and the fact that

H4;2.28/! H4;2.�
ev/

is a Galois closure of the cover

H4;2.A/! H4;2.�
ev/:

Finally, the equivalence of (3) and (7) follows from the classical fact that there
is a birational map

H4;2.28/=S8 ' Cay
from the S8 quotient of the moduli of smooth plane quartics with an ordering
of their 28 bitangents to the moduli of Cayley octads.
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8.5. W.E7/ and bitangents to a planar quartic. In this section we prove the
equality of the resolvent degree of di�erent W.E7/C -varieties.

�eorem 8.5 (RD of W.E7/ and bitangents to a planar quartic). �e following
are equal:
1. RD

�
W.E7/

�
.

2. RD
�
W.E7/

C
�

3. RD.V ! V=G/ for G D W.E7/C; W.E7/ and V any faithful representation
of G .

4. RD
�
C7.P2/! C7.P2/=W.E7/C

�
.

5. RD
�
H4;2.28/! H4;2

�
.

Proof. As noted above, there is an isomorphism

W.E7/ Š W.E7/
C
� Z=2ZI

�eorem 3.3 implies that

RD
�
W.E7/

�
D max

®
RD.Z=2Z/;RD

�
W.E7/

C
�¯
D RD

�
W.E7/

C
�
:

In the proof of �eorem 8.4, we constructed a diagram (8.3) of varieties which
are versal for every G � W.E7/C , in particular for G D W.E7/C . By Proposition
3.7, we conclude that

RD
�
X ! X=W.E7/

C
�
D RD

�
W.E7/

C
�

for all X in the diagram (8.3). �e theorem now follows.
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Versal covers for subgroups of W.E7/C and covers related to bitangents
on plane quartics

A.h7/ // P .h7/ // C7.P2/ 2W1 //

W.D5/

��

H4;2.28/

W.D5/

�� S7 &&

S8

��

W.D6/

**
U3;3.1/ 2W1 //

27W1

��

H4;2.2/

27W1

��

H4;2.A/

8W1

��

H4;2.S/

63W1

��

U3;3 2W1 // H4;2.1/

28W1 &&

H4;2.�
ev/

36W1

��
H4;2

�e diagram above shows the relation between many covers of classical interest
of the moduli space H4;2 of smooth plane quartics.
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