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Abstract

We study the effect of the Einstein — de Sitter (EdS) approximation on the one-loop power spectrum
of galaxies in redshift space in the Effective Field Theory of Large-Scale Structure. The dark matter
density perturbations and velocity divergence are treated with exact time dependence. Splitting the
density perturbation into its different temporal evolutions naturally gives rise to an irreducible basis
of biases. While, as in the EdS approximation, at each time this basis spans a seven-dimensional
space, this space is a slightly different one, and the difference is captured by a single calculable
time- and E—dependent function. We then compute the redshift-space galaxy one-loop power spec-
trum with the EAS approximation (PF45-2PProx) and without (PF*2°%). For the monopole we find
plxact ) pEASapprox 4 03 and for the quadrupole Pxact/pEASaPPIox 1 007 at > = (.57, and
sharply increasing at lower redshifts. Finally, we show that a substantial fraction of the effect
remains even after allowing the bias coefficients to shift within a physically allowed range. This
suggests that the EAS approximation can only fit the data to a level of precision that is roughly
comparable to the precision of the next generation of cosmological surveys. Furthermore, we find
that implementing the exact time dependence formalism is not demanding and is easily applicable
to data. Both of these points motivate a direct study of this effect on the cosmological parameters.
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1 Introduction

The recent analysis of SDSS/BOSS data [1, 2, 3, 4, 5, 6] using the Effective Field-Theory of Large-
Scale Structure (EFTofLSS) [7, 8, 9, 10] has provided the first CMB-independent low-redshift mea-
surement of Hp in agreement with Planck [11]. In addition, it allows us to measure all of the
cosmological parameters only using a Big Bang Nucleosynthesis prior on the fractional energy den-
sity of baryons ,h?. With the increasing precision of current and upcoming large-scale structure
surveys, we will probably be able to tighten the error bars to sub-percent levels. In turn, this means
that the theory has to hold to a similar level of precision.

There have been several developments in order to tackle the challenge of reaching sub percent
precision. One of them are numerical simulations, which try to model the formation of galaxies,
on top of exact simulations of the underlying dark matter fields. While this approach has brought
about some very important results, it is unclear how scalable it is and thus there have been limits to



the amount of information we have been able to extract with this method from large-scale structure
surveys.

Over the past few years, the exact, analytical side has made a lot of progress in the form of
cosmological perturbation theory. Specifically, the EFTofLSS has been in remarkable agreement
with both data and simulations. The EFTofLLSS is a perturbative framework to calculate large-scale
structure correlation functions in the mildly non-linear regime [7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. It captures
the effect that UV-physics has on the long-wavelength observables, by including additional terms in
the equations of motion for those wavelengths. Up to now, the EFTofLSS predicts the correlation
functions of dark matter [8, 10, 12, 13, 17, 18, 20, 29, 30, 32, 33] and biased tracers [20, 24, 38|,
including the presence of dark energy [39, 40] and massive neutrinos [41, 42].

In principle, the EFTofLSS has the potential to reach extremely high accuracy in the mildly
non-linear regime, i.e. 0.1hMpc™! < kpax < 0.5 Mpc™!, by going to arbitrary high orders in
perturbations. In practice, we of course compute observables only to some finite order, which in our
case is up to one loop. At this level it has recently been shown [1] that we can trust the prediction
for the power spectrum (i.e. the theoretical error is negligible) up to k ~ 0.2h Mpc ™.

In order to mathematically facilitate perturbative calculations often the Einstein — de Sitter
(EdS) approximation is used [19, 22, 43]. It is inspired by the fact that in an EdS cosmology (where
the fractional matter density is €2, = 1, and there is no dark energy Qp = 0), the time dependence
of density perturbations goes as D™(a), where D is the growth factor. It is thus tempting to
use this identity in a more complicated cosmology, such as ACDM or wCDM. As has been shown
in [44, 45, 8, 39, 40, 46], using the EdS approximation in our universe is accurate to percent level
precision on the full power spectrum in real space. Yet, current and upcoming low-redshift surveys
may come increasingly close to this threshold, where the EdS approximation might no longer be
precise enough, especially in redshift space. It is, therefore, necessary to extend our theory to an
exact time dependence, in order to at least check the validity of the approximation in redshift space.
In practice, this means that the different momentum kernels will evolve separately in time and not
with a common factor of D"(a).

In this paper, we extend the theory of biased tracers in redshift space, formulated in [43] and
applied to data in [1], to an exact time dependence. This entails the revision and extension of the
EFTofLSS at several steps. We start with the exact time dependence for the dark matter density
field as developed in [39], which results in the separate time evolution of the momentum kernels. We
then generalize the treatment of biased tracers from [19, 22] to include the exact time dependence of
the dark matter density fields. Similarly to [24], we find that the ad hoc treatment of the bias will
lead to degeneracies and to a too large number of bias coefficients. In the context of resolving this
degeneracy, we introduce an alternative basis to former ones [24, 22], which comes naturally from
the momentum kernels appearing in the density perturbations. In a last step, as has been developed
in [43], we do the transformation to redshift space. To compute the one-loop halo power spectrum
in redshift space we introduce counter-terms to renormalize the biases in real and redshift space.
However, the exact time dependence does not change the counter-terms, and the theory does not
have to be extended in this part.

The purpose of this paper is to determine the validity of the EdS approximation in the case
of the one-loop power spectrum in redshift space for biased tracers. We make the relevant the-



oretical developments to calculate the one-loop halo power spectrum in redshift space with exact
time dependence and use the recently measured parameters from [1] to estimate the impact of the
EdS approximation. Furthermore, we check whether a change in the bias coefficients in the EdS
approximation can account for this impact. We will leave the measurement of the bias coeflicients
in the exact case to future work.

2 Biased tracers with exact time dependence

The halo overdensity depends on the underlying distribution of dark matter, therefore we start with
the continuity, Euler and Poisson equation for the dark matter field
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where @ is the gravitational potential, § the density perturbation, v the peculiar velocity field, p the
background density and 7% the effective stress-tensor responsible for the counter-terms discussed in
section 3.2. We use the scale factor a as our time variable such that ' = 9/0a and ag is the present-
day scale factor which from here on we set to unity. The equations of motion in the EFTofLLSS in
Fourier space without the counter-terms are [47]
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where as usual a(q1,¢2) = 1+ tﬁq%a, B(q1,q2) = % and dp is the delta distribution. To
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linear order we have § = 6, where 6 = —ﬁ@ivi is the rescaled velocity divergence, {2, is the
. . . D, . . .

time-dependent fractional matter density and fy = aD—j is the linear growth rate in terms of the
growth factor (see Appendix A). We write the dark matter overdensities and velocity divergence in

a perturbative expansion of the form

a) = Z (5](;)(@) and  0p(a) = ZGI(;) (a), (2.6)
n=1

n=1
which allows us to solve equations (2.4) and (2.5) order by order. The full solutions to the dark

matter overdensities and velocity divergence also includes the dark matter field counter-terms (5](;t)

and 91(;) , which we will discuss in section 3.2. The perturbative solutions in (2.6) can generally be
written as an integral over time-dependent momentum kernels

n d3q d3 dn PO o n) ;- o

(5](; )(a) = / (271_)13. Tk 5 (2 )2op(k — @ — ... — qn)Ké )(ql, ...,qn,a)dg)(a)...ééi)(a) (2.7)
n B B . N

9}5 )(a) = / (27r)13... o) @m)26p(k = @i — oo — G) K (@1, o Gy 0)85 ()05 (a).



In section 2.1 we are going to expand the halo overdensity up to third order in perturbations,
using exact time dependence. The halo overdensity at a given order depends on the dark matter
fields up to that same order. Therefore, we here give the time-dependent kernels of the dark matter
fields, i.e. solutions to (2.4) and (2.5) (see for example [39], setting C' = 1 and using the growth
factor of a wCDM cosmology), up to cubic order

K" (@,0) = 1 (2.8)
K@, da) = aud@,®)0MNa) + 8@, 3)G) (a) (2.9)
K& (G, G dra) = o (@, @ U (@) + B2 (@1, @, §3) Vo (a) + 7 (01, G, )V (), (2.10)

where repeated o € {1,2} are summed over and A € {§,0}. For simplicity we symmetrized « to
as(q1, @) = 3(a(qi, @) + a(q>, 1)) and the six momentum kernels at third order {ay, 85,7} are
products of o and 3 given in Appendix B. {G7, G5, U2, Vci‘&}, where & € {1,2}, are time-dependent
functions resulting from equations (2.4) and (2.5). They are explicitly given in Appendix A.

2.1 Perturbative expansions of ¢, and 6,

We are interested in the bias expansion of the halo density fluctuations, which depends only on the
dark matter field and its derivatives allowed by the equivalence principle. Following the notation
of [19] the expansion is given in Eulerian space by

on(F, a) = / a0 sa,d) < 6(En )
tcs2(a,a’) = 8(2q,a")? : +epe(a,a) : s*(2g,d) :
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(2.11)
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where kyp is the comoving wavenumber that encloses the mass of the galaxy and €(Z,a) is the
stochastic field that accounts for the difference between a given realization and the average of the
dark matter field. Both of these terms are discussed in section 3.2.

The above expansion is normal ordered, i.e. : O := O — (O). Furthermore, we recursively define Zy
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We find it useful to define quantities that only start at second order [48], such as

n(Z,t) = 0(Z,t) — 6(Z,1) . (2.13)



The tidal tensor s;; and ¢;; are defined as

Sij(f, a) = Dijé(f, CL) and tij(f, a) = ’Dw‘??(f, a), (2.14)
where D;; = % - %51-]'. The non-vanishing contractions of these operators, appearing in equation
(2.11) are defined as

32(_’1"17&) = Sij(_’ﬂaa)sij(fﬁ)a) 5 53(fﬂ>a) = sij(fﬂva)sil(fﬂaa)slj(fﬂ7a) ; (215)
St(fﬂ, a) = Sij (fﬂ, a)tij (fﬂ, a) ) ES(fﬁ, a) = 62‘]‘ (fﬂ, a)sij (fﬂ, a), Et(fﬂ, a) = eij (fﬂ, a)tij (fﬂ, a) y

where indices are raised with 6. Similarly to the construction of 1 in [48], we want 1 only to start
at cubic order. We notice that

.0 = (610 - @) (#0(@0) - 27@0)). (2.10)

which follows from equations (2.9), (2.13) and the fact that gf + Qg = Qf + gg , which is shown
in Appendix A. In the EdS approximation, equation (2.16), reduces to n(?) = %52(2) — 24—162(2) [48],

because G (a) £ds % and GY(a) Eds % in said approximation. Following the construction above, v is
given by
2
U(@.) = 0(F.0)  8(7,0) — (G}(a) - G/(@) (s%a W)~ 28 a>) , (2.17)

and will only start at cubic order.

As has been pointed out in [24], the operators in equation (2.11) are degenerate at a given, low,
order. We, therefore, face two challenges. First, we cannot perform the time integrals symbolically
as has been done in [19], without expanding ¢ into its different temporal evolutions. Secondly, we
have to find an irreducible basis for the biases.

We start with equation (2.11) in Fourier space. Note that the expressions are evaluated at Zj,
and we, therefore, Taylor expand 0(Zg,a) up to cubic order, which is given by

a "
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The halo overdensities in Fourier space therefore read

on(k,a) = (2.19)
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Let us explain the structure of the above expansion. In the first line, we have the density perturbation
up to third order, including the speed of sound counter-term. Lines two to four are due to the flow
terms that stem from equation (2.18). Similarly, the rest of the terms are followed by possible flow
terms, derived in Appendix C.
For expressions that are convolutions of §() we are able to do the time integral symbolically, i.e.
we absorb them into coefficients, such as
a / !/ 2
csi(a) —/ %c(g(a, a')lD)i(((;)), cs21(a) = CiTac(;z(a a )ID;L((C;)L s e (2.20)

All other products that consist of perturbations of order two or higher, must be expanded into

their various temporal evolutions. However, we can recognize that all the mode-dependent terms
in equation (2.19) share structure. For example, we can write the flow term in the second line, in
terms of the kernel « that appears at the second order of the density perturbation

i 3 3 .
00 Z00lga) = [ i G 20— i = B)(0(d, )~ DI @6 @), (221




More generally, we can write all terms in (2.19) (neglecting the stochastic and the counter-terms
for now) as integrals over the nine momentum functions {1, o, 8, a1, a2, 1, B2, 71,72} that appear
in equations (2.8)-(2.10) (See (B.7) in Appendix B). Next, we collect the temporal coefficients into
thirteen parameters and obtain the halo density kernels

K{(G,0) = csla) (2.22)
KNG, @, 0) = enm(a) + (@)l @) + s @) (0)B(G, @)

KNG, G2 G5.0) = Capp(@)a(q,
+ca,(3)(a)a(qr,

—

@2, 33) + ca,,3)(@)B7(q1, @25 G3) + ¢y, ,(3) (@)Y (T1, 2, G3)
@) + c,3)(a)B(q1, @2) + cr,(3)(a),

where o € {1, 2}, repeated indices are summed over and the halo kernels are similarly to (2.7) defined
at each order

n), dgq d3Qn o _ n o

8" (K, a) = / (277)13...(%)3(2@35,3@— L= = QK (@1 G0 )00 (0)..05 ) (a)  (2.23)
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The coefficients {6571, C]L(Q), Ca,(g), 057(2), C]L(3)’ Ca7(3), CB,(3)7 Cal’(3), Ca27(3), 6517(3), 6527(3), 6717(3), 672,(3)} are
explicitly derived in Appendix B. We will see in section 2.2 that the thirteen parameters above have
degeneracies, therefore further reducing the number of free parameters of the theory.

As has been pointed out for example in [20, 43], the halo velocity divergence can be expanded to
have a form similar to 0. Indeed it is easy to see fro(m) equations (2.8)-(2.10) and (2.22) that, neglect-

ing stochastic and counter-terms, we can obtain K 0: by using the following choice of coefficients in

(2.22)
e (a) =1 (2.24)
[
) (a) = Gl(a), <t (a) = GS(a)
gy (@) =Us(a), ey (@) = Vis(a), ) (a) = Vii(a)
[ 0 0
o) (@) = con) (a) = et (a) = ) (a) = 0,

where again o € {1,2}.

2.2 Temporal degeneracies and a new functional form for the bias

The formalism introduced in the previous section allows us to do bias expansions without the use
of the EdS approximation. Of course in the appropriate limit, the bias expansions have to reduce
to the expressions in the approximate case, which are described by only seven parameters. In this
section, we will discuss the degeneracies that reduce the number of coefficients from thirteen to seven
in both the approximate and exact case. However, as we will see, the functional form in the exact
case slightly differs from the EdS approximated theory.

From the explicit coefficients given in Appendix B and the identities for the Green’s function in



Appendix A, one can infer the following five relations

Ca,(2) T CB,(2) = C5,1 (2.25)

Cay(3) T C3,(3) = 2¢1,(2)
1
CBy,(3) T Ca,(2) = Cay,(3) = 3¢
Car,(3) T Caz,(3) = Cy1,(3) T Cy2,(3)
1

€61,3) T C,(3) T Cy1,(3) T Ca(3) = 3C01
that hold without the EdS approximation. Furthermore, there is one relation that only holds with

the EdS approximation c,, 3y + ¢, (3 £ds %05’1. We, therefore, define a function that parametrizes
the departure from EdS

3
Y(a) cs1 = —ﬂc(m + Cyy,(3) + CB1,(3)- (2.26)

Notice that Y (a) is completely determined by functions that appear in (2.10) and a derivation can
be found in Appendix B. We get

3
Y(a) = =7 + Vii(a) + Vis(a). (2:27)
In this form it is easy to see why Y (a) bds 0, since V{, (a) Bas L and Vy(a) Bas & Of course, since

the EdS approximation is correct up to roughly percent level precision of the full power spectrum,
we expect Y (a) to be very small, and indeed it is zero in the matter-dominated era and increases to
order 1073 at late times as is shown in Figure 1.

0.0020
I — w=-1.1
0.0015 -

< L
< 0.0010

0.0005 -

0.0000 _—
0.0

a

Figure 1: Plot of the time evolution of the function Y (a) for different values of w, that appears in the bias
expansion for halos with exact time dependence. The departure from the EdS-approximation is proportional
to Y(a). Notice that the case of w < —1 and ¢5 = 1 is unphysical (see for example [49, 50, 51]), but we plot
it for illustration.



Finally, we can rewrite equations (2.22) and (2.23) (still without stochastic and counter-terms)
in terms of seven bias coefficients and the function Y (a). To reduce the number of parameters we
replace the coefficients cg (2), €3,3) Car,(3)s Cas,(3), and cg, 3y through the identities in (2.25)
and remove c,, (3 through the redefinition implied by (2.26). The expansion of the halo
overdensity in Fourier space now reads

—

5h(/<:,a)

es1(0) (C(F,a) + CP (F,a) + CP(F,0) + YV ()CP (F,a))  (2.28)

+
+ erm(a) (@]@(E, a) + 2C9(F, a)>
+ B)(

+ Cala) COR, a) + cr s (a)CP (K, a),

where the explicit C; operators are given in Appendix B.

In summary, we see that, at each time a, the field 5h(/Z, a) is obtained by the combination
of seven functions, each one multiplied by an arbitrary bias coefficient. In particular, the six-
dimensional space spanned by the functions appearing from the second to the last line of (2.28)
is the same as a six-dimensional subspace spanned by the Basis of Descendants (BoD) basis !
as defined in EdS [24]. Instead, the first function in (2.28) is different than the one appearing
in such EdS-defined BoD basis. At each time a, the part of this function that is of third order
differs by the calculable, time- and k-dependent function Y(a)(Cgf)(lg, a). Therefore, while at
each time the space of functions spanned is still seven-dimensional, it is actually a different
space. Of course, given that one can choose six of the seven basis functions to be the same as
in the EdS-defined BoD basis, and given that Y'(a) is small, in practice the difference is not
very large, as we will study later in section 4 (but, as we will also see there, not obviously
negligibly small given the precision of upcoming experiments) 2.

Notice furthermore that, though the bias coefficients multiplying each function of the
basis are incalculable within the EFT, they are in general different quantities once expressed
in terms of the time kernels appearing in (2.19) (as for example cs(a,a’)), with respect to
the ones obtained in the EdS approximation. Therefore, if one had a theory that allowed to
predict these time kernels, some of the resulting bias coefficients would be different in the two
cases.

For completeness we give the transformation from the basis here (without Cy) to the BoD basis in
Appendix D.

ZNotice, that the correction proportional to Y (a) would also be present if one were to impose that biased
tracers depend on the long-wavelength fields in a local in time way, as done for example in [48]. While
we recollect that this treatment is not justified by the time scales present in LSS (and a non-local in time
treatment is instead necessary [20]), we here stress that the presence of the Y (a) correction is just associated
to the solution of the exact time dependence of the fields.
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3 The halo-halo power spectrum in redshift space with
exact time dependence

The basic formulas stated in this section were derived in [20] and used in [1, 43]. We will
briefly review the most important results that go into the halo-halo power spectrum in redshift
space with exact time dependence.

3.1 Halo bias with exact time dependence in redshift Space

The change from real space to redshift space, using the distant observer approximation, is
just a change of coordinates

Z-U
T =T+ —2, 3.1
+— (3.1)
where the z-axis was chosen to be along the line of sight. In Fourier space, the halo density

perturbation changes under this coordinate transform into

6h,r(];> CL) = 5(E7 CL) + /dgx e—iE-f (eXp <_ik_gvh,z(fv CL)) o 1) (1 + (5h(f7 CL)) ) (32)
a

where 0y, is the halo overdensity in redshift space. Following the procedure in [20, 43] we
Taylor expand (3.2) in terms of the perturbations d;, and vj,. There are products of operators
in the Taylor expansion that are evaluated at the same location, which we have to renormalize
by introducing new counter-terms. The halo bias expansion in redshift space, without the
counter-terms, then becomes

5h77’(]g7 CL) - 5h(];7 a)+f+,u29h(l;7 CL) (33)
: 0. 1 0, , 0,
+ikpfy [(92 ehéh:| (a) — §k2M2f42r [8 829}11 (a)
i 8 0, , 0, 1 8 0,
—— kP [ “ 0, —0 ] (a) — k2 p2 f? [ ~ 0,0 ] (a)+ ... ,
6 "t er e 2" P g2 e

where we have defined = k,/k and . . . stands for the counter-terms and the stochastic terms,
which we briefly discuss in section 3.2. We now perturbatively expand (3.3) in terms of dy,
and 6, to obtain the halo density perturbation in redshift space up to cubic order. Similar
to equations (2.7) and (2.23) we are interested in the halo integral kernels in redshift space
K }(l")(cfl, ..+, qn,a), which are defined at each order in perturbations by

,T

n)/1. d3q dQTL 7o - n)/ — -
oy (k,a) = / (%)13--- O 2120 (k= G — . = Q)KL (@, - -, Gy @)05) (a)...60 (a) . (3.4)

The integrals of the form |[...]; in (3.3) are given up to cubic order in Appendix E. The explicit
expressions for the full halo kernels in redshift space in terms of the halo kernels in real space
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from (2.22) and (2.24) read
EN(@,a) = KP(@Ga) + f2Ky) (@, a) (3.5)
K}(L,Q(QI;QQ,CL) - K( )<Qh(]2u ) +f+/~L2Kéi)(q_)17(727a)

qu qu — —
! m( 2y 1)K§2<q )KL (i, 0)

1 k2 q12q2-
+ ( : 2) qlv )(QQ, )

K](fqz(q_‘laq_éaq_z’na) = Kg,}(qhQ%Q& ) f ZKg(h)(Q1,Q2,Q3, )

kqs-
+uf+( §>K(2)(q L) K (@, a)
3
¢+ q22) .
+uf+( _'—1—q22 (@1, @ a) K (G5, a)

Zk: z
i( o q2) K (@, a) K (@, a) KL (G5, a)
)

1z T 2z k%z) K@ 1) =
01, G2, a) Ky " (g3, a
(qw ) K RS @)

kqi. kg2 kas. 1)/ = 1), > 1),
+6M3f-?- ( q% q% qg Ké('h)((hv a)Ké(’h)(QQv a)Ké(’h)(Q?n CL) :

We are now able to write the full one-loop halo-halo power spectrum in redshift space. In
terms of the halo kernels in redshift space from (3.5) it is given by

(Onr (K, @)0, (K, @) = (8080 0) + (81206520 + 208306520 4 (8O Vo + (GO (3.6)

— (K@) Pulk.a) +2 [ @7 (KE@E-G.a)om) PullF - 2l.0)Pule.0)

+6 / &7 KN, Gk, 0)sym K5 (0) Pri(q,0) Pra(k, @) + (0,00 )ey + (nsOnr) -

where Pj; is the linear power spectrum and the contributions form counter-terms (95, ,0p)ct
and stochastic terms (dp, .05 )¢ are calculated in the next section. Finally, we want to explicitly
define the final bias parameters in terms of the coefficients in (2.28). The halo kernels that
enter into the power spectrum with the momentum dependence in (3.6) read

Kg?("‘) _— (3.7)
, by —k2q+ k3 k2(1 — 22
K@@ =G a)gm = 2o dTET Ly L=2) Ly,

2q k? + ¢ — 2kqx k2 + ¢ — 2kqx
by —Tk®z? + k?¢* (6 — 2522 + 122%) + 2k*¢?(3 — 1022 + 142%)
4242 (k2 + ¢% — 2kqx) (k% + ¢ + 2kqx)
b Y (a) 2k*(1 — 22) + k?¢*(2 — 62% + 42%)
3 (k*+ q* — 2kqx)(k? + ¢ + 2kqx)’
by —4k*(1 — 222 + 2*) — 4k?*¢*(1 — 222 + %)
3 (k2 + ¢% — 2kqx)(k? + ¢ + 2kqx) ’

chi) (q_: _q_: Ea a)Ustub,sym
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where x = ‘g'—k’; and we used the UV-subtracted third order kernel

K3 (@ =0k, 0)ov o = K5 (T =G F, )y = Jim K@ @ K, 0)m. (35)
% oo

Similarly for the <5,(122,5}(LZ£) contribution, we remove the UV-dependent part by subtracting

b3¥(a)?, where Y(a)? = f(;l%‘)lg [Pi1(q,a)]’. We can perform these shifts because we can
absorb them into the counter-terms and stochastic terms. The number of coefficients we need
reduces by three, as

c® c®) —c® =C® =Cc® =0.(3.9)

I UV—subsym = Y UV —sub,sym B UV —sub,sym a1 UV —sub,sym Y2 UV —sub,sym

Explicitly, the final bias coefficients appearing in (3.7) are given by
bl =Cs1 bQ = C]L(Q) b3 = Ca7(2) b4 = Cpy,(3)- (310)

One can relate these coefficients to obtain the results in [43] and we give the transformation
in Appendix D. In very close analogy, the halo velocity divergence kernels read

KP(a) = 1 (3.11)
N, L 1 —k’q+ Kz k(1 — 22
Ke(h)(q’ k=@ a)ym = 2q (k2 + ¢* — 2kqz) +6i k2 +(q2 - 212(]:10
1 —Tk%2% + k?¢* (6 — 2522 + 122%) + 2k*¢?(3 — 1022 + 142%)
424> (k% + ¢ — 2kqx)(k? + ¢* + 2kqx)
Y(a) 2k (1 — 2%) + k?¢*(2 — 62 + 4x2%)
3 (k*+ ¢* — 2kqx)(k?® + ¢* + 2kqx)
VO, —4k*(1 — 222 + ) — 4k2¢%(1 — 222 + 2*)
3 (k% + ¢® — 2kqx) (k% + ¢* + 2kqx)

3 5 -
KG(h) <Q7 —dq, ka a)UV—sub,sym

Note, that these are the same kernels as for the halo overdensity in (3.7), but with different
coefficients. This is essentially an extension of the identity in (2.24), which, after accounting
for the degeneracies and the UV-subtraction, gives us

b — 1 B g pn — o b =0 (3.12)

3.2 Counter-terms and stochastic halo bias

To complete the halo-halo power spectrum calculation, we now tend to the terms in (3.6)
that we have ignored so far. Namely the counter-terms from real and redshift space, as well
as the stochastic terms.

We start with the dark matter counter-terms that are in (2.2) and we neglected in (2.5)
and in their solution (2.6). They stem from the non-local in time effective stress-tensor, which
up to linear order in fields is given by

1. . da’ .
J S PPy — / 7 ! =2 (= !/
paﬂT /G/QH(G_/)K(a,a)é? d(d, 7q(%,a,a")) + ..., (3.13)
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where p is the background density and K(a,d’) is a time kernel. The effective stress tensor

5.7 (1) L.
enters the velocity divergence equation (2.5) at third order through %a—p]. Similar to (2.20)
we can absorb the time integral into a coefficient, since at linear order the EAS approximation
is exact and we can split the time dependence from the momentum dependence.

The resulting counter-terms for the halo kernels in redshift space read

o s 2 o K
Cet k2 + f-&-,u Cet k2 0 ’ (314)
NL NL

where kyp, is the wavenumber symbolizing the non-linear scale. Additionally, there are the
counter-terms from the renormalization of the contact terms coming from (3.2) that we did
not treat in (3.3). They can be captured by two additional coefficients [20, 43]. Furthermore,
we can absorb cgfh) into one of these two additional coefficients and write the full counter-term
in terms of three parameters

k2 E\? E\?
O = i 0 o Crani® (—) 60 4 & optt (—) o (3.15)

The counter-terms enter the one-loop power spectrum as

(On.r (K, )00 (K, @) = 2003} (K, )17 (R, ) (3.16)
kY’ kY’ s [k
= 2Pl )5+ Forkl ) (1 () et (1) dat et () )
kar k i,

We now move on to the stochastic terms that appear in the halo-halo power spectrum
in redshift space, which are described by the stochastic field €(Z,a). It is assumed that the
stochastic field only correlates with itself and the contribution is inversely proportional to the
typical halo density (ee) ~ 1/n [19, 24].

As was established in [20] and [43], the renormalized stochastic terms entering dj, that
come from the stochastic expansions of §;, and 6, are given by

2

0 =2 epe + 3 (;) e+ ... . (3.17)
M

Additionally, there are stochastic terms g, that come from the renormalization of the

contact terms in redshift space. d4.., can correlate with itself and with 5,(162, Finally the

full stochastic contribution to the halo-halo power spectrum in redshift space, which includes

both the real-space and redshift-space stochastic correlations, reads

G = oo (F) wear (£ (3.18)
h,rOh,r)e = P Ce,1l T Ce2 Fat Ce,3 )+ 14 Tt . .

In conclusion, we need six coefficients {cg), Cr1,s Cra, Cels Ce2, Ce 3} t0 account for the counter-
terms and the stochastic contribution to the halo-halo power spectrum in redshift space. For
more details see [8, 20, 24, 43].
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4 Comparisons with the EdS approximation

Next, we want to compare the one-loop halo power spectrum in redshift space with exact
time dependence, to the EdS approximated case. The formalism introduced in the previous
sections applies to a generic wCDM cosmology. We here show the results only for w = —1, i.e.
ACDM. The analogous results for wCDM are almost the same, simply differing by a relative
factor of order (1 + w) < 1, so we avoid to explicitly present them since the conclusions do
not change.

Note, that there are two causes for the exact time dependence power spectrum to differ
from the approximate one. In (3.5) and (3.6) we see that the time dependence of the halo
power spectrum in redshift space is captured by the overdensity and velocity divergence halo
kernels in real space. From equation (3.7) we get that the time dependence of the real-space
halo overdensities depends on the incalculable bias coefficients by (a), ba(a), bs(a), bs(a), as well
as the calculable function Y (a). However, the time dependence of the halo velocity divergence
kernels in real space, given in (3.11), is fully determined by calculable functions. Therefore,
to determine the impact of the EdS approximation on the redshift-space power spectrum for
galaxies, we need to find an estimate for the time dependence of the bias coefficients, which
is what we are going to do next.

In [1] the bias coefficients were measured using the EFTofL.SS with EdS approximation.
To estimate the value of these coefficients in the exact case, we compute Ab, = b, — by, gas
for each of the bias coefficient, using the explicit definitions given in Appendix B and their
EdS approximations. It is easy to see from equations (3.10), (B.9) and (B.10) that Ab; =0
and Aby, = 0. From the same equations, we get that

Aby(a) = / ’ da—cf,q(a,a')% (gf(a') - g) | (4.1)

and a similar expression can be found for Aby(a). We can see that Abs(a) and Aby(a) depend
on the time kernels, such as c¢s(a, a’). Therefore, to estimate the change in the value of the
bias coefficients with respect to the EAS approximation, we need an ansatz for cs(a,a’).
From Press-Schechter we have a rough estimate that by(M,a) = 1 — 5% + m,
where 0. ~ 1.7 is the critical overdensity. If we include the time dependence of all the loop

contributions into the power spectrum, integrated up to some mass scale, we can approximate
fl/M &k P(k,a) ~ aZe™’. Therefore, at a fixed mass, the Press-Schechter formula for the

Ll2 . .
bias now gives b(a) ~ 1 — é + ¢4%5, where ¢, is a constant fit to the collapsed object of
interest, such as halos or galaxies (in our case these are the coefficients measured for galaxies
in [1]). Now, since we are interested in biases of order one or larger at a < 1, and 1 — 5~ ~ 0.4,

and the term 096“2 /a? increases as a decreases, for the purpose of our estimate, we drop the
a2
a-independent term such that b(a) ~ ¢,%. We thus define the kernel to be

1 + 2(0/ — a,)2€(aia/)2

s , (4.2)

cs(a,a’) = ¢,
such that from (2.20) and (3.10) we approximately get b;(a) = bl(a*)Z—ge(“Laz), for some fixed
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time a, ().

We denote the specific estimates, using equation (4.2) to calculate Abs(a) and Aby(a), by
Abj(a) and Abj(a). These functions are depicted in Figure 2 relative to b;(a), where one can
see that the EAS approximation gets worse as one moves forward in time, which was to be
expected. However, relative to the linear bias by, Abj(a) and Abj}(a) are of order 107.

| T T T | T T T | T T T | T T T | T T T |
0.0002 | 1
0.0000 [
~0.0002| . !
- - Ab™3
L by
~0.0004 - . i
[ Ab™4
L b1
~0.0006 |- 1
_| 1 L 1 1 L 1 L 1 1 1 1 | 1 1 1 | 1 1 1 1
0.0 02 04 06 038 10

a

Figure 2: Diagrammatic representation of Abj(a) and Abj(a), relative to the linear bias by (a) as a function
of the scale factor. The functions, Ab%(a) and Ab}(a) are an estimate for the change in the bias coefficients
due to the EdS approximation.

We now want to quantify the effect that the EdS approximation has on the one-loop halo
power spectrum in redshift space. We here give plots for the effect in real space Prea, the
monopole Py and the quadrupole P, all of which are resummed using IR-resummation [10, 43]
to correctly account for the BAO peaks®. For the approximate cases (PFISapPprox)  where
s € {Real, 0,2}, we use the coefficients recently measured in [1] (see Appendix F), where the
EdS approximation was used. In the exact cases (PF**%) we rely on the future measurement
of the bias coefficients. However, we can use the estimates from Figure 2 to here give three
versions of plots, that illustrate the difference between the EdS approximation and the exact
case.

First, we implement the estimate we did in (4.2), where the relative difference in the
bias coefficients is of order 107%, as given by Figure 2. They are depicted in darker colored
solid lines as a function of k in Figure 3 and as a function of the scale factor in Figure 4.
Next, we compute a conservative, but unambiguous estimate, which is to assume that the
bias coefficients are not affected by the EdS approximation, i.e. Abs =0 and Aby = 0. This
essentially means that the effect is only due to the difference in the time dependences of

3We chose this functional form because even though the exponential does not have a large quantitative
impact (i.e. it could be dropped), it makes the evaluation of the time integrals easier.
4Notice that the IR-resummation is not affected by the inaccuracy of the EAS approximation.
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K(S:) from (3.11) and to the additional contribution that is multiplied by Y (a) in (3.7). This
version of the plots is shown by the dashed lines in Figure 3 and Figure 4. Lastly, we give a
band in which we expect the effect to lie in. The band is given by the EdS coefficients plus
and minus two times the estimates from (4.2) that was considered in Figure 2. It is depicted
as the lightly shaded areas in Figure 3 and Figure 4.
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Figure 3: Diagrammatic representation of the ratio of the exact galaxy power spectrum in redshift space
over the approximate case as a function of k at a* = 0.6. The plots show the ratios of the real parts
PExact(f, a*)/PlgfaS{approx(k, a*) (blue/cyan), the monopoles PEX<t (|, q*) / PEIS#PProX (%) (red/orange) and
the quadrupoles PEXact(f; *)/ PEAS-2PProX( +) (dark/light green) of the galaxy power spectrum in redshift

space. For the bias coefficients with EdS approximation we used by gas(a*) = 2.4, b gas(a*) = —0.4,
~ * — 2 ~ *

b3 mas(a*) = 2.1, bapas(a*) = 0, capas(a*) = 0, é.1mas(a®) = —8.6 (km/hMpc™')", & 2pas(a*) =

0, ce1pas(e®) = 1.4 and ¢ pas(a*) = —4.3 (kM/hMpcfl)2 from [1]. Furthermore, we have Y (a*) =

6+10~%. The dashed lines represent the effect of the approximation that comes from redshift space and the con-
tribution multiplied by Y (a*) only i.e. bs(a*) = b3 ras(a*) and by(a*) = bs,gas(a*). The estimate from (4.2),
where bz(a*) = b pas(a*)+Ab%(a*) and by(a*) = by gas(a*)+Abj(a*) (at a* = 0.6 we have Ab}(a*) = 2x1074
and Abj(a*) = —6 x 10~%), is depicted by the darker solid lines. The lighter shaded areas are bounded from
below (—) and above (+) by bsz(a*) = b3 gas(a*) £ 2 % Abj(a*) and by(a*) = by gas(a®) £ 2 * Ab}(a®).

By looking at the quadrupole in Figure 3 and Figure 4, we see that the largest effect
comes from the transformation into redshift space, and the estimate of the bias coefficients
only dampens or enhances this effect. This is due to the fact that the EAS approximation
is worse for the velocity divergence than for the density perturbation. Further checks with
different coefficients and approximations can be found in Appendix F, where depending on
the size of the bias coefficients the effect can be up to a factor two larger.

We can see from Figure 3 that the EdS approximation becomes more important at higher
k. This is to be expected since at the linear level the EdS approximation is exact. Therefore,
the EdS approximation only affects the loop terms, which become important only at higher k.
Furthermore, from Figure 4 we get the expected temporal evolution of the ratios of the power
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spectra. At early times (a < 0.1), i.e. in the matter-dominated era, the EAS approximation
is almost exact, and therefore we see that the ratios all stay at unity up to a ~ 0.1. However,
at late times (for example a = 0.85 (z = 0.18)) the effect becomes quite large, even 1.7% for
the quadrupole and 0.8% for the monopole.
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Figure 4: Diagrammatic representation of the ratio of the exact galaxy power spectrum in redshift space

over the approximate case as a function of the scale factor at k* = 0.2 hMpc~'. The plots show the ratios

of the real parts PExact(k*, a)/PlgfaS{appmx(k*, a) (blue/cyan), the monopoles PEXact(k* q)/ prdS-approx g )
(red/orange) and the quadrupoles PExact(x q)/PEISaPProX(px o) (dark/light green) of the galaxy power
spectrum in redshift space. For the bias coefficients with EdS approximation we used by mas(a*) = 2.2,
bapas(a*) = —0.4, by gas(a*) = 1.9, bygas(e*) = 0, cet,pas(a*) = 0, &1,mas(a*) = —8 (kM/hMPC_l)Q,
éropmas(a®) = 0, ce1pas(a®) = 1.3 and ¢ pas(a*) = —4 (kM/hMpcfl)2 from [1] at a* = 0.64. The
coefficients were promoted to functions through the time dependence implied by (4.2). Furthermore, we use
the calculable time dependence of Y (a) from (2.27). The dashed lines represent the effect of the approximation
that comes from redshift space and the contribution multiplied by Y'(a) only, i.e. bs(a) = b3 ras(a) and
ba(a) = by gas(a). The estimate from (4.2), where bs(a) = b3 gas(a) + Abj(a) and by(a) = by gas(a) + Ab}(a)
(Ab3(a) and Abj(a) are shown in Figure 2), is depicted by the darker solid lines. The lighter shaded areas are
bounded from below (—) and above (+) by bs(a) = b3 gas(a) £ 2 * Abj(a) and bs(a) = by pas(a) £ 2+ Abj(a).

In a last step, we want to discuss the applicability to data. Figure 3 and 4 show that the
physical difference between an exact time dependence and the approximate one is significant
at late times. We here want to check if a change in the bias coefficients in the approximate
case can account for this difference.

For the analysis we take a = 0.6 (z = 0.67) like in Figure 3. Furthermore, we use the galaxy
power spectrum in redshift space with the exact time dependences of K, (5:) and Y (a), and fix
the bias coefficients through the coefficients measured in [1] plus the estimates Ab; and Abj
calculated using equation (4.2). We then take the galaxy power spectrum in redshift space
computed using the EAS approximation and use a best fit method to fit it to the exact time
dependence galaxy power spectrum in redshift space. In this fit, we allow the biases that are
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expected to change between the exact time dependence and the EdS approximation to vary.
As mentioned at the beginning of the section, since the time kernels such as ¢s(a,a’) do not
change due to the EdS approximation, only b3 and b4 can be affected by said approximation.
We, therefore let by and by vary within £1073, which is an order of magnitude larger than the
estimated differences Ab% and Ab} (at a = 0.6, b; is of order one) °.

Of course if we let b3 and b, vary relatively by a factor of 1073, we can, at least partially,
absorb Ab} and Ab;. However, we here want to check, how well a variation of b3 and b, can
absorb the changes due to the halo velocity divergence and the contribution from the Y (a)
term, that are depicted by the dashed lines in Figures 3 and 4. It is not obvious to what
extent this is doable.

After this fitting procedure we obtain PFFit where s € {0,2} (and also PEISFIt which
we will plot for consistency, though it is not observable), which is the EdS approximated galaxy
power spectrum in redshift space, with a choice of bias coefficients (we call the resulting bias
coeflicients by, pas-rit and define Ab, gas rit = by, — bp pasrit) that best fits the exact case. The

ratio of the two cases is depicted in Figure 5. We see that, at k = 0.2 h Mpc™*

, a change in
the bias coefficients can account for the effect of the exact time dependence to a precision
of 0.11% for the monopole and 0.47% for the quadrupole at z = 0.67, and, as suggested by
Figure 4, the magnitude of the effect most likely sharply increases at lower redshifts. One
can compare this with the precision of future cosmological surveys such as DEST [52], where
we expect the error bars (given by the dashed lines in Figure 5 for the monopole) to be, very
roughly, 0.24% for the monopole and 2.4% for the quadrupole at k ~ 0.2 h Mpc ™.

As mentioned in footnote 5, we expect the range we have chosen for the bias coefficients
to be the appropriate one in order not to bias the information extracted from cosmological
parameters. With the analysis provided here, we cannot be sure about this, and indeed if we
let the biases vary in a larger range, the EdS approximated power spectrum would better fit
the exact case. We plan to explicitly verify this in future work.

5 An alternative procedure would be to allow for all the bias coefficients to shift arbitrarily between the
exact treatment and the EdS approximation. While such a procedure would show that the EdS-approximated
predictions can fit the exact ones with much higher accuracy, we believe such a procedure would overemphasize
the effectiveness of the EdS approximation. In fact, as mentioned, we expect the bias coefficients to differ due
to the EdS approximation, relative to the linear bias, by about 10~%. If we were to allow the bias coefficients
to vary in larger ranges, the coefficients may get unphysical. A consequence of this would probably be that the
cosmological parameters that are extracted with this procedure would be systematically biased, even though
the functional form of the predictions between the EdS approximated one and the exact one are very similar.

In this regard, the situation is similar to the one we would encounter if we were to allow the bias coefficients
to shift arbitrarily in order to fit the power spectrum of the observational data beyond where the one-loop
approximation holds. Even though in this way a good fit could be obtained up to a higher wavenumber, the
inferred cosmological parameters would be biased, as verified in [1, 3]. Indeed, we plan to explicitly quantify
the effect of the EdS approximation directly in the extraction of the cosmological parameters in upcoming
work.
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Figure 5: The figure shows the ratio of the exact galaxy power spectrum in redshift space over a fit of the
exact galaxy power spectrum in redshift space obtained by changing the bias coefficients in the EdS approx-
imated case. The ratio is given as a function of k at a* = 0.6. The plots show the ratios of the real parts
PExact(k, a*)/ PEISFit(k a*) (blue), the monopoles PEXact(k, a*)/PEISFit (K, a*) (red) and the quadrupoles
PPxact(k q*)/PEISFit(k o*) (dark green) of the galaxy power spectrum in redshift space. For the bias coef-
ficients of the exact case we used the measured coefficients from [1] and the estimate Abj(a*) and Ab}(a*),
as well as Y(a*), like in Figure 3. The best fit using the bias basis from the approximate EdS case gave us
Abs pas-rit(a*) = —2 % 1072 and Abg pas-rit(a*) = 4 % 10~*. Furthermore the dashed lines are the expected

error on the monopole, 1+ o(k)/4, 1 + o(k)/2 and 1+ o(k) for a survey like DESI [52], where, very roughly,

o(k) = 0.024 % (0.2 h Mpe ™ /&)™,

5 Conclusion

In this paper, we remove the Einstein — de Sitter approximation for biased tracers in redshift
space in the EFTofLLSS. We started with the bias expansion for collapsed objects treated with
exact time dependence. We then further expanded the density perturbation and velocity
divergence into a sum of momentum kernels, each one evolving with its own time dependence.
Grouping together the momentum kernels of the biased expansion of the halos allows us to
absorb temporal integrals into thirteen parameters, which can be further reduced to seven, by
removing degeneracies among these parameters, just like in the EdS approximated solution.
However, with respect to the EdS approximation, it is necessary to include an additional
calculable time- and momentum-dependent contribution that is multiplied by the linear bias.
Therefore, while biased tracers with exact time dependence can still be described by a set
of seven bias parameters, the basis of the seven-dimensional vector space, in which the halo
overdensities lie, is slightly different from the one present with the EdS approximation, and
changes over time.

The use of the exact time dependence for the density perturbations naturally introduced
a basis for the momentum kernels that describes the halo overdensities. This is due to the
fact that up to third order, the flow terms, as well as the tidal terms, can be expressed by
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the momentum kernels that appear in the density perturbations with exact time dependence.
After accounting for temporal degeneracies, we are then automatically left with an irreducible
basis for the biases.

The coordinate transformation into redshift space with exact time dependence proceeds
in a very similar way to [43]. Neither the counter-terms nor the stochastic terms are affected
up to cubic order. In total, the halo power spectrum in redshift space with exact time
dependence is described by a set of ten coefficients (after UV-subtraction we have four bias
coefficients and six counter-terms and stochastic terms). As mentioned before, with respect to
the EAS approximation, there is an additional calculable contribution multiplying the linear
bias, which appears as a consequence of the exact time dependence, and that already enters
the halo power spectrum in real space.

The quantitative effect of removing the EdS approximation on the galaxy power spectrum
in redshift space is, as expected, larger than the one in real space. Since we computed the
galaxy power spectrum in redshift space up to one-loop order, we stop the analysis in Figure 3
at kK = 0.3h Mpc~! and chose k = 0.2h Mpc~! in Figure 4, because the ratio of the power
spectra might be affected more significantly by higher loop terms at higher £’s. In a survey
such as BOSS (see for example [1]), which is at z = 0.57, the error bars are, very roughly,
0.7% for the monopole and 7% for the quadrupole at k ~ 0.2 h Mpc™' . From Figure 4 we get
that at z = 0.57 the effect on the monopole is 0.3% and 0.7% for the quadrupole. At this
level, the effect of the EdS approximation might, therefore, be almost negligible. Since we
expect upcoming surveys, such as DESI [52], to reduce the error bars to, very approximately,
0.24% for the monopole and 2.4% for the quadrupole, the exact time dependence might play
a larger role at this level of precision.

By varying the bias coefficients in the EdS approximated case within a range that repre-
sented the physical deviation from the EdS approximation, we showed in Figure 5 that some
of the change due to the exact time dependence can be absorbed into a small shift of the
bias coefficients. This leads to a final effect of order 0.11% in the monopole and 0.47% in the

quadrupole at k& = 0.2h Mpc™!.

Therefore, the level of precision of the next generation of
cosmological surveys is quantitatively similar to the impact the exact time dependence has
on biased tracers in redshift space. The size of this effect depends on the allowed variation
of the numerical value of the biases that we believe to be physically motivated. It would,
therefore, be interesting to study more precisely the effect of the exact time dependence on
realistic data and on the estimate of the cosmological parameters. While we leave this to
future work, we point out that it appears to be not demanding to safely account for this
effect using the formulas and implementation that we provide in this paper °, for example by
extending (without any significant slowdown) the publicly available code used for the BOSS

analysis, such as [6].

Note Added: While this paper was in advanced stage of completion, Ref. [53] appeared,
which finds the same conclusions to ours for the biased tracers in configuration space, i.e. for
the results of Sec. 2, for ACDM and wCDM cosmologies.

6A Mathematica file can be found in the EFTofL.SS code repository: http://stanford.edu/~senatore/
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A Green’s functions

At linear order, the time dependence is completely captured by the growths factor, which is
defined as the solution of

d? dln H d 3
——:D 24+ ——|——D(a) — =0 D(a) = Al
d1In a? (a)+( + dlna)dlna (@) 2 m(a)D{a) =0, (A1)
where
H(CL) = Ho \/Qm,oa_g + QD70a_3(1+w) (AZ)
and we define the fractional matter and dark energy densities
oy 4 4w
Qm(a) = Qmpwa and QD<CL) = QD’OH<Q)2CL (1+ ), <A3)

in terms of their present day values €2, o and 2po. For generic w, the two solutions of (A.1)
are given in terms of the Hypergeometric functions [54]. A growing mode

w—1 1 ) 308D
D —a o F | —, ——, 1 — —, —a = A4
Ha)=a- 1( 2w ' 3w’ 6w Qm,(]) (A.4)
and a decaying mode
_3 11 1 5 o Qpo
D(a)=a2 3Fy | —,=+—, 14—, —a"—=|. A5
@ =2 (o5 g+ g0 ) (A5)
From there we get the linear growth indices fi = d;}ff.
In the special case where w = —1, i.e ACDM, the growing mode is
5 ¢ H(a)
Di(a)== [ Qh(a da A6
Yo = 5 [ 9ha) gyt (A6)
and for the decaying mode we get
HA
DA (a) = —(fj)g : (A7)
HOQm7O
Furthermore the linear growth rates can be written as
5 a 3
A A
_ (2 ~ 210 A8
70 = (5 5~ 3 )@ (A8
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and
@) = =52 (a) (A9)

However, in what follows we will work with a generic value for w.
To construct the solutions to the higher order time dependences appearing in (2.8)-(2.10),
coming from equations (2.4) and (2.5), we define the Green’s functions

a% — f1(a)G%(a,a) = N\oop(a — a), (A.10)
dG°(a,a)
“da

- @600 + 52 () - Giad) ) = (L= Adpla—a), (A1)

where \; = 1 and Ay = 0. Explicitly the Green’s functions are given by

G4(a,a) = ELI/V1(~) (dDCZ_a<a)D+(a) - dDJ&(&) D_(a)>@(a —a), (A.12)
Gifo.a) = LT (P-@D-(@) - D-@D-0) )00~ ). (A13)
ad) — f+(a)/& - (dDdd(d) dDJa(a) B dDJ&(a) dDda(a)> o). A
G40, ) = Jif(ﬁl)%) (P:@™ - D@2 Jeta-a) (A.15)

where W(a) is the Wronskian of D, and D_

dD_(a@) . . dD.(a)
o Dv@) - =

W(a) = D_(a) | (A.16)

©(a — a) is the Heaviside step function and we impose the boundary conditions

G (a,a) =0 and G%(a,a) =0 for a>a, (A.17)
Go(a,a) = A nd G%(a,a) = 1 fA"). (A.18)

a a

Moving on we can define the time-dependent functions at second order
1 N2 (5
5 o S/~ f+(a)D+(a) ~

o) = [ Git i)y (A19

1 ~ DZ ~
o) = [ G 02 g (A.20)

0 1(a)

for 0 = 1,2. And then at third order
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G’ (a)da, (A.21)
G’ (a)da, (A.22)
Gl (a)da, (A.23)

Gl (a)da. (A.24)

To derive the degeneracies pointed out in section 2.2 we need the following identities

1) 1) 0 0

gl + g2 = gl + gg

4 d

Vi + Vo

Vi + V5

1 4

Vo‘l + Va’2

1 1 1 1
Vll + VQl + V12 + V22
Vi 4+ V5 + Vi + Vs,
1 4

Val + VJ2

9 d

ul + vy,

1

(A.25)

= Uy +Us
Ul +ul
Vi + Vi,

where we remind that o € {1,2}. These relations can be inferred from equations (A.19)-(A.24)

once one realizes the following

Gi(a,a) + Gy(a,a) = Gi(a,a)+ Go(a,a) =

G?((L EL) - G?(a’ d) -

W(a) D! (a)
aW (@) D', ()

_ D, (a)
aD. ()

O(a — a) (A.26)

O(a — a). (A.27)

Furthermore, for the derivation of the functional form of Y'(a) in (2.27), it is important

to note that

a D/
VA (a) + Viy(a) = / Dyl0)Dla)
0

which is used in Appendix B.
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B Halo kernels and degeneracy of halo bias parameters

The six kernels we will use throughout this section are defines as

o (G, @y 3) = (@5, @1 + @) (G1, B2, (B.1)
(G, @, G3) = s, @1 + ) B(@, B), (B.2)
BYG, G2y ) = 2635, @ + R)es(@, B2, (B.3)
B3, @2, G5) = 28(35, ¢ + @) (01, @), (B.4)
TG @, G5) = @1 + G, B3) (G, G2), (B.5)
V(@ @ @) = @i+ @, 6)B(d1, 32) (B.6)
From equation (2.19) we get the following expressions in the bias expansion
000 HOV] = (@ @) -1 (B.7)
(002 (a') Z0V) = %fggff (G2(a)a? (@1, @2, 43) — Gi (@)1, G2) — Go(d)B(d1, o))
06 a—1'9(2)(60”)] = o (G50 (@, G, ) — GL(a") (@, @) — GE(a")B(G1, &)

“[0:6) 22 o' g(1) &7 p(1)

720 5:0] =

+ *[az-aj(s(l) (&,
G (a) (@, @) + G3(d

D]
ot < N o= B
[5”86 W] = a(q,q) -1
[ ](2> = B(@, %) — @, %) + 5
0@ ) TN — 36 (a)s] =

*[aiaj 5(1)@9(2)(61/)] o 1*[5(1)9(2)(a/)] —

52 52 3
_ %M)Q( GO (—a™ (G, 6o, &) + B7 (G0, o B5) — (G0, @os B5)

268G, @) + 260(a)B(d, 3))

*[s}i,fai(slm)(l)g—w(”] = %( 061(Q1792,Q3)+Oé2(CI17Q27Q3)+% (375’2)_5(773)—‘%)
W) = *BP)(a) — ZLE (G () — G(a)) Gi(a)( — a” (i, B, G5)
+87(q1, @2, @3) — (91,Q2,CI3))
*[53](3) -1
7Y = B(@ @)~ ald, ) + 3
= (@ @ B) — 20001, B, B) + Ba(drs @, B3) — 72(T1, B2s 33)
—a(di, @) + B(ar, @) +4/9),
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where repeated o € {1,2} are summed over and we used the notation,

X = / éﬂq)lg é:;g(zw)?’a,)(é—qq — =3 X0 (a) . 0 (a). (B.S)

Similarly to the second and third order density perturbation and velocity divergence, all of
the expressions in (B.7) only depend on the nine kernels {1, «, 5, ay, s, 81, B2, 71,72} We
can then factor out these momentum kernels and redefine the temporal coefficients to obtain
the parameters that appear in (2.22) and (2.28)

Cay(2) = Cop,g7 + Co12 = Cs2,1 (B.9)
Cp,(2) = Cop,05 T Cs21

Cr(2) = —Csi2 +Cs21 + %%2,1

Ca1,(3) = Csup + Cs.Go + Cs103 — Cs2.gs — Cs212 — % (Cst,gf — Cst,gf> + Cypus — Cypus + .G + %css
Can(3) = Csug + Co.g3 — Cs2.g8 +Ca212 — 5 (Csngg ~ G164 ) T Cpug = Cpug T €y gy — Cs3

Co1.3) = Covi, T Cagp + 3 <Cst,gf - Cst,g‘f) + ey, — Cy s, — Cygl

CBy,(3) = Cs,v3, + Cs2 g2 + % (Cst,gg — Cst,gg> + Cy Vg, — Cy,v3, — Cy.gs + %Css

Cy1,(3) = Csvs, + Csgo — Cs2.g8 — % (Cst,gf — Cst,gf> + Cy Vo, — Cyys, + Cy,G?

— - 1 — — 1
Cyo(3) = Covg T Cog8 — G268 T 2 (Cst,gg Cst,g;}) T Cp g T Cpyg T Cpgh T 508

4 7 2 1
Ca,(3) = —Csgs — C5g0 — 3Cs123 + 2C52 g5 + 2C52 12 + 5C2 g5 + 5Cs212 + 5 ( Cpg0 — Cog8 | — Cos2 — 5Cs3
= 1 1 3 =4l 3 3 1 1
c = —Cs 6 — Csa0 +2Cs2 05 + 2o g —C2 10+ 2 (Copoo — Copas | + Css2 + L
8.3) — — 45,63 5,68 52,68 T 3¢s2,G3 52,12 T 3 | Cst,G§ st,G3 ds 2Cs
4 2 2
Cr3) = —2Cs212 + €53 — 3Cs2 12 + 5Css2 + 265123 + §5Cs3,
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where in an intermediary step we defined the symbolic integrals over the time-dependent
functions discussed in Appendix A. They are given

at first order by
“da D, (d
cs1(a) :/ 705(@, a’) +(@)

at second order by

- ada/ / D+<a,)2 6/ 1
cngelo) = [ Grestad) GGl
D, (a')?
D (a)?

a da/
7052(% a’)

—~—

65271((1) =

and at third order by

da"D’ (a")———=%

(B.10)
@ da’ . D+(CL/) D+(CLI)2
“a12(0) :/ @ ) {m(a) " Di(a)?
cp21(a) = / %652(@@')1;1({;))2 :
css(a) = /a d?cflc(;s (a,a )ID)+((Z/))3
T

' D (a)?
cons, @) = [ Grela,a) TREVE @)
o, (@) = [ eulad) BV W)
D+(6LH) 0/, I
D, (@)

Go(a')(G1(a) —Gi(d))

1D, (a')’

o) = [ Lo 2L
cousta) = [ N y(aa) l;i ((C;))j U (a)
covt, (0 = [ Destaay 2Lyt (o)
crgs(0) = [ et 2N go(a)
cossl@) = [ Beatad) 2L Go)
cast(@) = [ Beuta 2 ga1a)
@) = [ Lentaa) TT Ui
(@) = [ Bewta, )2 i
) = [ T [

= (V2i(a) + Vs(a)) es1 — Coys, — Csus,
cuar(@) = [ Bea. ) 2L
wmte) = [ estod) 35 - 5

2 Di(a)® |

The integral that appears in csgs was solved using (A.28).
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As has been pointed out in section 2.2 the coefficients in (B.9) have degeneracies. We here
derive one of the degeneracies explicitly

CB1,(3) T CB2,(3) T Cyi,(3) T Cro(3) = Co60 + Csgy + Csys + Cs s, + Csys + Csys, (B.11)

N (Cw,vfl F oy, Tl T Cw%z)

+ (wal T Oyl T Cpug T vavsg)
1

= 505,1,

the other ones are derived similarly. The above holds because of the identities in (A.25),
which are derived in Appendix A.

Furthermore, using the coefficients in (B.9) we can derive Y (a) as given in (2.27). Using
the definition (2.26), we get

3
Y(a)esy = = T f + ¢s.g0 + Csys + Csys, - (B.12)
Simply plugging in ¢;ge as given in (B.10), then gives
3 5 5

Finally, after capturing all the degeneracies, we can define the new basis given by the C;
operators that appear in (2.28)

*C(l)(ﬂ) =1 (B.14)
*(C (Q1,C]2 B(q_ivCTQ)
C(q, ¢ (G, @) — B(G, ¢)
@, qp) = 1
f B 2 o 3 3 T
Cs' (1, 2, G3) = Y (Q17QQ,C]3)+7042(Q17Q2,Q3)+ 52( C]3)+ﬁ71(91,CI27Q3)
CNG o, i) = @, @ @) — oGy oy G)
COG, @, @) = —0ol@r, B @) + Brlh @os @) — (Ghs G2 G3)
COG B @) = (@G B) + 200(T Doy B) — Bo( @1, G0 @) + 72(T1, Gor B)
‘COq1, ¢, G5 (G, ) — B(d, &)
CG. . 6) = B0, @)
C( G, @) = 1
TG, @) = —0a(@, G, B) + 200(01, B, B) — Bo( T, s ) + (G0 B0 T).
where we used
3 3
X®(k,a) = / (273)13 .(C;:)"g(m%,)(zz_qq_...—in) X ) 6 (0) .60 (a)
(B.15)
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C Derivig flow terms
We here give a few examples of how to derive the flow terms in (2.19) coming from the Taylor
expansion (2.18). The Taylor expansion of §(Zg, a) is given by
a da// )
g / / g / / (7 "
6(xﬂ(a,a),a):5(x,a)—8i5(x,a)/al mv(m,a ) (C.1)
1 a da// P a da/// o
+§8iaj5($v a/) // a/IQH(a//) v (IB, a”> // a/”QH(CL’”) v’ (.1’, a///)

a da// a dalll o
od(z,d) / () OV )/,,mv”@a’”w... :

After expanding the overdensity and velocity divergence perturbatively, the only second order
term (apart from 6®)) is in the first line, which is given by

a dal a da// .
o l S() (. DVig my —
/ o cs(a,a’) 0;04(a’) /a/ —a”zH(a”)v (a") (C.2)

[ty 28 00y [ 2L

D, (a)
da D, (a") D (a") o'
_ . 6 o
/ a (@) D @) +(a) [ D, (a) o ( )82 (a)
= [es1(a) — cs2(a)] 06" (a) 9(1)( ) -
o
= ¢512(a)0,0" (a) 556 (a) .
At third order we take this same term with § at second order and in v at first order. Trivially,
this gives
o * da’ / £(2) //a da” )iy 11\
/ o eo0.) 0890 | e ) = (C3)
_ “dd’ / D (d) (2)( 1 ' (1)
_/ = cs(a,d) {1 D+(a)] 0.0 (a') 556(a)
ai
= [ena(a) — e5a(a)] 010 (@) 556(a)
Again, from the same term we can take J at linear and v at second order. We have
a da/ a da// )
. - / sy (1 (2)i( 1y —
/ " eslaa) 000 () / g V) (C.4)
“dd / D+(a/) /a " D/+<a”> al "
[ ot B B
1 ok
5 [esa(a) = c53(a)] 06 (a) 756 (a),

where we partially integrated to obtain the EdS results. In the second and third lines of (C.1)
we can take all fields at linear order. The two terms are derived in a similar fashion. For the
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third line for example, we have

1 a dal a da// ; a da/// )
3 el 060 [ St 006 [ i o ©

a

i B [ T
da’' o lad Dy(a) [1  Dy(d)  1D(d) WP ay oy

[ e B |3 D+<a>+2D+<a>]“ R

= —305,123@5(1)(@)8{;?]9 (a )g;

0" (a)

and the rest of the flow terms in (2.19) are derived similarly.

D Relation to BoD basis

For completeness we here give the relation to the BoD operators C; from [43] (in [43] C; are
called C;). They are related to the ones we used in this paper by

Cl(ka) = C(k,a) (D.1)
C(k,a) = CP(k,a)+CP(k,a) - CP(k,a)

~(3), a 2 12 -

Cir(k.a) = CE(k.a)+ =CQ(k.a) + CY (K, a) - —CL(k,a) — 2C (K. 0) + C (K. a)
~ oy o 2 S R

Cia(F,a) = —=CP(k,a) +C(K,a)

~ g 2 nd 16 e — —

Ciy(k.a) = —2CO(k,a) + —CP(Fa) +2C5 (k,a) — 207" (k. a)

~(3) 1 - 4 - 4 .

Ciyka) = 5C (K 0) = CQ(k.a) = -CO(k.a) + TV (K. a)

i) = C(F,a)

C\(k,a) = 2CP)(k,a) +2C5 (k,a) — 2C{" (K, a)

R, F.a) = —2CPF,a)+ 200 (F,a)

(3) 5 . 2 .

C3,(k,a) = ?cﬁl (F.a) = ZC (K, a) = ;CP(F,a) + <c (K, a)

C\(k,a) = CP(k,a).
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Similarly, the bias coefficients in this paper {b,bs,bs,bs} are related to the ones in [43]
{b1, b2, b3,b4} by

by = b (D.2)
by = Ib—Ibs

by = 21by

bi = —3bi+by+Iby

E Redshift space kernels

We here give explicit expressions for the integrals in equation (3.3).
At second order we have

8 _Zq,z
ool = (T8) KK @ (E1)
1
0., 0, q1292=
Tt = (-%5) K@K

and at third order
0, 0, 0,

On 25 0n 75 On T 29292

L L O G

(
0., 0, ( q12G2=
(3

Q1zq2zq3z
)éﬂw@ﬂw@%@

120, 20:5100) - qq)@%)@%@&ﬂ@
142

0. it -
ZeoiO@ = (-8 kD E D@ - BB

(G1 + G»)?
0, 0, (Q1+Q2)ZQ3Z 2)/> - (1)

— (LT 92)832 ) 5 e K
[829h829h] (@) ( (@1 + )G o (01 8 )60, (),

M%@@ﬂmﬁwﬂ

where we again used the notation

X)) = / éf)lg > éf; @2m)?op(k — G — ... — @) *[X]™(a)o}) (a) ... 6% (afE.2)

F Further EAS comparisons

In the main text we used ¢, = 0.58 to calculate (4.2), and apply it for Abj and Abj. It is
interesting to see how a different sign of these estimates would affect our result. Therefore, in
the first part of this Appendix, we here give plots of Figure 4 with all possible combinations
of the relative signs of Abs and Ab, (four possible combinations in total). They are depicted
in Figure 6.
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Figure 6: Diagrammatic representation of the ratio of the exact galaxy power spectrum in redshift space
over the approximate case as a function of the scale factor at k* = 0.2 hMpc™'. The plots show the ratios
of the real parts PEXACt(k* a)/ PLOSPPr % (k* q) (blue/cyan), the monopoles PIact(k*, a) /Py a5 #PProx (k= q)
(red/orange) and the quadrupoles PExact(x q)/PEISPProX(px o) (dark/light green) of the galaxy power

spectrum in redshift space. For the bias coefficients with EdS approximation we used by mas(a*) = 2.2,

- 12
bopas(a*) = —0.4, bypas(a*) = 1.9, bygas(a*) = 0, capas(a*) = 0, é.1mas(a*) = —8 (kn/hMpe ™),
éromas(a*) = 0, cei1mas(a®) = 1.3 and ce o pas(a®) = —4 (kM/hMpc_l)2 from [1] at a* = 0.64. The

coefficients were promoted to functions through the time dependence implied by (4.2). Furthermore, we use
the calculable time dependence of Y (a) from (2.27). The dashed lines represent the effect of the approximation
that comes from redshift space and the contribution multiplied by Y (a) only, i.e. bs(a) = b3 pmas(a) and
bs(a) = by gas(a). The estimate from (4.2), where b3(a) = b3 gas(a) + Abj(a) and by(a) = by gas(a) + Ab}(a)
(Ab%(a) and Abj(a) are shown in Figure 2), is depicted by the darker solid lines. The lighter shaded areas are
bounded from below (—) and above (4+) by bs(a) = b3 gas(a) £ 2 * Abj(a) and bs(a) = bs ras(a) £ 2+ Abj(a).
In each diagram we used (Abz(a), Aby(a)) = (£Ab;(a), £Ab}(a)), where the specific configuration is given in
the title of each figure and Ab%(a*) and Ab}(a*) are the estimates from (4.2).
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Next, we want to check that our results do not depend too much on the specific choice of
bias coefficients we used. This is important since the coefficients measured in [1] have quite
large error bars. Approximately we have

bipas =22+ 0.2 bypas = —04+05 bypas=1.9+02 byges=0+0.14 (F.1)

ke ) kv )’
Cet,EAS = 0x3 <W) 5r,1,Eds = —-8+x4 <W) 5r,2,EdS =0

k)7
CE,l,EdS =13+08 ce,Q,EdS =442 <W> .
Note, however, that the errors on some of the parameters are highly correlated and we can
treat them as one. We have ¢, gas = —%cQQ,EdS and EQ’EdS = B4,EdS (5 are the bias coefficients
in the basis of [1] and the transformation is given in (D.2)), since their difference was put
to zero in [1]. Furthermore, since b; defines the proportionality constant in the time kernel
function we leave b; out of our analysis. Therefore, there are five parameters we vary. The
plots show versions of Figure 4 with all possible applications of these errors. Next, we define
the array (dba, dby, dcey, dc,1,deey) € {0,1,—1}°. In the first case, a zero means we use
the parameter itself and a one means we use the parameter plus its error. There are 32
combinations of these errors which are shown in Figure 7.

Since we see no large difference in Figure 7, which represents the possible addition of the
error bar, we can treat the addition case as negligible. In the next plot, a zero means we use
the parameter itself and a minus one means we use the parameter minus its error. There are
32 combinations of these errors shown in Figure 8, where one can see that subtracting db

leads to an increase in the effect.
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Figure 7: Plotted above are the ratios of the exact galaxy power spectrum in redshift space over the ap-
proximate case as a function of the scale factor at k* = 0.2 hMpc~'. The plots show the ratios of
the real parts PEXact(k*,a)/Phos P (k* a) (blue/cyan), the monopoles PE*<t(k*, a)/ Py S PP (k* a)
(red/orange) and the quadrupoles PExact(x q)/PEAS-aPProx(px o) (dark/light green) of the galaxy power
spectrum in redshift space. For the bias coefficients with EdS approximation we used by mas(a*) = 2.2,

- . 1\ 2
bomas(a*) = —0.4, bypas(a*) = 1.9, bygas(a*) = 0, capas(a*) = 0, é.1mas(a*) = —8 (kn/hMpe '),
éromas(a®) = 0, ce1mas(a®) = 1.3 and c. 2 pas(a*) = —4 (kM/hMpcfl)2 from [1] at a* = 0.64. Here
(dbg,dbs, dcet, déy 1, dee 1) € {0,1}° and the particular choice is in the title of each figure. The further proce-
dure and color code is the same as in Figure 4.
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Figure 8: Plotted above are the ratios of the exact galaxy power spectrum in redshift space over the ap-
proximate case as a function of the scale factor at k* = 0.2 hMpc~'. The plots show the ratios of
the real parts PEXat(k*,a)/Phos P (k* a) (blue/cyan), the monopoles PE*<t(k*, a)/ Py a5 PP (k* a)
(red/orange) and the quadrupoles PExact(fx q)/PEAS-aPProx(px o) (dark/light green) of the galaxy power
spectrum in redshift space. For the bias coefficients with EdS approximation we used by mas(a*) = 2.2,
bapas(a*) = —0.4, bz gas(a*) = 1.9, byras(a*) = 0, ce,pas(@®) = 0, &1,pas(a*) = =8 (kM/hMpC_1)2,
éromas(a®) = 0, ce1mas(a®) = 1.3 and c. 2 pas(a*) = —4 (kM/hMpcfl)2 from [1] at a* = 0.64. Here
(dbg,dbs, dcet, déy 1, dee1) € {0,—1}° and the particular choice is in the title of each figure. The further
procedure and color code is as in Figure 4.
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