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Rational points and derived equivalence

Nicolas Addington, Benjamin Antieau, Katrina Honigs and Sarah Frei

ABSTRACT

We give the first examples of derived equivalences between varieties defined over non-
closed fields where one has a rational point and the other does not. We begin with torsors
over Jacobians of curves over Q and F,(t), and conclude with a pair of hyperkéhler
4-folds over Q. The latter is independently interesting as a new example of a tran-
scendental Brauer—-Manin obstruction to the Hasse principle. The source code for the
various computations is supplied as supplementary material with the online version of
this article.

1. Introduction

The following question was posed by Esnault and stated in [AB18, Question 2].

Question. For smooth projective varieties defined over a field £ that is not algebraically closed,
is the existence of a k-rational point preserved under derived equivalence?

Honigs et al. [Honl5, Honl8] showed that over a finite field, the answer is yes up to dimen-
sion 3, and for Abelian varieties of any dimension; in fact the number of rational points is
preserved in these cases. A conjecture of Orlov [Orl05, Conjecture 1] would imply that this
continues to hold in higher dimensions.

Antieau, Krashen and Ward [AKW17, Theorem 1.1] showed that the answer is yes for curves
of genus 1 over arbitrary fields. (For curves of genus g > 2 or g = 0, the canonical bundle is
ample or anti-ample, so there are no interesting derived equivalences.)

Hassett and Tschinkel [HT17] studied the question for K3 surfaces, giving a positive answer
over R and proving a number of suggestive results over local fields. They showed that the indez
of a K3 surface — that is, the greatest common divisor of the degrees of its closed points — is
invariant under derived equivalence. Thus if D®(X) = D?(Y) and X has a rational point then
Y has a zero-cycle of degree 1, so it seems very difficult to find a counterexample among K3
surfaces. On the other hand, they asked whether the existence of a rational point is preserved
under twisted derived equivalence, and Ascher, Dasaratha, Perry and Zhou [ADPZ17] showed
that it is not, producing pairs of K3 surfaces over Q, Qs, and R such that D?(X, «) = Db(Y, 3)
for some o € Br(X) and § € Br(Y'), where X has a rational point (at which the restriction of «
is trivial) and Y has no rational points.
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RATIONAL POINTS AND DERIVED EQUIVALENCE

Auel and Bernardara studied geometrically rational surfaces in [AB18], showing (among
other things) that a del Pezzo surface S of degree at least 5 has a rational point if and only if
D?(S) admits a full exceptional collection.

We give two classes of examples to show that the answer to the question above is no: first,
some Abelian varieties and torsors over them, and second, a pair of hyperkéhler 4-folds.

THEOREM 1. For every g > 2, there is an Abelian g-fold X defined over Q, an X-torsor Y with
no rational points, and a Q-linear exact equivalence

Db(X) = Db(Y).
The same holds over F(t) for any odd q.

Recall that a torsor over an Abelian variety has a rational point if and only if it has a
zero-cycle of degree 1, so this theorem contrasts with the behavior of K3 surfaces discussed
above.

To prove Theorem 1, we mine the literature for curves C' defined over Q and Fy(t) such that
Picgc_1 has no rational points. If k = R, Qy, or F;((t)) then Pi(:%_1 always has k-points by work of
Lichtenbaum [Lic69] and a remark of Poonen and Stoll [PS99, Footnote 10], so for the examples
we are interested in, Pic%_1 is a counterexample to the Hasse principle. Then Theorem 1 follows
from the next result.

THEOREM 2. If C is a smooth, projective, geometrically connected curve of genus g > 1 over an
arbitrary field k, then there is a k-linear exact equivalence

0N~ g1
D(Pic) = DP(Pick ).

The proof is a repackaging of Mukai’s classic derived equivalence [Muk81] between an Abelian
variety and its dual. We include a broader discussion of torsors over Abelian varieties in § 2.

The varieties X and Y in Theorem 1 become isomorphic after a finite field extension, but
in §4 we present a more sophisticated counterexample over QQ, in which the varieties remain
different even over C. These are our hyperkahler 4-folds.

THEOREM 3. There is an explicit K3 surface S, defined over Q, and two smooth, projective,
four-dimensional moduli spaces X and Y of sheaves on S, such that X has infinitely many
rational points, Y has no zero-cycle of degree 1, and there is a Q-linear exact equivalence

Db(X) = Db(Y).
The spaces X and Y are not birational, even over C.

In fact Y has points over R and over Q, for every prime p, so it is a counterexample to the
Hasse principle. We use the class a € Br(Y') that obstructs the existence of a universal sheaf on
S x Y as a Brauer—-Manin obstruction. It is a transcendental Brauer class: it remains non-trivial
in Br(Yg) or Br(Yg).

This counterexample is related to the Abelian counterexamples above in that X is fibered
over P2 in Jacobians of curves of genus 2, and Y is fibered in Pic! of the same curves. The derived
equivalence is a version of our earlier equivalence D°(Picl) = Db(Pict) in families; the extension
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to the singular fibers is due to Arinkin [Aril3], and was used in work of Addington, Donovan
and Meachan [ADM16], but we give a simplified description.

By taking fibers of X and Y over Q-points of P? we can get more explicit examples of
Theorem 1. By taking generic fibers we get an example of Theorem 1 over the function field
Q(z,y), or indeed C(x,y). By taking the preimage of a general curve in P? we get derived
equivalent 3-folds of Kodaira dimension 1, where one has a rational point and one does not.

Theorem 3 stands in contrast to a result of Frei [Fre20, Theorem 1], who showed that, over a
finite field, two smooth projective moduli spaces of sheaves on a given K3 surface have the same
number of points as soon as they have the same dimension.

Conventions. For an arbitrary field k, we let k* denote its separable closure, k its algebraic
closure, and G = Gal(k®/k) its absolute Galois group. For a variety X over k, we let X*® =
X xp k* and X = X x; k. We let Picx denote the Picard scheme and Pic(X) the Picard group;
the group of k-rational points of Picy is Pic(X®)®, which may be strictly bigger than Pic(X),
as we will discuss at length.

Because we consider sheaves of rank 0 and sheaves on reducible spaces, stability for us always
means Gieseker stability, defined in terms of the reduced Hilbert polynomial, rather than slope
stability.

2. Abelian counterexamples

2.1 Torsors over Abelian varieties
Let A be an Abelian variety over an arbitrary field k. As Poonen and Stoll discuss in [PS99, § 4],
the short exact sequence of G-modules

0 — Pic?(A®%) — Pic(A*) — NS(4%) — 0
yields a long exact sequence
0 — Pic’(A) — Pic(A) — NS(A%)¢ — HY(G,Pic®(4°)) — H(G, Pic(A%))--- .

For any divisor class

A e NS(4%)Y,
we can consider the associated component of the Picard scheme

Pic) C Picy,
which is a torsor over the dual Abelian variety A= PiCOA, trivial if and only if A is in the image
of the map Pic(A) — NS(A*)Y above: that is, in NS(A).
THEOREM 4. There is a k-linear exact equivalence

Db(A) = Db(Pic)).

It is interesting to contrast this statement with [AKW17, Corollary 5.2], which says that in
characteristic 0, if End(A®) = Z and the inclusion NS(A) C NS(A4%)¢ = Z is an equality, then
two derived equivalent A-torsors necessarily generate the same subgroup of H'(G, Pic®(A%)).

1038

Downloaded from https://www.cambridge.org/core. Rice University, on 04 Aug 2021 at 21:28:32, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X21007089



RATIONAL POINTS AND DERIVED EQUIVALENCE

Proof of Theorem 4. Because A has a rational point, there is a Poincaré line bundle P on A x
Pic) by [Kle05, Exercise 9.4.3] or by Lemma 5 below. We claim that the functor

F: D’(A) — D°(Pic})

induced by P is an equivalence. By [Orl02, Lemma 2.12], it is enough to prove it after base
change to k.

So assume that k is algebraically closed, choose a base point [M] € Pic*(A), and use it to
identify Pic} with A. Then P @ n* MV is a Poincaré bundle on A x A, hence induces an equiva-
lence D*(A) — DP(A) by Mukai’s theorem [Muk81]; see also Polishchuk’s book [Pol03, Chapters
11 and 17], or Huybrechts’ book [Huy06, Chapter 9] for another account in characteristic zero.
Now the functor induced by P ® 7f MV is just tensoring with MY (which is an equivalence)
followed by F', so it is an equivalence if and only if F' is. ]

2.2 Proof of Theorem 2 and discussion of Jacobians
We could deduce Theorem 2 from Theorem 4 by letting A = Pic, and letting A € NS(A4°%) be
the class of the ©-divisor; then Pic} = Pic*(éfl by [PS99, Corollary 4].!

But we can also describe the Poincaré bundle on Pic% X Picg(’;1 as the line bundle associated
to a very explicit divisor D, and this will prove useful in §4. Over k, we can write

D={(L,M): H(L® M) # 0} C Pic% x Pic’ .

We see that the fiber of D over a point of Picgé_1 is a translate of the ©-divisor on Pic%, in such

a way that O(D) is a universal bundle for Pic%_1 as a moduli space of line bundles on Pic%.

To see that D is defined over k, we can describe it as the support of a certain twisted sheaf.
Let a € Br(Picl) be the obstruction to the existence of a universal line bundle on C' x Pic,, and
let £ be the mja-twisted universal bundle. Similarly, let 4 € Br(Pic% ") and M on C x Pic% '
Then D is the support of the (o X 3)-twisted sheaf

R'moz 4 (1oL ® wis M), (1)

where ;; are the projections from C x Pic% X Picgfl onto any two factors.
For another argument that O(D) agrees with the Poincaré line bundle, we could use Deligne’s
description of the latter as the line bundle whose fiber at a geometric point (L, M) is

(det H*(L ® M))™' @ det H*(L) ® det H*(M) ® (det H*(O¢)) ™. (2)

We learned this description from Arinkin’s paper [Aril3]; see Polishchuk’s book [Pol03, §22.3]
for another account. Globally, the first term of (2) is

(det R07T237*(7TT2£ & WT:SM))il & (det R17T237*(7TT2£ & 7TT3M))

Now ROma3 . (mieL ® miqM) vanishes, and Rlmas (7oL ® mi3M) is supported on D and has
generic rank 1 there, so its determinant as a sheaf on Picl x Pic*‘é_1 is the (untwisted) line
bundle O(D). The other terms of (2) just modify O(D) by line bundles pulled back from Pic%
or Pic*‘éfl, so they do not change the fact that it induces a derived equivalence.

! Recall that the ©-divisor lives most naturally in Picgfl, as the image of the Abel-Jacobi map Sym?~*(C) —
PicZ . If Pic4 ' has a k-point then we can identify PicZ 2 PicZ " and get a ©-divisor on A = Pic®, unique up
to translation. But if Pic, ' (k) = @ then we only get a class in NS(A%)%, not NS(A).
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The interested reader may consult [ADM16, Proof of Proposition 2.1(a)] for more details
on the generalization of Mukai’s equivalence from Pic% X PicOC to Pict x Picgy, and [ADM16,
Remark 2.3] for more (twisted) derived equivalences.

2.3 Proof of Theorem 1
To deduce Theorem 1 from Theorem 2, it is enough to find genus-g curves C' such that Picgc_
has no rational points. There is a subtlety, in that the inclusion

1

Pic?(C) c Pick (k) = Pict(C*)“ (3)

may be proper in general.
Coray and Manoil [CM96, Proposition 4.2] showed that, for any g > 1, the hyperelliptic curve
C of genus g determined by

y? = 605 - 105202972 + (1822 — 4400)(452% — 8800)

has points over R and over Q,, for every prime p, so the inclusion (3) is an equality for all d by
[CM96, Corollary 2.5]; but that Pic'(C) = @. Bhargava, Gross and Wang [BGW17, Theorem 2]
later showed that a positive proportion of hyperelliptic curves over QQ have this property, by
studying pencils of quadrics. Note that if C' is hyperelliptic and ¢ is even then Piclc = Picgl.

Poonen and Stoll gave explicit hyperpelliptic curves of even genus over Q for which Pic%f
has no rational points in [PS99, Propositions 26-28], and studied their density in [PS99, §9].

They gave a non-hyperelliptic example of genus 3 over Q, namely the plane quartic curve

1

at +pyt + %t =0

for any p = —1 (mod 16), in [PS99, Proposition 29]. And they gave a genus-2 example over Fy(¢)
for ¢ odd, namely

y2:tx6+xfat

for any a that is not a square in g, in [PS99, Proposition 30].

While we expect that there are similar examples over Q in odd genus g > 5, and over F(t)
in genus g > 3, we did not find them in the literature. But to finish the proof of Theorem 1, we
can just take the examples above and cross with an elliptic curve. Let C be a genus-2 curve such
that Y = Picé is a non-trivial torsor over the Abelian surface X = Pic%, and let F be an elliptic
curve. Then for any g > 2, we see that Y x E972 is a non-trivial torsor over X x E972 and the
two have equivalent derived categories [Huy06, Exercise 5.20].

3. Brauer classes on compactified Picard schemes

Let X be a projective, geometrically integral, but not necessarily smooth variety over an arbitrary
field k. For a divisor class A € NS(X*)%, there is an inclusion

Pic’(X) C Pick (k) = Pic*(X*)¢, (4)

which we encountered for smooth curves in the proof of Theorem 1 but which we now consider
more broadly in preparation for §4.
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Coray and Manoil [CM96] have studied the inclusion (4) using the exact sequence
0 — Pic(X) — Pic(X*)¥ — Br(k) — Br(X) — - -- (5)

coming from the Hochschild—Serre spectral sequence. We will study it using a class in Br(Picé‘()
that arises from viewing the Picard scheme as a moduli space of stable sheaves on X.

For standard results on moduli spaces of sheaves, our reference is Huybrechts and Lehn’s
book [HL10], together with Langer’s papers [Lan04b, Lan04a] which make the results available in
positive and mixed characteristic. The key point for us is that a moduli space M of (S-equivalence
classes of ) semi-stable sheaves with given Hilbert polynomial is projective, and the open subspace
M., parametrizing geometrically stable sheaves is in general only quasi-projective but carries
a Brauer class that obstructs the existence of a universal sheaf on X x Mgi,,. This Brauer class
is associated to a principal PGL,-bundle coming from the construction of the moduli space via
geometric invariant theory [HL10, Corollary 4.3.5]. It can be realized as an étale P"-bundle as
follows. By boundedness, there is an N > 0, depending only on the Hilbert polynomial, such that
for every semi-stable sheaf F', the twist F'(N) is globally generated and has no higher cohomology.
Then we take the bundle over M,;, whose fiber at F' is PH?(F(N)). For a stackier description,
we could say that a geometrically stable sheaf is simple, so its automorphism group is G,,, so the
moduli stack of geometrically stable sheaves is a G,,-gerbe over the moduli space; compare [Lie06,
Corollary 4.3.3].

Because X is geometrically integral, every rank-1 torsion-free sheaf on X is geometrically
stable with respect to any ample line bundle. If X is smooth, then Picé( is closed in the moduli
space of rank-1 torsion-free sheaves on X, but if not then we can consider its closure

Pic).
Let
)y € Br(Pilcé()

be the Brauer class that obstructs the existence of a universal sheaf on X x mﬁ‘(?

The inclusion (4) above can be understood as follows: for any extension field K/k, we have
PicM (X ) = {£ € Picx (K) : ¢ = 0 € Br(K)}.

The following lemma is essentially well known for Picﬁ‘( (see [CM96, Corollary 2.3] for an approach
using the exact sequence (5)), but in the next section we need it for Piicﬁ‘p which requires different
methods.

LEMMA 5. Let X be a projective, geometrically integral variety over an arbitrary field k, let
A € NS(X#)%, and let Pic), and oy € Br(Picy) be as above. If X has a smooth k-point, or more
generally a zero-cycle of degree 1 supported in its smooth locus, then a) = 0.

Proof. Let ¢ be the class in Kpum(X®)¢ corresponding to A € NS(X*)©. First we argue that for
any vector bundle F on X, defined over k, the number Ng := x(c- [E]) satisfies Ng - a) = 0.
A similar claim is valid for any moduli space of geometrically stable sheaves, not only Pilcé( Let
m1 and 7y be the projections from X x Wﬁ(, and let Uy be the 75\ -twisted universal sheaf on

2 Note that a is the restriction of a natural Brauer class that lives on the whole moduli space of geometrically
stable sheaves, or indeed of simple sheaves, so there is no need to worry about ramification at the boundary
components of Pic.
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X x ﬁﬁ‘( Then Ry . (Uy @ 71 E) is an a-twisted perfect® complex of rank Ng, so Ng - ay = 0.
(See [HL10, Theorem 4.6.5] for a similar argument.)

Now if £ C Xy is a subscheme of length d, then O¢ admits a finite resolution by vector
bundles and satisfies x(c- [O¢]) = d. Thus a zero-cycle of degree 1 forces ay to vanish, by a
greatest common divisor argument. Note that if the support of £ meets the singular locus of X
then O might not admit a finite resolution by vector bundles. (Il

Lemma 5 will be used in conjunction with the following result.

LEMMA 6. Let X be a projective variety over a non-Archimedean local field k = k, with ring
of integers O, and residue field k,. Suppose that X has a model X — SpecO, whose special
fiber is geometrically integral, or more generally has a component Y of multiplicity 1 that is
geometrically integral. Then X has a zero-cycle of degree 1 supported in its smooth locus.

Proof. By the Lang—Weil bounds, Y has a smooth point defined over a degree-r extension of &,
for all 7 > 0 [Pool7, Theorem 7.7.1]. By Hensel’s lemma, this lifts to a smooth point of X defined
over a degree-r extension of k,, so there is a zero-cycle of degree r defined over k,,, supported in
the smooth locus of X. By considering r and r + 1 we get a zero-cycle of degree 1. ([l

4. A hyperkihler counterexample

Recall that a K3 surface S of degree 2 can be obtained as a double cover of P? branched over a
smooth sextic curve. In §4.1 we consider two moduli spaces X and Y of sheaves on such a K3
surface S and show that if the sextic satisfies a laundry list of conditions then the conclusions
of Theorem 3 hold. In §4.2 we exhibit a sextic satisfying those conditions. In §4.3 we discuss
computational issues that we faced in finding this sextic.

4.1 Steps of the proof
Let f € Z[x,y, z] be a homogeneous polynomial of degree 6 that cuts out a smooth curve B C IP)?@.
Let S be the K3 surface over Q defined by

w2 = f(xaya Z),
either in weighted projective space WIP3(3, 1,1, 1) or in the total space of Op2(3). Let : S — P?
be the map that forgets w, which is a double cover branched over B.
The class h := 7*Op2(1) € NS(S) is ample and satisfies h? = 2. A curve in the linear system
|h| is the preimage of a line in P2, and we may identify |h| with the space of lines in P2. A general
member of |h| is a smooth curve of genus 2.

DEFINITION-PROPOSITION 7. A line L C P? (defined over any perfect field k) is a tritangent line
to the sextic curve B if it satisfies one of the following conditions, which are equivalent:

(a) L is tangent to B at three points, in the scheme-theoretic sense;
(b) flr = c- g% for some scalar ¢ and some cubic g € H°(O(3));
(c) the curve C' = 7~1(L) is not geometrically integral.

3 Because U is flat over Picy and X is proper; see [Stal8, Tag 0A1E].
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Proof. 1t is clear that (a) < (b) = (c). To see that (c) = (b), suppose for simplicity that the
line is given by z = 0. Then the curve w? = f(z,y) in WP3(3,1,1) is not integral over k, so
w? — f(x,y) factors, so f(x,y) is a square in k[z,y]. Because k is perfect, this implies that

f =c-g? for some c € k and some cubic g € k[x,y]. d

Consider the moduli spaces of semi-stable sheaves on S of rank 0, first Chern class h, and
Euler characteristic —1 or 0:

X := M (0,h,—1),
Y := Mj(0, h,0).

Sheaves with these invariants include all line bundles of degree 0 or 1 supported on curves in the
linear system |h|, together with some rank-1 torsion-free sheaves supported on singular curves.
The moduli spaces are projective varieties of dimension 4. They map to |h| by sending a sheaf
to its support. Thus if C — |h| is the tautological family of curves in the linear system |h|, that
is,

C={(z,C):x€C} CSx|h|,

then X is a compactification of the relative Picard scheme Picg /A’ and Y is a compactification

-1
of Plcc/w.

ProprosITION 8. The space X parametrizes only geometrically stable sheaves, hence is smooth.
The same is true of Y if there are no tritangent lines to B defined over Q.

Proof. Mukai showed that a moduli space of geometrically stable sheaves on a K3 surface is
smooth [Muk84, Theorem 0.1].

Let F' be a pure sheaf on Sg with rank(F) =0 and ¢;(F) = h. Write ¢1(F) = m;[C1] +
-+« + mg[C], where C; are the irreducible components of the reduced support of F' and m; > 0.
Since ¢;(F).h = h? =2 and h is ample, we see that either I is supported on an irreducible
curve C' € |h| and has generic rank 1 there, or it is supported on a reducible curve C7 U Cy with
Ci.h = C5.h =1 and has generic rank 1 on each component.

In the first case (irreducible support), any saturated* subsheaf G' C F is either 0 or all of
F, so F is necessarily stable. In the second case, which can only occur if there is a tritangent
line defined over Q, a saturated subsheaf G C F' might be supported on C; or Cy alone, with
generic rank 1 there. In this case, the Hilbert polynomial Pg(t) is t + x(G), and the reduced
Hilbert polynomial pg(t) is the same. If x(F) = —1 then Pp(t) =2t —1, so pp(t) =t— 3 so
pa(t) < pr(t) implies pa(t) < pr(t), so F is again stable. O

PROPOSITION 9. Suppose there are no tritangent lines to B defined over Q. Then there is a
Q-linear exact equivalence D*(X) = Db(Y).

Proof. To emulate the construction of §2.2 for the family of curves C — |h|, we might want to
define a divisor

{(L,M): H'(L® M) # 0} C X x Y.

4 See [HL10, Proposition 1.2.6] for why it is enough to consider saturated subsheaves.
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But on a singular curve C € |h|, if L and M both fail to be locally free at some singular point,
then the underived tensor product L @ M is the wrong thing to write, and Tor{ (L, M) may be
non-zero for infinitely many 7 > 0.

So following Arinkin [Aril3], we consider the open subschemes

X°=Picg,y C X and Y°=Picg), CY
and the divisor
D={(L,M): H'(L® M) #0} C X° x| Y UX x| Y°,

which avoids the issue just discussed because one of L and M is always locally free. To see that
D is defined over QQ, we can describe it as the support of the analogue of (1). Next, consider the
inclusion

j:XOX‘mYUX X‘h‘YO‘HXX“”YV.

Our equivalence will be induced by the sheaf j,O(D). Presumably this coincides with O(D), or
more precisely, the dual of the ideal sheaf of D, where D is the closure of D in X x in| Y, but we
will not need this.

To prove that the functor F': D¥(X) — D®(Y) induced by j.O(D) is an equivalence, we can
again base-change to Q by [Orl02, Lemma 2.12]. Then for closed points x1, 72 € X, we consider
the natural map

Exty(Oz,, O,) — Exty (F(Ox,), F(Ox,)). (6)

The skyscraper sheaves O, are a spanning class [Huy06, Proposition 3.17], so if (6) is an iso-
morphism for all z; and x5 then F' is fully faithful [Huy06, Proposition 1.49], and hence is an
equivalence because wy and wy are trivial [Huy06, Proposition 7.6].

Let p: X — |h| and ¢: Y — |h| be the Abelian fibrations discussed earlier, which map a sheaf
to its support. Because our kernel j.O(D) is supported on the fiber product X X|p Y, we see
that F(O,,) is supported on the fiber ¢~1(p(x1)) C Y, and similarly with z5. Thus if 21 and xy
lie in different fibers of p, then F(z1) and F(z2) have disjoint support, so both sides of (6) are
Z€ero.

If z; and x5 lie in the same fiber, choose an étale neighborhood U — |h| of p(z1) = p(x2)
over which the family of cures C — |h| admits a section, and use the section to identify Y|y with
X|y. Now we use [Aril3, Theorem C], which applies to Pic? of any integral curve with planar
singularities, and indeed to any family of such curves by remark (2) after [Aril3, Theorem C].
Our curves have planar singularities because they are contained in a smooth surface S, and
they are integral thanks to our hypothesis on tritangent lines. As at the end of §2.2, our O(D)
now coincides with Arinkin’s Poincaré line bundle P up to tensoring with a line bundle pulled
back from X | on either side, so our j5,O(D) coincides with his Poincaré sheaf P = j,P [Aril3,
Lemma 6.1(2)], again up to line bundles on either side. Thus F(O,,) and F(O,,) agree, up to
a line bundle, with the images of O,, and O,, under the functor induced by P, which is an
equivalence; thus (6) is an isomorphism. O

PROPOSITION 10. The space X contains a copy of P?, hence has infinitely many Q-points.

Proof. The map X — |h| that sends a sheaf to its support has a section, given by mapping a
curve C' € |h| to the trivial line bundle O¢. O
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PROPOSITION 11. The space Y has points over R and over Q, for every prime p.

Proof. Let C € |h| be any smooth curve. Then Picl, C Y has both R- and Q,-points by
Lichtenbaum’s result [Lic69] as discussed in the introduction. O

PROPOSITION 12. Suppose f is chosen so that
(a) S(R) =&,

(b) there are no tritangent lines to B defined over Fy, and
(c) for every tritangent line L to B defined over F, with q odd, the curve C =~ '(L) C Sg,
consists of two reduced rational curves defined over IF, rather than Fq2.5

Then Y (k) = @ for every number field k of odd degree over Q.

Proof. Because there are no tritangent lines over Fo, there are no tritangent lines defined over
Q, so Y parametrizes only geometrically stable sheaves by Proposition 8. Thus there is a Brauer
class a € Br(Y') that obstructs the existence of a universal sheaf on S x Y. We will use « as a
Brauer—Manin obstruction to the existence of k-points on Y.

First we claim that for all y € Y'(R) we have a, # 0. If on the contrary «|, = 0, then y rep-
resents a sheaf F on Sg. Because x(F) = 0 and c1(F)? = h? = 2, the degree of co(F) € CHy(Sg)
is 1 by Riemann—Roch. But a zero-cycle defined over R is a linear combination of R-points and
C-points, and we have S(R) = &, so there can be no zero-cycle of odd degree.

Now fix a number field k of odd degree over Q. We claim that for all non-Archimedean places
vof kand all y € Y (k,) we have |, = 0. Even stronger, we will show that, for all curves C € |h|
defined over k,, the restriction of « to the fiber ﬁ}; C Yy, is zero. Let O, be the ring of integers
of k, and k, =, the residue field. Because the sextic f was defined over Z, we get a model of
C over SpecO,. By hypothesis, the reduction C), is either geometrically integral or a reduced
union of two rational curves; in either case, Lemmas 6 and 5 imply that the restriction of « to
Pilclc is zero.

To conclude, suppose that y € Y (k). Because [k : Q] is odd, k£ has an odd number of real
places, so we see that ) inv,(c|,) is an odd multiple of 1/2, which is impossible; see, for
example, [Pool7, Proposition 8.2.2]. O

PROPOSITION 13. Suppose that Pic(Sg) = Zh.

(a) The schemes X and Y are not birational, even over C.

(b) If the Brauer class a € Br(Y') that obstructs the existence of a universal sheaf on S XY
obstructs the Hasse principle (for example, if the hypotheses of Proposition 12 are satisfied)
then « is transcendental, that is, its image in Br(Yg) is non-zero.

Proof. Part (a) is due to Sawon [Saw08, Proposition 15]: the discriminant of the
Beauville-Bogomolov form on Pic(X¢) is —4, while on Pic(Y¢) it is —1.
For part (b), recall the filtration of the Brauer group

Bry(Y) C Bri(Y) € Br(Y),

where

Bro(Y) :=im(Br(Q) — Br(Y)) and Bri(Y) := ker(Br(Y) — Br(Yg)).

5 That is to say, in Definition-Proposition 7(b) we can take c =1 and g # 0.
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Classes in Bro(Y) are called constant, those in Bri(Y) are called algebraic, and the rest are
called transcendental. The Hochschild—Serre spectral sequence gives an isomorphism

Bry(Y)/Bro(Y) = H'(G, Pic(Yg));

see, for example, [Pool7, Corollary 6.7.8 and Remark 6.7.10].

The usual identification of Pic(Yg) with the orthogonal to the Mukai vector (0, h,0) in the
Mukai lattice Z & Pic(S@) @ Z is valid as G-modules; to see this, note that all the maps appearing
in [Chal6, Theorem 2.4(vi)] are G-equivariant, and see [Fre20, § 2] for the techniques needed to
relax condition (C) of [Chal6, Definition 2.3].

Because Pic(Sg) = Zh, we see that Pic(Yg) = Z? with trivial G-action, so H'(G, Pic(Yg)) =
0. Thus if o were algebraic then it would be constant, but a constant class cannot obstruct the
Hasse principle. O

4.2 The explicit example
The sextic polynomial

fz,y,2) = —ab — 252 — aty? — 2122 — 23y2? — 2222

5

2

—ayd — gty — w28 — S — 828 — 2t — B — 6

satisfies all the hypotheses laid out in the previous section. Magma code to verify the claims
below is included in the supplementary file verify.magma, available with the online version of
this article. We also provide generate .magma for readers who want to search for more examples,
or adapt the code for their own purposes.

We find that f(z,y,2) <0 for all x,y,z € R3\ 0, so S(R) = @.

There are tritangent lines to B defined over I_Fp for five primes. For p =15, the line
z=4x +y is tritangent. For p =31, the line y =24z + 23 is tritangent. For p = 7517,
84716037398136110308799, and

4424904772196959344085200612883251617292465803437757948
5992572698404066491363246248977477562371729031497984350
0902180031058767256453958545754450340721124283977338015
3664612642260759001523868554216076825404419681,

there are tritangent lines whose equations we omit. In each case, there is a single tritangent line
defined over F,,, and its preimage in S consists of two reduced rational curves defined over F,
rather than [F ..

The curve B is smooth over Fs;, hence over Q. Using the Magma routine
WeilPolynomialOfDegree2K3Surface, due to Elsenhans, we find the characteristic polynomial
of Frobenius acting on HZ (Sg,,, Q¢(1)):

2 (420 12,19 15,18 6 417 3 416 6 415 5 414
(t—1)2 (¢ — 33" + P18 — Z'T — 210 — B> — 2t
5 413 13,12 15,11 22,10 1549 13,8 5 47
+ 21— Byl Iyl 22410 4 1549 1348 4 5y
5 46 6 15 3 44 6 43 1542 12
— 5t = St — 2t — 20 4+ 27— He+1).

The degree-20 factor is irreducible and is not cyclotomic, so S has geometric Picard rank 2
over [F31, and hence geometric Picard rank 1 over QQ by a result of Hassett and Varilly-Alvarado
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[HV13, Proposition 5.3]. (Note that this reference requires the geometric Picard group of Sg,,
to have rank 2 and be generated by the curves in the preimage of the tritangent line, but the
latter is automatic: the intersection pairing between the two curves is

(v %)

whose discriminant —5 is squarefree, whereas if they generated an index-/N sublattice then the
discriminant would be divisible by N2.)

4.3 Computational discussion

The computational difficulty is in finding all primes p such that there is a tritangent line to
the sextic curve defined over IF'p. For any given p, we can find tritangent lines defined over Fp
in a fraction of a second using Elsenhans and Jahnel’s algorithm [EJ08, Algorithm 8]: we write
equations in the coefficients of a general line that say it is tritangent to the sextic, and compute
a Grobner basis of the ideal they generate. But if we want to find tritangent lines for all primes
at once, we must compute a Grobner basis of the same ideal over Z, which typically takes about
half an hour in our implementation. Moreover, the running time is very sensitive to the details
of the implementation: if we make a seemingly trivial change, like switching the order of two
variables, it might take hours or days. In the supplementary file verify.magma, we carry out the
Grébner basis computation over Z, but in our initial search for f we needed something much
faster.

Following advice from Elsenhans, we computed a Grobner basis over Q in Magma with
the ReturnDenominators option enabled; this returns a list of all the denominators used in
the division steps of the Grobner basis algorithm, so if there are no tritangent lines over Q then
the primes at which tritangent lines occur must divide one of those denominators. In our case the
list was very long, and many of the denominators were more than 1000 digits, which is too big
to factor. So we ran the computation twice, with slight variations in the details, and then took
common factors between the two lists. This yielded a list of small numbers and one 300-digit
number. This is still too big to factor in general, but we tested many sextics and occasionally
found candidates for which the big number had a few small prime factors and one big prime
factor, as in the example above.

We also modified [EJO8, Algorithm 8] as follows. The main step in the algorithm is to take
the ideal in

Rla, b, co, ..., c3),
where R = F,, or Q or Z, generated by equating coefficients in
f(1,t,a+bt) = (co + c1t + cot? + e3t?)?,

and eliminate the variables ¢y, ..., c3 to get a Grobner basis of an ideal in R]a, b] that says ‘the
line z = ax + by is a tritangent line’. Over F, and Q, this is very efficient. But over Z and with
ReturnDenominators over Q it was profitable to split it into two steps. First, take the ideal in

Zlcg, ..., c3,do, . .., dg]
generated by equating coeflicients in

do+ dit + -+ dgt® = (co + - - - + c3t®)?,
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and eliminate co, ..., c3 to give an ideal in Z[d, . . ., dg] with 51 generators. This takes a fraction
of a second. Then substitute the coefficients of f(1,¢,a + bt) into the latter ideal and compute
a Grobner basis. Our modified algorithm ran at least an order of magnitude faster than the
original when using ReturnDenominators over Q. Over Z, it ran in about half an hour, whereas
the original ran out of memory before returning an answer. Our modification produces a much
bigger set of generators for the ideal, with elements of much higher degree, so we were surprised
that it performed better.

SOURCE CODE

Magma scripts are available as supplementary material with the online version of this article
available at https://doi.org/10.1112/50010437X21007089.
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