
Proceedings of the 2021 IISE Annual Conference

A. Ghate, K. Krishnaiyer, K. Paynabar, eds.

Maximum-posterior Evaluation for Partially Observable Multistage

Stochastic Programming

Murwan Siddig, Yongjia Song, and Amin Khademi

Clemson University

Clemson, SC, USA

Abstract

This paper introduces a computationally practical approach for solving a class of partially observable multistage

stochastic programming problems. In this class of problems, the underlying stochastic process is assumed to fol-

low a hidden Markov chain. Recent advances in the literature introduce a derivative of the stochastic dual dynamic

programming (SDDP) method, known as the partially observable SDDP algorithm. This approach, however, intro-

duces a belief-state vector to the stochastic programming formulation, which increases the computation significantly.

Instead, we solve the problem assuming that this Markov chain is fully observable. However, when evaluating the

resulting policy, we use a Bayesian update of the belief vector and use the state’s decisions that have the highest

posterior. Our numerical experiments on a hydrothermal planning problem show the practicality of this approach.

Keywords
Stochastic dual dynamic programming, Multistage stochastic linear programs, Partially observable Markov chain.

1. Introduction
Multistage stochastic programming (MSP) is a class of problems for sequential decision-making under uncertainty. In

an MSP problem, the goal of the decision-maker (DM) is to minimize the total cost over a planning horizon consisting

of T periods (decision epochs). To do this, at each point in time t = 1, . . . ,T , the DM observes the state of a system

and influences its behavior by choosing the actions which minimize the expected total cost, which consists of the

immediate cost and the expected future cost. MSP models have a wide range of applications in many areas such as

energy [3], transportation [6], and finance [5], among others. For instance, in a hydrothermal power generation system,

a large-scale network of facilities can be deployed over a long horizon to produce energy by circulating H2O fluids

(water) through the network. To meet the target demand, at each point in time, the DM observes the amount of water

in the network and then decides on an operational decision for distributing the available water through the network.

This produces two results: (i) the DM pays an immediate cost for operating the network, and (ii) the system evolves to

a new state at a subsequent point in time, where there may be a different set of operational decisions to choose from.

The goal of the DM is, then, to define an operation strategy (decision policy) that minimizes the overall production

cost in expectation. This problem can be modeled as an MSP problem because of the uncertainty in the problem data,

such as future water inflows (e.g., amount of rainfall), demand, production costs, and equipment availability.

A typical approach to tackle these problems is to approximate the underlying stochastic process using a scenario tree

that is associated with a probability distribution D̂ known as the nominal distribution. One major drawback to this

approach, however, is that this nominal distribution is typically constructed using statistical predictive methods, which

often inherit a considerable amount of estimation errors and forecast misspecifications. Such inaccuracies might lead

to inconsistency issues and poor out-of-sample performances. This ultimately weakens the interventions that ought to

be carried out by the DM, as they are no longer based on reliable data but rather presumptions.

Many approaches have been proposed in the literature to hedge against such inconsistency issues and poor out-of-

sample performance. One approach is the so-called distributionally robust optimization (DRO) (see, e.g., [2, 8]). In

the DRO setting, the idea is, instead of using a single nominal distribution D̂, the DM uses an ambiguity set D of

probability distributions and optimizes with respect to the worst-case distribution over this set. One critique to this

approach in the MSP setting is that the ambiguity set does not evolve as new information arrives. Another recent

advancement in the literature is the partially observable MSP model introduced in [4]. In this framework, the idea is

to define an ambiguity set using a partially observable Markov chain (MC), where each state in this MC represents a

candidate distribution. Initially, the DM is unsure which of the candidate distributions (states) is most similar to the

true underlying distribution. However, as time evolves, the DM observes new realizations of the stochastic process

and uses a Bayesian update to improve their belief about which one of the candidates most accurately reflects the

underlying distribution. This approach is analogous to the one developed in the Markov decision process (MDP)

literature, where it is referred to as contextual MDP (CMDP) [7].

To solve the resulting problem, the authors in [4] present a modeling framework and an algorithmic extension to

a popular approach for solving MSP problems known as stochastic dual dynamic programming (SDDP) [9]. This

analogous algorithmic procedure is referred to as partially observable SDDP (POSDDP). This modeling framework,

however, introduces a belief-state vector in the formulation, which makes the computational complexity scale quite

poorly – especially with the number of candidate distributions within the ambiguity set. To mitigate these computation

burdens, we propose a practical approach that defines a separate policy for every state in the MC and then chooses

the state which has the highest posterior probability to implement the decisions. Given that this approach does not

leverage all information provided by the belief state (but rather uses the state with the highest posterior probability),

the resulting policy is typically suboptimal. Nevertheless, our numerical results show that this suboptimality gap is

small relative to the significant reduction in the computational time. The rest of this paper is organized as follows.

In Section 2, we introduce the problem formulation. In Section 3, we describe our proposed method. In Section 4,

we provide some preliminary results for the proposed approach and compare it to the POSDDP algorithm. Finally, in

Section 5, we conclude with some final remarks.

2. Markovian Multistage Stochastic Programming
In this section, we discuss some necessary assumptions, introduce the mathematical notation, the fully observable

MSP formulation, and compare it to its partially observable counterpart.

Consider solving the following MSP problem,

min
x1∈X1(x0,ξ1)

f1(x1,ξ1)+E|ξ[1]

[

min
x2∈X2(x1,ξ2)

f2(x2,ξ2)+E|ξ[2]

[

· · ·+E|ξ[T−1]

[

min
xT∈XT (xT−1,ξT)

fT (xT ,ξT)

]]]

. (1)

Here, ξ[t] := (ξ1, . . . ,ξt) is a random vector, with a known probability distribution (probability measure) Dt supported

on a set Ξt ⊂ R
n, and the set Ξt is equipped with its Borel sigma-algebra Ft . To facilitate a computationally tractable

formulation, we make the following assumptions:

Assumption 1. ft(xt ,ξt) is a linear function in xt given ξt , ∀t = 1, . . . ,T .

Assumption 2. Xt(xt−1,ξt) := {xt ∈ R
n | Ãtxt + B̃txt−1 = b̃t}, i.e., ξt = (Ãt , B̃t , b̃t), ∀t = 1, . . . ,T

Assumption 3. ∀ xt−1 ∈ Xt−1 and ξt ∈ Ξt , Xt(xt−1,ξt) 6= /0, ∀t = 1, . . . ,T .

Assumption 4. The candidate distributions Dt ∈ D follow a MC with a finite set of Markovian states {k}k∈D and

transition probabilities p j(k) := P(Dt+1 = k|Dt = j). Now the probability of realization ξt+1 happening, given the

Markovian state Dt+1 = k, is given by qk(ξt+1) = P(ξt+1 ∈ Ξt+1|Dt+1 = k).

Assumptions 1 and 2 imply that problem (1) is a multistage stochastic linear program (MSLP). Assumption 3 is

the standard relative complete recourse assumption. Assumption 4 models the evolution of the stochastic process,

and it implies conditional stage-wise independence; meaning that ξt depends only on t and the current state of the

MC {Dt : t = 1, . . . ,T}. In other words, we have that: P(ξt ∈ Ξt ,ξt+1 ∈ Ξt+1|Dt+1 = k,Dt = j) = P(ξt ∈ Ξt |Dt =
j) ·P(ξt+1 ∈ Ξt+1|Dt+1 = k).

2.1 Fully Observable Multistage Stochastic Programming

In its present formulation, problem (1) has a nested form. A common approach to proceed with the computation is to

use a dynamic programming (DP) formulation [1]. Under the conditional stage-wise independence assertion implied

by Assumption 4, the following fully observable DP formulation can be defined for each state j ∈ D in the MC,

represented by a cost-to-go function:

Q
j
t (xt−1,ξt) :=

min
xt

ft(xt ,ξt)+ ∑
k∈D

p j(k) ·Q
k
t+1(xt)

s.t. Ãtxt−1 + B̃txt = b̃t .
(2)

Whereby, Qk
t+1(xt) is the so-called value function, and it corresponds to the expected cost-to-go function given by:

Qk
t+1(xt) := Eξt+1

[Qk
t+1(xt ,ξt+1)], ∀t 6= T , and Qk

T+1(xT) := 0, ∀k ∈ D . This is known as a fully observable MC be-

cause all the information about the stochastic process is available to the DM. Note that in situations where ξt has a con-

tinuous distribution, a typical approach is to proceed by means of discretization and/or approximate the (discretized)

distribution of ξt by a sample Nt . This is, for instance, the case in which (2) is a Sample Average Approximation. We

refer the reader to [11] for a detailed discussion on the topic. As such, under Assumptions 1 and 2, the value function

Qk
t (xt−1) :=E[Qk

t (xt−1,ξt)] is piecewise linear convex with respect to xt−1, ∀t = 1, . . . ,T and ∀k∈D . Therefore, it can

be approximated from below by an outer cutting-plane linear approximation. This cutting-plane outer approximation

is represented by the maximum of a collection Lk of hyperplanes where, Qk
t (xt−1)≥max`∈L

{

β>t,`xt−1 +αt,`

}

∀k ∈D .

A common approach for assembling the collection of hyperplanes Lk
t is the SDDP algorithm. Drawing influence from

the backward recursion technique developed in DP, the SDDP algorithm alternates between the following two main

steps. (i) Forward pass: a forward simulation which evaluates the current policy obtained by the current approxima-

tion for the expected value functions E[Q̌t(xt−1,ξt)] and provides a sequence of decisions
(

x̌t := x̌t(ξt)
)

,∀ t = 2, . . . ,T ;

and (ii) Backward pass: a backward recursion to improve the current approximation for E[Q̌t(xt−1,ξt)] by adding new

cutting-planes to the collection of hyperplanes Lk
t for t = T, . . .2. After the forward step, a statistical upper bound for

the optimal value of problem (1) can be computed, and after the backward step, an improved lower bound is obtained.

We refer the reader to [9] for a further discussion on this topic.

2.2 Partially Observable Multistage Stochastic Programming

Unlike the fully observable setting presented in Section 2.1, the methods presented in [4] proceed by assuming that the

MC is partially observable; meaning that the DM is unable to observe the state of the MC Dt and can only observe the

realization of the random variable ξt in each stage t. Another interpretation is that this is an MSP defined on a hidden

MC [10]. For instance, in the hydrothermal power generation planning problem used in our numerical experiments

in Section 4, ξt represents the random amounts of rainfall (inflows) in each stage t. In this context, the (hidden)

unobservable states Dt can represent the different types of rain seasons (e.g., wet, dry, etc.)

Though the DM is unable to observe the state of the MC, he/she maintains a probability distribution θt over the set

of possible states in the MC, which is referred to as the belief vector. This belief vector is then used to reflect the

possibility of being in each of the different states, contingent on the observed realizations of the random vector ξt at

time t. Specifically, upon observing the realization of the random vector ξt , the DM updates the prior belief vector θt

according to the Bayesian update formula, such that the posterior probability of being in a state Dt = j is given by

P(Dt = j|ξt ,ξt−1, . . . ,ξ1) = θt(j) :=
P(Dt = j,ξt ,ξt−1, . . . ,ξ1)

∑k∈D P(Dt = k,ξt ,ξt−1, . . . ,ξ1)
(3)

Consequently, instead of defining a cost-to-go function for every state j ∈ D in the DP formulation (2), we define a

single cost-to-go function Qt(xt−1,ξt ,θt) for every t = 1, . . . ,T by incorporating the belief vector θt as a state variable:

Qt(xt−1,ξt ,θt) :=

min
xt

ft(xt ,ξt)+ ∑
j∈D

θt(j) ∑
k∈D

p j(k) ·Q
k
t+1(xt ,θt)

s.t. Ãtxt−1 + B̃txt = b̃t ,
(4)

where the value function Qk
t+1(xt ,θt) := Eξt+1

[Qt+1(xt ,ξt+1,θt+1)|Dt+1 = k], ∀t 6= T , and Qk
T+1(xT ,θT) := 0.

Under the linearity Assumptions 1 and 2, a backward induction argument can be used to show that the cost-to-go

function Qt(xt−1,ξt ,θt) is piecewise linear convex with respect xt−1 for any given ξt ∈ Ξt and θt ∈ Θt ; and piecewise

linear concave with respect to θt for any given xt−1 ∈ Xt−1 and ξt ∈ Ξt . Since the cost-to-go function Qt(xt−1,ξt , ·)
is piecewise linear concave, the value function Qt(xt−1, ·) can be approximated from below by an inner cutting-plane

linear approximation. This cutting-plane inner approximation is represented by the minimum of a collection of L

hyperplanes: Qt(xt−1, ·)≤min`∈L

{

µ
ᵀ

t θt−1,`+νt,`

}

and the cost-to-go function (4) is approximated by

Q̌L
t (xt−1,ξt ,θt) :=

min
xt

max
γt∈R

N
+

ft(xt ,ξt)+∑L
`=1 γt,nVt+1

s.t. Ãtxt−1 + B̃txt = b̃t ,
Vt+1 ≥ αt+1,`+βᵀ

t+1,`xt , ∀`= 1, . . . ,L

Vt+1 ≥−M

∑L
`=1 γt,`θt,` = θt (µt+1)

∑L
`=1 γt,n = 1 (νt+1)

(5)

Here L is the number of belief vectors encountered so far and the inner approximation is achieved by a column

generation approach, in the same spirit as the Dantzig-Wolfe decomposition. Here, θt,` is the belief vector assembled

in the `-th iteration, −M is a deterministic lower bound for the value function obtained a priori, and µt+1, νt+1 are the

dual multipliers. Taking the dual of the inner maximization problem gives

Q̌L
t (xt−1,ξt ,θt) :=

min
xt ,µt+1,νt+1

ft(xt ,ξt)+µ
ᵀ

t+1θt +νt+1

s.t. Ãtxt−1 + B̃txt = b̃t ,
µ
ᵀ

t+1θt,`+νt+1 ≥ αt+1,`+βᵀ

t+1,`xt , ∀`= 1, . . . ,L

µ
ᵀ

t+1θt,`+νt+1 ≥−M, ∀`= 1, . . . ,L.

(6)

Finally, a variant of the SDDP algorithm, namely the POSDDP algorithm [4], can be performed to solve the prob-

lem (6), which converges almost surely to an optimal policy in a finite number of iterations. Here, similarly to SDDP,

the POSDDP algorithm moves forward in time, evaluating the current approximations of the value functions and as-

sembling a sequence of candidate solutions
(

x̌t := x̌t(ξt)
)

for t = 1, . . . ,T . Moreover, in the backward pass, in each

point in time t = T, . . . ,2 and given a candidate solution x̌t−1, problem (6) is solved for each ξt ∈Ξt . However, the only

difference here is that, instead of adding cuts with certainty to the stage (t−1) problem, the cuts are weighed by the

DM’s belief at that stage. We refer the reader to [4] for a detailed description of the algorithm and further discussions.

3. Maximum Posterior Out-of-sample Evaluation
While the decision policy provided by the partially observable reformulation (6) provides optimal actions for every

belief state, it is important to note that the value function Qt(xt−1,θt) in this formulation is now also a function of the

belief vector θt . This increases the dimensionality of the problem, which might scale the computation very poorly. To

overcome this, we propose a maximum posterior out-of-sample evaluation approach which we discuss in this section.

The high-level idea of our proposed maximum posterior out-of-sample evaluation approach can be summarized into

two main steps: (i) a fully observable training step where the states of the Markov chain are ostensibly assumed to be

observable, and the policy is henceforth trained for every state in the MC, and (ii) a partially observable out-of-sample

evaluation step, where the belief vector is updated sequentially in a Bayesian fashion (same as the POSDDP setting),

while in each stage, we apply the policy corresponding to the value function associated with the state k ∈ D that has

the maximum posterior probability. That is, k ∈ argmax j∈D θt(j). We describe these two steps in more detail next.

Fully observable training. In the same spirit as the fully observable setting that we describe in Section 2.1, we define

a value function Q
j
t (xt−1,ξt) as given by (2) for every state j ∈ D in the MC and every stage t = 1, . . . ,T . For every

state j ∈D , we start with an initial approximation Q̌
j
t (xt−1,ξt), and then we improve the value function approximation

Q̌
j
t (xt−1,ξt), ∀t = 1, . . . ,T by using iterative forward/backward passes of the SDDP algorithm.

Partially observable out-of-sample evaluation. Consider taking a set of scenarios (sample paths) indexed by L such

that {ξ`}`∈L , with |L |� |Ξ1|×|Ξ2|×· · ·×|ΞT | and ξ` = (ξ`2, . . . ,ξ
`
T). Given the trained value functions Q̌

j
t (·), ∀ j ∈D

and t = 1, . . . ,T , the deterministic first-stage realization of the random vector ξ1, the initial state value x0, and an initial

belief vector θ1, for every sample-path ` ∈ L do the following.

1. Initialize a list for the candidate solutions (x̌1, . . . , x̌T) and z` = 0. Set, t = 1, x̌t−1 = x0, ξ̌t = ξ1, θ`1 = θ1.

2. If t = 1, sample a state k ∈D according to the initial belief θ1, i.e., according to probability distribution P(D1 =
k) = θ1(k). Else, given the sampled realization ξ`t , update the belief vector θt according to the Bayes rule (3)

and pick a state k according to a decision policy k← π(θt) that maps a belief vector to a state in the MC.

3. Solve Q̌k
t (x̌t−1, ξ̌

`
t) to obtain x∗t , set x̌t = x∗t and let z`← z`+ ft(x̌t ,ξ

`
t).

4. If t = T , finish this sample path and go to step 1. Otherwise, let t← t +1 and go to step 2.

A statistical upper bound for the optimal value of (1) is then calculated by z̄ = 1
|L | ∑`∈L z`.

Moreover, in our implementation, we also consider the following policies π(θt): (i) a randomized policy where, during

the evaluation, we choose the state randomly according to the posterior belief, (ii) a minimum-posterior policy where

we choose the state which has the minimum posterior belief k ∈ argmin j∈D θt(j). Since in the randomized policy, the

sampling is weighted by the belief, we expect its performance to be close to the maximum-posterior approach – over

the long run. Additionally, we use the minimum-posterior to verify whether the practicality of the approach can indeed

be attributed to choosing the state with the highest posterior or not.

4. Implementation Details and Numerical Results
In this section, we present some preliminary numerical results for the performance of our proposed heuristic ap-

proaches compared to the standard POSDDP algorithm. We consider the multistage hydrothermal power generation

planning problem described in [12]. We implemented all algorithms in C++ with commercial solver CPLEX, version

12.8. All the tests are conducted on an iMac desktop with four 4.00GHz processors and 16Gb memory. The number

of threads is set to be one. To test the performance of each algorithm, first, we implement the fully observable and the

POSDDP algorithm and train each policy with a time limit of three hours. After the training step, we generate a set

of scenarios indexed by L which samples, both, a set of states {D`}`∈L and set of realizations of the random vector

{ξ`}`∈L , where D` = (D`
1, . . . ,D

`
T) and ξ` = (ξ`2, . . . ,ξ

`
T), ∀` ∈ L . To sample the states D`, at time t = 1 a state D`

1

according to an initial belief where θt(j) = 1
|D| ,∀ j ∈ D. Then, for t = 2, . . . ,T , state D`

t is sampled with probability

pi(j) = P(D`
t = j|D`

t−1 = i). Moreover, to sample the realizations ξ`, for t = 2, . . . ,T , we sample ξ`t with a probability

qi(ξ
`
t) = P(ξ`t ∈ Ξt |D

`
t = i). Each algorithm is then evaluated on the same set of out-of-sample sample paths, and the

statistical upper bound z̄ for each algorithm is reported as the performance metric. Furthermore, we evaluate the policy

obtained by the fully observable training step in a fully observable setting. That is, during the evaluation step, the DM

observes both the state of the MC Dk
t and the realization ξk

t , ∀k ∈K and t = 1, . . . ,T . This policy is considered as the

“ground truth” optimal policy, and all other policies are compared to this one as the benchmark.

In Table 1, we report: (i) the optimality gap pertaining to the different policies (POSDDP, maximum-posterior,

minimum-posterior, and random) relative to the fully-observable benchmark (which is denoted by FOSDDP), where

each value is given by (z̄policy− z̄FOSDDP)/z̄FOSDDP%, and (ii) the time it took to do the fully observable training and

to train the POSDDP algorithm for each test instance. From Table 1, we see that the POSDDP policy has the best

Instances Optimality gap Training-time (seconds)

d̃t |D| T Max-Posterior Min-Posterior Random POSDDP MCSDDP POSDDP

7000

3

7 5.73% 26.31% 5.99% 2.61% 259.0 240.7

13 1.16% 3.92% 1.62% 0.84% 1785.7 5723.2

25 0.44% 1.15% 0.57% 0.34% 4347.1 -

49 0.34% 1.09% 0.50% 0.27% 10276.1 -

8

7 7.70% 135.12% 12.39% 5.68% 552.5 141.7

13 2.50% 27.84% 4.36% 1.82% 1631.9 2711.4

25 0.69% 5.07% 1.23% 0.70% 4457.9 -

49 0.53% 4.65% 1.02% 0.67% - -

8000

3

7 1.94% 2.62% 1.07% 0.48% 314.6 276.6

13 0.36% 1.52% 0.55% 0.30% 405.8 1683.4

25 0.18% 0.81% 0.30% 0.14% 969.6 3047.2

49 0.17% 0.69% 0.25% 0.13% 2363.0 8141.7

8

7 0.94% 10.98% 2.66% 0.55% 366.0 137.8

13 0.60% 6.85% 1.26% 0.66% 588.1 932.6

25 0.26% 5.73% 0.76% 0.39% 1383.2 5935.2

49 0.20% 3.22% 0.47% 0.64% 4004.8 -

Table 1: Optimality gap pertaining to each policy (POSDDP, maximum-posterior, minimum-posterior, and randomized

policy) relative to the z̄FOSDDP value obtained by the FOSDDP policy.

performance in most of the instances. Specifically, in instances where |D| = 3 and/or T = 7, POSDDP consistently

outperforms all the other approaches in terms of the optimality gap. These instances can be seen as small-size in-

stances. In larger instances, i.e., instances where |D|= 8 and T ∈ {25,61}, we can see that the POSDDP algorithm is

outperformed by the max-posterior, although the performance difference is small. This, however, can be attributed to

the fact that POSDDP reaches the time limit in 3 out of 4 of those instances, and hence the policy is not trained well

enough. On the other hand, the difference in the optimality gap between the POSDDP algorithm and the maximum-

posterior evaluation is relatively small compared to the difference in the computational time. Specifically, averaging

across all test instances, the difference in their optimality gap has an average of 0.47% across the different instances,

whereas the computational time is 46.36% (2404.14 seconds) higher for the POSDDP algorithm within the given three

hours time limit. In addition, we can see that the randomized policy performs similarly to the maximum-posterior pol-

icy. We can also see that the difference in the optimality gap between the different policies tends to shrink as the size

of the instance increases (in both |D| and T). Finally, we can see that overall (and especially in the instances where

d̃t = 8000), the difference in optimality gaps between the different maximum-posterior, the randomized policy and

POSDDP is not very large. We suspect that this is due to the specific structure of the problem studied.

5. Conclusion
This work proposes a computationally efficient heuristic approach for solving a class of partially observable MSP

problems. A recently developed algorithm in the literature, known as the POSDDP algorithm [4], introduces an SDDP

variant for solving this class of problems. Because the POSDDP algorithm introduces a belief vector to the value

functions, the computation scales poorly as the number of states in the MC increases. Instead, we propose a more

practical approach where a value function is defined and trained for each state in the partially observable MC in the

sample-path. Then, during the evaluation step, we only choose the state which has the highest posterior. While the

POSDDP algorithm defines a policy for every belief, our numerical results show that when comparing our maximum-

posterior evaluation approach to the POSDDP algorithm, the reduction in the optimality gap is significantly small

compared to the increase in compute time. This observation is more apparent in instances where the MC has a large

state space.

Acknowledgments
The authors acknowledge partial support by the National Science Foundation [Grant CMMI 1854960]. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

References
[1] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[2] Dimitris Bertsimas, Shimrit Shtern, and Bradley Sturt. A data-driven approach for multi-stage linear optimiza-

tion. Available at Optimization Online, 2018.

[3] Vitor L de Matos, David P Morton, and Erlon C Finardi. Assessing policy quality in a multistage stochastic

program for long-term hydrothermal scheduling. Annals of Operations Research, 253(2):713–731, 2017.

[4] Oscar Dowson, David P Morton, and Bernardo K Pagnoncelli. Partially observable multistage stochastic pro-

gramming. Operations Research Letters, 48(4):505–512, 2020.

[5] Jitka Dupačová and Jan Polívka. Asset-liability management for Czech pension funds using stochastic program-

ming. Annals of Operations Research, 165(1):5–28, 2009.

[6] Boutheina Fhoula, Adnene Hajji, and Monia Rekik. Stochastic dual dynamic programming for transportation

planning under demand uncertainty. In 2013 International Conference on Advanced Logistics and Transport,

pages 550–555. IEEE, 2013.

[7] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov decision processes. arXiv preprint

arXiv:1502.02259, 2015.

[8] Jianqiu Huang, Kezhuo Zhou, and Yongpei Guan. A study of distributionally robust multistage stochastic opti-

mization. arXiv preprint arXiv:1708.07930, 2017.

[9] Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization applied to energy planning.

Mathematical Programming, 52(1-3):359–375, 1991.

[10] Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77(2):257–286, 1989.

[11] Alexander Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of Operational

Research, 209(1):63–72, 2011.

[12] Wim Van Ackooij, Welington de Oliveira, and Yongjia Song. On level regularization with normal solutions

in decomposition methods for multistage stochastic programming problems. Computational Optimization and

Applications, 74(1):1–42, 2019.

	Introduction
	Markovian Multistage Stochastic Programming
	Fully Observable Multistage Stochastic Programming
	Partially Observable Multistage Stochastic Programming

	Maximum Posterior Out-of-sample Evaluation
	Implementation Details and Numerical Results
	Conclusion

