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ABSTRACT: We study M-theory compactified on twisted 7-tori with Go-holonomy. The
effective 4d supergravity has 7 chiral multiplets, each with a unit logarithmic Ké&hler
potential. We propose octonion, Fano plane based superpotentials, codifying the error
correcting Hamming (7,4) code. The corresponding 7-moduli models have Minkowski vacua
with one flat direction. We also propose superpotentials based on octonions/error correcting
codes for Minkowski vacua models with two flat directions. We update phenomenological
a-attractor models of inflation with 3a = 7,6,5,4,3,1, based on inflation along these
flat directions. These inflationary models reproduce the benchmark targets for detecting
B-modes, predicting 7 different values of r = 12a/N? in the range 1072 > r > 1073, to be
explored by future cosmological observations.
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1 Introduction

It was observed in studies of supersymmetric black holes in maximal 4d supergravity
that in the context of E7(7) symmetry and tripartite entanglement of 7 qubits, there is a
relation between black holes, octonions, and Fano plane [1-4]. The entangled 7-qubit system
corresponds to 7 parties: Alice, Bob, Charlie, Daisy, Emma, Fred and George. It has 7
3-qubit states and 7 complimentary 4-qubit states. One can see the 7-qubit entanglement in

A

Figure 1: The E7 entanglement diagram from [1]. Each of the 7 vertices A,B,C,D,E,F,G represents a qubit
and each of the 7 triangles ABD, BCE, CDF, DEG, EFA, FGB, GAC describes a tripartite entanglement.

Here we will update the original 7-moduli cosmological models developed in [6-9] which
predict 7 specific targets for detecting primordial gravitational waves from inflation. We will
use the superpotentials derived from octonions and G2 symmetry. The updated cosmological
models will be shown to be related to (7,4) Hamming error correcting codes, octonions and
Fano planes.

We will continue an investigation of the 7-moduli model effective 4d supergravity
following [10-13] and apply them to observational cosmology as in [6-9]. Some earlier
insights into the corresponding M-theory models have been obtained in [14-16]. Our
cosmological models are based on 11d M-theory/supergravity compactified on a twisted
7-tori with holonomy group G5. A related 7-moduli model originating from a 4d gauged

N = 8 supergravity was studied in [17]. It was emphasized there that Z% invariant 7

SU(1,1)
u(1)
structure matches the single bit error correcting (7,4) Hamming code.

7
Poincaré disk scalar manifold { ] is related to a remarkable superpotential whose

In M-theory compactified on a 7-manifold with G holonomy the coset space describing

7
our 7 moduli is [SS%Q(%%)} . It corresponds to half-plane variables related to Poincaré disk




variables by a Cayley transform. In such a 7-moduli model we will establish a relation
between octonions', Hamming error correcting code, Fano plane and superpotentials.

The order in which we will describe these relations is defined by the mathematical
fact that the smallest of the exceptional Lie groups, Go, is the automorphism group of the
octonions, as shown by Cartan in 1914 [22], and studied in detail by Gunaydin-Gursey
(GG) in [23]. Thus we start with octonions, defined by their multiplication table. Under
G2 symmetry the multiplication table of octonions is left invariant.

There are 480 possible notations for the multiplication table of octonions assuming
that each imaginary unit squares to —1, as shown by Coxeter in 1946 in [21] and detailed
in [24]. They can be divided into two sets of 240 notations related via the Cayley-Dickson
construction. Cayley-Dickson construction represents octonions in the form O = ¢ + jgo
where ¢; and ¢ are quaternions and j is an additional imaginary unit that squares to
—1 and anticommutes with the imaginary units of quaternions [19, 25]. This leads to 240
possible notations for the multiplication table of octonions represented by the same oriented
Fano plane as explained in Sec. 2. In [23] j was labelled as e7 and the quaternion imaginary
units as e; (i = 1,2,3) and the additional imaginary units as e@i+3) = ere;. Modulo the
permutation of indices (3,4) and (5,6) of imaginary octonion units the notations used in [21]
and in [23] are equivalent and belong to this set of 240 notations. One can equally well
take O = q1 — jgo to represent octonions since (—j)? = —1 , which will give another 240
possible notations for the multiplication table. In particular, in the conventions of [23]
this will lead to defining e(; 3y = —e7e;. Again one finds 240 possible conventions that can
be represented on an oriented Fano plane that differs from the Fano plane of the first set
of 240 conventions in that the direction of arrows along the 3 lines of the Fano plane are
reversed. For example in Fig. 3 the relevant 3 lines are the ones inside the triangle which
cross e7. Cayley-Graves octonions [18, 19] belong to this set of 240 conventions.

Thus, 480 notations split naturally into two sets of 240 related by the map j — —j
which reverses the directions of the 3 arrows involving e7 in the Fano plane in [23]. Octonion
multiplication table in turn, leads to an oriented Fano plane and error correcting codes. All
these are known mathematical facts, see for example, [18-31].

Here we also note that Cartan-Schouten-Coxeter [20, 21] octonion convention is associ-
ated with the so-called cyclic? Hamming (7,4) error correcting code. The Cayley-Graves
octonions naturally lead to the original non-cyclic Hamming (7,4) error correcting code [5].

1Octonions were discovered in 1843 by J. T. Graves. He mentioned them in a letter to W.R. Hamilton
dated 16 December 1843. Hamilton described the early history of Graves’ discovery in [18]. A. Cayley
discovered them independently in 1845, in an Appendix to his paper [19]. These octonions are related to
a non-cyclic Hamming (7.4) error correcting code. Later Cartan and Schouten [20] proposed a class of
octonion notations in the context of Riemannian geometries admitting an absolute parallelism. These were
studied and developed by Coxeter [21].

2The codewords are called cyclic if the circular shifts of each codeword give another word that belongs to
the code. The cyclic error correcting codes, the so-called BCH codes, were invented by Hocquenghem in
1959 [32] and by Bose and Chaudhuri in 1960 [33].



Octonions have made their appearance within the framework of 11d supergravity and
its compactifications [34-37] soon after it was constructed [38]. Furthermore the U-duality
symmetries of maximal supergravity in five, four and three dimensions are described by
the exceptional Jordan algebra over split octonions and the associated Freudenthal triple
systems [39-41]. More recently octonions were shown to describe the non-associative algebra
of non-geometric R-flux background in string theory and their uplifts to M-theory [42].

Of particular interest for our purposes is the fact that the maximal supersymmetry of
M-theory is spontaneously broken by compactification to minimal N' = 1 supersymmetry
in 4d [36, 37]. A spontaneously induced torsion breaks all supersymmetries but one, and
renders the compact space Ricci-flat. The supersymmetry breaking torsion was computed
explicitly in [37] and it was observed that the flattening torsion components are constant
and given by the structure constants of octonions.

We start with the 7-moduli model, following [10-12], i.e. we look at the model of a
compactification of M-theory on a G-structure manifold with the following Kéhler potential
and superpotential

7
S 1 o
Ko = — 3 log (T’ + TZ) L W=SMGT'TI, My=0, Vi (1.1)
=1

Here M;; is a symmetric matrix with 21 independent elements defined by the twisting of the
7-tori, which in general breaks Ga holonomy down to Z3. We propose to take an octonion
based superpotential of the form

WO =Y (T - T/)(T" - 1%, (1.2)
{ijkl}

where we take a sum over 7 different 4-qubit states defining the choice of {ijkl} in WQO.
The sense in which these superpotentials are octonion based will be explained in great
detail later. One important property of the superpotentials WQ is the fact that the defining
matrices M;; have only £1 entries and

> My=0, Vi, (1.3)
J

so that only 14 terms of the type T°T7 are present. As a consequence for these superpotentials
(G2 holonomy of the compactification manifold is preserved and is not broken to Gy structure
manifolds with Z% holonomy. We will also find that the mass eigenvalues of the superpotential
around the vacuum are independent of the convention chosen for octonion multiplication.
We will also find in these models Minkowski vacua with 1 and 2 flat directions and apply
them for cosmology.

We will present simple examples of eq. (1.2) based on a cyclic symmetry of octonion
multiplication in clockwise or counterclockwise directions when the imaginary units are
represented on the corners of a heptagon. These octonions, Fano planes and superpotentials



have a very simple relation to cyclic Hamming (7,4) code. A single example of WO in eq.
(4.7) or in the form (4.32) is sufficient for all cosmological applications in this paper.

In addition to the simple cyclic choices we propose the general form of WQ, in terms of
the structure constants of octonions and generalized cyclic permutation operator, valid for
any choice of the 480 octonion conventions. This general formula is presented in eq. (5.3)
and details of the construction with examples are given in Appendix A.

In Sec. 2 we present some basic facts about octonions, Fano planes, Hamming (7,4)
codes, G5 symmetry, together with some useful references. The goal is to provide the
information for understanding how the mathematical structure of M-theory compactified
on a manifold with Gy holonomy, is codified in our cosmological models using octonions.

In Sec. 3 we describe, following [10], a special case of models with compactification on
manifolds with G9 structure which can have Minkowski vacua under the special condition
when the holonomy group is extended from Z3 to Ga.

In Sec. 4 we present a simple derivation of two superpotentials (1.2). The first one in eq.
(4.7) is based on heptagons with clockwise orientation using the Cartan-Schouten-Coxeter
notation for octonions [20, 21]. These models are shown to be related to a cyclic Hamming
(7,4) error correcting code. The second one in eq. (4.29) is based on heptagons with
counterclockwise orientation. This one is related to Reverse Cartan-Schouten-Coxeter
notation for octonions, which we introduce there. These models are related to the original
non-cyclic Hamming code. Since our superpotential is quadratic in moduli, the fermion
mass matrix in supersymmetric Minkowski vacua is proportional to the second derivative of
the superpotential, we study it there.

In Sec. 5 we discuss octonionic superpotentials for various octonion conventions using
the general formula (5.3). We also explain the alternative derivation of new superpotentials
via the change of variables, starting with superpotentials in eq. (4.36) based on heptagons
with clockwise or counterclockwise orientation. In Appendices A and B we give examples
of relations between most commonly used octonion notations using Fano planes. These
include Cayley-Graves [18, 19], Cartan-Schouten-Coxeter [20, 21], Gunaydin-Gursey [23],
Okubo notation [43] for octonions and the ones we have introduced here in Sec. 4 and called
Reverse Cartan-Schouten-Coxeter notation for octonions.

For each choice of octonion multiplication convention we have found 2 independent
choices of superpotentials satisfying our physical requirements. For other octonion conven-
tions we can get the relevant 2 superpotentials either using the general formula, or making
the field redefinitions in the superpotentials the same as the ones which lead to a change
of octonion conventions without the sign flip. This limitation is due to the fact that all 7
moduli with K&hler potential in (1.1) have a positive real part, therefore we do not flip
signs of moduli. Meanwhile the general type of mapping from one convention to another do
involve sign flips in general. Starting with Cartan-Schouten-Coxeter conventions we can get
models in 240 different conventions, including the one we started with, without sign flip of



moduli. Similarly starting with Reverse Cartan-Schouten-Coxeter convention we can get
models with another 240 conventions, including the one we started with, without sign flip
of moduli. It is convenient to use these two starting points in the form given in eq. (4.36).
For simplicity we shall refer to these superpotentials as ‘octonionic superpotentials’.

In Sec. 6 we study Minkowski vacua in 7-moduli models with octonionic superpotentials
(1.2). We show that these models have a Minkowski minimum at

=1’=T*=T'=1"=71=7"="T (1.4)

with one flat direction. All models studied in Sec. 4 and in Appendix A are the same
cosmologically: they have a Minkowski minimum with one flat direction as in eq. (1.4).
The eigenvalues of the superpotential matrix M;; in eq. (1.1) as well as the eigenvalues of
the mass matrix at the vacuum in these models have an [SO(2)]® symmetry. The resulting
effective 1-modulus model in 4d supergravity has the Kahler potential and superpotential

K=-Tlog(T+T), WO=0. (1.5)

This is a starting point for building the inflationary cosmological a-attractor models [44, 45]
leading to a top benchmark for detecting B-modes [6-8]. In the past, it was derived
in [6] by postulating eq. (1.4) and in [7] by using a phenomenological superpotential
W =3 1cicjr(Ti — T;)?. Note that such a superpotential does not fit the Ga-structure
compactification M-theory model where M;; = 0 for each 7 in (1.1).

The choice in (1.2), associated with octonions and the (7,4) Hamming code, is funda-
mental, being associated with mazimal supersymmetry of M-theory in 11d, spontaneously
broken by compactification to minimal N =1 supersymmetry in 4d [36], [37]. It naturally
leads to a desirable starting point (1.1), (1.4), (1.5) for building a 3a = 7 cosmological
model from M-theory compactified on a G2 holonomy manifold.

In Sec. 6 we also present the octonion based superpotentials for the models with
Minkowski vacua with 2 flat directions. In these vacua some of the m moduli are equal
to each other, T' = ... = T™" = T(1), whereas some other n moduli are equal to each
other, 7™+l = ... =77 = T2y and m +n = 7. The superpotentials in these models are
obtained from the 1-flat-modulus models by removing certain terms in (1.2) corresponding
to removing some specific codewords from the cyclic Hamming (7,4) code. In this way we
find 2-moduli effective 4d supergravity with the following Kéahler potential

K = —mlog (T(l) + T(l)) —nlog (T(g) + T(g)) , WO = 0. (1.6)

We find models with 6 + 1, 5+ 2, 44 3 split. The remaining codewords define the remaining
terms in the superpotential for these split models.

On the basis of the M-theory setup, we construct the updated cosmological models
in 4d NV = 1 supergravity in Sec. 7. These models of a-attractors realize inflation and
lead to 7 benchmark points, which are the B-mode detection targets suggested earlier in
[6-8]. Here we show that these updated models originate from M-theory and octonions and



error correcting codes. It was shown by Planck satellite measurements [46] that a-attractor
models are in good agreement with data available now. These include special cases with
the discrete set of values for 3a = 7,6, 5,4, 3,2,1 motivated by maximal supersymmetry.
Here we updated these models with account of their relations to M-theory via octonions.
Our 1-flat direction models lead to 3o = 7 case, a top benchmark point, whereas our 2-flat
direction models split models lead to remaining cases.

Future cosmological observations like BICEP2/Keck [47, 48], CMB-S4 [49, 50], SO [51],
LiteBIRD [52] and PICO [53], might potentially detect the tensor to scalar ratio at a level
r =5 x 1074(50) and improve constraints on the value of ng, the spectral tilt of the CMB
power spectrum. They might support or invalidate the M-theory cosmological models and
their 7 benchmark points. We show these benchmark points in Figs. 17, 18 and explain
their relation to octonions and to cosmological observables in Sec. 8. A short summary of
the main results of the paper is given in Sec. 9.

In Appendix A we present the general formula for octonion superpotentials in (1.2) for
any octonion conventions, with examples. In Appendix B we derive the relations between
most commonly used octonion conventions. In Appendix C we give more details about
multiplication tables and Fano planes. In Appendix D we present a specific transformation
from Cayley-Graves to Cartan-Schouten-Coxeter octonion notations which also rotates a
cyclic Hamming (7,4) code to a non-cyclic one. In Appendix E we show that octonion

el €2 es ey €5 €6 er
el —1 €4 er —es €6 —es5 | —es
es | —es -1 es el —e3 er —€6
es | —e7r | —es —1 €g €2 —ey e1
€4 €2 —e1 | —eg —1 er €3 —es
€5 —E€p €3 —E€2 —e7 —1 €1 €4
€6 €5 —er €4 —E€s —e1 —1 €2
(4 €3 €6 —e1 (153 —€4 —€2 -1

Figure 2: Cartan-Schouten-Coxeter Octonion Multiplication Table

We will be working with real octonions which are an 8-dimensional division algebra spanned
by seven imaginary units together with identity {1, e, ez, es3, €4, €5, €6, €7}

eje; = _5ij1 + fijkek. (21)


https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.286L/abstract

The structure constants f;;, are completely antisymmetric. The multiplication Table in
Cartan-Schouten-Coxeter notation [20, 21] is given in Fig. 2

The non-vanishing structure constants in CSC convention are
fije = +1 for {igk} = {(124), (235), (346), (457), (561), (672), (713)}. (2.2)

In [21] the set of 7 triples {ijk} in eq. (2.2) is referred to as 7 associative triads®. The
associative triads {ijk} are given by the seven quaternion subalgebras of octonions generated
by e;,ej,e. There are 480 possible conventions for octonion multiplication tables [21], i. e.
480 different choices of the 7 associative triads?.

Imaginary octonion units are anti-commuting. The commutator of two imaginary units
is simply
[ei, ej] = eiej — ejei = injkek. (2.3)
Octonions are not associative and the associator defined as

lei, e, ex] = (eiej)er — ei(ejer) (2.4)

does not vanish, in general. The associator is an alternating function of its arguments and
hence octonions form an alternative algebra. The Jacobian of three imaginary units does
not vanish and is proportional to their associator

J(emsen, ep) = [em, [en, ep]] + [ep; [ems en]] + [en; [ep, em]] = 3Cmnpqgeq (2.5)

where the completely antisymmetric tensor Cy,ppq is given by the structure constants

Cmnpq = fk[mnfp]kq (26)
and is dual to the structure constants
1
Cmnpq = gemnpqrstfrst- (27)

Both the structure constants and the tensor C,,,,p are invariant tensors of the automorphism
group Go of octonions.

Fano plane and octonions

The Fano plane is the unique projective plane over a field of characteristic two which can
be embedded projectively in 3 dimensions Zj [29] corresponding to an Abelian group of
order 8 with the seven points represented by the nontrivial elements. It can be used as a
mnemonic representation of the multiplication table of octonions by identifying its points
with the imaginary octonion units and introducing an orientation.

3The 28 remaining triads are anti-associative.
*See for example http://tamivox.org/eugene/octonion480/index.html.



Given a multiplication table of octonions, the corresponding Fano plane can be given
different orientations depending on the identification of its points with the imaginary
units. The three points in each line are identified with the imaginary units (e;, e;, ex) of
a quaternion subalgebra with the positive orientation given by the cyclic permutation of
(i,4,k). There are different ways to build the Fano plane for the same type of triads. For
example, the original oriented Fano plane in [21] for the same set of triples is different from
the one in [29] shown in Fig. 3.

Figure 3: An oriented Fano plane, Fig. 1 in [29] for Cartan-Schouten-Coxeter [20, 21] octonion conventions.
On each of the 7 lines (including the circle) there are 3 points e.g. 1,2, and 4 on a circle. The octonion
multiplication rule (2.2) is represented in the oriented Fano plane with the arrows indicating the positive
directions for multiplication. For example, one can see from the oriented circle that e; - e = e4, which is
also shown in the first term in (2.2) as fioa = +1.

In the Fano plane every line has 3 points and every point is the intersection point
of 3 lines. Since each line contains 3 points which correspond to the imaginary units
of a quaternion subalgebra every imaginary unit belongs to three different quaternion
subalgebras. Hence given an imaginary unit e; there exist three sets of imaginary units
(€ks €m, €n), (€ks €p, €q), (€K, €7, €5) of quaternion subalgebras such that

fkmn = fkpq = fk:rs =+1 (28)

For example in Fig. 3 given the unit e; we have fio4 = fi156 = fi37 = 1.

Error correcting codes, Fano planes, octonions

Error correction is a central concept in classical information theory. When combined with
quantum mechanics they lead to quantum error correction especially important in quantum
computers. For our purpose only a classical Hamming [7,4,3] code [5] is relevant. It is an
example of a linear binary vector space specified by its generator matrix G which allows to
produce the 16 codewords. The matrix H is known as a parity matrix, it has the property
that HGT =0

~10 -



1010101 0000000 1010101 0110011 1100110

1010101
G = 0110011 0001111 1011010 0111100 1101001 H V1oL
b =1 0110011
1110000 0100101 1000011 0010110 0001111

1110000 1111111 0101010 1001100 0011001

Figure 4: Original Hamming code. The generator matrix G at the left part is used here to produce the
16 codewords of the Hamming code shown in the middle of the figure. They are produced with account of
addition rules 0+0=0,0+1=1,1+40=1,1+1=0. 1st in the 16 codewords is the zero vector, then the
1st row in GG. Next we add the 2nd row in G to the first two vectors, which give us the 3rd and the 4th
codewords. Next we add the 3rd row in G to the 4 vectors previously obtained, and so on. At the right
there is a parity matrix H.

In Fig. 4 we have shown in addition to generator matrix G and a parity matrix H all 16
codewords of the Hamming [7,4,3] code. The mechanism of error detection and correction
using this code is nicely explained in the lecture by Jack Keil Wolf An Introduction to Error
Correcting Codes.

For our purpose it is useful to observe that in 16 codewords of the Hamming code shown
in the middle of the Fig. 4 one of the codewords is all 0’s, one is all 1’s. The remaining 14
codewords are split into two groups of 7: one group has 3 0’s and 4 1’s, the other has 3 1’s
and four 0’s. They are complimentary to each other when 0 is replaced by 1. For example,
in the context of the Graves-Cayley octonions one can use the following 7 codewords

1110000, 1001100, 0101010, 0010110, 0100101, 0011001, 1000011. (2.9)

All these set of codewords which we discussed so far are known as non-cycling Hamming
codes. Namely, one can see in G in Fig. 4 that the 4 codewords are not obtained by
recycling any of them. Same feature is present in all 16 codewords in Fig. 4.

Even though in the literature one set of Hamming code is referred to as cyclic, one can
make all of them cyclic with respect to the action of a cyclic permutation operator P to be
defined later in section 5.1 that enters in equation 5.3. For the Cayley-Graves octonions
ths permutation operator is Pog = (1245736). Under its action the codewords above get
mapped into each other in a unique way:

Pco(1110000) = (0101010)
Pc(0101010) = (1001100)
Pc(1001100) = (0100101)
Pc(0100101) = (0011001)
Pc(0011001) = (0010110)
Pc(0010110) = (1000011)
P (1000011) = (1110000) (2.10)

- 11 -


http://acsweb.ucsd.edu/~afazelic/ece154c/ErrorCorrection-JackWolf.pdf
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1101000
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0001101
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—_—_0 = O OO

Figure 5: Cyclic Hamming code. The generating matrix G at the left part has 4 rows with 3 1’s each,
where every row is a cyclic permutation of the previous one. More cyclic permutations generate directly the
7 codewords at the right of the figure, all with 3 1’s, 4 0’s.

Now we describe shortly a cyclic Hamming (7,4) code following [30], where cyclic codes
were discussed in the context of the projective spaces. The generating matrix is shown in
Fig. 5 at the left.

All codewords can be obtained from any particular one by a cyclic permutation. In
this case the cyclic permutation operator is simply Pogo = (1234567). We should note
that this 7 x 7 matrix is also the incidence matrix of the underlying Fano plane. It is easily
related to octonions in CSC convention [21, 22] shown in eq. (2.2). Each triad is shown in
the 7 codewords in Fig. 5: the position of the 1’s in the first row is 124, in the 2nd row is
235 and so on, where 1 after 6 is 1 mod 7, and so on.

One finds the mechanism of error detection and correction using the cyclic (7,4)
Hamming error correcting code, for example, in the book by R. Blahut ‘Algebraic codes for
data transmission’ [54] to which we refer for details and further references.

The 7 x 7 matrix at the right of the Fig. 5 is the set of 7 codewords which will be often
used in our construction of cosmological models. Sometimes we will change the order of
rows, so that we can easier explain our new octonionic superpotentials, leading to Minkowski
vacua with one flat direction. Sometimes we will remove some rows in this 7 x 7 matrix, to
build different superpotentials, leading to Minkowski vacua with two flat directions.

In Appendix D we show that one can bring the cyclic Hamming (7,4) error correcting
code to the original Hamming code by a particular permutation.

G2(R), its finite subgroups and 480 octonion conventions

The automorphism group G2 of the division algebra of octonions is a 14-dimensional subgroup

of SO(7) [22, 23, 55-57]. Under G the adjoint representation of SO(7) decomposes as
21 = 14 + 7. The 14 generators of Gg, which we call G¥, can be represented using the 21
generators of SO(7), denoted here as J¥, and a totally antisymmetric tensor Cijki, related

- 12 —



to octonion associator which is defined in egs. (2.5), (2.6), (2.7)
g Lo 1 i
GY = §Jj+§0]li . (2.11)
The tensors Cj;; and f;j; are subject to various identities, so that
fiikG* = 0. (2.12)

This means that there are 7 constraints on 21 generators of SO(7), which makes the
remaining 14 the generators of Go. They also satisfy the identity

1
Gij = 3 ikt G (2.13)

Under the action of Gy the imaginary octonion units transform in its 7 dimensional
representation and the structure constants of octonions form an invariant tensor of Gs.
The group G has some important finite subgroups, in particular, G2(2) of order 12096
and [Z5)% - PSLy(T), of order 1344. We refer the reader to relatively recent papers on the
finite subgroups of G2 [58—64] which include more details on the discrete finite subgroups
of G2(R). In particular in [62] in Table 1 one can find the list of all the important finite
subgroups I' C Gbs.

To explain why there are 480 possible notations for the multiplication table of octonions,
as shown in [21] we can look at the total number of permutations of imaginary octonion
units, including the flipping of signs. This will give

T =2 S(7). (2.14)

At first sight this might suggest 27 - 7! = 645120 possible choices of conventions. However,
some of these choices do not change the multiplication table. It is due to the fact that
the automorphisms of the oriented Fano plane, preserving triads, form a discrete finite
subgroup of G5 which is

H = [22]> - PSL(T). (2.15)

It is an irreducible imprimitive group of order 1344. Thus, there is a redundancy of order
1344. Hence the total number of inequivalent multiplication tables comes as

T [2]7-8(7) 645120

H P -PSCa(t) 1344

— 480. (2.16)

The multiplication table of octonions can be represented by an oriented Fano plane or
via the heptagon rules. There are 7! = 5040 ways of assigning labels from 1 to 7 to the
points in the Fano plane or the corners of a heptagon corresponding to the symmetric
group S(7). Again this might naively suggest that there are 7! = 5040 possible choices of
conventions that do not involve sign changes. However, some of these choices do not change
the multiplication table while preserving the associative triads. The symmetry group of
the unoriented Fano plane is the finite group PSLy(7) of order 168 which take collinear
points into collinear points. Hence there are 5040/168 = 30 inequivalent labelling of the
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unoriented Fano plane. When one represents the octonion multiplication by an oriented
Fano plane one can associate the points on the Fano plane with the imaginary octonion
units 4-e;. Out of 27 possible sign assignment 23 assigments corresponding to the group Z3
of order 8 do not change the multiplication table®. Hence we have 2* possible inequivalent
sign assignments leading to 30 x 16 = 480 possible inequivalent conventions for octonion
multiplication. These 480 possible conventions split naturally into two sets of 240 related
by octonion conjugation which changes the sign of all imaginary units and reverses the
direction of all associative triads. Given a convention the octonion multiplication table is
left invariant under the finite subgroup [Z5]® - PSL2(7) of Go. However only the action of
the Frobenius subgroup Z7 x Z3 of order 21

Z7 X 23 C [22]3 : P5£2(7) (2.17)
does not involve sign changes of the imaginary units. This absence of sign flips is important

since in our models a convention is chosen so that ReT? > 0 and the transformations of

LV | . n- . i 11 1 i1 11 " L B |

€; 6]' €0 €1 €2 €3 €4 €5 €g (&4
€ | €0 | €1 €2 €3 €4 €5 €6 er
€1 |€é1| €| €3 | —€2| €5 | —€4 | —€7 | €Eg
€2 | €2 | —€3| —€| € €6 €7 | =4 | —6€5
€3 |€3| €2 | —€1 | —€y| €7 | —€6 | €5 | —€4
€4 |€4| —€5| —€6 | —€7 | —€0 | €1 €2 €3
€5 |€5| €4 | €7 | €6 | —€1 | —€0 | —€3| €2
€6 | €6 | €r €4 | €65 | —€2| €3 | =€ | —€1
€7 €7 | €6 | €5 €4 | €3 | —€2 | €1 | —€

Figure 6: Cayley-Graves Octonion Multiplication Table. It was recently used in [65] as a starting point
for the proposal on quantum computing with octonions.

To finalize the basics on octonions part of the paper we would like to add here that there is
some interest in using octonions for quantum computation [65]. The starting point there is
Cayley-Graves octonion multiplication table. The original set of triples defining octonion

5This group is generated by conjugation with respect to three imaginary units intoduced in Cayley-Dickson
process in going from real numbers to octonions.
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multiplication table by Graves shown in [18] is, using ijkimno order
ijk, ilm, ion, jln, jmo, klo, knm. (2.18)
Translating this into numbers we find

123, 145, 176, 246, 257, 347, 365. (2.19)

The set of triples by Cayley in [19] is
123, 145, 624, 653, 725, 734, 176. (2.20)

These two choices agree if we allow a cyclic permutation inside a triple, and change the
order of triples.

In [65] the table in Fig. 6 was changed by multiplying by —1 all columns except the
first one. This in turn allows the authors to work with a specific realization of the Lie
multiplication algebra SO(8) of octonions, which is useful in quantum computing ©.

3 Twisted 7-tori with G5 holonomy

We are interested in N' = 1 4d supergravity with chiral multiplets which can be derived
from 11d supergravity 7. For this purpose we present a basic information about the twisted
7-tori and the compact GGo manifolds, which is important for our work. We follow closely
the presentation in [16] and [10, 12] where the distinction between 7-manifolds with Go
holonomy and G5 structure is explained and many useful references are given. One starts
with Joyce’s T7 orbifolds with G5 holonomy. In general when fluxes in 11d supergravity
and geometrical fluxes describing the twisting of T7 are added, the deformed backgrounds
no longer have G5 holonomy but rather Gy structure. This still means that AV = 1 4d
supersymmetry is preserved when compactification from 11d takes place. Our vacua will
not require fluxes in 11d supergravity, however, the geometric data of the compactified
manifold, the twisting of the tori, will be important.

A manifold with G2 structure is a 7-dimensional manifold which admits a globally
defined, nowhere-vanishing spinor 7. This spinor is covariantly constant with respect to a
torsionful connection.

1
an - zﬁmnpfynpn =0. (3'1)

Here V,, involves a Levi-Civita connection, and the tensor k), is the contorsion tensor.
It can be viewed as a normalized Majorana spinor such that 7n = 1.

5The seminar at Stanford by M. Freedman presenting this work was stimulating for our interest in the
connections between quantum computing and octonions.

"A derivation of A = 1 4d supergravity from 11d supergravity on manifolds with G structure, including
the mechanism of spontaneous breaking of maximal supersymmetry to the minimal one, was recently
performed by A. Van Proeyen, work in progress.
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Using this spinor one can construct a globally defined and nowhere vanishing totally
antisymmetric tensor

¢mnp = inT’Ymnpn (3.2)

where v, denotes the antisymmetric product of three gamma matrices with unit norm. 7

of them are G5 singlets, with different choices of mnp for m = 1,...,7. They correspond

to associate triads for octonions. The remaining 28 correspond to anti-associative triads.

This allows to introduce a complexified Gy 3-form T;¢* where the 7 complex moduli are
contracted with the 7 3-forms in eq. (3.2) labelled by the index 4.

The 4d superpotential was computed in [16] starting with 11d gravitino kinetic term
U, MNP DnVY,. The resulting 4d gravitino mass, which defines the superpotential was
given in [10] in the following form

W = *MijTlTJ =—— o' N de? T;T;. (3.3)
2 8 Jx7

The standard manifolds with G2 holonomy correspond to untwisted tori where d¢ = 0 and
the superpotential is absent. The twist of the toroidal orbifolds away from Ga-holonomy;,
describes the 7-manifold with Gs-structure and a non-vanishing superpotential, in general
with typical AdS vacua.

A special situation takes place when such Ga-structure manifolds have Minkowski vacua,
as shown in [10]. One can introduce the dual 4-forms ¢° satisfying

P NP =Y. (3.4)
X7
One finds in such a case that
d¢' = —4M;;¢ (3.5)

which leads to an existence of the closed 4-form dg?)i = (0 and suggest that the manifold has
a G holonomy unbroken. For ® = t;¢* and for its dual *® = %ggz at the Minkowski vacum

4P = —4t1Myi¢? = 0 and d+ & = d[(¥ ) §] = 0.

The upshot here is that starting with general type Go-structure manifolds one finds
Minkowski vacua only in cases that some twisted 7-tori are, in fact, G'o-holonomy manifolds.

The vacua with one flat direction which we will find have the property that 7' = T? =
T3 =T*=T>=T%=T" =T and therefore

Wi= MT|pe_r =T Y M =0. (3.6)
J J

These are exactly the octonion superpotentials we will describe below.
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4 Octonions, Hamming (7,4) error correcting code, superpotential

4.1 Cartan-Schouten-Coxeter conventions, clockwise heptagon

Convention of octonion multiplication by Cartan-Schouten-Coxeter are
€r42€r+4 = €rp3€r 1T = €ri5€r46 = €ril, er = ery7. (4.1)
We make a choice of associative triads (ijk)
= 1 (r 4 1, 43,7+ 7) : {(137), (241), (352), (463), (574), (615), (726)},  (4.2)

1< j<k. (4.3)

To build the superpotentials we need the quadruples (mnpq) which are complimentary to
associative triads. We take the case

r+2,r+4,r+5,7+6: (2456), (3567), (4671), (5712), (6123), (7234), (1345), (4.4)

~

w

Figure 7: The clockwise oriented heptagon for octonion multiplication in Cartan-Schouten-Coxeter
convention (4.2). We start at the second right octonion @ and call it e,4+1, we get the 7 associative triads in
the form as (r+1,r+3,7+47). The complimentary quadruples are (r+2,r+4,r+5,7+6). They are shown
at the corners with the oriented clockwise blue lines. These give WQ,,, on the clockwise oriented heptagon.

Explicitly we have for the superpotential in the clockwise heptagon picture

WOey, = (T = TH(T° = T%) + (T° = T°)(T° = T7) + (T* = TO)(T" - T") (4.7)

TP =TT = T%) + (15 =T (T? = T3 + (T7 — T*)(T% - T*) + (T" — T3)(T* - T7).
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This superpotential is easy to compare with the cyclic Hamming error correcting code,
a 7 x 7 matrix at the right of the Fig. 5. For our purpose that the codewords represent
octonions in eq. (4.2) we have to move the last row of the 7 x 7 matrix at the right of the
Fig. 5 into the first row. We have to read the codewords from the top to the bottom and
from the left to the right. This will be opposite in the case with counterclockwise heptagon.

All 3 1’s in the codewords in eq. (4.8) are in full agreement with the set of triads in eq.
(4.2). They are also shown in eq. (4.8) to the left of the codewords. The 4 zero’s in the 7
codewords in eq. (4.8), shown to the right of the codewords, are in perfect agreement with
the 7 complimentary quadruples defining the superpotential.

Triads Codewords Quadruples = WO,

(137) 1010001 (2456) (T? — T*)(T° — T%)
(241) 1101000 (3567) (T3 —T5) (T8 —T7)
(352) 0110100 (4671) (T* = T8)(T" - TY)

WQO,,, = | (463) 0011010 (5712) (T5 =TT\ (T' — T?) (4.8)

(574) 0001101 (6123) (T6 —THY(T? - T3)
(615) 1000110 (7234) (T7 — T*)(T3 - T%)
(726) 0100011 (1345) (T — T3)(T* - T9)

As we have explained in Sec. 2, one can perform the transformations on octonions
which preserve the multiplication table. We would like to apply these transformations
to 7 moduli 7*. Therefore we are only interested in transformations without flipping the
octonion signs, which preserve the multiplication table. These form the automorphism of
the oriented Fano plane, without the flipping of signs of octonions, preserving triads. It
is the finite Frobenius subgroup Z7 x Z3 of Go. It is a subgroup of the collineation group
PSL(2,7) of order 168 of the Fano plane studied in detail in [61].

Leaving the full discussion to the general construction given in the next section let
us show how these symmetries affect our superpotential WO,,, associated with Cartan-
Schouten-Coxeter conventions. The 7 cyclic permutations in Cartan-Schouten-Coxeter
notations are generated by the permutation operator

Poge = (1234567). (4.9)
It describes the transformation
122, 2—>3, 3—4, 4—-5 5—=6, 67 7—1 (4.10)

which can be represented by the matrix with the property that ¢’ is the identity matrix.
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0100000
0010000
0001000
¢c=10000100 (4.11)
0000010
0000001
1000000

Acting twice with Poge leads to the mapping
1—-3, 2—4, 3—5 4—6, 5—=7 6—=>1, 7—2 (4.12)
etc. We now take the superpotential (4.7) and represent it in the form

WO, = > _ WO, (4.13)

where WO, = (T? — T*)(T° — T®), WO?, = (T°® — T°)(T% — T7) etc. We now act on
WO, by the IP%SC = c operator in eq. (4.11), which is equivalent to a change of moduli as
shown in eq. (4.10). Under this change the first term in WQy,,, becomes the second term
there, the second becomes the third etc.

Pisc[WOL, ] = WOLL. (4.14)
For all 7 operations
Pesc[WOL, ) = WOLLF,  k=1,....7 (4.15)

we find that the terms in WQy,,, are permuted and as a result, we have the same WO, we
started with
]P)kéSC[W@CW] = W0, (416)

for each of the 7 P’ésc. This gives an example of the set of permutations of moduli which
do not create different set of octonion multiplications tables and do not create different
superpotentials.

The other subgroup of the Frobenius group Z; x Z3 is the cyclic group Z3 of order 3
also described in [61]. It preserves the octonion multiplication table, and does not flip the
signs. However, it does not preserve the superpotentials.

In CSC convention it can be given as the following transformation 1 — 1,2 — 5,5 —
3,3—>2,4—6,6—7,7— 4. which corresponds to

(1)(253)(467). (4.17)

In matrix notation
=1 (4.18)

where the matrix d is in Fig. 8.
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10000006
O 006060100
100000
O 0 00010
O 010000
O 000001
O 0061000

Figure 8: This is a d operator in [61], such that d* =1

Thus, there are 3 possibilities, the first one is the original WQ,,, = d*[WQ,,,], the
second one is d[WQ,,], the 3d one is d?[WQy,,]. It stops here since d*> = 1 and we are back
to the original WQ,,,. We define

1"

d[WO,,,] = WO/

e A2 WO, = WO (4.19)

Ccw *

One finds therefore that there are 3 superpotentials for the Cartan-Schouten-Coxeter

conventions. -
WOy, = d* (WO, | = (T7T7H — T7T"H) (4.20)
r=1
7
WO, = dWO,,] = > (T"T"+ - T7T"*?) (4.21)
r=1
7
WO, = d*[WO,| =Y (T7T"H - T7T"+?) (4.22)
n=1
Obviously, these three superpotentials satisfy
WO,y + WO, + WO, = 0. (4.23)

Thus only 2 of these superpotentials are independent.

4.2 Reverse Cartan-Schouten-Coxeter convention, counterclockwise heptagon

Cartan-Coxeter-Schouten belongs to the set of 240 octonion conventions whic can be
represented by the same oriented Fano plane modulo the permutations of the labeling of
the points on it without sign changes. The other set of 240 conventions can not be reached
by permutations alone and require sign flips of some of the imaginary octonion units. That
is the reason we introduce the Reverse Cartan-Schouten-Coxeter convention which belongs
to the second set of 240 conventions which includes the Cayley-Graves convention as well.
The conventions in the second set of 240 can also be represented by the same oriented Fano
plane modulo the permutations of the labelling of the points on it without any sign flips.

Therefore we define the convention for octonion multiplication, following from the

counterclockwise heptagon in Fig. 9, as follows:

€r4+3€r44 = €r42€p46 = €r45€r47 = €r41, €r = Er47. (424)
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We consider the following set associative triads consistent with the cyclic permutation in
the counterclockwise direction ®

N — 11 (r L+ 2,7+ 6) : {(126), (237), (341), (452), (563), (674), (715)},  (4.25)

i<j<k. (4.26)

To build the superpotentials we need the quadruples {mnpq} which are complimentary to
these associative triads which we take to be ((r +3),(r +4), (r +5), (r + 7)), so that

~

w

Figure 9: The counterclockwise oriented heptagon for octonion notations in eq. (4.25). We start at
the second right octonion and call it e,+1, we get the 7 associative triads in the form as (r + 1,7 + 2,7 + 6).
The complimentary quadruples are (r + 3,7 + 4,7 + 5,7 + 7). They are shown by the corners of the oriented
counterclockwise 2 blue lines. These give WQ,,,, on the counterclockwise oriented heptagon.

Explicitly we have for the superpotential in the counterclockwise heptagon

WQpow = (T2 = TYHNT® —T7) 4+ (T* = T?)(T5 — TY) + (T° — TSN (T" — T?) (4.29)

H(TO TN (T =T+ (TT = TN (T* = T*) + (T = T*)(T° = T°) + (T* = T*)(T* — T°).

This one is easy to compare with the cyclic Hamming error correcting code, a 7 X 7 matrix
at the right of the Fig. 5. As in clockwise case we have to move the last row of the 7 x 7
matrix at the right of the Fig. 5 into the first row. However, to see the triads and quadruples
in eq. (4.30), now we have to read the codewords from the bottom to the top and from the

8A related set of triads was considered in [66] in the form (126), (134), (157), (237), (245), (356), (467)
in the context of irreducible representation of PSL(2,7).
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right to the left. This is opposite to the clockwise heptagon case in (4.8) were we read the
codewords from the top to the bottom and from the left to the right.

All 3 1’s in the codewords in eq. (4.30) are in full agreement with the set of triads in eq.
(4.25). They are also shown in eq. (4.30) to the left of the codewords. The 4 zero’s in the 7
codewords in eq. (4.30), shown to the right of the codewords, are in perfect agreement with
the 7 complimentary quadruples defining the superpotential.

Triads Codewords Quadruples = WO,

(715) 1010001 (2346) (T? — T3)(T* - T9)
(674) 1101000 (1235) (T —T%)(T3 - T7)
(563) 0110100 (7124) (TT —TYHY(T? - T*)

WOeew = | (452) 0011010 (6713) (T6 —TTY(T' — T3) (4.30)

(341) 0011001 (5672) (T5 — TOYT7 —T?)
(237) 1000110 (4561) (T* —T5)(T6 —TY)
(126) 0100011 (3457) (T3 —THT° - T7)

In the counterclockwise case there are also 3 possibilities, the first one is the original

WO,e = d>[WQ,.,], the second one is d[WQ,.,,], the 3d one is d>[WQ,.,,]. We define

"

d[W(O)ccw] = W(O),ccw ) d? [W(O)ccw] = W©ccw . (4'31)

One finds therefore that there are 3 superpotentials for the Reverse-Cartan-Schouten-Coxeter
conventions. In fact, they coincide with the ones we have found in the clockwise case.

7
WOeew = d*[WOeey] =Y (TTT™2 = T7T"H) = WO, (4.32)
r=1
7
WO, = dWO,,| = Y (T"T"H —T"T"?) = WOy, (4.33)
r=1
7
WOy, = WO,y ] = > (T7T™H — T7T7+?) = WO, (4.34)
n=1

Obviously, these three superpotentials satisfy

WO, + WO, + WO

CCwW CccCw

=0. (4.35)
Thus only 2 of these superpotentials are independent.

To summarize we can construct 2 independent superpotentials using the general formula
5.3 within each of the 480 octonion multiplication conventions. However the superpotentials
obtained in the first set of 240 CW conventions are not independent of the superpotentials
obtained in the second set of 240 CCW conventions related to the first set by octonion
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conjugation. Indeed under octonion conjugation the superpotential given by the formula
(5.3) simply picks up an overall minus sign and the directions of all the arrows in the
oriented Fano plane get reversed. We shall, however, take as independent one superpotential

associated with Cartan-Schouten-Coxeter convention , WQy,,, belonging to the first set of 240

/

cew> associated with Reverse-Cartan-Schouten-Coxeter

conventions, and a different one, WO
convention belonging to the second set of 240. These are

7 7
WOy = > (TT" 2 =177, WO, => (T"T™ - 17T7%3) . (4.36)

ccw
r=1 r=1

From these two superpotentials we can reach any other superpotential by a change of moduli
variables, which can be also obtained directly for a total 480 possible conventions, using the
general formula in (5.3).

4.3 Octonion fermion mass matrix and mass eigenstates

The superpotential for models with G9 structure has 21 terms, it is described a symmetric
7x7 matrix with all diagonal terms vanishing [10, 16]. It is given in eq. (1.1)

1 y
W = MyT'T (4.37)

and M;; = —% X7 ¢" A d¢/. The masses of fermions in supergravity in Minkowski vacua
are defined by the second derivative of the superpotential

K
m@-j = 67Mij (4.38)

N | =

and the mass term of the chiral fermions in the supergravity at the vacuum with W = W; =0
is 1
K - .
L = 5 €2 X' Mijx + hee. (4.39)
Our octonion superpotentials for models with G5 holonomy have explicitly 14 terms given

in eqs. (4.32)- (4.34) and can be written in the following form
1 o
WO = gMijTZT]. (4.40)
The matrix M;; for the case WOy, for CSC octonion notations is

0 -11 0 0 1 —1
-10-11 0 0 1
1 -10-11 0 0
Myo,=| 0 1 -1 0 -1 1 0 |. (4.41)
0 1 -10 11
100 1 -10 —1
100 1 -10
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One can see that in each row of this matrix the sum of entries vanishes. This is a condition
for Minkowski vacua so that eq. > j M;; = 0,Vi is satisfied.

The matrix M;; for the case WQ/,.., for RCSC octonion notations is

ccw

01 0-1-10 1
1 01 0-1-10
010 1 0 —-1-1

Myg, =|-10 1 0 1 0 —1|. (4.42)
~1-10 1 0 1 0
0 -1-10 1 0 1
1 0-1-10 1 0

Here again a condition for Minkowski vacua, ) ; Mij =0,Viis satisfied.

The non-vanishing eigenvalues of the M matrices in both cases above solve a double set
of cubic equations

2 —Tx—7=0,

v —Ty—T7=0. (4.43)

Numerically this gives for a set of x1,¥y1; x2,y2; 3,y3 and a massless one, the following
values
3.04892, 3.04892; —1.69202, —1.69202; —1.3569, —1.3569; 0. (4.44)

They show an [SO(2)]? symmetry which is a symmetry of the massive fermion eigenstates.
Moreover, the mass eigenstates of fermions are the same for any of the 480 choices of
octonion notations!

The scalar mass eigenvalues in AV = 1 supergravity models with octonion superpotentials
and one flat direction are

(m&™M?2 . ¢73{1.16, 1.16, 0.35, 0.35, 0.23, 0.23, 0} (4.45)

where t = Re(T"). Here we have taken into account the correct kinetic term normalization
factors. They have a simple relation to fermion mass eigenvalues in agreement with N =1
supersymmetry. To see this we have to take into account that canonical fermion masses,
with account of a difference in kinetic term normalization are

me™ ;. ¢73/2{1.07796, 1.07796, —0.59822, —0.59822, —0.479735, —0.479735, 0}. (4.46)

One can check that
()P = (mEen)? (4.47)

SC

as it should according to A/ = 1 supersymmetry. In all models with octonion superpotential
WO the mass eigenvalues are the same, i. e. they are preserved when new octonion
convention is used.
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One way to see it is to perform the change of fermion variables reproducing the
transformation on octonions, permutations and sign flips, 7 = [25]” - S(7). It means that
the effective matrix M;; will take a different value whenever our transformation is not part
of the subgroup H = [Z5]® - PSLy(7). In this way we can get a total of [2[2%];75&)(7) — 480
different matrices, starting from any one in eqs. (4.41) or (4.42). This number of different
M;; matrices is in agreement with the fact that there are 480 different multiplication tables
of octonions. The upshot here is: our octonion superpotentials have an eigenstate mass

spectrum invariant under a change of octonion conventions.

5 Octonions and General Construction of Superpotentials

The Fano plane has 7 lines and each line contains three points such that each point is the
intersection point of three lines. When we use oriented Fano planes to describe octonion
multiplication three points on each line go over to the imaginary units of a quaternion
subalgebra.

Given an associative triad (ijk) the corresponding structure constants f;;, are those
of a quaternion subalgebra generated by e;,e; and e;. The remaining associative triads
can be obtained by the “cyclic” permutation operator P given by the labelling of the
imaginary units on a heptagon. For example in Gunaydin-Gursey (GG) [23] labelling of
the real octonions the operator P is Pgg = (1243657). For the Cartan-Schouten-Coxeter
(CSC) labelling [20, 21] the operator P is simply Pogc = (1234567). For the Cayley-Graves
labelling of octonions the cyclic permutation operator is Pog = (1245736).

An imaginary unit e is contained in three different quaternion subalgebras. Let us
denote the structure constants of these three quaternion subalgebras as f;j, femn and fipg
and assume they are in cyclic order such that

fkij :fkmn:fkpq:1 (51)
where the indices i, j, m, n, p, ¢ are all different.

Given a quaternion subalgebra with imaginary units ey, e;, e; we associate a term in
the superpotential of the form

fkij — fkijfkmnfkpq(Tm - Tn)(Tp - Tq) (5'2)

where all the 7 indices appearing above are different and satisfy (5.1) with no sums over
indices. The full superpotential is obtained by acting on a given term of this form by the
cyclic permutation operator P repeatedly and summing over:

6

W (kij) =Y (P){fuij (T™ = T")(T? = T)} (5:3)
r=0

where P acts on all the seven indices inside the sum. Note that the superpotential is invariant
under the cyclic group Z7 generated by the permutation operator P by construction. Note
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that we labelled the superpotential by the the associative triad (kij) since it is determined
by it uniquely. One finds that

W (kij) + W (jki) + W (ijk) = 0. (5.4)

Furthermore one has
W(kij) = =W (kji). (5.5)

Therefore of the six superpotentials defined by the triad (kij) and its permutations one
finds only two independent ones.

The cyclic permutation operator P can be used to make any Hamming code associated
with a given convention of octonions cyclic. The codewords associated with the different
associated triads get mapped into each other under the action of P.

The three 3 superpotentials we have discussed above for Cartan-Schouten-Coxeter
conventions are particular cases of the general formula 5.3. We combine them in a different
order so that

6
W©cw = Z fn+1,n+3,n+7fn+1,n+2,n+4fn+1,n+5,n+6(Tn+2 - Tn+4)(Tn+5 - Tn+6) (5'6)
n=0
6
WO, = Y fattntontafottntdnttfotintsnte(T"> = T (T —T0)  (5.7)
n=0

6
WG)gw = Z fn-l-l,n+5,n+6fn+1,n+27n+4fn+1,n+3,n+7 (Tn+2 - Tn+4)(Tn+3 - Tn+7)- (5'8)

n=0

These three superpotentials satisfy

WQ,,, + WO, + WO/, = 0. (5.9)
This follows from the fact that

Crumpg(T™ =T™)(TP =T =0 (5.10)

where the completely antisymmetric tensor Crinpg = fimn fpjiq 15 defined in eq. (2.6). Thus
only 2 of these superpotentials are independent. It is a property satisfied for any of the
different 480 conventions: there are 3 superpotentials for the same set of conventions, and
they always satisfy the constraint (5.4).

However this does not imply that we get 480 x 2 = 960 different superpotentials. An
additional interesting property of the general formula for the superpotentials is that one
can change the octonion convention set by odd permutation of indices

fijk = szk (5.11)
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This can be achieved by the sign flip of 3 octonions which belong to any particular line on
the Fano plane, for example in Cartan-Schouten-Coxeter case in Fig. 3, one can change the
signs of the following octonions

eg = —€g, e = —e1, es =  —ej, (5.12)

or any other 3 octonions on one line in the Fano plane. This will change every term in the
original multiplication table to the one with the opposite sign (octonion conjugation). As
one can see from egs. (5.6)-(5.8) each superpotential will change the sign:

WO, = —WO,, , waQL,, = -Wo.,, , WwaQy, = -WaoY, . (5.13)

This means that we get a total of 480 different superpotentials when we consider all possible
inequivalent conventions. And since the potential is quadratic in superpotentials this change
of octonion conventions will not affect the potential.

These 480 different superpotentials corresponding to 480 different conventions can be
understood via change of variables starting from our simple cases in egs. (4.32) and (4.33)
consistent with the symmetries of the Lagrangian that preserve the underlying octonionic
structure. This explains why all these models are equivalent : in particular, one finds that
all of them have exactly the same masses of eigenstates at the vacuum.

6  Octonionic superpotentials and Minkowski vacua

6.1 Vacua with 1 flat direction

Supersymmetric Minkowski vacua of the superpotentials in the form shown in eq. (1.1)
were studied in [10]. With
T'=t"+iad (6.1)

it was shown there that D;/W = W = 0 means that Mijti =0 and ¢’ = 0 at the minimum.
Therefore t* should be a null vector of the matrix M: there is at least one flat direction in
such Minkowski vacua.

The potential VO is defined by the 7-moduli K704 in eq. (1.1) and WO in eq. (1.2).
VO = effrmed (| D WO — 3|[WOJ?). (6.2)

Specific superpotentials which we studied here are shown in eqgs. (4.7), (4.29), (4.32),
(4.33) and in other examples in Appendix A. We have checked that these potentials have
supersymmetric Minkowski vacua when all moduli are equal to each other, as in eq. (1.4)

D;WO =W0O =0: T —T7=0 Vi, j (6.3)

with one flat direction T = %Zz T*. This equation is invariant under the permutation
group S(7) of order 7! = 5040.
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As expected, the eigenvector of the massless direction corresponds to
tr+ 2+ 417, and  al+a®---+d. (6.4)
This leads to an effective theory of a single modulus supergravity of the form
K=-T7log(T+T), WO=0. (6.5)

In order to check the stability of the minimum, we consider the Hessian of the scalar
potential. We find the 14 x 14 Hessian matrix of the potential with respect to {t!,a’}
(i=1,---,7). Since the vacuum is supersymmetric, in each case there is the same mass
eigenvalue for ¢ as for a’, so we show here only 7 of them, one flat direction being massless.

On the line in the moduli space t! = ¢, a’ = a for alli =1,--- ,7, the eigenvalues of the
matrix are given by eq. (4.45). The 6 massive eigenvalues are pairwise equal, i. e. we have
an [SO(2)]3 symmetry in the mass matrix at the minimum of the potential.

Of course our 14 x 14 mass matrix for scalars and pseudoscalars has the standard [SO(2)]”
symmetry since each of the scalars has the same mass as the pseudoscalar. However, this
additional [SO(2)]? symmetry in the mass matrix of the scalars and separately pseudoscalars
is a feature of our vacua. The 14 x 14 scalar/pseudoscalar mass matrix has the following
eigenvalues

t77{0.58, 0.58,0.58, 0.58, 0.18,0.18,0.18, 0.18, 0.11, 0.11,0.11, 0.11, 0,0}. (6.6)
They solve the following cubic equation
Y — 14y + 49y — 49 = 0. (6.7)
It is related to the cubic equation for fermion masses 2> — 72 — 7 = 0 as follows

(2°—72)> =49 = 212" +492° =49],2_, = y*—14y*+49y—49=0. (6.8)

As we will see in the following, inflationary potential added to this setup does not
spoil the stabilization and we will show that the trajectory discussed here can be realized
effectively.

It is interesting that directly in 4d one can suggest many superpotentials for our 7
moduli which also lead to one flat direction Minkowski vacua, but not associated with
octonions. The simplest example is the case with

W = (Tn _ Tn+1)(Tn+2 _ Tn+3)' (6.9)
The scalar mass eigenvalues are
t_7{1.40, 1.40, 1.21, 1.21, 0.07, 0.07, 0}. (6.10)

These masses still have an [SO(2)]® symmetry, however, the eigenvalues are different from
the ones which come from models with octonion superpotentials. Therefore, these models
are 4d models which are not clearly originating from the 11d supergravity compactified on
7-tori with G5 holonomy. Meanwhile all 480 octonion conventions always lead to models
with the same scalar mass eigenstates given in eq. (6.6).
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6.2 Using cyclic Hamming (7,4) code to get vacua with 2 flat directions

6.1 split

We can start with the cyclic error correcting Hamming (7,4) code taken, for example
from [30] and shown here in Fig. 5. The 7 codewords are

1101000, 0110100, 0011010, 0001101, 1000110, 0100011,1010001. (6.11)

This corresponds to triads in eq. (2.2) with the formula (r,r 4+ 1,7 + 3) with the first index
in triads taken in the range 1 to 7. We see the first codeword of the code as (124), which
are positions of 1’s. The second codeword is the case (235), which are positions of 1’s, etc.
The set of quadruples defined by the positions of zero’s in the codewords is now:

{pqrs} = {(3567), (4671), (5712), (6123), (7234), (1345), (2456)}. (6.12)

The corresponding superpotential is the same as in eq. (4.7), with the difference that the
first term in (4.7) becomes the last one. Now we propose to define a model with 2 flat
directions by dropping some codewords in the code in eq. (6.11) in a specific way: we leave
only quadruples without 7. The ones with 7 are underlined below

{pars} = {(3567), (4671), (5712), (6123), (7234), (1345), (2456)}. (6.13)

The remaining quadruples form the superpotential
WO(6,1) = (T° — TYY(T? = T3) + (T* — T3)(T* — T%) + (T% — T*)(T° — T°). (6.14)

One can see this procedure also using the Hamming code from eq. (6.11) where we take
out all lines which have 0 in the position 7. We show it in Fig. 10.

The potential does not depend on 77 and has a Minkowski minimum with two flat
directions. One is 77 and the other is T* + T2 + T3 4+ T* + T° + T°. The model has a (6,1)
s

O D D H

— o H

O = O O D H R
—_ O © O H H D
OO H R DH D

O R HOH DD
3PP

OO P = H D H

Figure 10: We start with a cyclic Humming code (7,4) in Fig. 5. We take out all codewords which have
in a position 7 a 0. This leaves us with the superpotential in eq. (6.14)
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5.2 split

We take the 7 quadruples in eq. (6.12), (n + 2,n 4+ 4,n + 5,n + 6), defining our
superpotential and leave only the ones which do not have 6 and 7. These with both 6 and 7
are underlined:

{parst = {(3567). (4671). (5712). (6123). (7234). (1345). (2456)}. (6.17)

O = OO P H
O = O O O H =
= O OO H ©
OO O = = D
OO =M= O ©
O =P, O~ P
= OO d®Y

Figure 11: We start with a cyclic Hamming code (7,4) in Fig. 5. We take out all codewords which have
have 0 in the position 6 and 7.This leaves us with the superpotential in eq. (6.18).

One can see this procedure also using the Hamming code in eq. (6.11) where we take
out all lines which have 0 in the position 6 and 7. We show it in Fig. 11.

The model has a Minkowski minimum with two flat directions. One is T° + T and the
other is T* + T2 4+ T3 + T* + T". The model has a (5,2) split

K = —5log (T(l) + T(l)) — 2log (T(Q) + T(g)) , WO(5,2) =0, (6.19)
where
T'=T*=T*=T'=T"=T4, T°=T°=Ty. (6.20)
Two of the positive mass matrix eigenvalues coincide, the vacuum has an unbroken SO(2)
Symmetry.
4.3 split

We take the 7 quadruples in eq. (6.12), (n + 2,7+ 4,n + 5,n + 6), defining W and
remove the ones which have 4 and 7. Note that the pattern would require to exclude the
lines which do not have the same 3 numbers, or the same 3 zero’s in the code. But these
do not exist, therefore we find the relevant split (4.3) model not following the underlying
procedure which was working in the previous two cases of split models. So, we exclude the
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quadruples which have 4 and 7. This we show in Fig. 12. The underlined quadruples in eq.
(6.21) are the ones we remove from the superpotential

o

O = O

— OH OO P
O = OO O R -
—_ O P O = O
OO D=~ D
— =P = O P o

O O H = O R
S~ H

Figure 12: We start with a cyclic Humming code (7,4) in Fig. 5. We take out all codewords which have
0’s in a position 4 and 7. This leaves us with the superpotential in eq. (6.22)

The model has a Minkowski minimum with two flat directions. One is T2 + T3 + T
and the other is 7' + T* + T° + T7. The model has a (4.3) split

K = —4log (T1y + T1y) —3log (Toy + Tz)) »  WO(4.3) =0, (6.23)

where
T'=T'=T"=T"=T, T?=T°=T°=Ty. (6.24)

The mass matrix massive eigenvalues are all different, there is no unbroken SO(2) symmetry.

7 Cosmological Models with B-mode Detection Targets

7.1 Strategy

So far we have studied Minkowski vacua in 4d N = 1 supergravity derived from compact-
ification of M-theory on twisted 7-tori. Such Minkowski vacua are known to have only
non-negative mass eigenvalues, with some flat directions (zero mass eigenvalues) possible
[67]. We have presented these eigenvalues in eqgs. (4.45) for relevant models.

To construct a phenomenological cosmological model, describing the observations, we
need to make some changes of these models, which transfer a flat direction into an almost
flat inflationary potential, and replace Minkowski vacuum with de Sitter vacuum at the
exit from inflation.

For this purpose we will do the following changes:
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e Change the Kahler potential frame to the one where the Kahler potential has an
inflaton shift symmetry, only slightly broken by the superpotential, as proposed in [68].

e Introduce a nilpotent superfield S, which in N/ = 1 supergravity allows to get dS
minima with spontaneously broken supersymmetry [69, 70]. This Volkov-Akulov
superfield S brings a new supersymmetry breaking parameter, F5. We also introduce
a parameter Wy to make a gravitino mass at the minimum non-vanishing. This allows
to describe the theory with a cosmological constant A = Fg — 3W¢2 at the minimum
of the potential.

e Introduce a phenomenological inflationary potential along the flat direction. We will
do it using a generalized version of the geometric approach to inflation developed in
[8, 71], where the properties of the inflaton potential are encoded in the choice of the
Kihler potential for the nilpotent superfield, Ggg(T,T)SS.

Thus we are looking for N = 1 supergravity cosmological models which are compatible
with cosmological observations. The reason why we call these cosmological models phe-
nomenological is the choice of the Kithler potential for the nilpotent superfield, Ggg(T,T)SS:
at present it is not known how to derive it from fundamental theory.

In the absence of the nilpotent superfield S and at vanishing W} our cosmological model
becomes the model with Minkowski vacua in M-theory with flat directions equivalent to the
one derived from M-theory in [10, 12] and specified to the case of octonions in this paper.

We start with M-theory on G5 holonomy manifolds[10, 12] with the choice of K and
W in (1.1). We specify the choice of W = %MijTiTj to be the one which originate from
octonions, for example any one in egs. (4.7), (4.32) or in (4.33), which we studied above.

7
K=-Y log (Ti +T"> . W= %MijTiTj = WO(T?). (7.1)
=1

For any of our octonionic superpotentials an equivalent model can be obtained from (7.1)
using a Kéhler transform, which results in

o 7 i 2 ,
K(T!T") = 1 > log @ . oWt = ;W@)(Tl) : (7.2)
2= AT'T 1,277

The potentials in models (7.1) and (7.2) are the same, due to Kéhler invariance, and lead
to a Minkowski vacuum with one flat direction and unbroken supersymmetry. Also the
fermion masses are the same under Kahler transform. In what follows we will study the
models which in absence of the nilpotent superfield and new parameters Fg and Wy and
inflationary potentials are the ones in eq. (7.2), which are equivalent to the original models
in M-theory in eq. (7.1).
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7.2 E-models

We construct our 7-moduli cosmological models where inflation is induced by terms in the
Kahler potential where the nilpotent superfield S interacts with the inflaton superfield
8, 71].

Consider the Kahler and super-potential given by

(T"+T7) (i A @ G G
K = Z log (M) + Gg5(T", T)SS + S + 8, (7.3)
w :Q(TZ) + W, (7.4)

where S is a nilpotent superfield and Q(T") is an arbitrary holomorphic function of the 7
moduli 7%. We find

_ T
K=o vy (75
',' T2 _ (T1)2
KK — (>2T<) (7.6)
(T7)* = (1))
K; K”K* = 4]T’P(Ti T (7.7)
The scalar potential is given by
7

e KV =G LW + Z (1" +T%)?0:QI*

i 2
W QQ + Wo) — 5,Q(Q + W)

+ (0;
((() (7)) 3>W|2]' (7.8)

AT +T7)

For T% = T*, this is simplified as

7
V= GgglWP =3W[*+ > (T + T)*0,QP. (7.9)
=1
In particular, taking
w2 W2
Ggg = ST 0 7.10
557 3W2 + F(T,T)  Fs+ Viua(T,T) (7.10)
yields
V= F(T T)(1 ‘Q’2) Z(Ti +T120:Q|2. (7.11)

Ws i=1

To find inflationary potential, we should evaluate it along the supersymmetric Minkowski
flat directions. But along these directions () = 0;@QQ = 0. Therefore the full expression for
the inflaton potential is given by

V =F(T,T). (7.12)
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This is a remarkable simplification. Generically, one could expect the parameters
of the M-theory to be large, in Planck mass units, whereas the height of the inflaton
potential at the last stages of inflation should be tiny, V = F(T,T) ~ 10710, Therefore it
is very important that in the approach developed above, the inflaton potential along the
flat directions is almost completely sequestered from the UV dynamics responsible for the
M-theory potential.

From the point of view of inflation, the main role of the M-theory (UV dynamics) is to
define geometry with the proper kinetic terms, and form a potential with supersymmetric
flat directions. Once it is done, the inflaton dynamics (IR) is completely independent of the
full M-theory potential, but is determined by the M-theory related kinetic terms, and by
the phenomenological inflaton potential V = F(T,T) along the flat directions.

Moreover, an important feature of the a-attractor models with inflation along the flat
directions in M-theory is that the observational predictions of these models are very stable
with respect to the choice of the particular potential V = F(T,T) as long as these potentials
are not singular. That is why one can talk about specific predictions of a broad class of
such models.

Now we will present several examples of inflationary models corresponding to different
choices of potentials and flat directions in the octonionic models discussed in this paper.
Note, however, that the results obtained in this subsection are quite general. They may
apply to a broad class of theories with any superpotential ) with supersymmetric flat
directions, such that @ = 0;Q) = 0. Therefore our methods of constructing phenomenological
inflationary models can be used not only in the octonionic models in the M-theory context,
but in a more general class of models with supersymmetric flat directions, which may exist,
e.g., in type IIB or type ITA string theory.

3a =7 E-model

Now we focus on a special choice of () in our general formula
Q=W (7.13)

where W defined in eq. (7.2). The potential of the original M-theory model (7.2) has a
flat direction at T% = T7, it is

T=T'=T*=T3=T*=T"=75=1", (7.14)
where T' =t + ia. The full potential vanishes for any values of ¢ and at a = 0.

In our general cosmological models the flat direction is now lifted due to dependence
on T via F(T,T) in eq. (7.11). At T* = TV = T which is a minimum of our potential in
eq. (7.11)

Q=W>"=0, 9Q=0WNV"=0. (7.15)
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Thus, the potential becomes a function of the inflaton only and we will have it in the form
of the inflationary potential as well as cosmological constant at the exit

Vipizrizg: = F(t,t) = A+ Vina (?). (7.16)
Here we propose an M-theory cosmological model, supplemented by a nilpotent super-
field S and a gravitino mass Wy with the following choice of the inflationary potential
F(T,T)=A+m*1-T)1-T), (7.17)
where the cosmological constant at the exit from inflation is
A=Fg—3W2>0 (7.18)

and we choose it to be positive.

Figure 13: The potential Ving of the E-model with one flat direction for m = 0.2, Wy = 0.1, in Planck
mass units. Inflation begins at large ¢, and ends when the field reaches the vicinity of the minimum at

¢ =0.

We take any of the octonionic superpotentials WO where we have models with 1 flat
direction, in egs. (4.7), (4.32), (4.33), or the octonionic superpotentials in Appendix A. For
these cases with one flat direction the effective Kihler potential is K = —7log(T + T), as
explained in Sec. 6.1. It is convenient to use the variables ¢ and 6:

T =V (1+i\ﬁ0) : (7.19)

Here ¢ is a canonical inflaton field, and 6 has a canonical normalization in the vicinity of
0 = 0, which corresponds to the minimum of the potential with respect to 8. The full shape
of the potential is shown in Fig. 13.

The potential of the canonically normalized inflaton field ¢ at # = 0 in the small A

2
Vingt = m”® (1 - e‘ﬁ¢) : (7.20)

limit is
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This is a potential of the top benchmark target 3o = 7 for B-mode detection [6-8] in
E-models.

The mass of the axion field 8 in the vicinity of 8 = 0 at large ¢ approaches the

asymptotic value
m3 = 2m? + AW ~ 6H? +4W§ | (7.21)

where the Hubble constant at large ¢ is given by Vigta1/3 = m?/3. Thus mg > H?, which
stabilizes this field at its minimum 6 = 0.

We have checked that the 7-moduli model described above works well. All extra 13

9 and

fields like Im 7" and combinations of Re T% orthogonal to Re T have positive masses,
roll to their minima, where they vanish and decouple from the inflationary evolution. It is

useful to present this phenomenological model here explicitly, namely
7 . —.
1 T+ T%)? W3
K:Z—log<( Jr..)>+ 0 _
2 47T Fs+m2(1-T)1-1T)
=1
W =W (T + W. (7.22)

SS+ S+ 8,

To recover the original M-theory model from this phenomenological cosmological model we
need to remove the nilpotent superfield contribution, as well as to remove the supersymmetry

breaking parameters Fg and Wy, and inflationary parameter m?

S=0, Fg=0, Wo =0, m? = 0. (7.23)

This brings our phenomenological model (7.22) to the M-theory model in (7.2) which,
in turn, is equivalent to the one in (7.1), which is directly derived from M-theory via
compactification on a twisted 7-tori, T7/Z3.

We stress here that the model presented in (7.22) has a very simple relation to M-theory
and is in agreement with the current cosmological data. Moreover, they will be tested by
the future B-mode searches.

3 =06,5,4,3,2,1 E-models

Here we study M-theory models with Minkowski vacua with two flat directions, as
described in sec. 6.2. We start there with the superpotential associated with the cyclic
Hamming (7,4) code in Fig. 5.

In this sec. 6.2 we have models which originate from CSC octonions and the cyclic
Hamming (7,4) code. The truncated superpotentials in egs. (6.14), (6.18), (6.22) split the
7 moduli into groups of 6 and 1, 5 and 2, and 4 and 3. It is convenient now to give the
corresponding models the name m +n models where m+n = 7. Choosing the superpotential

. 1
Wk (T?) = ————WO,,, (7.24)

[M_,er)

9We have found for some parameters that these masses are positive. In general, following the analysis

in [8], one can add terms with bisectional curvatures, which enforce these masses to be positive.
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leads to the effective Kéhler potential for moduli directions
K =—-—mlog (T(l) + T(l)) —nlog (T(Z) + T(g)) (7.25)

with 3 cases
146, 2+5, 3+4. (7.26)

From this perspective, the case discussed in the previous section may be called 0 + 7. We
now use the same form of the Kéhler potential as in eq. (7.3), however, the function F in
G g5 depends on 2 flat directions.

w3 [Wol®

WG+ F(T0), Ty T T2)) - Fs + Var(Tay, Ty T2y, Tzy)

Gss (7.27)
The superpotential WQ,,, ,, is now based on one of the superpotentials (6.14), (6.18) and in
eq. (6.22). These superpotentials at the vacuum have the following properties: W0, ,, = 0
and ;WQ,, , = 0 at TN=...=7T" = Ty, A A T(2). Our choice of the
function F' is

F=A+ Vg (7.28)

Here Vipq is the phenomenological potential describing two inflaton fields, 7{;) and T{y),
corresponding to the two flat directions. As before, we will consider the simplest quadratic
potential for each of the fields, with a minimum at 7};) = ¢;, where ¢; are some real numbers:

Vi = mi (c1 — Tipy)(er — T 1)) + mi(ca — Tig))(c2 — Tyzy).- (7.29)

Importantly, all qualitative results will remain the same for a broad choice of such phe-
nomenological potentials, as long as they are not singular in the limit 7(;) — 0, and have a
minimum at T(;) = ¢;.

The fields T(;) can be represented in terms of the canonically normalized fields ¢;, such

Z o

that T(;) = e V3™ The corresponding potential becomes

2
Vi = _ m} (1 - 6_@@) : (7.30)

Here without loss of generality we absorbed the constants ¢; into a redefinition (shift) of
the fields ¢;. One can take any of the three combinations of ¢ mentioned in (7.26): 1 and 6,
2 and 5, or 3 and 4.

The resulting potential has two inflationary valleys, which merge at the minimum of
the potential at ¢; = 0, see Fig. 14. The fields may start their evolution anywhere at the
blue inflationary plateau, but then fall to one of the green valleys due to a combination of
classical rolling and quantum diffusion. This is a specific version of the process of cascade
inflation studied in [7, 8].

As a result, the inflationary universe may become divided into many different exponen-
tially large parts, with inflationary perturbations corresponding to one of the two different
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«;. The particular example shown in Fig. 14 corresponds to the split of the 7 moduli into
groups of 6 and 1 discussed above, and the universe divided into exponentially large parts
with 3a1 = 6 and 3a = 1.

If we would consider models with flat directions 2 and 5, we would get 3a; = 5 and
3ae = 2. Finally, for the combination 3 and 4 we would get 3a; = 4 and 3as = 3. All of
these cases together give us a choice of inflaton potentials

2
2
V=A+m? (1—6_\/:¢> . n=6,54,321. (7.31)

Figure 14: The potential Vina of the E-model with two flat directions, ¢1 and ¢2, with 3a; = 6 and
3a2 =1.

If we now add the model 047, we get all the benchmarks covered, using the octonion
superpotentials in M-theory

2
2
V:A+m2<1—e‘ 3a¢> . 3a=17,6,54321. (7.32)

7.3 T-models

Here we will use the Cayley transform to switch from the half plane variables 7% to the
disk variable Z¢ as shown in [68] '
1+
11—z

i

(7.33)

In 3a = 7 case we define using eq. (7.2)

) 7 _ 7
IC(Zi,ZZ) _ _%Zlog <(T+—T> _ __Zl ( 1 Z(1Z_)ZZ) ) , (7.34)

i=1 4T

and

WOt (Z1) = pyoct (Ti(zi)) : (7.35)
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The minimum at 7% = 79 becomes the minimum at Z¢ = Z7 since T? — T9 = 2%

The flat direction is at Z = 1(Z' + -+ + Z7). We define the T-models as follows

7 i
1 (1-2'7Z")? We oz _
K=—-)1 . —
2;;%<O—ZWO—ZW>+?%+WﬁSS+S+&
W =W°(Z%) + Wo. (7.36)

Here we take the following value of the inflationary potential

Via(Z,2) =m*ZZ. (7.37)
The total potential for the canonically normalized inflaton now is
Viotat = A+ m2 tanh2 i (738)

Vid'

which is the top benchmark for B-mode detection in the a-attractor T-models.

The cases with 3a = 6,5,4,3,2,1 can be obtained by analogy with E-models, using
different W’s with 2 flat directions Z(y and Z(), with
Vint = m%Z(l)Z(l) + m%Z(2)7(2) . (7.39)

Here one can take any of the two combinations of flat directions mentioned in (7.26): 1 and
6, 2 and 5, or 3 and 4, as we did in (7.29). In terms of canonical variables ¢; and ¢9, this
yields the potential

1 /1
‘/total =A + m% tanh2 @ (bl + m% tanh2 @ ¢2 . (740)
Including the case above 3o = 7 this covers all T-model benchmark targets: 3a =

7,6,5,4,3,2,1.

Just as for the E-models, we illustrate in Fig. 15 for a particular potential with 3oy = 1
and 3as = 6.

Figure 15: The potential Ving of the T-model with flat directions ¢1 and ¢2, with 31 = 1 and 3z = 6.
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One can also consider more complicated models, where the 2 different fields Z(;
corresponding to the 2 flat directions can interact with each other. We assume that these
phenomenological interaction terms are much smaller than the typical terms appearing in
the original M-theory potential, so they do not affect the structure of the flat directions of
the M-theory. However, these terms may force the two fields Z;) corresponding to the two
flat directions evolve simultaneously [7, §8].

For example, consider a model with the following phenomenological potential along the
flat directions Z(l) and Z(G) in terms of the canonical variables ¢1 and ¢o with 3a; = 1 and
3a2 = 6:

1 9 P2 9 »1 b2 \?
Viog = A + m? <tanh2 — + tanh®* — | + tanh — — tanh — | . 7.41
n NG viz) T NG /5 (7.41)

This potential, for small A and @ = 3m, is shown in Fig. 16.

At large ¢; the potential has two flat directions, with 3a; = 1 and 3as = 6, just as
in Fig. 15. In our case, they correspond to the dark purple valleys in Fig. 16. At large
¢;, these valleys are parallel either to the axis ¢1, or to the axis ¢o. However, at smaller
values of ¢;, these two valleys merge into one, with 3a = 31 + 3ag = 7. The motion in
this direction describes the later stages of inflation. The greater the value of M, the earlier
this merger takes place, see the description of a similar regime in [7, 8].

Figure 16: The potential Viug of the T-model (7.41) with two merging flat directions, with 3a; = 1 and
3az = 6 and p = 3m, in terms of the canonical variables ¢ and ¢2.

This means that for small u, observational predictions for these model will correspond
either to 3a = 1 or to 3a = 6, depending on initial conditions, but for large p the last
stages of inflation will be described by the single field model with 3o = 7.

A similar result applies also for merger of directions with 3a;; = 2 and 3as = 5, or with
3a; = 3 and 3ag = 4. In all of these cases the effective value of a after the merger is given
by its maximal number 3« = 7 corresponding to a single flat direction with Z¢ = Z¢ = Z
for all 4.
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8 Observational consequences: Inflation and dark energy

The CMB targets for the future B-mode detectors were discussed recently in [9], in particular
with regard to a-attractor inflationary models [44]. These models lead to 7 discrete
benchmark points [6-8] for inflationary observables ng, tilt of the spectrum, and r, a ratio
of tensor to scalar fluctuations during inflation.

_1 [ T T L 7] _1 C ]
2L 4 2L N
~ r S~ L
o] ]
— —
o0 o0
S L
-3t . -3f 1
-4t = Po—— P — Po—— T -4t = S S S ST
0.955 0.960 0.965 0.970 0.975 0.955 0.960 0.965 0.970 0.975
Ng ng

Figure 17: a-attractor inflationary models benchmarks originating from M-theory and octonions, as
derived here in sec. 4 and as plotted in [9]. The simplest T-models derived here in sec. 7.3 are shown on
the left, the simplest E-models , derived in sec. 7.2 are on the right panel. The 7-disk model [6-8] allows 7
discrete values: 3a =7,6,5,4,3,2,1. The predictions are shown for the number of e-foldings in the range
50 < N, < 60.

| LiteBIRD
BK15/Planck ]
| oF 47<N,<57 4
— M=4M, N,=57
. —— M=2M; N.=57 1
M= IMp N,=57
M=Mp2  N.=57 ]

Votanh’(/M) 47< N,< 57

= Poincaré disks 47< N, < 57
([ ) Higgs N,=57 1

° R? N.=50

0.955 ’0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.00

ng

Figure 18: This is a figure A.2 from the Astro2020 APC White Paper LiteBIRD: an all-sky cosmic
microwave background probe of inflation with a forecast of Litebird constraints in the ng - r plane [72].
The 7 purple lines in the figure, were derived in this paper using M-theory compactified on G2 holonomy
manifolds, octonions, Fano plane and error correcting codes.

These benchmark points were plotted in the ng - r plane in Fig. 9 in [9]. We reproduce this
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figure here in Fig. 17.
(8.1)

nsml—ﬁe 7’%304@.

Here N, = 55 is the number of e-foldings of inflation. There is no significant dependence on
the properties of a potential due to an attractor behavior of the theory. The future cosmic
microwave background (CMB) missions [47-53] will map polarized fluctuations in the search
for the signature of gravitational waves from inflation. In particular, LiteBIRD is designed
to discover or disfavor the best motivated inflation models which were presented in Fig. A.2
of LiteBIRD [72], which we reproduce here in our Fig. 18. It is important here that in
single modulus a-attractor inflationary models [44] the prediction for observable r depends
only on the parameter 3c, which enters in the Kihler potential as K = —3alog(T + T).

In this paper we have shown that the upper benchmark for a-attractor inflationary E-
model with 3ac = 7 has a simple relation to octonions. The fact that Gs is the automorphism
group of the octonions was known since 1914 [22]. Here we have found that the octonions
give us a powerful tool for constructing superpotentials for compactification of M-theory on
manifolds with G holonomy and enforcing N' = 1 supersymmetric minima.

In particular, we have found that it is easy to use Cartan-Schouten-Coxeter conven-
tions [20, 21], the corresponding Fano plane for example in Fig. 3, and the cyclic Hamming
(7,4) error correcting code in Figs. 5. All these relations, starting with associative octonion
triads, codewords, quadruples and superpotential are shown in eq. (4.8). Analogous su-
perpotentials leading to the same cosmological models can be obtained for any of the 480
octonion conventions.

In all these cases we found that the 7-moduli model in M-theory compactified on a
7-tori with G holonomy has a Minkowski vacuum with 1 flat direction and the resulting
single modulus Kihler potential K = —71og(T + T). In such case, the prediction (when
the flat direction is uplifted and the proper cosmological model is constructed in Sec. 7) for
N =~ 53 is

ng~1—— r~T— ~ 1077 .

-, = (8.2)
€

This is the top red line in Fig. 17 and the top purple line in Fig. 18. If gravitational
waves from inflation are detected at the level close to r =~ 1072, one will be able to associate
this fact with M-theory cosmology and G5 symmetry of octonions.

The benchmarks below the top one, with 3o = 6,5,4,3,2,1 were also studied in
this paper. The corresponding superpotentials were obtained by dropping some terms
corresponding to certain codewords in the cyclic Hamming (7,4) code. We have found
that the 7-moduli model in M-theory compactified on a 7-tori with G2 holonomy has a
Minkowski vacuum with two flat directions and with one of the following Kéahler potentials:
K = —6log(T(1) + T(1)) —log(Ta + 1), K = =5log(T1 + T1) — 2log(T> + T3), and K =
—4log(Th + T1) — 3log(Te + T>). It is explained in Sec. 6 how the models with 3a =
6,5,4,3,2,1 can be obtained starting with these Kéhler potentials. These models have Go
symmetry broken in a specific way, but they still originate from octonionic superpotentials.
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To summarize, in in Sec. 7 of this paper we have built cosmological models with
3a=17,6,5,4,3,2,1, which are now directly related to the 7-moduli M-theory model and
7 octonions with their Gy automorphism symmetry, and (7,4) Hamming error correcting
codes.

We also stress here that some of these benchmark points with 3a < 7 can have a
different origin. For example, the case 3o = 3 is a feature of the Starobinsky model [73],
the Higgs inflation model [74, 75], and the conformal inflation model [76]. The case 3a = 6
is the feature of the string theory fibre inflation model [77, 78]. The case 3a = 1 is the
lowest benchmark point of these 7 targets, the black line in Fig. 17 and the bottom purple
line in Fig. 18. This model is known to represent the maximal superconformal theory in 4
dimensions [79, 80] with a single complex scalar and K = —log(T + T). In this case the
prediction for N = 60 is
%, rw%zlo_?’. (8.3)

Meanwhile, in this paper we found that the benchmark cosmological models with 3a =

ne~1-—

7,6,5,4,3,2,1 all have a natural origin in M-theory compactified on a manifold with G4
holonomy. Therefore they are associated with octonions, whose automorphism group is Gbs.
These benchmarks are targets for future detection of primordial gravitational waves.

According to the latest Planck results [46], a-attractor models [44] are in good agreement
with data available now, in particular for discrete set of values for 3a = 7,6,5,4,3,2,1
motivated by maximal supersymmetry. More recently we have learned that the cosmological
a-attractor models can be used in the context of dark energy models, especially interesting
in case that future observational data will show the deviation from w = —1 equation of
state. See for example [81], where a dark energy model with 3o = 7 was constructed which
predicts a deviation from cosmological constant with the asymptotic equation of state
w = —0.9. These models will be tested by future dark energy probes including satellite
missions like Euclid.

Quite recently in [82] a proposal was made how to construct early dark energy (EDE)
models based on a-attractors. These models appear to ease the Hubble tension raised by
the discrepancy between low-redshifts distance-ladder measurements and a Hubble constant
Hj determined from cosmic microwave background (CMB) data. It has been noticed in
[82] that their EDE models allow a range for o which also includes the discrete values
3a=17,6,5,4,3,2,1 motivated by maximal supersymmetry.

It is interesting that in all a-attractor models for inflation, for dark energy and for
early dark energy, kinetic terms are always the same, defined by K = —3alog(T + T).
We discussed in this paper how this feature is derived from M-theory compactified on
G5 manifold with maximal supersymmetry spontaneously broken to the minimal N' = 1
supergravity with octonion superpotentials WQ.

In the fundamental part of the model with a flat direction, the parameters are Mp;
in 4d and the scale of the compactified manifold. We added to the fundamental models
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a phenomenological N' = 1 supergravity potential V' so that these models agree with
the observational data. The phenomenological plateau potentials slightly deforming a
flat direction have the following energy scale: Viyg =~ 10_10Mj4:,l7 VEDE =~ 10_110Mj4:,l,
VpE =~ 10_120M2‘5[, for inflation, for the EDE and for the current acceleration caused by
dark energy or cosmological constant, respectively. They show the deviation from the
core fundamental M-theory at some very small scales. It would be very important to get
the future cosmological data for all these models to see if octonions might be relevant to
cosmology.

9 Summary of the main results

We proposed an octonionic superpotential for the effective 7 moduli N' = 1 supergravity
associated with M-theory, compactified on a G5 holonomy manifold with Kéhler potential
and superpotential of the form:

7 7
o 1 o o .
Krmoa = — 3 log (Tz + TZ) . WO = SMT'TI = 3 THTH T L (9)
=1 =1

The above superpotential is one of the two linearly independent 14-term superpotentials in
Cartan-Shouten-Coxeter convention given in equation (4.32). A significant formal part of
the paper explains the derivation of the superpotential for any of the octonion conventions,
relation between Fano planes, error correcting codes and superpotentials.

An important fact here is the existence of 480 different conventions for octonion
multiplication. We have found that the octonion conventions other than Cartan-Shouten-
Coxeter convention lead to superpotentials different from the ones in eq. (9.1). Therefore we
have carefully examined these different conventions, described the relations between them
and studied how these different choices affect the physical results. We have found that the
eigenvalues of the matrix M;; defining the superpotential are the same for all conventions,
reflecting simply the fact that they differ from (9.1) by a change of variables consistent
with the symmetries of the supergravity Lagrangian. Accordingly, the vacuum structure
resulting from our octonion superpotentials is the same for all 480 octonion conventions.
This universality of the physical results, despite apparently different superpotentials for
various octonion conventions, is one of the nontrivial results of our investigation.

The model in eq. (9.1) as well as the ones for all other 480 octonion conventions have
a Minkowski vacuum with one flat direction. It is the basis for the cosmological models
constructed in Sec. 7. When we use error correcting codes to drop some terms from the
superpotential, we find Minkowski vacua with two flat directions. All these models after
the phenomenological potential is added lead to observable predictions, associated with the
set of B-mode targets for a-attractors.

The new feature of our cosmological models is the fact that the total potential with
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octonionic superpotentials along the inflaton direction with 7' = T is given by

| Woct | 2
W§

7
V = F(T,T) (1 + ) + 3 (T + T2 2. (9.2)
i=1
The derivation in a more general case is given in eq. (7.11). Along the supersymmetric
Minkowski flat directions we have WOt = 9;/°°* = 0. Therefore the full expression for the

inflaton potential is given by
V =F(T,T) = A+ Viua(T, T). (9.3)

This is a remarkable simplification. The inflaton dynamics is completely independent on the
detailed structure of the full M-theory potential. The only information about this potential
that is important for cosmological applications is the identification of its supersymmetric
Minkowski flat directions.

Observational predictions of a-attractors are very stable with respect to the choice of
the phenomenological potential Vi,g(T,T), they are mostly determined by the M-theory
related kinetic terms for the inflaton fields corresponding to these flat directions,

K =—-—mlog (T(l) + T(l)) —nlog (T(g) + T(g)) (9.4)

withm =0,n=7,m =1,n=6;m = 2,n = 5;m = 3,n = 4. This clarifies the relation
between B-mode targets and M-theory compactified on a G2 holonomy manifold. Inflation
along various flat directions with these kinetic terms leads to 3a = 7,6,5,4,3,2,1 and
therefore to 7 possible values of the tensor to scalar ratio r = 12a/N? in the range
1072 > 7 > 1073, which should be accessible to future cosmological observations.
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A Octonionic Superpotentials in Common Conventions

In this appendix using the general construction outlined in section 5.1 we will give superpo-
tentials in various octonion conventions involving the structure constants of octonions such
that they can be written as a sum of seven terms of the form

S (T - TI)(TF - T
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with each term corresponding to a line in the Fano plane, and that lead to a Minkowski
vacuum with one modulus. This Fano plane in turn will be related to the codewords in the
Hamming code (7,4) as was done for the CSC labelling in Sec. 4.

The general formula for the superpotential given in equation 5.3 involves the cyclic
permutation operator P that generates the cyclic group Z;. For the Gunaydin-Gursey
(GG) [23] labelling of the real octonions the operator P is Pga = (1243657). For Cartan-
Schouten-Coxeter (CSC) labelling [20, 21] the operator P is simply Po = (1234567). For the
Cayley-Graves labelling of octonions the cyclic permutation operator is Pog = (1245736).

Al Cartan-Schoutens-Coxeter convention

Let us now apply this general formalism to the octonions in CSC conventions with cyclic
permutation operator Posc = (1234567). Let us choose the associative triad (124) and its
permutations to label the superpotentials. Applying the rules explained in section 5.1 we
get the superpotential

6
Weose(124) =Y (Pose)” fraa(T® = TO)(T% - T7) (A1)
r=0
6

= Z fn+1,n+27n+4fn+1,n+3,n+7fn+l,n+5,n+6 (Tn+3 - Tn+7)(Tn+5 - Tn+6)
n=0

6
Weso(241) = Y (Pose)” fan (T? = T°)(T° - T7) (A.2)
r=0
6
- Z fn+1,n+3,n+7fn+1,n+2,n+4fn+1,n+5,n+6 (Tn+2 - Tn+4)(Tn+5 - Tn+6>

n=0
6
Wosc(412) = > (Pose) fana(T° = T7)(T° — T9) (A:3)
r=0
6
= Z Frttnsn46Fat tnt2nsa ottt snsr (T2 = TOHY (TS — A7),
n=0

Explicitly we have

Weosc(124) = (T = YT = T7) 4+ (T° — T*)(T7 — TY) + (T° — T3)(T* — T?)
+(T7 . T4)(T2 . T3) + (Tl o T5)(T3 o T4)
HT? = TN T = T°) + (T° = T)(T° = T°), (A4)

Weso(241) = (T? = TH(T° — T9) 4+ (T3 — (T —T7) + (T* = T°)(T" — T")
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(T = T?)(T3 - T + (T = T3)(T* — T9), (A.5)

Weso(412) = (T = TY(T3 — T5) 4 (T — T))(T? — T%) 4 (1° — T?)(T* — 1)
—I—(T2 _ T4)(T3 . T?) + (Tﬁ . T3)(T5 . T7)
(T = TNT" —T?) + (1% - T (T - T?). (A.6)

These three superpotentials have one modulus and their spectra are identical and satisfy
Wesce(124) + Wese(241) + Wese(412) = 0. (A7)

So far we have preserved the set of associative triads. Some additional superpoten-
tials can be easily obtained when the odd permutations of the triad (124), namely
Wesco(142), Wese(214) and Wege(421) is performed. This operation leads to a specific
change of octonion conventions, as we explained in Sec. 5.

The superpotentials from odd permutations are however not independent of the ones
given above and are related as follows:

Wesco(124) = —Wege(142),
Wese(241) = —Wege(214),
Wesc(412) = —Wese(421). (A.8)

If one writes the superpotential W (kij) in terms of a matrix W(kij) defined by
W (kij) = VIW(kij)V (A.9)

where V1 = (T, 72,73, 74,75, 7% T") one finds that the matrices W(kij), W(ijk) and
W(jki) all have the same eigenvalues, namely one zero eigenvalue and three doubly degen-
erate non-zero eigenvalues.

A.2 Gunaydin-Gursey convention

Consider the octonion multiplication in Giinaydin-Giirsey convention [23] with structure
constants in eq. (B.3). The cyclic permutation operator in this case is

P = (1243657). (A.10)

It defines the order of vertices on the heptagon in Fig. 19. Note that given an associative
triad , say (165), one can label the superpotential W;(165) by any of the triads in the
orbit of (165) under the action of the Abelian group generated by the cyclic permutation
operator Pgg:

T1 = {(165), Pac(165) = (257), P25(165) = (471), P25(165) = (312), PAo(165) = (624),
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Figure 19: The clockwise oriented heptagon for Gunaydin-Gursey octonions. The order is in agreement
with Pgg = (1243657). The first triad 123 is shown by red arrows. The second will be 257 as we can see
from the figure, etc.

Given the associative triad (165) in GG convention its associated quadruple is (4723)
and we obtain the superpotential

6
WGG1 = Wea(165) = Z(PGG>n{f165(T4 —T)(T* - T%)}

n=0

= fies frarfras(T* = T7)(T? = T) + fost faz1 foas (T — T)(T* = T°)
+ far fae2 fazs (TO — T?)(T% — T°) + fsrz fasafaor(T° — TH(TO = T7)
+foaafora fosi (T7 — T3)(T° — T + fsazfoi6fsr2 (T — TO(TT — T?)
+ fr36.fras fria(T? = TO) (T — T). (A.12)

Now since all f;;;, in cyclic order (ijk) are equal to 1, we have
WGGL = Wga(165) = (T = T (T? — T3) + (7% — TH(T* — T°)
HTO )T~ T%) 4 (T° ~ T(T° — T7T) 4 (17— T9(1° ")
(T =TT —T?) 4+ (T? = T°)(T* — T?). (A.13)
One can write the superpotential WGG1 as
WGG1 = VI (MGG1)V (A.14)

where VT = (T, 7%, 73,74, 75,75, T7). The matrix MGG1 is symmetric with zeros along
the diagonal and has a sum of terms in each horizontal line vanishing, as necessary for
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Minkowski vacua.
0O 01 -1-11 0

0 0-10 1 1 -1
1 -10 0 -10 1

MGGl=|-10 0 0 1 -1 1 |. (A.15)
11 -110 0 0
1 1 0-10 0 —1

0 -11 1 0 -10

The matrix MGG1 has one zero eigenvalue corresponding to a Minkowski ground state and
three non-zero degenerate eigenvalues given by the roots of the cubic equation as discussed
in other cases of octonion superpotentials.

By permuting indices of the triads in (A.11) such that (kij) — (ijk) and reordering
them so that the first triad is (123) we obtain another superpotential. The following set of
triads are in the orbit of (123) under the Abelian group generated by Pag

T2 = {(123), (246), (435), (367), (651), (572), (714)}. (A.16)

Summing over the set of triads (A.16) in the formula (5.3) we get another superpotential,

different from WGG1, which we label as WGG2
WGG2 = Wga(123) = (T —= T2\ (T* = T7) + (T° = TH)(T° — T7)
_|_(T6 _ TQ)(T7 _ Tl) + (Tl _ TQ)(TS _ T4) + (T2 _ T4)(T7 _ T3)
(T —TO(T* — T3) + (T3 — T (T? — TP). (A.17)

One finds that the eigenvalues of the matrix MGG2 of the superpotential WGG2 coincide
with those of MGG1.

Similarly by permuting the indices (kij) — (jki), in the set (A.11) and reordering the
resulting triads we get another ordered set of triads

T3 = {(147), (231), (354), (462), (516), (673), (725)}. (A.18)
By summing over the triads (A.18) in (5.3) we get the third superpotential
WGG3 = Wga(231) = (T = T (T° = T7) + (T8 — T°)(1? — T?)
H(TY = T2\ (TS —T7) + (T3 — TO)T7 — TY) + (T7 — T2)(T* — T3)
+(T? = TYT° —TY) 4+ (1 = TO)(T* — T%). (A.19)

Again one finds that the eigenvalues of the associated matrix M(GG3 are identical to those

of MGG1.
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By odd permutation of the associative triads (kij) — (ikj), (kij) — (jik) and (kij) —
(kji) we obtain the following sets of triads which correspond to a different set of octonion

notation:
T4 = {(132), (264), (453), (376), (615), (527), (741)} (A.20)
T5 = {(213), (426), (345), (637), (561), (752), (174)} (A.21)
T6 = {(321), (642), (534), (763), (156), (275), (417)}. (A.22)

Inserting the resulting reordered triads in (5.3) one obtains three superpotentials which we
label as WGG4, WGGS and W GG6.

~WGGA = (T* = T*)(T* = T7) + (T° = TH)(T° = T") + (T° = T%)(T7 - T*) (A.23)
H(T =TT = T%) + (T = T")(T* = T%) + (T7 = T°)(T" = T°) + (T* = T')(T* - T°)

~WGG5 = (T% — TYT7 — T5) 4+ (T° — T3 (T* —T") + (T* - T°)(T* — T?) (A.24)
—|—(T7 _ TG)(TQ _ Tl) + (T4 _ Tl)(TG _ T3) + (T2 _ T7)(T3 _ T4) + (T3 _ TQ)(T5 _ T6)

~WGG6 = (T" — TH)(T3 — T?) 4+ (T — T3)(1° — T + (T* — T°)(T" — T°) (A.25)
+(T2 _ TG)(T5 _ T3) + (T6 _ Tl)(TQ _ T7) + (T3 _ T7)(T1 _ T5) + (T5 . TQ)(T4 _ Tl)

The above superpotentials are however not all independent. It is easy to check that

WGG1+WGG2+WGGE3=0 , WGEGA+WGEGS+WGG6=0. (A.26)
Furthermore
WGG3 = -WGGE5, WGEG2=-WGG4, WGEGE1 =-WGEG6 . (A.27)

Therefore out of six superpotentials defined by a triad and its permutations as given by

equation (5.3) only two of them are linearly independent.

A.3 Cayley-Graves octonions

The cyclic permutation operator is Pog = (1245736) Acting on the associative triad (123)
one generates the following triads: (123),(246), (451), (572), (734), (365), (617). We show
this in Fig. 20.
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2 1

Figure 20: The clockwise oriented heptagon for Cayley-Graves conventions. The order is in agreement
with Pcg = (1245736). The first triad 123 is shown by red arrows. The second will be 246 as we can see
from the figure, etc.

With this information at hand we can produce an example of the general formula (5.3)
for the Cayley-Graves octonions:

6
Woa(123) = (Poa)™{ fras(T* = T°)(TT = T%)}

n=0

= fi2sfuasfire (T = T)TT = T°) + faas foz1 fosz (T = T)(T° = T7)
+fas1 faoa fars(T° = T*)TT = T°%) + fsra fsrafose (T = TH)(T° = T°)
+frsafror fras(TC = TH)(T? = T°) + fags farzfoar(TH = T?)(T* = T7)
+forr fooa fosa (T2 — T (T — T3). (A.28)

Explicitly we have

Wea(123) = (T4 = T2 (T = T9) + (T2 = THY(T5 = T7) + (T° — T*) (17 — T3) (A.29)
(T =T (T3 =T + (7% — THY(T? = T5) + (T = T*)(T* = T7) + (T? — TH(T° — T3).

By cyclic permutation of the defining triad one can define another superpotential labelled
by the triad (176):

Weog(176) = (T? — T3)(T* — T5) 4+ (T* — T (T° — T7) + (T* — T*)(T° — T°) (A.30)
H(TP =TT =T + (T7 = T*)(T° = T%) + (T* = T)T" = T") + (T° = T*)(T° - T").

B Relations between most commonly used octonion conventions

We present here relations between most commonly used octonion conventions. These can be
transferred to relation between moduli in case that there is no sign flip between octonions,
since the real part of moduli is positive.

~ 51 —



CSC GG RCSC CG

1 1 1 4
2 2 2 6
3 4 3 ) (B.1)
4 3 4 1
5 6 ) 7
6 5 6 2
T T 7 3

In the first group in eq. (B.1) we compare Cartan-Schouten-Coxeter conventions
[20, 21] with Gunaydin-Gursey conventions [23]. In the second group in eq. (B.2) we
compare Reverse-Cartan-Schouten-Coxeter notations with Cayley-Graves notations. Both
involve no flip of the sign of any octonions. Therefore we can use these relations to change
variables in the Cartan-Schouten-Coxeter type superpotential to get the superpotential in
Gunaydin-Gursey conventions, and in Reverse-Cartan-Schouten-Coxeter notations to get
the Cayley-Graves superpotential.

OK GG CSC CG
1 1 1 1
2 2 2 2
3 4 3 3 (B.2)
4 3 4 3
5 6 5 7
6 5 6 6
T =7 7T -4

In the second group in eq. (B.2) the relabeling of moduli requires the sign change and we do
not use if for generating new superpotentials. We can avoid the need to use them since, as
we see in examples in eq. (B.1), we can start with superpotentials in CSC conventions and
generate 240 additional ones, including the Gunaydin-Gursey case, and with superpotential
in RCSC conventions and generate the other group of 240 superpotentials, including
Cayley-Graves case, without flipping signs of the moduli.

B.1 From Cartan-Schouten-Coxeter to Gunaydin-Gursey superpotential

Here we explain how egs. (B.1), (B.2) were derived.

The choice of triads in [23] is

foe =41 for  {ijk} ={(123), (435), (516), (624), (572), (471), (673)}.  (B.3)
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Figure 21: An oriented Fano plane in [29] for octonions in [20, 21] is the starting point at the very left
of the Figure. We rotate is so that the lower left corner becomes the upper vertex of the triangle, this gives
the Fano plane in the middle. The orientation of all lines remains the same. The Fano plane at the right is
the one taken from [23]. It is clear that relabeling the indices as 3 «+ 4,5 <> 6, we can bring the Fano plane
in the middle to the one on the right.

These octonions are related to the ones in [20, 21], and shown here in eq. (2.2), by
relabeling
34, 56 (B.4)

To explain this it is useful to start with the Cartan-Schouten-Coxeter Fano plane in the
form given by [29] and first rotate it counter-clockwise, as we show in Fig. 21. The rotated
Fano plane, in the middle of the figure, preserves all orientation of the 7 lines, one can see
that Fano planes at the left and at the right have the same orientation. Therefore, one can
now easily compare the Fano plane in the middle with the Gunaydin-Gursey Fano plane
[23], which is at the right of the Fig. 21. The superpotential for GG conventions is now
derived from WQy,,, using the change of variables in eq. (B.4) and we find

WOqq = (1% = T*)(T° = T% + (T° = T°)(T° = T7) + (T° - T°)(T" - T") (B.5)

H(TO=T) (T =T+ (T° =T T* =T + (T" = T*)(T* = T%) + (T" = T*)(T° — T°).

It is clear how to get also WOq and W@é(}' One could have instead used the general
formula (5.3) for any set of octonion conventions. In such case, starting from (B.3) one can
get (B.5) directly. We present this derivation in Appendix A.

B.2 From Reverse Cartan-Schouten-Coxeter to Cayley-Graves superpotential

In Fig. 22 we show the Fano planes for Reverse Cartan-Schouten-Coxeter conventions and
for Cayley-Graves octonion conventions. These two Fano planes have the same orientation
on all 7 lines. Therefore a relabeling of indices without any sign flips relates these sets of
octonions. This relation is

ROSC _ ,CG. ¢RCSC _ G ROSC _ (CG. ¢ROSC _ (CG.

— 53 —



Figure 22: The Fano plane at the left is for RCSC triads 126, 237, 341, 452, 563, 674, 715. At the
right we show the oriented Fano plane for Cayley-Graves octonions, with 123, 145, 624, 653, 725, 734, 176
triads. It has the same orientation for all 7 lines as the one for RCSC. They are related to each other by the
following relabeling from Cayley-Graves to RCSC: 5to 3,2t0 6, 7to5,4to1,3to 7, 6to 2,1 to4.

We take our counterclockwise WQ,.,, in eq. (4.32) and replace 1 <> 4,2 < 6,3 —
5,5 = 7,7 — 3 according to Fig. 22 and we find the Cayley-Graves superpotential

WO,ew|ReSC=0G = THT® — TY) + T9(T° —T7) + T5(T* — T?) + THT" — T3)

+T7(T? =T + T*(T3 — T5) + T3(T* — T°) = WO (176) (B.7)

This is to be compared with the formula in eq. (A.31) where the corresponding superpotential
was obtained directly using CG conventions.

We can also take our counterclockwise W@ZCW in eq. (4.34), use the same change of
variables and get another Cayley-Graves superpotential

WOl roscsc = (T° = THTT + (T = THT? 4+ (T7 = T*)T° + (1% - T*)T*
H(T? = THT + (T* =TT + (T° - T)T" = WO (123). (B3)

This is to be compared with the formula in eq. (A.30) where the corresponding superpotential
was obtained directly using CG conventions.

Thus we see here that one can use any of the two ways of identification of the superpo-
tential for Cayley-Graves type octonions and they produce exactly the same results.

C More on octonion multiplication tables and Fano planes

A useful tutorial on octonions http://www.7stones.com/Homepage/octotut0.html
is presented by Geoffrey Dixon. Some of these properties help us to explain the properties
of octonion superpotentials in our 7-moduli models.
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[ Telelelalolala] [ Jelelolalo ]

€1 er €1 €6

€2 €1 €2 er

€3 €2 €3 €1

€4 €3 €4 €2

€5 €4 €5 €3

€6 || €5 €6 €4
er €6 er || es

Table 1: Table on the left is a C(*) table associated with the clockwise heptagon to be
used later in Sec. 4.1. It shows a part of the multiplication table in Fig. 2, where we keep
only the information on associative triads, which makes the pattern of multiplication clear.
For example, we see that ejes = e7 etc. On the right there is a table for D) associated
with the counterclockwise heptagon to be used later in Sec. 4.2.

From all 480 tables shown in http://tamivox.org/eugene/octonion480/index.html there
are 2 favorite ones, which are called C*) and D). Since all 480 tables were computer
generated, these favorite ones show up as C*) the one which came as a number 406 out
of 480 and D), as a number 145. These are dual to each other, each sharing the same
elegant properties. If one has

eqtp = *ee, a,bc=1,...,7, €q = €qit7 (C.1)
it implies the index doubling property
e2q€2p = teac, e4a€ap = Te4c (C.2)

and the index cycling property
Ca+kChb+k = :|Z€C+k . (C3)

We show in Table 1 excerpts from C(t) and D™H) that make the pattern of multiplication
clear.

CH) get corresponds to octonion multiplication table in Fig. 2, it is a Cartan-Schouten-
Coxeter set [20, 21], associated with the clockwise heptagon in Sec. 4.1. After some
permutations of octonions without sign flips it becomes a Gunaydin-Gursey set [23].

D) set corresponds to a set of octonion conventions which we call Reverse-Cartan-
Schouten-Coxeter set, associated with the counterclockwise heptagon in Sec. 4.2. After
some permutations without sign flips it becomes a Cayley-Graves set [18, 19] and with other
permutations without sign flips also an Okubo set [43]. The corresponding Cayley-Graves
octonion multiplication table is shown in Fig. 6.

For our work it is important that starting from C(*) one can get 240 (including the
original C(+)) different tables by permutations alone. It is based on the fact that an even
number of sign changes is accessible via permutations alone. For example, one can change
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the signs of some 4 octonions, the remaining 3 belong to associate triads. There are 7
possible changes like that. For octonions in eq. (2.2) we take the 1st triads 124, and flip
the signs of 3,5,6,7. But since the triads are not changed, it means that these 4 sign flips
can be cor vhy, given a
multiplica

Figure 23: An oriented Fano plane corresponding to Fig. 1 in [21]. The difference with a Fano plane in
[29], shown in Fig. 3 here, includes a relabeling of some points as well as opposite direction of 4 arrows. But
these two Fano planes are for the same octonion multiplication table in Fig. 2.

For example, the original Fano plane in [21] shown in Fig. 23 for the same set of triads
is different from the one in [29] shown in Fig. 3. The difference includes the opposite
orientation of 4 lines, as well as relabeling.

In general, one finds that oriented Fano planes with reversed orientation of even number
of lines, can be presented in the form with the standard orientation. An example is given
in Figs. 3, 23, 24.

We can read the associative triads from all 3 Fano planes in Fig. 3, in Fig. 23 and in
Fig. 24. They are always the same, up to recycling in each triad.

(124), (235), (346), (457), (561), (672), (713) (C.4)

The relation between these Fano planes is realized as follows. From Fig. 3 to Fig. 23 we
have a relabeling 6 <> 1,3 <> 2 and the change of 4 directions. From Fig. 3 to Fig. 24 we
have a relabeling as well as 2 sign flips

6— —1 3— -2 1—6 23 (C.5)

Starting from C*) one can get 240 (including CF)) different tables by permutations alone,
without sign flips.
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Figure 24: An oriented Fano plane corresponding to Fig. 23, where we have flipped the signs on 1 and
on 2. Simultaneously we have flipped the direction of the red arrows in Fig. 23 when the line has an odd
number of sign changes. This Fano plane is for the same octonion multiplication table in Fig. 2.

D  From cyclic to non-cyclic Hamming code

Here we will show an explicit transformation from Cayley-Graves octonions to Cartan-
Schouten-Coxeter notation and that it also relates cyclic to non-cyclic Hamming codes.

7
e = ZTikjk (D.1)
k=1

or
e=Tj (D.2)

1000 000
010 0 000
000 0 100
T=|0010000]. (D.3)
000 0 001
0000010
000-1000

o O O o O

The two bases j; and e; are related by a rotation operator 7', which involves a permutation
of octonions, including a sign flip. Here T is an orthogonal matrix 777 = 1. This is an
example of a permutation of octonions with a sign flip.

We will now show that the the original, non-cyclic Hamming code in Fig. 4, or in eq.
(2.9) which shows just a 7 codewords, and the cyclic Hamming code in Fig. 5 are related by
the same rotation T'. Let us denote the entries of the original, non-cyclic Hamming code as
hi

[h1...h7] = 1110000, 1001100, 0101010,

0010110, 0100101, 0011001, 1000011 (D.4)
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and the entries of the cyclic Hamming code as ¢;.

[c1 ... ¢7] = 1101000, 0110100, 0011010,

0001101, 1000110, 0100011, 1010001. (D.5)
Then one finds - -
h; = ZTzk Ck 5 ¢ = ZTM hy (D.6)
k=1 k=1
or
h=Tec, c=T7h. (D.7)

This means that the rotation operator 7' in eq. (D.3) acts on a code as follows:
[hl R h7] — [Cl R 07]. (D8)
For each codeword it means

1110000 — 1101000
1001100 — 0110100
0101010 — 0011010
0010110 — 000110 -1
0100101 — 1000110
0011001 — 010001 —1

1000011 —» 101000 — 1. (D.9)

Note that since Fano plane is a projective plane'? over a field of characteristic two, we have
—1 = 41 (mod 2). The right hand side of eq. (D.9) becomes a set of 7 codewords of a
cyclic code

1101000, 0110100, 0011010, 0001101, 1000110, 0100011, 1010001. (D.10)

Modulo this subtlety we see that the cyclic codewords and original Hamming codewords

are related by a rotation which involves a permutation of octonions, including a sign flip.

One can also relate the cyclic Hamming codewords (cj....¢7)¢ to the non-cyclic Hamming
codewords (hj....h7)g by the action of the permutation operators Tp = (1)(2)(6)(3574) :

Tp(1101000)¢ = (1110000) ;7

193ee also [30] where the relevant issues of quantum information, Galois fields, finite geometry, Fano plane
and cyclic binary Hamming (7,4) code are discussed in detail.
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Tp(0110100)¢ = (0100101)
Tp(0011010)¢ = (0010110) 5
Tp(0001101)¢ = (0011001) 5
Tp(1000110)¢ = (1000011)
Tp(0100011)¢ = (0101010) 5
Tp(1010001)¢ = (1001100) . (D.11)

E Octonions and dS vacua stabilization in M-theory

In this paper we mainly concentrated on finding supersymmetric flat directions in M-
theory, and the benchmark cosmological models with 3a = 7,6,5,4,3,2,1. However, in
addition to it, our results, in combination with the nonperturbative corrections to the
superpotential studied in [13, 83, 84], provide us with a simple analytical method to find
local supersymmetric Minkowski vacua, which can be uplifted to metastable dS vacua.

Consider, for example, the M-theory superpotential W°t = " {ijkl}(Ti —TH(TF - T
(1.2) in combination with the nonperturbative racetrack superpotential Wy (T1) = Wy +
Ae=T" — Be="T" ysed in the KL mechanism of vacuum stabilization [85):

W =Wt 4+ Wi (T) = Y (T" = T)(T% — T') + Wy + Ae™T" — B (B.1)
{ijkl}

a b
aA\be aA\b-e

The octonion superpotential W°< and all of its derivatives vanish along the flat direction
T = T7, ImT? = 0. Meanwhile the superpotential Wy (T!) and all of its derivatives
vanish for all 7% = 79, ImT"% = 0, but only at the point

where

1 aA
1 _
T—ab<lan>. (E.3)
Therefore the point where all 7% are equal to each other,
; 1 aA

is the only point where the full superpotential W and its derivatives vanish. This means
that this point corresponds to the local supersymmetric Minkowski vacuum, which can be
uplifted to a metastable dS vacuum following [13, 83-85]. The same result can be obtained
if one uses the KL superpotential Wy, (T?) with respect to any other superfield T°.
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