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Rational points and derived equivalence
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Abstract

We give the first examples of derived equivalences between varieties defined over non-
closed fields where one has a rational point and the other does not. We begin with torsors
over Jacobians of curves over Q and Fq(t), and conclude with a pair of hyperkähler
4-folds over Q. The latter is independently interesting as a new example of a tran-
scendental Brauer–Manin obstruction to the Hasse principle. The source code for the
various computations is supplied as supplementary material with the online version of
this article.

1. Introduction

The following question was posed by Esnault and stated in [AB18, Question 2].

Question. For smooth projective varieties defined over a field k that is not algebraically closed,

is the existence of a k-rational point preserved under derived equivalence?

Honigs et al. [Hon15, Hon18] showed that over a finite field, the answer is yes up to dimen-

sion 3, and for Abelian varieties of any dimension; in fact the number of rational points is

preserved in these cases. A conjecture of Orlov [Orl05, Conjecture 1] would imply that this

continues to hold in higher dimensions.

Antieau, Krashen and Ward [AKW17, Theorem 1.1] showed that the answer is yes for curves

of genus 1 over arbitrary fields. (For curves of genus g ≥ 2 or g = 0, the canonical bundle is

ample or anti-ample, so there are no interesting derived equivalences.)

Hassett and Tschinkel [HT17] studied the question for K3 surfaces, giving a positive answer

over R and proving a number of suggestive results over local fields. They showed that the index

of a K3 surface – that is, the greatest common divisor of the degrees of its closed points – is

invariant under derived equivalence. Thus if Db(X) ∼= Db(Y ) and X has a rational point then

Y has a zero-cycle of degree 1, so it seems very difficult to find a counterexample among K3

surfaces. On the other hand, they asked whether the existence of a rational point is preserved

under twisted derived equivalence, and Ascher, Dasaratha, Perry and Zhou [ADPZ17] showed

that it is not, producing pairs of K3 surfaces over Q, Q2, and R such that Db(X, α) ∼= Db(Y, β)

for some α ∈ Br(X) and β ∈ Br(Y ), where X has a rational point (at which the restriction of α

is trivial) and Y has no rational points.
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Rational points and derived equivalence

Auel and Bernardara studied geometrically rational surfaces in [AB18], showing (among

other things) that a del Pezzo surface S of degree at least 5 has a rational point if and only if

Db(S) admits a full exceptional collection.

We give two classes of examples to show that the answer to the question above is no: first,

some Abelian varieties and torsors over them, and second, a pair of hyperkähler 4-folds.

Theorem 1. For every g ≥ 2, there is an Abelian g-fold X defined over Q, an X-torsor Y with

no rational points, and a Q-linear exact equivalence

Db(X) ∼= Db(Y ).

The same holds over Fq(t) for any odd q.

Recall that a torsor over an Abelian variety has a rational point if and only if it has a

zero-cycle of degree 1, so this theorem contrasts with the behavior of K3 surfaces discussed

above.

To prove Theorem 1, we mine the literature for curves C defined over Q and Fq(t) such that

Picg−1

C has no rational points. If k = R, Qp, or Fq((t)) then Picg−1

C always has k-points by work of

Lichtenbaum [Lic69] and a remark of Poonen and Stoll [PS99, Footnote 10], so for the examples

we are interested in, Picg−1

C is a counterexample to the Hasse principle. Then Theorem 1 follows

from the next result.

Theorem 2. If C is a smooth, projective, geometrically connected curve of genus g ≥ 1 over an

arbitrary field k, then there is a k-linear exact equivalence

Db(Pic0
C) ∼= Db(Picg−1

C ).

The proof is a repackaging of Mukai’s classic derived equivalence [Muk81] between an Abelian

variety and its dual. We include a broader discussion of torsors over Abelian varieties in § 2.

The varieties X and Y in Theorem 1 become isomorphic after a finite field extension, but

in § 4 we present a more sophisticated counterexample over Q, in which the varieties remain

different even over C. These are our hyperkähler 4-folds.

Theorem 3. There is an explicit K3 surface S, defined over Q, and two smooth, projective,

four-dimensional moduli spaces X and Y of sheaves on S, such that X has infinitely many

rational points, Y has no zero-cycle of degree 1, and there is a Q-linear exact equivalence

Db(X) ∼= Db(Y ).

The spaces X and Y are not birational, even over C.

In fact Y has points over R and over Qp for every prime p, so it is a counterexample to the

Hasse principle. We use the class α ∈ Br(Y ) that obstructs the existence of a universal sheaf on

S × Y as a Brauer–Manin obstruction. It is a transcendental Brauer class: it remains non-trivial

in Br(YQ̄) or Br(YC).

This counterexample is related to the Abelian counterexamples above in that X is fibered

over P2 in Jacobians of curves of genus 2, and Y is fibered in Pic1 of the same curves. The derived

equivalence is a version of our earlier equivalence Db(Pic0
C) ∼= Db(Pic1

C) in families; the extension
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to the singular fibers is due to Arinkin [Ari13], and was used in work of Addington, Donovan

and Meachan [ADM16], but we give a simplified description.

By taking fibers of X and Y over Q-points of P2 we can get more explicit examples of

Theorem 1. By taking generic fibers we get an example of Theorem 1 over the function field

Q(x, y), or indeed C(x, y). By taking the preimage of a general curve in P2 we get derived

equivalent 3-folds of Kodaira dimension 1, where one has a rational point and one does not.

Theorem 3 stands in contrast to a result of Frei [Fre20, Theorem 1], who showed that, over a

finite field, two smooth projective moduli spaces of sheaves on a given K3 surface have the same

number of points as soon as they have the same dimension.

Conventions. For an arbitrary field k, we let ks denote its separable closure, k̄ its algebraic

closure, and G = Gal(ks/k) its absolute Galois group. For a variety X over k, we let Xs =

X ×k ks and X̄ = X ×k k̄. We let PicX denote the Picard scheme and Pic(X) the Picard group;

the group of k-rational points of PicX is Pic(Xs)G, which may be strictly bigger than Pic(X),

as we will discuss at length.

Because we consider sheaves of rank 0 and sheaves on reducible spaces, stability for us always

means Gieseker stability, defined in terms of the reduced Hilbert polynomial, rather than slope

stability.

2. Abelian counterexamples

2.1 Torsors over Abelian varieties

Let A be an Abelian variety over an arbitrary field k. As Poonen and Stoll discuss in [PS99, § 4],

the short exact sequence of G-modules

0 → Pic0(As) → Pic(As) → NS(As) → 0

yields a long exact sequence

0 → Pic0(A) → Pic(A) → NS(As)G → H1(G, Pic0(As)) → H1(G, Pic(As)) · · · .

For any divisor class

λ ∈ NS(As)G,

we can consider the associated component of the Picard scheme

Picλ
A ⊂ PicA,

which is a torsor over the dual Abelian variety Â = Pic0
A, trivial if and only if λ is in the image

of the map Pic(A) → NS(As)G above: that is, in NS(A).

Theorem 4. There is a k-linear exact equivalence

Db(A) ∼= Db(Picλ
A).

It is interesting to contrast this statement with [AKW17, Corollary 5.2], which says that in

characteristic 0, if End(As) = Z and the inclusion NS(A) ⊂ NS(As)G = Z is an equality, then

two derived equivalent A-torsors necessarily generate the same subgroup of H1(G, Pic0(As)).
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Rational points and derived equivalence

Proof of Theorem 4. Because A has a rational point, there is a Poincaré line bundle P on A ×

Picλ
A by [Kle05, Exercise 9.4.3] or by Lemma 5 below. We claim that the functor

F : Db(A) → Db(Picλ
A)

induced by P is an equivalence. By [Orl02, Lemma 2.12], it is enough to prove it after base

change to k̄.

So assume that k is algebraically closed, choose a base point [M ] ∈ Picλ(A), and use it to

identify Picλ
A with Â. Then P ⊗ π∗

1M
∨ is a Poincaré bundle on A × Â, hence induces an equiva-

lence Db(A) → Db(Â) by Mukai’s theorem [Muk81]; see also Polishchuk’s book [Pol03, Chapters

11 and 17], or Huybrechts’ book [Huy06, Chapter 9] for another account in characteristic zero.

Now the functor induced by P ⊗ π∗
1M

∨ is just tensoring with M∨ (which is an equivalence)

followed by F , so it is an equivalence if and only if F is. �

2.2 Proof of Theorem 2 and discussion of Jacobians

We could deduce Theorem 2 from Theorem 4 by letting A = Pic0
C and letting λ ∈ NS(As)G be

the class of the Θ-divisor; then Picλ
A
∼= Picg−1

C by [PS99, Corollary 4].1

But we can also describe the Poincaré bundle on Pic0
C × Picg−1

C as the line bundle associated

to a very explicit divisor D, and this will prove useful in § 4. Over k̄, we can write

D =
{

(L, M) : H1(L ⊗ M) �= 0
}

⊂ Pic0

C̄ × Picg−1

C̄
.

We see that the fiber of D over a point of Picg−1

C̄
is a translate of the Θ-divisor on Pic0

C̄
, in such

a way that O(D) is a universal bundle for Picg−1

C̄
as a moduli space of line bundles on Pic0

C̄
.

To see that D is defined over k, we can describe it as the support of a certain twisted sheaf.

Let α ∈ Br(Pic0
C) be the obstruction to the existence of a universal line bundle on C × Pic0

C , and

let L be the π∗
2α-twisted universal bundle. Similarly, let β ∈ Br(Picg−1

C ) and M on C × Picg−1

C .

Then D is the support of the (α � β)-twisted sheaf

R1π23,∗(π
∗
12L ⊗ π∗

13M), (1)

where πij are the projections from C × Pic0
C × Picg−1

C onto any two factors.

For another argument that O(D) agrees with the Poincaré line bundle, we could use Deligne’s

description of the latter as the line bundle whose fiber at a geometric point (L, M) is

(det H∗(L ⊗ M))−1 ⊗ det H∗(L) ⊗ det H∗(M) ⊗ (det H∗(OC))−1. (2)

We learned this description from Arinkin’s paper [Ari13]; see Polishchuk’s book [Pol03, § 22.3]

for another account. Globally, the first term of (2) is

(det R0π23,∗(π
∗
12L ⊗ π∗

13M))−1 ⊗ (det R1π23,∗(π
∗
12L ⊗ π∗

13M)).

Now R0π23,∗(π
∗
12L ⊗ π∗

13M) vanishes, and R1π23,∗(π
∗
12L ⊗ π∗

13M) is supported on D and has

generic rank 1 there, so its determinant as a sheaf on Pic0
C × Picg−1

C is the (untwisted) line

bundle O(D). The other terms of (2) just modify O(D) by line bundles pulled back from Pic0
C

or Picg−1

C , so they do not change the fact that it induces a derived equivalence.

1 Recall that the Θ-divisor lives most naturally in Picg−1

C , as the image of the Abel–Jacobi map Symg−1(C) →
Picg−1

C . If Picg−1

C has a k-point then we can identify Pic0

C
∼= Picg−1

C and get a Θ-divisor on A = Pic0

C , unique up
to translation. But if Picg−1

C (k) = ∅ then we only get a class in NS(As)G, not NS(A).
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The interested reader may consult [ADM16, Proof of Proposition 2.1(a)] for more details

on the generalization of Mukai’s equivalence from Pic0
C × Pic0

C to Picm
C × Picn

C , and [ADM16,

Remark 2.3] for more (twisted) derived equivalences.

2.3 Proof of Theorem 1

To deduce Theorem 1 from Theorem 2, it is enough to find genus-g curves C such that Picg−1

C

has no rational points. There is a subtlety, in that the inclusion

Picd(C) ⊂ Picd
C(k) = Picd(Cs)G (3)

may be proper in general.

Coray and Manoil [CM96, Proposition 4.2] showed that, for any g ≥ 1, the hyperelliptic curve

C of genus g determined by

y2 = 605 · 106x2g+2 + (18x2 − 4400)(45x2 − 8800)

has points over R and over Qp for every prime p, so the inclusion (3) is an equality for all d by

[CM96, Corollary 2.5]; but that Pic1(C) = ∅. Bhargava, Gross and Wang [BGW17, Theorem 2]

later showed that a positive proportion of hyperelliptic curves over Q have this property, by

studying pencils of quadrics. Note that if C is hyperelliptic and g is even then Pic1
C
∼= Picg−1

C .

Poonen and Stoll gave explicit hyperpelliptic curves of even genus over Q for which Picg−1

C

has no rational points in [PS99, Propositions 26–28], and studied their density in [PS99, § 9].

They gave a non-hyperelliptic example of genus 3 over Q, namely the plane quartic curve

x4 + py4 + p2z4 = 0

for any p ≡ −1 (mod 16), in [PS99, Proposition 29]. And they gave a genus-2 example over Fq(t)

for q odd, namely

y2 = tx6 + x − at

for any a that is not a square in Fq, in [PS99, Proposition 30].

While we expect that there are similar examples over Q in odd genus g ≥ 5, and over Fq(t)

in genus g ≥ 3, we did not find them in the literature. But to finish the proof of Theorem 1, we

can just take the examples above and cross with an elliptic curve. Let C be a genus-2 curve such

that Y = Pic1
C is a non-trivial torsor over the Abelian surface X = Pic0

C , and let E be an elliptic

curve. Then for any g > 2, we see that Y × Eg−2 is a non-trivial torsor over X × Eg−2, and the

two have equivalent derived categories [Huy06, Exercise 5.20].

3. Brauer classes on compactified Picard schemes

Let X be a projective, geometrically integral, but not necessarily smooth variety over an arbitrary

field k. For a divisor class λ ∈ NS(Xs)G, there is an inclusion

Picλ(X) ⊂ Picλ
X(k) = Picλ(Xs)G, (4)

which we encountered for smooth curves in the proof of Theorem 1 but which we now consider

more broadly in preparation for § 4.
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Rational points and derived equivalence

Coray and Manoil [CM96] have studied the inclusion (4) using the exact sequence

0 → Pic(X) → Pic(Xs)G → Br(k) → Br(X) → · · · (5)

coming from the Hochschild–Serre spectral sequence. We will study it using a class in Br(Picλ
X)

that arises from viewing the Picard scheme as a moduli space of stable sheaves on X.

For standard results on moduli spaces of sheaves, our reference is Huybrechts and Lehn’s

book [HL10], together with Langer’s papers [Lan04b, Lan04a] which make the results available in

positive and mixed characteristic. The key point for us is that a moduli space M of (S-equivalence

classes of) semi-stable sheaves with given Hilbert polynomial is projective, and the open subspace

Mstab parametrizing geometrically stable sheaves is in general only quasi-projective but carries

a Brauer class that obstructs the existence of a universal sheaf on X × Mstab. This Brauer class

is associated to a principal PGLn-bundle coming from the construction of the moduli space via

geometric invariant theory [HL10, Corollary 4.3.5]. It can be realized as an étale Pn-bundle as

follows. By boundedness, there is an N 
 0, depending only on the Hilbert polynomial, such that

for every semi-stable sheaf F , the twist F (N) is globally generated and has no higher cohomology.

Then we take the bundle over Mstab whose fiber at F is PH0(F (N)). For a stackier description,

we could say that a geometrically stable sheaf is simple, so its automorphism group is Gm, so the

moduli stack of geometrically stable sheaves is a Gm-gerbe over the moduli space; compare [Lie06,

Corollary 4.3.3].

Because X is geometrically integral, every rank-1 torsion-free sheaf on X is geometrically

stable with respect to any ample line bundle. If X is smooth, then Picλ
X is closed in the moduli

space of rank-1 torsion-free sheaves on X, but if not then we can consider its closure

Picλ
X .

Let

αλ ∈ Br(Picλ
X)

be the Brauer class that obstructs the existence of a universal sheaf on X × Picλ
X .2

The inclusion (4) above can be understood as follows: for any extension field K/k, we have

Picλ(XK) = {� ∈ Picλ
X(K) : αλ|� = 0 ∈ Br(K)}.

The following lemma is essentially well known for Picλ
X (see [CM96, Corollary 2.3] for an approach

using the exact sequence (5)), but in the next section we need it for Picλ
X , which requires different

methods.

Lemma 5. Let X be a projective, geometrically integral variety over an arbitrary field k, let

λ ∈ NS(Xs)G, and let Picλ
X and αλ ∈ Br(Picλ

X) be as above. If X has a smooth k-point, or more

generally a zero-cycle of degree 1 supported in its smooth locus, then αλ = 0.

Proof. Let c be the class in Knum(Xs)G corresponding to λ ∈ NS(Xs)G. First we argue that for

any vector bundle E on X, defined over k, the number NE := χ(c · [E]) satisfies NE · αλ = 0.

A similar claim is valid for any moduli space of geometrically stable sheaves, not only Picλ
X . Let

π1 and π2 be the projections from X × Picλ
X , and let Uλ be the π∗

2αλ-twisted universal sheaf on

2 Note that αλ is the restriction of a natural Brauer class that lives on the whole moduli space of geometrically
stable sheaves, or indeed of simple sheaves, so there is no need to worry about ramification at the boundary
components of Picλ

X .
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X × Picλ
X . Then Rπ2,∗(Uλ ⊗ π∗

1E) is an αλ-twisted perfect3 complex of rank NE , so NE · αλ = 0.

(See [HL10, Theorem 4.6.5] for a similar argument.)

Now if ξ ⊂ Xsm is a subscheme of length d, then Oξ admits a finite resolution by vector

bundles and satisfies χ(c · [Oξ]) = d. Thus a zero-cycle of degree 1 forces αλ to vanish, by a

greatest common divisor argument. Note that if the support of ξ meets the singular locus of X

then Oξ might not admit a finite resolution by vector bundles. �

Lemma 5 will be used in conjunction with the following result.

Lemma 6. Let X be a projective variety over a non-Archimedean local field k = kv with ring

of integers Ov and residue field κv. Suppose that X has a model X → SpecOv whose special

fiber is geometrically integral, or more generally has a component Y of multiplicity 1 that is

geometrically integral. Then X has a zero-cycle of degree 1 supported in its smooth locus.

Proof. By the Lang–Weil bounds, Y has a smooth point defined over a degree-r extension of κv

for all r 
 0 [Poo17, Theorem 7.7.1]. By Hensel’s lemma, this lifts to a smooth point of X defined

over a degree-r extension of kv, so there is a zero-cycle of degree r defined over kv, supported in

the smooth locus of X. By considering r and r + 1 we get a zero-cycle of degree 1. �

4. A hyperkähler counterexample

Recall that a K3 surface S of degree 2 can be obtained as a double cover of P2 branched over a

smooth sextic curve. In § 4.1 we consider two moduli spaces X and Y of sheaves on such a K3

surface S and show that if the sextic satisfies a laundry list of conditions then the conclusions

of Theorem 3 hold. In § 4.2 we exhibit a sextic satisfying those conditions. In § 4.3 we discuss

computational issues that we faced in finding this sextic.

4.1 Steps of the proof

Let f ∈ Z[x, y, z] be a homogeneous polynomial of degree 6 that cuts out a smooth curve B ⊂ P2
Q.

Let S be the K3 surface over Q defined by

w2 = f(x, y, z),

either in weighted projective space WP3(3, 1, 1, 1) or in the total space of OP2(3). Let π : S → P2

be the map that forgets w, which is a double cover branched over B.

The class h := π∗OP2(1) ∈ NS(S) is ample and satisfies h2 = 2. A curve in the linear system

|h| is the preimage of a line in P2, and we may identify |h| with the space of lines in P2. A general

member of |h| is a smooth curve of genus 2.

Definition-Proposition 7. A line L ⊂ P2 (defined over any perfect field k) is a tritangent line

to the sextic curve B if it satisfies one of the following conditions, which are equivalent:

(a) L is tangent to B at three points, in the scheme-theoretic sense;

(b) f |L = c · g2, for some scalar c and some cubic g ∈ H0(OL(3));

(c) the curve C = π−1(L) is not geometrically integral.

3 Because U is flat over Picλ
X and X is proper; see [Sta18, Tag 0A1E].
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Proof. It is clear that (a) ⇔ (b) ⇒ (c). To see that (c) ⇒ (b), suppose for simplicity that the

line is given by z = 0. Then the curve w2 = f(x, y) in WP3(3, 1, 1) is not integral over k̄, so

w2 − f(x, y) factors, so f(x, y) is a square in k̄[x, y]. Because k is perfect, this implies that

f = c · g2 for some c ∈ k and some cubic g ∈ k[x, y]. �

Consider the moduli spaces of semi-stable sheaves on S of rank 0, first Chern class h, and

Euler characteristic −1 or 0:

X := Mh(0, h,−1),

Y := Mh(0, h, 0).

Sheaves with these invariants include all line bundles of degree 0 or 1 supported on curves in the

linear system |h|, together with some rank-1 torsion-free sheaves supported on singular curves.

The moduli spaces are projective varieties of dimension 4. They map to |h| by sending a sheaf

to its support. Thus if C → |h| is the tautological family of curves in the linear system |h|, that

is,

C = {(x, C) : x ∈ C} ⊂ S × |h|,

then X is a compactification of the relative Picard scheme Pic0
C/|h|, and Y is a compactification

of Pic1
C/|h|.

Proposition 8. The space X parametrizes only geometrically stable sheaves, hence is smooth.

The same is true of Y if there are no tritangent lines to B defined over Q̄.

Proof. Mukai showed that a moduli space of geometrically stable sheaves on a K3 surface is

smooth [Muk84, Theorem 0.1].

Let F be a pure sheaf on SQ̄ with rank(F ) = 0 and c1(F ) = h. Write c1(F ) = m1[C1] +

· · · + mk[Ck], where Ci are the irreducible components of the reduced support of F and mi > 0.

Since c1(F ).h = h2 = 2 and h is ample, we see that either F is supported on an irreducible

curve C ∈ |h| and has generic rank 1 there, or it is supported on a reducible curve C1 ∪ C2 with

C1.h = C2.h = 1 and has generic rank 1 on each component.

In the first case (irreducible support), any saturated4 subsheaf G ⊂ F is either 0 or all of

F , so F is necessarily stable. In the second case, which can only occur if there is a tritangent

line defined over Q̄, a saturated subsheaf G ⊂ F might be supported on C1 or C2 alone, with

generic rank 1 there. In this case, the Hilbert polynomial PG(t) is t + χ(G), and the reduced

Hilbert polynomial pG(t) is the same. If χ(F ) = −1 then PF (t) = 2t − 1, so pF (t) = t − 1

2
so

pG(t) ≤ pF (t) implies pG(t) < pF (t), so F is again stable. �

Proposition 9. Suppose there are no tritangent lines to B defined over Q̄. Then there is a

Q-linear exact equivalence Db(X) ∼= Db(Y ).

Proof. To emulate the construction of § 2.2 for the family of curves C → |h|, we might want to

define a divisor

{(L, M) : H1(L ⊗ M) �= 0} ⊂ X ×|h| Y.

4 See [HL10, Proposition 1.2.6] for why it is enough to consider saturated subsheaves.
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But on a singular curve C ∈ |h|, if L and M both fail to be locally free at some singular point,

then the underived tensor product L ⊗ M is the wrong thing to write, and TorCi (L, M) may be

non-zero for infinitely many i > 0.

So following Arinkin [Ari13], we consider the open subschemes

X◦=Pic0
C/|h| ⊂ X and Y ◦=Pic1

C/|h| ⊂ Y

and the divisor

D = {(L, M) : H1(L ⊗ M) �= 0} ⊂ X◦ ×|h| Y ∪ X ×|h| Y
◦,

which avoids the issue just discussed because one of L and M is always locally free. To see that

D is defined over Q, we can describe it as the support of the analogue of (1). Next, consider the

inclusion

j : X◦ ×|h| Y ∪ X ×|h| Y
◦ ↪→ X ×|h| Y.

Our equivalence will be induced by the sheaf j∗O(D). Presumably this coincides with O(D̄), or

more precisely, the dual of the ideal sheaf of D̄, where D̄ is the closure of D in X ×|h| Y , but we

will not need this.

To prove that the functor F : Db(X) → Db(Y ) induced by j∗O(D) is an equivalence, we can

again base-change to Q̄ by [Orl02, Lemma 2.12]. Then for closed points x1, x2 ∈ X, we consider

the natural map

Ext∗X(Ox1
,Ox2

) −→ Ext∗Y (F (Ox1
), F (Ox2

)). (6)

The skyscraper sheaves Oxi
are a spanning class [Huy06, Proposition 3.17], so if (6) is an iso-

morphism for all x1 and x2 then F is fully faithful [Huy06, Proposition 1.49], and hence is an

equivalence because ωX and ωY are trivial [Huy06, Proposition 7.6].

Let p : X → |h| and q : Y → |h| be the Abelian fibrations discussed earlier, which map a sheaf

to its support. Because our kernel j∗O(D) is supported on the fiber product X ×|h| Y , we see

that F (Ox1
) is supported on the fiber q−1(p(x1)) ⊂ Y , and similarly with x2. Thus if x1 and x2

lie in different fibers of p, then F (x1) and F (x2) have disjoint support, so both sides of (6) are

zero.

If x1 and x2 lie in the same fiber, choose an étale neighborhood U → |h| of p(x1) = p(x2)

over which the family of cures C → |h| admits a section, and use the section to identify Y |U with

X|U . Now we use [Ari13, Theorem C], which applies to Pic0 of any integral curve with planar

singularities, and indeed to any family of such curves by remark (2) after [Ari13, Theorem C].

Our curves have planar singularities because they are contained in a smooth surface S, and

they are integral thanks to our hypothesis on tritangent lines. As at the end of § 2.2, our O(D)

now coincides with Arinkin’s Poincaré line bundle P up to tensoring with a line bundle pulled

back from X|U on either side, so our j∗O(D) coincides with his Poincaré sheaf P̄ = j∗P [Ari13,

Lemma 6.1(2)], again up to line bundles on either side. Thus F (Ox1
) and F (Ox2

) agree, up to

a line bundle, with the images of Ox1
and Ox2

under the functor induced by P̄ , which is an

equivalence; thus (6) is an isomorphism. �

Proposition 10. The space X contains a copy of P2, hence has infinitely many Q-points.

Proof. The map X → |h| that sends a sheaf to its support has a section, given by mapping a

curve C ∈ |h| to the trivial line bundle OC . �
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Rational points and derived equivalence

Proposition 11. The space Y has points over R and over Qp for every prime p.

Proof. Let C ∈ |h| be any smooth curve. Then Pic1
C ⊂ Y has both R- and Qp-points by

Lichtenbaum’s result [Lic69] as discussed in the introduction. �

Proposition 12. Suppose f is chosen so that

(a) S(R) = ∅,

(b) there are no tritangent lines to B defined over F̄2, and

(c) for every tritangent line L to B defined over Fq with q odd, the curve C = π−1(L) ⊂ SFq

consists of two reduced rational curves defined over Fq rather than Fq2 .5

Then Y (k) = ∅ for every number field k of odd degree over Q.

Proof. Because there are no tritangent lines over F̄2, there are no tritangent lines defined over

Q̄, so Y parametrizes only geometrically stable sheaves by Proposition 8. Thus there is a Brauer

class α ∈ Br(Y ) that obstructs the existence of a universal sheaf on S × Y . We will use α as a

Brauer–Manin obstruction to the existence of k-points on Y .

First we claim that for all y ∈ Y (R) we have α|y �= 0. If on the contrary α|y = 0, then y rep-

resents a sheaf F on SR. Because χ(F ) = 0 and c1(F )2 = h2 = 2, the degree of c2(F ) ∈ CH0(SR)

is 1 by Riemann–Roch. But a zero-cycle defined over R is a linear combination of R-points and

C-points, and we have S(R) = ∅, so there can be no zero-cycle of odd degree.

Now fix a number field k of odd degree over Q. We claim that for all non-Archimedean places

v of k and all y ∈ Y (kv) we have α|y = 0. Even stronger, we will show that, for all curves C ∈ |h|

defined over kv, the restriction of α to the fiber Pic1
C ⊂ Ykv

is zero. Let Ov be the ring of integers

of kv and κv
∼= Fq the residue field. Because the sextic f was defined over Z, we get a model of

C over SpecOv. By hypothesis, the reduction Cκv is either geometrically integral or a reduced

union of two rational curves; in either case, Lemmas 6 and 5 imply that the restriction of α to

Pic1
C is zero.

To conclude, suppose that y ∈ Y (k). Because [k : Q] is odd, k has an odd number of real

places, so we see that
∑

v invv(α|y) is an odd multiple of 1/2, which is impossible; see, for

example, [Poo17, Proposition 8.2.2]. �

Proposition 13. Suppose that Pic(SQ̄) = Zh.

(a) The schemes X and Y are not birational, even over C.

(b) If the Brauer class α ∈ Br(Y ) that obstructs the existence of a universal sheaf on S × Y

obstructs the Hasse principle (for example, if the hypotheses of Proposition 12 are satisfied)

then α is transcendental, that is, its image in Br(YQ̄) is non-zero.

Proof. Part (a) is due to Sawon [Saw08, Proposition 15]: the discriminant of the

Beauville–Bogomolov form on Pic(XC) is −4, while on Pic(YC) it is −1.

For part (b), recall the filtration of the Brauer group

Br0(Y ) ⊂ Br1(Y ) ⊂ Br(Y ),

where

Br0(Y ) := im(Br(Q) → Br(Y )) and Br1(Y ) := ker(Br(Y ) → Br(YQ̄)).

5 That is to say, in Definition–Proposition 7(b) we can take c = 1 and g �= 0.
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Classes in Br0(Y ) are called constant, those in Br1(Y ) are called algebraic, and the rest are

called transcendental. The Hochschild–Serre spectral sequence gives an isomorphism

Br1(Y )/Br0(Y ) ∼= H1(G, Pic(YQ̄));

see, for example, [Poo17, Corollary 6.7.8 and Remark 6.7.10].

The usual identification of Pic(YQ̄) with the orthogonal to the Mukai vector (0, h, 0) in the

Mukai lattice Z ⊕ Pic(SQ̄) ⊕ Z is valid as G-modules; to see this, note that all the maps appearing

in [Cha16, Theorem 2.4(vi)] are G-equivariant, and see [Fre20, § 2] for the techniques needed to

relax condition (C) of [Cha16, Definition 2.3].

Because Pic(SQ̄) = Zh, we see that Pic(YQ̄) ∼= Z2 with trivial G-action, so H1(G, Pic(YQ̄)) =

0. Thus if α were algebraic then it would be constant, but a constant class cannot obstruct the

Hasse principle. �

4.2 The explicit example

The sextic polynomial

f(x, y, z) = −x6 − x5z − x4y2 − x4z2 − x3yz2 − x2y2z2

− xy5 − xy4z − xz5 − y6 − y3z3 − y2z4 − yz5 − z6

satisfies all the hypotheses laid out in the previous section. Magma code to verify the claims

below is included in the supplementary file verify.magma, available with the online version of

this article. We also provide generate.magma for readers who want to search for more examples,

or adapt the code for their own purposes.

We find that f(x, y, z) < 0 for all x, y, z ∈ R3 \ 0, so S(R) = ∅.

There are tritangent lines to B defined over F̄p for five primes. For p = 5, the line

z = 4x + y is tritangent. For p = 31, the line y = 24x + 23 is tritangent. For p = 7517,

84716037398136110308799, and

4424904772196959344085200612883251617292465803437757948

5992572698404066491363246248977477562371729031497984350

0902180031058767256453958545754450340721124283977338015

3664612642260759001523868554216076825404419681,

there are tritangent lines whose equations we omit. In each case, there is a single tritangent line

defined over Fp, and its preimage in S consists of two reduced rational curves defined over Fp

rather than Fp2 .

The curve B is smooth over F31, hence over Q. Using the Magma routine

WeilPolynomialOfDegree2K3Surface, due to Elsenhans, we find the characteristic polynomial

of Frobenius acting on H2
ét

(SF̄31
, Q�(1)):

(t − 1)2
(

t20 − 12

31
t19 + 15

31
t18 − 6

31
t17 − 3

31
t16 − 6

31
t15 − 5

31
t14

+ 5

31
t13 − 13

31
t12 + 15

31
t11 − 22

31
t10 + 15

31
t9 − 13

31
t8 + 5

31
t7

− 5

31
t6 − 6

31
t5 − 3

31
t4 − 6

31
t3 + 15

31
t2 − 12

31
t + 1

)

.

The degree-20 factor is irreducible and is not cyclotomic, so S has geometric Picard rank 2

over F31, and hence geometric Picard rank 1 over Q by a result of Hassett and Várilly-Alvarado
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[HV13, Proposition 5.3]. (Note that this reference requires the geometric Picard group of SF31

to have rank 2 and be generated by the curves in the preimage of the tritangent line, but the

latter is automatic: the intersection pairing between the two curves is
(

−2 3

3 −2

)

,

whose discriminant −5 is squarefree, whereas if they generated an index-N sublattice then the

discriminant would be divisible by N2.)

4.3 Computational discussion

The computational difficulty is in finding all primes p such that there is a tritangent line to

the sextic curve defined over F̄p. For any given p, we can find tritangent lines defined over F̄p

in a fraction of a second using Elsenhans and Jahnel’s algorithm [EJ08, Algorithm 8]: we write

equations in the coefficients of a general line that say it is tritangent to the sextic, and compute

a Gröbner basis of the ideal they generate. But if we want to find tritangent lines for all primes

at once, we must compute a Gröbner basis of the same ideal over Z, which typically takes about

half an hour in our implementation. Moreover, the running time is very sensitive to the details

of the implementation: if we make a seemingly trivial change, like switching the order of two

variables, it might take hours or days. In the supplementary file verify.magma, we carry out the

Gröbner basis computation over Z, but in our initial search for f we needed something much

faster.

Following advice from Elsenhans, we computed a Gröbner basis over Q in Magma with

the ReturnDenominators option enabled; this returns a list of all the denominators used in

the division steps of the Gröbner basis algorithm, so if there are no tritangent lines over Q̄ then

the primes at which tritangent lines occur must divide one of those denominators. In our case the

list was very long, and many of the denominators were more than 1000 digits, which is too big

to factor. So we ran the computation twice, with slight variations in the details, and then took

common factors between the two lists. This yielded a list of small numbers and one 300-digit

number. This is still too big to factor in general, but we tested many sextics and occasionally

found candidates for which the big number had a few small prime factors and one big prime

factor, as in the example above.

We also modified [EJ08, Algorithm 8] as follows. The main step in the algorithm is to take

the ideal in

R[a, b, c0, . . . , c3],

where R = Fp or Q or Z, generated by equating coefficients in

f(1, t, a + bt) = (c0 + c1t + c2t
2 + c3t

3)2,

and eliminate the variables c0, . . . , c3 to get a Gröbner basis of an ideal in R[a, b] that says ‘the

line z = ax + by is a tritangent line’. Over Fp and Q, this is very efficient. But over Z and with

ReturnDenominators over Q it was profitable to split it into two steps. First, take the ideal in

Z[c0, . . . , c3, d0, . . . , d6]

generated by equating coefficients in

d0 + d1t + · · · + d6t
6 = (c0 + · · · + c3t

3)2,
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and eliminate c0, . . . , c3 to give an ideal in Z[d0, . . . , d6] with 51 generators. This takes a fraction

of a second. Then substitute the coefficients of f(1, t, a + bt) into the latter ideal and compute

a Gröbner basis. Our modified algorithm ran at least an order of magnitude faster than the

original when using ReturnDenominators over Q. Over Z, it ran in about half an hour, whereas

the original ran out of memory before returning an answer. Our modification produces a much

bigger set of generators for the ideal, with elements of much higher degree, so we were surprised

that it performed better.

Source code

Magma scripts are available as supplementary material with the online version of this article

available at https://doi.org/10.1112/S0010437X21007089.
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