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Abstract The disagreement between direct late-time measurements of the Hubble constant from the
SH0ES collaboration, and early-universe measurements based on the ΛCDM model from the Planck
collaboration might, at least in principle, be explained by new physics in the early universe. Recently,
the application of the Effective Field Theory of Large-Scale Structure to the full shape of the power
spectrum of the SDSS/BOSS data has revealed a new, rather powerful, way to measure the Hubble
constant and the other cosmological parameters from Large-Scale Structure surveys. In light of this,
we analyze two models for early universe physics, Early Dark Energy and Rock ’n’ Roll, that were
designed to significantly ameliorate the Hubble tension. Upon including the information from the
full shape to the Planck, BAO, and Supernovae measurements, we find that the degeneracies in the
cosmological parameters that were introduced by these models are well broken by the data, so that
these two models do not significantly ameliorate the tension.
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1 Introduction and Summary

The EFTofLSS: After a long development, the Effective Field Theory of Large-Scale Struc-
ture (EFtofLSS) has been applied to the data of the BOSS/SDSS survey, and used to analyze
the power spectrum of galaxies [1, 2, 3] 1. These results have allowed us to measure, using
only a prior from Big Bang Nucleosynthesis (BBN), all the cosmological parameters of the
νΛCDM model and, recently, also of the wCDM model [4], except for the neutrino masses
and for w, for which only bounds have been obtained. The w parameter is well measured
upon adding Baryon Acoustic Oscillation (BAO) data. The smallness of the error bars on
some of these parameters, and the accuracy achieved when fitting to simulations, have shown
the power of current Large-Scale Structure (LSS) surveys even without the inclusion of any
priors from the cosmic microwave background (CMB). In particular, the precision on the
measurement of the present-day dark matter fraction, Ωm, is very similar to the one from
Planck2018 [5]; and the precision on the present-day Hubble parameter, H0, is of the same
order of the one obtained from the Cosmic Distance Ladder, such as SH0ES [6]; the constraint
on w is not far from the one obtained by CMB plus supernovae [4]. These results establish
that the contribution of next generation LSS surveys to our understanding of the history of

1Notice that Ref. [3] is a companion paper to [1]. Ref. [1] also applied it to the bispectrum, but finding
marginal improvements, probably due to the fact that only the tree-level prediction was being used, so that
the k-reach was not quite high.
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the universe, once analyzed with a controlled theory such as the EFTofLSS, might be very
large, potentially helping humankind to continue the remarkable cosmological exploration
that was achieved in the past decades.

It was a very long journey to develop the EFTofLSS to such a level that it could be applied
to data: each of the ingredients of the EFTofLSS that was required in order to be able to
analyze the data (dark matter and baryon clustering, galaxy clustering, IR-resummation,
redshift space distortions, etc.) was singly developed, tested on simulations, and shown to
be successful. Though not all these intermediate results are directly used in the analysis,
we believe they were necessary for us, and probably for anybody else, to apply the model to
data. We therefore find it fair, in each instance where the EFTofLSS is applied to data, to add
the following footnote where we acknowledge at least a fraction of those crucially important
developments 2.

The Hubble Tension: There are roughly three different ways in which the present value of
the Hubble constant, H0, is measured (see [54] for a recent review). The first that was histor-
ically developed is the direct measurement based on the cosmic distance ladder. Depending
on the elements of the ladder that are chosen (the so-called calibration method), there are
currently two measurements available, either from the SH0ES collaboration [55] or from the
Carnegie-Chicago Hubble Program (CCHP) [56]. A second way is to use the measurement of
the density fluctuations to extract the angle upon which the scale associated to the horizon
at the last scattering surface is projected, and from there to extract the Hubble parameter.
This has been historically applied first to the CMB data (see for e.g. [5]). Recently, these
measurements have been shown to be possible also with Large-Scale Structure data within
a small range in redshift [1, 2, 3, 4, 57], giving competitive results 3. Finally, a third way

2The initial formulation of the EFTofLSS was performed in Eulerian space in [7, 8], and subsequently
extended to Lagrangian space in [9]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. These calculations were accompanied by
some theoretical developments of the EFTofLSS, such as a careful understanding of renormalization [8, 20,
21] (including rather-subtle aspects such as lattice-running [8] and a better understanding of the velocity
field [10, 22]), of several ways for extracting the value of the counterterms from simulations [8, 23], and of the
non-locality in time of the EFTofLSS [10, 12, 24]. These theoretical explorations also include an enlightening
study in 1+1 dimensions [23]. An IR-resummation of the long displacement fields had to be performed in
order to reproduce the Baryon Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed
EFTofLSS [25, 26, 27, 28, 29]. An account of baryonic effects was presented in [30]. The dark-matter
bispectrum has been computed at one-loop in [31, 32], the one-loop trispectrum in [33], and the displacement
field in [34]. The lensing power spectrum has been computed at two loops in [35]. Biased tracers, such as
halos and galaxies, have been studied in the context of the EFTofLSS in [24, 36, 37, 38, 39, 40] (see also [41]),
the halo and matter power spectra and bispectra (including all cross correlations) in [24, 37]. Redshift space
distortions have been developed in [25, 42, 39]. Neutrinos have been included in the EFTofLSS in [43, 44],
clustering dark energy in [45, 18, 46, 47], and primordial non-Gaussianities in [37, 48, 49, 50, 42, 51]. Faster
evaluation schemes for the calculation of some of the loop integrals have been developed in [52]. Comparison
with high-quality N -body simulations to show that the EFTofLSS can accurately recover the cosmological
parameters have been performed in [1, 3, 53]

3For earlier results that involve using BAO measurements at more spaced redshift, see [58]. In [59] the
galaxy lensing is also included.
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to measure H0 is to use the time delay in multiply-imaged gravitational lenses, as shown for
example by the H0LiCOW collaboration [60].

Roughly, and within the ΛCDM model, the measurements involving CMB and LSS show
a value of H0 which is significantly lower than the ones obtained from cosmic ladder and
gravitational lenses. If we consider the most extreme, but also the most precise, result from
the SH0ES collaboration, the tension is larger than four standard deviations 4. This is the
so-called ‘Hubble tension’.

There are two crucial differences between the CMB and LSS measurements and the ones
from the cosmic ladder and gravitational lenses. First, the CMB and LSS measurements
obtain their value of H0 by assuming some physical law to be valid in the early universe:
from the Big Bang all the way to present data (though only the time from around the last
scattering surface onwards really matters). Because of this, these are called “early universe”
measurements. On the contrary, the cosmic ladder and the gravitational lenses need to assume
physical laws of the universe only near the present time, and one could argue that they are
much less sensitive to these assumptions. Because of this, these are called “late universe”
measurements or also “direct” measurements.

The second aspect in which the early universe and the late universe methods differ is the
complexity of the physical system one needs to model in order to extract the measurement.
While the measurements from both the CMB and the LSS (using the EFTofLSS) involve
the solution of linear or mildly non-linear equations, the late universe measurements require
the modeling of complex astrophysical systems which are described by very non-linear equa-
tions and that, in most cases, are modeled phenomenologically rather than solved from first
principles.

Because of this second difference between the two classes of measurements, it is well
possible that the disagreement in the Hubble measurements might be due to some systematic
error either in the measurements or in the astrophysical modeling in either of the methods.
It is not the purpose of this paper to investigate this possibility 5, though we make two
observations. First, the CMB and LSS measurements are sensitive to different systematic
and modeling errors, and, therefore, the agreement between these two measurements found
in [5, 1, 2, 3] suggests that these issues are small in the two datasets. Second, the measurement
from cosmic ladder from the CCHP collaboration [56] is compatible, albeit maybe marginally,
with the measurements from CMB and LSS.

There is a second possibility for the explanation of the disagreement in the H0 determina-
tion. Because of the first difference between the “early” and “late” Universe measurements, it
is actually possible that a model of the early universe beyond ΛCDM might change the early
universe dynamics so that the inferred parameter values from the CMB and LSS can shift
to agree with the late-universe measurements. Several models have been proposed to realize

4The tension with the measurement from the CCHP collaboration [56] is significantly smaller, if not absent
at all.

5The disagreement between the two main collaborations using SNIa, the SH0ES [6] and the CCHP [56], may
point to some unresolved systematics in this kind of measurements. A criticism of a possible oversimplified
modeling of lenses has been presented in [61].
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this possibility, and it is fair to say that, when analyzed using data sets that included SH0ES
data, the tension was ameliorated (but not solved) 6. Two particularly popular models are the
so-called Early Dark Energy model (EDE) [63, 64] and the Rock ’n’ Roll (RnR) model [65],
that use a scalar field to inject energy in the early universe, raising the inferred value of H0

from CMB and LSS measurements.
The purpose of this paper is to perform the analysis of several cosmological data sets

against the EDE and RnR models, and to see the amount to which, if any, the Hubble
tension is still alleviated upon inclusion in the analysis of the Full Shape (FS) of the BOSS
power spectrum. Recently, Ref. [66] has analyzed the EDE model against several data sets,
but not the BOSS FS. They have found that upon adding to the combination of the Planck
and SH0ES data other LSS data sets, such as for example BAO [67] or the DES [68] and
KiDS [69] data, or Supernovae, the tension in the Hubble parameter is still persistent and
actually increasing even in the EDE model. Furthermore, the same reference has found that
using just the Planck data is sufficient to determine the EDE parameters, and the resulting
values are inconsistent with the one obtained upon adding SH0ES: this suggests that the
SH0ES data and the Planck data are inconsistent even in the EDE model. For the case of the
EDE model, we will agree with the findings of [66], and we will make the conclusions stronger
by adding the FS data.

Data Sets: In this paper we focus on applying the EFTofLSS to the Full Shape (FS) of
the Power Spectrum of Galaxies to constrain the RnR and EDE models. We analyze various
combinations of data, among which the FS of BOSS DR12 pre-reconstructed power spectrum
measurements [70], baryon acoustic oscillations (BAO) of BOSS DR12 post-reconstructed
power spectrum measurements [71], Planck2018 TT,TE,EE+lowE + lensing [5]. We also
consider combinations with Supernovae (SN) measurements from the Pantheon Sample [72],
and, finally, the direct measurement of the Hubble constant from the SH0ES collaboration [55].
When quoting BAO, we also include measurements at small redshift from 6DF [73] and SDSS
DR7 MGS [74], as well as high-redshift Lyman-α forest auto-correlation and cross-correlation
with quasars from eBOSS DR14 measurements [75, 76] 7. When combined with Planck or
SN, we simply add the log-likelihoods, since all the measurements refer to separate redshift
bins. There is a small cross-correlation between the galaxy clustering data and the Planck
weak lensing, which we neglect.

Main Results: The main results of our analysis are best represented by Fig. 1 and 2. We
find that both for the RnR and EDE models, the Planck+BAO+SN data are sufficient to
determine the parameters of the models and these are quite inconsistent with the ones obtained
when adding the SH0ES data. Upon adding the FS data, we find that, without SH0ES data,

6We mention here that a critique has been presented in [62] on the class of models that change early
universe dynamics, based on results from fits to H0 using several low-redshift distance indicators.

7The inclusion of post-reconstructed BAO measurements gives a non-negligible improvement because the
reconstruction amounts to using higher n-point functions. However the pre- and post-reconstruction BAO
measurements are correlated. This is taken into account as in [4] (see also [57]).
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the cosmological parameters become more compatible with the ones obtained from ΛCDM
(implying no evidence for any of the models), while, upon adding SH0ES data, the value of
H0 is still low. All these statements are made significantly stronger by the addition of the FS
data. The improvement of the goodness of the fit to the data in the EDE and RnR models
with respect to ΛCDM is marginal for all experiments but for SH0ES, where the improvement
is significantly decreased upon adding the FS. In summary, even in the case of EDE and RnR
models, the SH0ES data seems to be incompatible with the Planck+FS+BAO+SN data,
and, upon inclusion of the SH0ES data, the H0 tension is not resolved, but just very mildly
ameliorated by these models.

We also provide a physical explanation for why the EDE and RnR models are not able
to resolve the Hubble tension. This has to do with the fact that the data, even without
the SH0ES measurement, are able to break the degeneracy between the sound horizon at
recombination, rs, and H0. So, ultimately rs and H0 are not allowed to move much away
from their ΛCDM values, even if the model would allow for this to happen. It is expected
therefore that similar findings as here will be found for different models that attempt to use
the degeneracy between rs and H0 to resolve the H0 tension.

Future directions: It would be interesting to repeat a similar analysis on different models
that claim to ameliorate the Hubble tension, as for example [77, 78]. It would also be inter-
esting to repeat the analysis by removing at least a fraction of the data sets, to see if some
model significantly reduces the tension within the resulting subset of data, as it was recently
done for Planck, by removing the high multipole data, in [79].

Codes: The predictions for the FS of the galaxy power spectrum in the EFTofLSS are ob-
tained using PyBird: Python code for Biased tracers in ReDshift space, publicly available at
https://github.com/pierrexyz/pybird and described in [4]. The linear power spectrum in the
RnR model has been computed using the CLASS−RNR code, made available to us by the
authors of [65] and now publicly available at https://github.com/franyancr/class−rnr, while
in the EDE model it has been computed using the code CLASS−EDE publicly available at
https://github.com/mwt5345/class−ede and described in [66] (we also compared with the re-
sults obtained using AxiCLASS, publicly available at https://github.com/PoulinV/AxiCLASS,
finding agreement). The linear power spectra in the ΛCDM model were computed with the
CLASS Boltzmann code [80] 8. The structure of the PyBird code is such that it is practi-
cally immediate to interface it with any Boltzmann code. The posteriors were sampled using
MontePython cosmological parameter inference code [81, 82] 9. The plots have been obtained
using the GetDist package [83].

8http://class-code.net
9https://github.com/brinckmann/montepython_public
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2 Mini-review of Models

2.1 Physical Considerations

Given the current tension between the local determination of the H0 constant and the global
fits to the ΛCDM model, there have been many theoretical models proposed in order to
alleviate the tension. A good review of the possible directions is [84], where it is argued
that the class of models “least unlikely to be successful” involves an increase in the expansion
H(z) prior to recombination, in order to decrease the sound horizon at recombination. This
comes from the fact that the CMB constrains with precision the angular acoustic scale at
recombination θs, which is the ratio

θs =
rs(zCMB)

DA(zCMB)
(1)

where zCMB ≈ 1100 is the recombination redshift, rs =
∫∞
zCMB

dz′

H(z′)
cs(z

′) is the sound horizon
at recombination, and DA(z) =

∫ z
0

dz′

H(z′)
the angular diameter distance. DA is sensitive to

physics after the CMB decoupling and therefore has explicit dependence on H0, while rs
depends on physics before recombination. To keep θs constant, an increase in Hubble of
O(10%) before zCMB allows for a O(10%) increase in H0, sufficient to resolve the H0 tension.
A way to achieve this is to add light degrees of freedom that behave like dark energy prior to
recombination, and becoming a subdominant component afterwards, to provide consistency
with the CMB spectrum [85, 63, 65, 64, 86, 87, 88, 89, 90, 91]. Here we focus on two models,
Axion Early Dark Energy (EDE) and Rock’n’Roll Dark Energy (RnR).

Before moving on to review the models and actually perform the data analysis, it is
worthwhile to elaborate on the dependence of eq. (1) on the cosmological parameters, which
explains why adding the LSS data will be powerful in constraining the EDE and RnR models.
Keeping in mind that the relative amplitude of the CMB and BAO peaks fixes ωb, following
for example [92, 63] we can Taylor expand eq. (1) around the best fit given by the Planck
cosmology, to find that the dependence of this angle on the remaining cosmological parameters
is

θs(zCMB) ∼ rsω
0.4
m H0.2

0 , (2)

In LSS we are measuring the same angle θs(z), but with z ≈ zLSS ∼ 0.3. Interestingly, in
the case of LSS, the actual angle (or ratio of length scales) θLSS, under which the BAO oscilla-
tion is observed, scales as the geometric mean of what is observed parallel and perpendicular
to the line of sight (see for example [93, 94]):

θLSS '
rs(zCMB)

(DA(zLSS)2 · c zLSS/H(zLSS))1/3
, (3)

where c is the speed of light. Taylor expanding around the Planck cosmology, we find that
θLSS scales as [1]:

θLSS ∼ rsω
0.1
m H0.8

0 . (4)
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Next, the absolute amplitude of the peaks can be estimated following [95] to scale as

Peak height ∼ r−0.26
s ω−0.25

m . (5)

It is straightforward to check at this point that all the parameters rs, H0 and ωm can be
independently measured by the combination of these three observations, as we will show
explicitly in App. A. Of course, there are also other sources of information from CMB and
LSS, such as the fact that we observe θ(zLSS) at several redshifts, or the shape of the smooth
part of the dark matter power spectrum [95, 1]. The smooth part of the power spectrum
starts playing a role, together with the peak height, only once the FS is analyzed, and it is
particularly important to determine ωm through its dependence on the equality time. We
discuss this more in App. B.

But suffice it to say that, at least in principle, given a certain shift in rs, the shift in H0

needed in the CMB to match observations will be different than the one needed to match
the LSS observations, introducing a tension where currently there is no tension. This is, in
essence, the reason why the FS and the BAO data will be useful to constrain the EDE and
RnR models. More in general, since these considerations apply to the fact that the model-
induced degeneracy between rs and H0 is actually broken by the data, it is expected that
similar findings will apply to other models that attempt to use this potential degeneracy to
resolve the Hubble tension.

2.2 (Axion) Early Dark Energy

The axion EDE model [63, 64] introduces an ultra-light axion (ULA) field φ with the La-
grangian [85],

L = −1

2
(∂µφ)2 − Λ4 (1− cos (φ/f))n − VΛ , (6)

where f is the axion field decay constant, and the misalignment angle Θ = φ/f takes values
Θ ∈ [−π, π]. Denoting Vn(φ) = Λ4(1− cosφ/f)n + VΛ, the equation of motion is

φ̈+ 3Hφ̇+
dVn(φ)

dφ
= 0 , (7)

and the energy density ρφ and pressure pφ are

ρφ =
φ̇2

2
+ Vn(φ) , pφ =

φ̇2

2
− Vn(φ) . (8)

At early times, H � m, where m = Λ2/f , the axion field is frozen and the energy density
grows with respect to the other components. As Hubble drops below m, the field becomes
dynamical and begins to approach the minimum of the potential. The dynamics is parame-
terized by m, f , n, VΛ, and Θi where Θi is the initial misalignment angle. Without loss of
generality, we can restrict Θi to 0 ≤ Θi ≤ π.
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The axion field gives maximum energy injection around the redshift zc at which it begins
to oscillate, that is m ≈ 3H(zc). The maximum energy injection, fEDE, is given by

fEDE(zc) '
Vn(Θi)

3M2
pH

2
|z=zc'

m2f 2

3M2
pH

2(zc)
(1− cos Θi)

n ' 3f 2

M2
p

(1− cos Θi)
n . (9)

Therefore we can trade the free parameters of the model with the phenomenological param-
eters fEDE, zc, n, Θi and VΛ [64, 66].

After zc, the field oscillates and the energy density rapidly decays. The oscillations occur
about the local minimum of the potential Vn(φ), which to first order is V ∼ φ2n. Using the
virial theorem, the equation of state becomes [96]

wn ≡
n− 1

n+ 1
. (10)

One should note, however, that if the potential becomes too steep, that is if n is too large,
then the field may reach an attractor solution and never oscillates [97, 98].

2.3 Rock ’n’ Roll

To increase H(z) in a small redshift window before recombination, one can seek solutions such
that the difference of the equation of state of the scalar field w and the one of the background
wb, (w − wb), must transition from negative to positive. At early times, the scalar field is
frozen and the energy density is dominated by the background, so (w−wb) is negative. At the
redshift where w = wb, the energy density of the field reaches its maximum. As w increases
further, the energy density of the field then becomes subdominant again. In the Rock ’n’
Roll (RnR) model [65] one considers a simple class of solutions with w ≈ −1 initially, while
then w thaws to a constant wφ > wb. The redshift zc at the transition point w = wb is the
point of maximum energy injection.

Afterwards, the energy density of a rolling field with constant equation of state is

ρφ(a) = ρ0

(a0

a

)3(1+wφ)

, (11)

where ρ0 is the initial energy density of the rolling solution at a scale factor a0. Using the
Friedmann equations, one finds that

V (φ) =
1− wφ

2
ρφ , (12)

∂aφ =

√
(1 + wφρφ)

aH
. (13)

Since the background energy density dominates, 3H2M2
P ≈ ρb = ρb0

(
a0
a

)3(1+wb), the solution
for φ(a) is then

φ(a) = c
(a0

a

)3(wφ−wb)/2
, c =

MP

(wφ − wb)

√
4(1 + wφ)ρ0

3ρb0
, (14)

9



imposing that φ→ 0 for a→∞. Since both the potential and the field are power laws of a,
the potential is a power-law of φ:

V (φ) =
1

2
(1− wφ)ρ0

(
φ

c

)2n

, n =
1 + wφ
wφ − wb

. (15)

The potential for the RnR model is therefore chosen as

V (φ) = V0

(
φ

MP

)2n

+ VΛ , (16)

where a constant VΛ is added. As mentioned, the field achieves its maximum energy density
when w = wb at zc, which is given by ρφ(zc) ≈ V (φi), where φi is the initial field value. The
maximum energy fraction is given by [65],

fRNR(zc) ≈
V (φi)

3H2(zc)M2
P

. (17)

The free parameters of the RnR model are V0, VΛ, n, and the initial condition φi. We set
φ̇i = 0 because of the frozen field attractor solution at early times. As we see, we can trade
two of them for the phenomenological parameters zc, fRNR.

3 Data Analysis

3.1 RnR Analysis

For the cosmological analysis of the RnR model, we fix the initial φ̇ to vanish, and take as
free parameters φi, V0, and VΛ. By reparameterization, we vary zc, fRnR and VΛ. We further
restrict the analysis to the case of n = 2 as [65] finds that n = 2 provides the largest values
of energy injection and best overall fit.

We show the likelihood contours in Fig. 1, and in Table 1 we summarize the one-dimensional
posteriors for some parameters. In Tables 3 and 4 we give the χ2 of the best fit of our results,
compared with the ΛCDM model run with the same experiments. We discuss potential issues
related to volume sampling of the distribution in App. D, finding that they give marginal
effects.

The RnR model clearly points to a tension between the SH0ES data and all the others.
Both sets of experiments that include SH0ES are best fitted by an injection of scalar field
energy, quantified by the fraction fRnR ∼ 0.05 around redshift 3400. The H0 best fit is higher
than in the corresponding sets of experiments without the SH0ES measurement included.

The models without the SH0ES measurement included have fRnR peaked towards 0, indi-
cating no dark energy injection in the history of the universe, which confirms that the CMB
and LSS datasets are consistent, and that the parameters of the RnR model are determined
by them in such a way that the scalar field contribution is not needed. This points to an in-
compatibility between the Planck and BOSS data versus the SH0ES data, because the values
of H0 that one gets before combining the experiments are incompatible.
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Figure 1: One dimensional and two dimensional posterior distributions of some of
the parameters of the RnR model analyzed with several combinations of data sets:
Planck+BAO+Pantheon, Planck+FS+BAO+Pantheon, Planck+BAO+Pantheon+SH0ES
and Planck+FS+BAO+SN+SH0ES.

An interesting point is that adding the FS measurements shifts H0 towards the Planck
ΛCDM value, pointing once again to the consistency of the LSS and Planck data, and to
the tension with the SH0ES determination of H0. This happens both with and without the
addition of the SH0ES data. More precisely, without the SH0ES measurement, adding the FS
to Planck+BAO+SN results in a shift on H0 by about 1.2σ, in the direction of the concordance
ΛCDM model. For the measurements with SH0ES, adding the FS to Planck+BAO+SN
results in a shift on H0 by about 0.9σ, in the direction of the concordance ΛCDM model 10.
In App. B we show the posteriors for the parameters that are common with the ΛCDM model
for the combinations of the data sets not involving SH0ES, showing indeed consistency of the

10In evaluating the significance of these shifts, we remind that in these analyses a large fraction of the data
sets, as well as the way they are analyzed, are unchanged.
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Dataset H0 fscf σSH0ES σPlanck

Planck + BAO + SN 68.52+0.55
−0.89 < 0.062 (95% CL) 3.5 1.3

Planck + FS + BAO + SN 67.39+0.46
−0.68 < 0.045 (95% CL) 4.3 0.0

Planck + BAO + SN + SH0ES 70.34± 0.97 0.067± 0.026 2.1 2.7

Planck + FS + BAO + SN + SH0ES 69.14± 0.92 0.056± 0.025 2.9 1.6

Table 1: Mean and 1-σ intervals for the H0 and fscf parameters in the RnR model, as well
as the effective number of σ’s that the Hubble measurement is away from either SH0ES and
Planck.

posteriors.
Moreover, in the RnR model there is not a clear consistency with the SH0ES result either,

even when including the SH0ES data. Taking the results without the FS, we have a residual
tension with SH0ES of about 2.15σ when comparing the H0 best fit 11. Adding the FS, the
residual tension increases to 2.9σ, an improvement from the 4.2σ without SH0ES, but hardly
a resolution of the tension.

We can finally give a qualitative explanation for why the RnR is not ultimately able to
resolve theH0 tension, given the freedom in changing rs from the ΛCDM value. As anticipated
by the physical considerations in sec. 2.1, in App. A in Fig. 3 we show that in this model, even
without the inclusion of the SH0ES measurements, rs is well measured by the combination
of Planck+FS+BAO+SN data to be close to the ΛCDM value, leaving not much freedom to
adjust H0 towards the SH0ES value. In the same figure, one can also see the increase in the
precision from the inclusion of the FS information.

Conclusions for the RnR Analysis

We summarize the following conclusions from our analysis above:

• The model-independent direct measurement of H0 from the late-universe from the
SH0ES collaboration gives H0 = 74.03± 1.42 km s−1Mpc−1 [55]. From Table 1, without
the constraint on H0 from SH0ES, the Planck+FS+BAO+SN datasets determine an
H0 that is in tension with the SH0ES measurement. If the FS dataset is not included,
the tension with the SH0ES determination of H0 is 3.5σ, while with the FS inclusion
the tension increases to 4.3σ.

11The number of σ’s for the tension with respect to the SH0ES (or Planck) measurement is computed the
following way. We approximate the posteriors from each experiment as a Gaussian, and then consider the
distribution of the difference of the H0 parameter, which is a Gaussian whose mean is the difference of the
means and whose variance is the sum in quadrature of the variances. The effective number of σ’s is defined
as the ratio of the mean and the standard deviation of the resulting distribution.
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• Datasets without the SH0ES constraint have the scalar field energy injection fRnR ap-
proaching zero. fRnR tends more strongly towards zero when FS is included. This points
to the fact that the ΛCDM model is a robust fit to these data.

• The Planck collaboration determined H0 = 67.36±0.54 km s−1Mpc−1 within the ΛCDM
model [5]. The inclusion of the FS shifts H0 towards the Planck ΛCDM determination
of H0. Without the SH0ES constraint on H0, the shift is 1.2σ and with the SH0ES
constraint the shift is 0.9σ.

• Even after the constraint on H0 from SH0ES is added, the H0 posterior is still in tension
with the SH0ES measurement of H0. Without the FS, the tension is 2.15σ and with
the FS the tension increases to 2.9σ.

• As we show in Tables 3 and 4, the χ2 of the fit does not improve with respect to ΛCDM
for any experiment but for SH0ES. When we add the FS data, the improvement is much
decreased.

3.2 EDE Analysis

We now move on to analyze the EDE model, where we will find similar results as for the RnR
model. We restrict our analysis to the case n = 3, the best fit integer value reported in [64].
The free parameters of the model are θi, log(zc), fEDE and VΛ.

We show the likelihood contours in Fig. 2, and in Table 2 we summarize the one-dimensional
posteriors for some parameters. In Tables 3 and 4 we give the χ2 of the best fit of our results,
compared with the ΛCDM model run with the same experiments. We discuss potential issues
related to volume sampling of the distribution in App. D, finding that they give marginal
effects. Moreover, we discuss potential issues due to consistency of the BOSS and Planck
datasets in App. E, again finding that our results are robust.

Although the chain convergence is a bit worse than in the RnR model (the EDE has
one more free parameter), the results are similar. Both sets of experiments that include
SH0ES are best fitted by an injection of scalar field energy, quantified by the energy fraction
fEDE ∼ 0.1 around redshift zc ∼ 4000. The H0 best fit is higher than in the corresponding
sets of experiments without the SH0ES measurement included.

The analyses without the SH0ES measurement have fEDE peaked towards 0, indicating no
dark energy injection in the history of the universe, which confirms that the CMB and LSS
datasets are consistent, and that the parameters of the EDE model are determined by them
in such a way that the scalar field contribution is not needed.

An interesting point is that adding the FS data shifts H0 towards the Planck ΛCDM value,
pointing once again to the consistency of LSS and Planck data, and to a tension with the
SH0ES determination of H0. In App. B we indeed show the posteriors for the cosmological
parameters that are common with the ΛCDM model, showing consistency of the posteriors.

When including the SH0ES data, the tension with SH0ES (in the case without the FS)
is decreased to about 1.5σ, a notable improvement with respect to the vanilla ΛCDM model
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Figure 2: One dimensional and two dimensional posterior distributions of some of
the parameters of the EDE model analyzed with several combinations of data sets:
Planck+BAO+Pantheon, Planck+FS+BAO+Pantheon, Planck+BAO+Pantheon+SH0ES
and Planck+FS+BAO+SN+SH0ES. Here we define θi,scf = θi and CCscf = VΛ.

of 4.2σ. Adding the FS, the residual tension increases to 2.6σ, still an improvement from the
ΛCDM model of 4.2σ, but this points more the consistency of LSS and Planck data than a
resolution of the tension with SH0ES.

Finally, the physical reason for why the EDE model is not able to resolve the tension is
the same as for the RnR model. As anticipated by the theoretical considerations in sec. 2.1,
in App. A we show that the value of rs is well determined to be close to the ΛCDM value
already by the Planck+FS+BAO+SN data, so that the model cannot exploit this model-
induced degeneracy between rs and H0 to move the inferred value of H0.

Conclusions for the EDE Analysis

From our analysis, we draw the following conclusions about the EDE model:

• From Table 2, without the SH0ES constraint on H0, both Planck+BAO+SN and
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Dataset H0 fEDE σSH0ES σPlanck

Planck + BAO + SN 69.45+0.72
−1.8 < 0.14 (95% CL) 2.4 1.5

Planck + FS + BAO + SN 68.57+0.48
−1.0 < 0.08 (95% CL) 3.4 1.3

Planck + BAO + SN + SH0ES 71.3± 1.2 0.104+0.034
−0.029 1.5 3.0

Planck + FS + BAO + SN + SH0ES 69.2+1.1
−1.2 0.066+0.033

−0.036 2.6 1.4

Table 2: Mean and 1-σ intervals for the H0 and fEDE parameters in the EDE model, as well
as the effective number of σ’s that the Hubble measurement is away from either SH0ES and
Planck.

Planck+FS+BAO+SN datasets obtain values of H0 that are in tension with the SH0ES
measurement. The tension with the SH0ES determination of H0 for the analysis without
FS information is about 2.4σ, which grows to 4.0σ when the FS dataset is included.

• Without the SH0ES constraint on H0, fEDE tends towards zero. The effect is more
significant when FS is included. This points to the fact that the ΛCDM model is a
robust fit to these data.

• Comparing datasets with and without FS, we see that the effect of adding the FS dataset
shifts H0 towards the Planck value. The shift is about 1.4σ without SH0ES, and 1.3σ

with SH0ES.

• A residual tension still remains when the SH0ES constraint on H0 is included. Without
FS, the fits show a 1.5σ tension in the H0 posterior, while with FS, the tension increases
to 2.6σ.

• As we show in Tables 3 and 4, the χ2 of the fit including the EDE model does not
improve relevantly with respect to ΛCDM for any experiment but for SH0ES. Even in
the case of SH0ES, when we add the FS, the improvement is much decreased.
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A Shift of the Sound Horizon

As an illustration of the discussion in sec. 2.1, in Fig. 3 we show the fits to the sound horizon
and the angular diameter distance at recombination, together with H0 and the cosmological
constant parameters, for the four different combinations of datasets in the RnR and EDE
models.

The degeneracy line in the rs −DA plane, corresponding to fixed θs, is manifest. We can
also see the inverse relation between rs and H0, and DA and H0 which are exploited, or at
least attempted to exploit, by the early dark energy models. As anticipated by the physical
considerations in sec. 2.1, the combination of Planck and LSS data (as well as, in these plots,
of Supernovae data) allows for a rather precise determination of rs close to the one of the
Planck ΛCDM model: 147.19± 0.29 Mpc. This implies that H0 is not allowed to move much
from the ΛCDM fit, even within the freedom in rs theoretically allowed for by the EDE and
RnR models.
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Figure 3: Plots of the sound horizon rs, angular diameter distance to recombination DA, H0

and ωcdm for the four different dataset combinations analyzed. Left: RnR model. Right: EDE
model.

B Comparison with ΛCDM and FS Information

To check that our runs are consistent, here we show the posteriors for their common cos-
mological parameters, compared with the ΛCDM model run on the same datasets. As it is
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apparent from Fig. 4 and 5, the concordance is quite good, except for a little shift in the
ωcdm parameter due to effect of early dark energy on the shape of the matter power spectrum.
Explaining this allows us to highlight the physical effects of the EDE and RnR models (or in
general of models that make the sound horizon decrease) on the dark matter power spectrum.

The presence of the early dark energy makes the time during which the gravitational
potential decays in radiation domination shorter, leading to larger peak amplitude, which can
be compensated by a larger ωm, as from eq. (5) (see also [63, 64]). Notice that this shift in ωm
gives rise to a larger broad band part of the dark matter power spectrum (see also [66]). In
fact, if keq is the wavenumber that is equal to the horizon at equality, keq grows with ωm, and
the dark matter power spectrum decays as roughly (keq/k)2 for k & keq (see for example [1]),
and so it grows with larger ωm. This growth in the broad band is compensated by quite a
large shift in the tilt of the power spectrum, which is still very compatible with Planck, but,
without FS, was bluer than Planck, but still compatible with it. Also, as from eq. (2) and (3),
a larger ωm increases the acoustic angles in the CMB and in LSS, which is compensated by a
decrease in H0, which is also visible in the plot.
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Figure 4: Plots of the cosmological parameters in the three models for the Planck+BAO+SN
dataset.

C χ2-tables

In Tables 3 and 4, we present the best-fit χ2 for each experiment in the runs including and
without including the FS information.
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Figure 5: Plots of the cosmological parameters in the three models for the
Planck+FS+BAO+SN dataset.

ΛCDM EDE RnR ΛCDM EDE RnR

Planck high-` TT+TE+EE 585.5 583.6 584.0 587.0 584.3 590.4

Planck low-` EE 396.6 396.9 397.2 397.1 397.2 397.5

Planck low-` TT 22.86 21.02 22.84 22.72 21.07 21.53

Planck lensing 8.952 9.249 8.871 9.127 9.407 9.136

BAO BOSS DR12 4.293 3.629 4.252 3.525 3.427 3.622

Pantheon 1027 1027 1027 1027 1027 1027

BAO small-z 2014 1.257 1.580 1.274 1.633 2.001 1.650

eBOSS DR14 Ly-α 4.9 4.67 4.88 4.67 4.43 4.58

SH0ES 16.97 2.002 5.753

Total 2052 2048 2051 2070 2051 2061

Table 3: Best-fit χ2 for each experiment in the runs without the FS, without SH0ES in the
left half and with it in the right half.
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ΛCDM EDE RnR ΛCDM EDE RnR

Planck high-` TT+TE+EE 585.0 582.9 585.5 588.3 584.7 587.3

Planck low-` EE 396.6 396.9 395.8 396.9 396.1 395.9

Planck low-` TT 23.10 22.23 23.99 22.60 21.51 22.74

Planck lensing 8.855 9.01 8.818 9.715 9.500 9.050

BOSS DR12 FS + BAO, high-z NGC 57.67 58.42 59.13 57.37 59.43 59.29

BOSS DR12 FS + BAO, high-z SGC 68.87 69.50 68.34 69.67 69.69 68.17

BOSS DR12 FS + BAO, low-z NGC 62.49 62.44 62.12 63.27 62.45 62.14

Pantheon 1027 1027 1029 1027 1027 1028

BAO small-z 2014 1.162 1.392 0.741 1.90 1.156 0.845

eBOSS DR14 Ly-α 4.97 4.79 5.5 4.54 4.92 5.2

SH0ES 15.90 6.289 13.41

Total 2236 2235 2239 2257 2243 2252

Table 4: Best-fit χ2 for each experiment in the runs including the FS, without SH0ES in the
left half and with it in the right half.

D Checks on Volume Sampling Effects

Both the analysis for the EDE and the RnR models may be affected at some level by a
degeneracy in parameter space that occurs when the energy injection due to scalar field goes
to zero. In this regime, all the other model parameters do not play any physical role, so that
the model gives the same predictions as ΛCDM. In this sense, there may be an artificially
large volume in parameter space associated to vanishing fEDE or fRnR that might enhance
the statistical weight of the ΛCDM models when using some sampling algorithms such as
Metropolis-Hastings, as pointed out, for example, in [64, 88, 89].

In order to address to what extent this affects our findings, we perform the following
importance sampling of our MCMC, similarly to what done in [89]. We start with the EDE
model, because in this case the degeneracy in parameter space is larger: for fEDE = 0, both zc
and Θi do not play any role. We also just focus on the combination of Planck+FS+BAO+SN
data, which is the most constraining set that is affected by this potential issue 12. We first
impose a Gaussian prior on the logarithm of the injection redshift, log10 zc, close to the
best fit: average 3.5 and standard deviation 0.1. In this way, the degeneracy associated
to zc is removed. Then, on the left of Fig. 6, we present our posteriors after imposing an
additional prior on Θi to be small 13, compared to our results in the main text. We see

12When SH0ES data are included, the region fEDE ≈ 0 is hardly sampled.
13We impose a half-Gaussian prior with standard deviation of 0.5 and mean 0.1, which is the lower bound

on Θi of the original chain.
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that the distribution of fEDE has barely changed, becoming slightly wider away from zero.
The posterior for the cosmological parameters have hardly changed. This shows that most
of the sampling points of the likelihood associated with fEDE ≈ 0 has actually zc close to
recombination, and a small initial field value, implying a physically small energy injection.
Vice-versa, on the right of Fig. 6, we now impose the same prior on zc and an additional
prior on Θi to be large 14. This prior allow us to focus on the parameter region where the
energy is made to vanish by sending the parameter f of the axion generating the EDE to
zero. This is the only other way to send the energy injection to zero in EDE beyond sending
Θi to zero. In this case, the posterior of fEDE is enhanced away from zero, as expected, but
it is still strongly peaked towards zero, suggesting that even in this case the data prefer no
energy injection at all. The posteriors for the cosmological parameters are hardly changed as
well. We therefore conclude that, for EDE and within our analysis, volume sampling issues
play a negligible role.
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Figure 6: Left: Posterior distribution for EDE for the combination Planck+FS+BAO+SN,
before (blue) and after (red) imposing a prior on zc to be close to recombination and Θi to be
small. Right: Same as left, but imposing a prior on zc to be close to recombination and Θi

to be large.

We do another check of the volume sampling effects, in the following way. We consider
the combination Planck+FS+BAO+SN, and fix all the parameters to their best fit values,
except fEDE, Θi and zc. Then, we run 4 different MCMC in the subspace Θi− zc fixing fEDE
to 0.001, 0.01, 0.05, 0.1 (as a reference, the best fit for the full chain is fEDE = 0.0522). The
results are shown in fig. 7. We see that small values of fEDE result in a posterior peaked at zc
close to recombination, and Θi close to zero, which corresponds to a physically small energy
injection. In particular, we do not observe a flat posterior that would imply a large volume
sampling effect, questioning our analysis. Larger values of fEDE give a posterior in Θi peaked

14Here impose a half-Gaussian prior with standard deviation of 0.5 and mean 3.1, which is the upper bound
on Θi of the original chain.
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towards larger initial angles, which means there is a larger energy density in the scalar field.
The posterior of zc moves to very high values in the case fEDE = 0.1, since for such large EDE
fractions we have to lower the energy density in the EDE close to recombination, otherwise
one could not have a good fit to the CMB. These results are therefore consistent with the
importance sampling performed above.
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Figure 7: Posterior distributions for the combination Planck+FS+BAO+SN in the θi − zc
subspace, for 4 different values of fEDE, fixing all other parameters to their best fit values.

We now pass to similarly analyze the RnR model. Here the smaller number of parameters
of the model makes the treatment more straightforward: to check for the volume sampling
effects, we just need to impose the prior on zc to be close to recombination. We choose a
Gaussian prior with mean 2700 and standard deviation 300, close to the peak of the distribu-
tion. The resulting posteriors are shown in Fig. 8. The conclusions are the same: while the
fRnR distribution is slightly enhanced away from zero, it is still very strongly peaked towards
zero, implying that the data actually prefer no energy injection at all. The distribution of the
other parameter are hardly changed as well. Therefore, also in the RnR model and within
our analysis, volume sampling issues play a negligible role.

E Effect of different power spectrum amplitude

One question that may be raised is whether it is consistent to combine the BOSS power
spectrum and the CMB dataset in a single analysis, since there may be tensions between the
datasets, which in turn could drive the fit of H0 (see for example [99]). In particular, the
results of [1] show that the FS-only analysis prefers a value for the amplitude of the primordial
power spectrum, ln(1010As), about 1.8 σ lower than the best-fit Planck value.

We check for this possible issue by fitting the combination Planck+FS+BAO+SN adding
a parameter, Ar, which is the ratio of the amplitude of the linear power spectrum used in
the FS likelihood to the one used in the Planck likelihood. Our results are shown in fig. 9.
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Figure 8: Posterior distribution for RnR for the combination Planck+FS+BAO+SN, before
(blue) and after (red) imposing a prior on zc to be close to recombination.

While we determine Ar = 0.852+0.086
−0.12 at 68% CL (less than 2σ away from 1), the posterior

distribution for the parameters of the EDE model, and in particular H0, are not appreciably
shifted. Explicitly, in the run with Ar, we find H0 = 68.75+0.60

−1.2 , while in the run without it
we find H0 = 68.57+0.48

−1.0 , a shift of less than a third of a sigma. We conclude that the analysis
combining the FS dataset with the Planck one is consistent, and the difference in the best-fit
values for the amplitude of the primordial power spectrum has no impact on the EDE fit. We
can see extremely minor shifts in the parameters.
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