

Review

Why is Tree Drought Mortality so Hard to Predict?

Anna T. Trugman, ^{1,6,*} Leander D.L. Anderegg, ^{2,3,6,*} William R.L. Anderegg, ⁴ Adrian J. Das, ⁵ and Nathan L. Stephenson ⁵

Widespread tree mortality following droughts has emerged as an environmentally and economically devastating 'ecological surprise'. It is well established that tree physiology is important in understanding drought-driven mortality; however, the accuracy of predictions based on physiology alone has been limited. We propose that complicating factors at two levels stymie predictions of drought cardivent mortality: (i) organismal-level physiological and site factors that construct inderstanding of drought exposure and vulnerability and (ii) community-level ecological interactions, particularly with biotic agents whose effects on transfer more lity may reverse expectations based on stress physiology. We conclude with a hath forward that emphasizes the need for an integrative approach to stress physiology and biotic agent dynamics when assessing forest risk to drought-drivent morality in a changing climate.

Ecological and Physiological Complexity Mediate Tree Disught Responses

Understanding and predicting the drivers of tree mortal to during and following drought is a long-standing scientific problem with wide-ranging remific from environmental conservation to climate change mitigation efforts [1-11]. Vide spread observations of drought-driven mortality with anthropogenic climate change makes understanding tree mortality mechanisms particularly timely [12-14]. The which it has been well established that tree physiology is important in understanding tree via ability (see Glossary) to drought-driven mortality, so far, physiology alone has had limiter fuccess in preciting which trees will die and when (or drought mortality risk).

Over the past decade, or sideral a efformas been invested to mechanistically predict tree mortality based on prosion of which mixed results [15]. In some systems, plant functional traits as simply as wood. Tensity or specific leaf area are statistically associated with mortality rates among species in a community [16–19]. Where known, more mechanistic plant hydraulic traits have proved useful understanding mechanisms that underlie drought-induced tree mortality [17,20–22]. For example, species mean hydraulic traits, such as the water potential at which 50% of stem xylem conductivity is lost (P50) and hydraulic safety margin (HSM, the difference between P50 and minimum stem water potential), may imply a distinct ordering of co-occurring species' risks to drought mortality. However, our predictive ability remains relatively weak. For instance, with site-specific measurements, hydraulic traits predicted around 60% of the variation in local mortality rates among 53 species in a diverse tropical forest [23]. Yet, in a global meta-analysis of predominantly less diverse systems where species mean trait values were used, less than 30% of the variation in relative mortality risk was explained [17].

Moreover, plant hydraulic models of various complexity have had partial, but fairly limited, success explaining spatial mortality patterns within individual species on the landscape during

High ghts

rought mortality has wide-ranging ra ifications from environmental constitution to climate change mitigation efforts. Thus far, mortality prediction efforts using physiology alone have found limited success.

Physiological interactions, such as withinspecies trait variation, trait covariation, and trait—environment covariation, can reverse or confound mortality predictions.

Ecological complexity, particularly the degree to which biotic mortality agents are linked to stress physiology, is highly variable. Thus, the presence of biotic agents has strong potential to reverse or confound mortality predictions.

We present a framework to integrate our understanding of complex drought physiology and biotic mortality agents.

Future work is needed to understand where and when biotic mortality agents might amplify patterns of physiological stress and where and when the effects of biotic agents might be largely decoupled from physiological stress.

¹Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA

²Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA

³Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA ⁴School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA ⁵US Geological Survey, Western

Ecological Research Center, Three Rivers, CA 93271, USA

⁶These authors contributed equally to this work

drought [3,7,24–28]. For example, a combination of a soil hydraulic model and species HSMs predicted only 27% of the spatial variation in mortality of 44 European tree species [25], and a detailed site-level plant hydraulics model could explain <10% of the spatial mortality variation in eight North American tree species [27].

*Correspondence: att@ucsb.edu (A.T. Trugman) and landeregg@ucsb.edu (L.D.L. Anderegg).

The challenge of mechanistic mortality prediction arises in part from uncertainty in our understanding about basic plant hydraulic physiology, which makes it difficult to rank species or individuals at a site or populations within a species on a landscape in terms of their physiological vulnerability. For example, the actual anatomical drivers of xylem resistance to drought-induced damage remain contested [29–33]. Further, a strong understanding of **physiological drought vulnerability** at multiple spatial, temporal, ecological, and evolutionary scales will require both the resolution of long-standing methodological debates [34] and collaboration between functional and evolutionary xylem biologists and anatomists [35,36].

However, we argue that predictions of drought mortality are critically impeded by in ract that some key mortality drivers are not incorporated into hypothesized mortality methanism rooted in physiology alone. Indeed, an experiment explicitly designed to emulate for constant of the interest of century climate scenario conditions with co-occurring elevated temperature and seving drought resulted in no tree mortality, despite widespread observed climate-driving diet if of the same species in the same region several years earlier [37], likely due in local second ions and the absence of drought interactions with bark beetle outbreak [38]. In this consequence, we outline some prominent reasons for why tree mortality is so hard to provide a long along alone and present key avenues for making progress.

Within-Species Trait Variation and Trait Covraction in Key Unmeasured Traits Can Confound Mortality Predictions

To date, information on individual hydraulic traits (suc as F 50) that are emerging mediators of drought mortality often comes from a single ussue 3.g., pranches) from only a handful of trees that were selected as being 'typical' or 'ic. al' and are often represented as a species mean despite the fact that a handful of tree in not a population sample. Further, these species mean trait values yield no inference about a sunch lying selective pressures that reveal a trait's 'functionality' (i.e., effect on fitness, which operate within a population [39]. If we attempt to predict the physiological value, bility to mortality of various species in a plant community from a trait, limited trait sampling after the extreme logistical challenges of hydraulic measurements' pair and sult and ought risk ordering that shows distinct, nonoverlapping peaks for the poecies (Figure 1A).

Two processes. No bracen the distribution of mortality risk among individuals of a species, variation in physiological vulnerability (i.e., variation in physiological traits linked to drought survival) and variation in drought **exposure** (i.e., within-site and between-site variation in water availability). When processes like natural variation in chronic stress are added to a population of trees [40], mortality risk distributions likely broaden and are biased toward higher mortality risk simply because most trees in natural populations experience some level of chronic stress (as indicated by suboptimal growth compared with the maximum potential growth at that site), whether due to competition, poor microsite conditions, biotic attack, past damage, or other mechanisms. Chronically growth-suppressed trees can have xylem architecture that reduces their hydraulic conductivity (such as narrow tracheids or pits in conifers), greater hydraulic failure (cavitation) preceding and during drought, greater diffusional resistance to gas exchange (limiting carbon fixation), and reduced defenses (such as fewer or narrower resin ducts) or a combination of compensating physiological factors [40–43].

Figure 1. Example Ordering of Mortality Risk and the Mortality Threshold During a Particula. L. Lught for miree Different Tree Species with Different Hydraulic Traits. (A) At one extreme, species 'mean' by additional traits alues for one trait determine physiological vulnerability and therefore mortality risk. (B) Curves broaden due a natural ariation in chronic stress within a population of trees and site-to-site variation in tree water availability Ourves on likely do inated by higher mortality risk because most trees in natural populations experience some level of roonic stress, rether use to competition, poor site conditions, biotic attack, past damage, etc. (C) Covariation between rulltiple photological a alts (e.g., plant height and rooting depth) or between physiology and environment (the water potential and 50% is stem xylem conductivity is lost (P50) and soil water-holding capacity] may tighten and/or reverse risk curves as multiple r vsiological dimensions have the potential to balance out or exacerbate vulnerability. (D) The prevalence and effects of bid mortality agents vary broadly among tree species and can reverse ordering of species along the mortality risk axis.

Drought exposure also varies among individuals b cause there is heterogeneity in water access within and between sites. Thus, a chonical ground-suppressed tree, such as one that is shaded by a taller tree, might have access o adeq at ewater if there is an upslope subsurface reservoir feeding its site [44,45]. By contrast, a large cally stressed tree on a dry site will suddenly have acute drought stress layered cuto its aronic atress and will be at high risk of mortality [46]. The combination of variation in vonerability due to chronic stress within a population and microsite variation in tree e result in the broadening of vulnerability distributions within a species to the point of overapping mortality risks among species (Figure 1B).

Covariation am ing multip physiological traits or between traits and exposure may tighten and/or reverse risk catributions (Figure 1C). Some notable examples where covariation among physiological training is fur ammental to plant mortality risk include (i) trait covariation between tree height and P50, where xylem taper acts to mitigate the increase in hydraulic resistance as an individual grows taller at the cost of less embolism-resistant xylem [47,48]; (ii) covariation between factors such as plant height and rooting depth, which affect tree hydraulic vulnerability and water access, respectively; (iii) covariation between physiological traits and environment, such as covariation between P50 and soil water holding capacity or root water access [49]; and (iv) genetic tradeoffs between growth and biotic agent defense [50] versus vigor-related positive correlations between growth and defense [42,43]. These multiple physiological dimensions have the potential to either balance (as illustrated in Figure 1C by a net shift toward lower risk) or exacerbate risk as assessed by one plant trait.

Tree height presents an illuminating example, as there is a wealth of research on changes in traits with tree height, and height has been hypothesized to drive vulnerability to drought mortality

Glossarv

Diameter at breast height (DBH): a standard method of expressing the diameter of the trunk or bole of a standing tree measured at 13 m in heiaht.

Disarraying agents: nioti agents disarray mortali' predi ins am ig species in a munity that are based on our current u. 'erstanding of physi se, lone be ruse the nature an magr .uc of effects of biotic mortali agent any broadly among tree

habolism: xvlem embolism occurs *. The tension of water within the xyle in causes the formation of air bubbles that expand and block a xylem vessel. Endemic biotic agents: biotic agents, such as insects, fungi, bacterial and viral pathogens, and parasitic plants, that occur more in continuous background levels without strong spatial patterns. **Epidemic biotic agents:** biotic agents that occur primarily in rare, large, spatially aggregated outbreaks. Exposure: environmentally driven variation in drought mortality risk, either among microsites within a site or among sites on the landscape.

Hydraulic safety margin (HSM): the difference between P50 and either minimum stem water potential or leaf turgor loss point.

Hydraulic traits: plant functional traits describing a plant's ability to move water and withstand extreme plant water potentials that reflect a plant's evolutionary history and functional ability to respond to changes in water availability.

Leaf turgor loss point: point at which dehydration overcomes a plant's capacity to maintain leaf cell turgor. Mortality risk: the integrated probability (including physiological vulnerability, exposure to drought stress, and the net result of biotic interactions) of an individual, population, or species dying as a result of a drought event. P50: the water potential at which 50% of stem xylem conductivity is lost. Physiological drought vulnerability: the drought mortality risk as predicted based on plant hydraulic traits. Plant functional traits: plant characteristics at tissue-to-organismal scales that impact plant fitness. Plant water potential: a physiological diagnostic of plant water status. Physiological stress: factors that

reduce a plant's growth below the

[51–54]. Considering the hydraulic costs of tree height in isolation (longer path length, larger hydrostatic gradient), larger trees would appear to be more vulnerable to water stress [55]. Based on our theoretical understanding of plant hydraulics, on the driest sites, trees of all sizes suffer hydraulic damage, but in wetter soils, only the tallest trees suffer hydraulic damage and thus suffer higher mortality risk if all other traits are held constant (Figure 2A). Thus, any species with no covariation between tree size and water access will be more vulnerable to hydraulic damage as it grows taller (blue line in Figure 2A incurs more hydraulic damage at large heights).

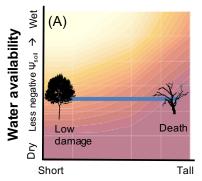
Crucially, however, trees tend to offset hydraulic limitations with height by accessing more and different water resources as they grow. For example, the allometry of root biomass, rooting volume, and rooting depth to aboveground biomass changes with plant size, particularly as trees progress from saplings to mature trees [56–58], and mature trees can exploit deep water in weathered bedrock and other reservoirs [59–66]. Moreover, deep water access or groundwater subsidies may be a precondition for the presence of tall trees on many landscapes so that tall trees are actually indicators of low exposure because they grow on another usually we sites that are least likely to dry out during drought [44]. For example, Sequoiade Idrang, anteum (giant sequoia) in Sequoia and Kings Canyon national parks (CA, USA), which contents are each most suffered extremely low overall mortality (<1%) compared with surrounding to the stable buffers against future droughts, unless long-term changes to the hydroclimate contents and successing more and different and discontinuations.

The belowground resource access afforded to large trees can easily corease mortality risk with tree size due to a root-driven increases in water access. Thus, copending on the nature of this covariation, tall individuals of a certain species countries. The more vulnerable to drought stress (blue line, Figure 2A), less vulnerable to drought stress (rod. a, Figure 2B), or equally vulnerable due to equifinality between rooting depth/volume, height ven hydraulic costs (turquoise line, Figure 2B), providing one explanation for the lack of coreons within and among observational studies of size-specific tree mortality [10,2006,63,600-72]. Similarly, the tendency for large trees to only grow on wet sites with groundworter support and the effects of xylem tapering to counter increased hydraulic resistance with reight valid to the same outcome as the covariation between tree size and rooting depth [10,200].

Studies of landscape mo ality pa erns, uch as those using remote sensing) that make no distinctions amo good spicies hay conflate within-versus among-species mortality risk. Thus, it is critical to differentiate whether tall species experience the highest mortality, in which case mortality isk may be irven by species-specific drought and biotic mortality agent vulnerability, or whether all indivious within a species experience high mortality, in which case stature may actually be driving vulnerability and ultimately mortality risk. For example, it is possible that across species, small individuals experience the most mortality (Figure 2C). However, at the landscape level, the wettest and tallest species is most vulnerable overall because of its combination of hydraulic traits. Even though the tallest individuals of this species are actually the least vulnerable, if no distinction is made among species, tree height appears to predict mortality purely because sites dominated by the tallest species show the most mortality [73]. In actuality, withinspecies patterns may be quite complex, where tall individuals are more vulnerable in some species and small individuals are more vulnerable in others [10,70]. Meanwhile, across species, the potential for compensating physiological variation along numerous environmental and/or physiological axes likely reduces the predictive ability of any one particular physiological trait in isolation [40,63,70]. Further, among-species differences, not only in absolute physiological trait values but also in the extent to which traits covary, may result in a reordering along the mortality optimum that it would achieve in their absence.

Stress compounder: a biotic agent that primarily reinforces physiological patterns of stress within a given species during drought, either be a they preferentially attack still seed if uividuals or only successfully or not need the defenses of stressed in a duals stress compounder fectively lower the physiological stress threshold for mort any.

St uss r nf. wder: a biotic agent that compliates o contradicts patterns of hysiola urought stress within a s, voies where factors other than stress, as tree size independent of stress, determine attack dynamics and mediate which trees die.

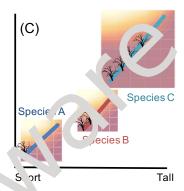

Trait covariation: covariation among multiple functional traits.

Vulnerability: physiological risk of drought mortality determined by functional traits such as plant hydraulic traits

Xylem: plant vascular tissue that conducts water and dissolved minerals from the roots to the rest of the plant.

Potential hydraulic damage during drought (based on planthydraulic model)

All else equal, taller trees suffer more hydraulic damage during drought at a given moisture availability


Covariation determines vulnerability within a species

Tall trees have slightly deeper roots → All trees equally vulnerable (B) Tall trees have much deeper roots → Big trees Less vulnerable

Tall Short Tree height

But covariation between height a. water availability (e.g., big trees hav deep roots and/or only wet sitsupport big trees) can char je which trees are vulnerable

Patterns differ within versus among species

Differences in species vulnerability and stature can drive increasing mortality with height among species even while short trees are most vulnerable within each species

Trends in Ecology & Evolution

Figure 2. Covariation in Tree Height and Water Availability Can Lead to a forty of varieties with Tree Height. (A) Heat map of hydraulic damage during drought based on a plant hydraulic model [55] as a function of tree height and water avai bility. Darker colors indicate increased hydraulic damage, with the darkest red indicating mortality. Blue line illustrates a hypothetical species with constant microsite war availability across size classes (no covariation between height and rooting depth or site quality), whose tallest individuals experience mortality (dead tree icons indicate drought mortality). (B) Scenarios of covariation between height and water availability. Red line, water access increases substantially with size with hough increased root depth or microsite selection whereby only wetter sites support larger trees, and the smallest trees die during drought. Turquoise line, poting de, increases slightly with size, primarily in the tallest trees, and all size classes experience similar sublethal damage. (C) Hypothetical patterns of mortality amon/species are most vulnerable to mortality; however, the wettest, tallest some is most vulnerable overall (as indicated with dead tree icons) either due to its combination of physiological traits or susceptibility to biotic mortality agents. Then examining trends across species on the landscape (across colors), tree height appears to be positively related to mortality because Species C is the a st vulner ale to drought based on its other hydraulic traits, not because of the effect of height per se.

risk spectrum compared with presictions lerive from vulnerability estimates using only one physiological trait (Figure 1C).

Empirically, predawn leaf we ar poter ial reflects soil water availability integrated across a plant's root system (assuming the spiration) and provides a useful metric for examining whether larger trees are either less rulnerable or less exposed to water stress (Figure 2). In the literature, while it is not ur ommon to indimore negative water potentials in larger trees (beyond that expected from the hydrosta grading a grading a grading a grading and a grading a grad or that larger trees have less negative predawn water potentials [77,78]. For example, within elevation bands of Pinus ponderosa (ponderosa pine) across an elevation gradient in southwest Colorado, taller trees have less negative predawn water potentials (P = 0.01 for low elevation and P < 0.0001for mid; Figure 3A) and thus appear to be less vulnerable because they have access to more soil moisture during periods of peak water stress, presumably due to greater rooting depths. Meanwhile, Populus tremuloides (trembling aspen) growing higher up the same mountain in Colorado do not show strong height-related water potential patterns within any elevation but grow taller at wetter and cooler high-elevation sites (P < 0.001; Figure 3B). In this case, stable wet sites are a strong precondition for tall aspens on the landscape, and maximum height is negatively correlated with exposure, resulting in higher observed mortality at drier sites with shorter canopies) [24,40,79]. Thus, covariation among traits and between traits and environmental exposure can quite easily confound mortality risk predictions based on individual traits alone.

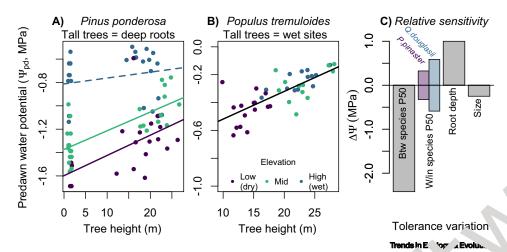


Figure 3. Height-Corrected Predawn Water Potentials as a Function of Tree Size for a Gymnospe. Species (A) and an Angiosperm Species (B) across an Elevational Climate Gradient in the Western Unit Water professional Climate Gradient Gradien

We further used a tree model that couples arbon. llocation to local environmental conditions through gas exchange and plant hydraulic to sport 5] to understand the impacts of increasing size in determining a tree's ability to _____ 'er tr__, arought damage and compared results with observed among- and within-sper ic \$ P50 \ riatio, and potential increases in root water access within a soil profile (Table 1 and Figure 3C). Tough all factors influenced tree vulnerability to water stress, among-species variation in the 950 of colocated species has the largest impact on physiological stress, and the simulated in pact of tree size had the smallest (Figure 3C), indicating that fairly minor many in ther poting depth or P50 with height could offset height-related hydraulic burcans. Movila from a simplified, unidimensional understanding of plant mortality risk (e.g., base on vulner bility estimates from single traits such as height or P50; Figure 1A) to a whole-tree userstanding of mortality risk requires new insights into the evolutionary, biophysical, and ecological mechanisms driving trait-trait covariation underpinning vulnerability and trait-environment covariation underpinning exposure. For example, understanding the evolutionary selection pressures maintaining constant leaf-specific hydraulic conductance with height or constant metabolic ratios of xylem volume and leaf area with height could broadly illuminate whether tall trees are inherently more vulnerable during drought and why [48].

Biotic Mortality Agent Population and Attack Dynamics Can Reverse or Confound Physiological Mortality Predictions

The difficulty in fully understanding stress physiologies also stems from the highly variable linkages between physiology and biotic agent dynamics in determining tree drought mortality [38,42]. For example, biotic agent outbreaks, such as bark beetle outbreaks, may start in the most stressed trees early in a drought, but beetle outbreaks often persist for many years after the drought has

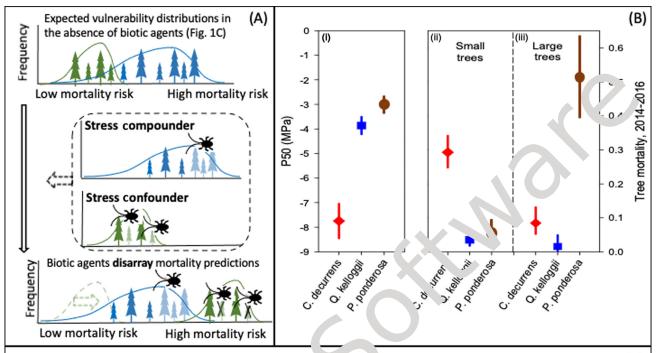
Table 1. Summary of Comparisons Illustrated in Figure 3 with Physiological and Environmental Data

Table 1. Summary of Comparisons Illustrated in Figure 3 with Physiological and Environmental Data		
Comparison name	Summary	Details
Between-species traits	Illustration of the relative differences in drought vulnerability due to between-species differences in species mean water potential at which 50% of stem xylem conductivity is lost (P50) values of colocated species.	Relative differences in the ability to withstand physiological stress as quantified by differences in species mean P50 values of colocated species. Values plotted as relative difference between a more drought-resistant (more negative P50) species. Relative difference in species mean values calculated as the median within-plot variation in P50 for all plots within a latitude/longitude box spanning from 115°W to 105°W and from 35°N to 40°N based on [109].
Within-species traits	Illustration of the range in drought vulnerability due to within-species variation in P50.	Relative range within a species of the ability to withstand physiological stress as quantified by relative range in recorded P50 values. Values are literature-reported within-species variation in 50 relative to the species mean P50 for 100 well-studied species (total betw an-pc ration P50 range for <i>Pinus pinaster</i> [10] and interquartile range of individuals 10 vuercus douglasii [112]).
Root depth	Illustration of the increase in soil water access with increased tree rooting depth.	Relative increase in soil well pour tial with a root depth increase of 1 m (a might be repected for a tree growing of many a sapling to a marge tree). Water potential change was sold using the GLDAS-2 north of many in sturre product for the soil layer 100–200 of min depth. Mere water potential difference was estimated for a climatology for the some spatial area as co-occurring P50 values (a latification of many
Size	Illustration of the ictive or rence in physiological stress lie to true size.	Simulated changes in the physiological stress due to size-related hydraulic and carbon costs [55] for a 32-m tall or 80-cm diameter at breast height (DBH) tree relative to an 11-m tall or 10-m DBH tree (a size range that is inclusive of the majority of trees seen in North America) with equal root water access and the same P50.

ended, highlighting a subsequent disconnect between stress physiology and biotic agent mortality [50,80]. The stress physiology and biotic mortality agent disconnect is further illustrated by instances where, during drought, some beetle species attack and kill the most chronically stressed trees but others attack based on tree size and independent of chronic stress. The end result is that for some tree species, the least-stressed trees may die and the most-stressed trees might live [10].

Pathogen and pest attacks have traditionally been characterized as either epidemic or endemic [81] and as either 'primary' (killing otherwise healthy trees) or 'secondary' (typically attacking already weakened/stressed trees and rarely killing trees in isolation) [11]. However, these categories do not fully address complexities of within-versus among-species effects and can even be

misleading as the dynamics of biotic mortality agents change in the face of ongoing environmental changes.


We propose to categorize biotic attacks based on the way in which they interact with plant stress physiology such that **stress compounders** primarily reinforce physiological patterns of stress within a given species during drought (i.e., biotic agents effectively lower the physiological stress threshold for mortality, but tree stress still predicts which trees die) versus **stress confounders** that complicate or contradict patterns of physiological drought stress within a species (i.e., factors other than stress, such as tree size independent of stress, predict which trees die) (Figure 4). Importantly, both within-species compounders and confounders can be epidemic (or not). Forests in California's Sierra Nevada, USA, present an illustrative example of the complexity of biotic agent dynamics during drought. For example, attack dynamics of *Scolytus* bark beetles acted as stress compounders on *Abies concolor* (white fir), killing the most stressed trees with chronically longrowth rates and reaching epidemic levels on the landscape. Meanwhile, *Dendroctonus* hark beetles acted as stress confounders on Pinus, targeting the largest individuals regarded as stress compounders on *Quercus kelloggii* (black oak), targeting the most stressed wes, although *Pseudopityophthorus* did not reach epidemic levels [10].

Among species, both stress compounders and stress confoundropact act a disarr ying agents for mortality predictions, that is, they disarray mortality predictions that are a on physiology alone because the nature and magnitude of effects of biotic mortality agents agents agents agents agents agents agents agents agents. So vary broadly among the mortality risk axis (e.g., Figures 1D and 4A). Given that it is extremed an an inheritality agents will affect each species in a forest programment of the same mortality patterns as one would expect based on physiology along (e.g., Figure 1A) is improbable. Moreover, the confounder versus compounder behavior of a birdic mortality agent within a species can be context dependent, with some agents becoming stress confounders during extreme droughts, in novel climates, or outside of the mative ange.

Revisiting the Sierra Nevada example for the second courring tree species, based on P50 alone, one would expect *Calocedrus decumens* (in lense cedar) to be much less vulnerable to drought mortality than *P. ponderose and Q. ke regii* (as indicated through the extremely negative P50 of *C. decurrens*) and *P. poderosa* to be a most vulnerable to drought mortality (as indicated through the less and through the less are sized as a most vulnerable to drought mortality patterns do not correspond with the physiologically derived predictions, with mortality trends even diverging across tree sized lasses (Figure 4B). Among small trees, the tree mortality fraction of *C. decurrens* is larger than the of *P. poletical of and Q. kelloggii* by an order of magnitude, despite predictions based on P50 indicating that mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B). Among large trees, the mortality fraction should be lowest in *C. decurrens* (Figure 4B).

Despite the critical role of biotic agents on tree mortality, anticipating and predicting biotic agentdriven mortality remains elusive [1,2,85] because host–pathogen interactions vary wildly among tree species and biotic agents (and agents often co-occur and are present at background levels in healthy ecosystems) [82–84,86] and because of the complexity and importance of indirect and interactive effects of biotic mortality agents with other environmental factors [87,88], which

(C) Within tree species, stress compounders reinforce the effects of raysiological stress, effectively lowering the stress threshold that trees can survive.

Within tree species, stress confounders attack aree ased at least partly on tree traits other than stress (e.g., tree size), complicating or contradicting expectations wised on physiology alone.

Among species, stress confounders and compounders both act as disarraying agents for mortality predictions, by either increasing mortality relative to anticipated, reversing physiologically expected ordering of species mortality risk, or both.

Trends in Ecology & Evolution

Figure 4. Biotic Agents can Diagram More by Predictions by Amplifying or Reversing Expectations for Mortality Based on Physiology Alone. (A) Schematic of the diverse, con ext-depe. Lent dy mics of biotic agents, ranging from agents that are primarily stress compounders, attacking already stressed individuals (blue distribution) to ag ts that a primarily stress confounders, attacking the least stressed individuals (green distribution). Faded individuals indicate trees attacked by biotic attacked by b anticipated levels I sed on phys. logy alone and can reverse physiologically derived ordering of species. In this scenario, blue and green distributions reverse because the attacked gree, rees die (blac 'X'), while the attacked blue trees survive. The faint green distribution references the expected risk distributions in the absence of biotic agents. (B) Coerved modified fraction during drought for colocated species does not necessarily correspond with species that are more physiologically to diverse biotic agents. (i) Drought vulnerability as measured through the water potential at which 50% of stem xylem conductivity is vulnerable to drought s. lost (P50) values (where less negative values correspond with more drought-vulnerable species) for three co-occurring species, including Calocedrus decurrens (red), Quercus kelloggii (blue), and Pinus ponderosa (brown). Fractional mortality (in number of trees) in Sierra Nevada, CA, USA, during an extreme drought for C. decurrens, Q. kelloggii, and P. ponderosa for small trees (<10-cm diameter at breast height, DBH; ii) and large trees (>50-cm DBH; iii). Mortality data are from [10]. Symbols represent means and error bars represent 95% confidence intervals for P50 [e.g., (ii)] and 95% credible intervals for mortality [e.g., (ii and iii)] (see the supplemental information online). (C) Terminology for how biotic agents can influence mortality predictions.

amplifies the number of unknowns surrounding host-pathogen ecological interactions. Further, biotic agent mortality prediction has the potential to become increasingly difficult with the novel climate regimes expected to accompany anthropogenic climate change [89,90] because host-pathogen interactions may change compared with historical observations [91-97].

There are three primary mechanisms through which we expect climate change to affect biotic agent-based mortality predictions. First, climate change can increase the likelihood of epidemic-level eruptions of known biotic mortality agents, such as bark beetles, in known host species [84,93,98]. In particular, agents such as *Dendroctonus* beetles known to employ pheromone-based mass-attack strategies are most likely to drive stress, confounding mortality whenever they achieve an outbreak. Outbreaks are more likely either when climate conditions, such as warming winters, allow pest populations to more easily reach epidemic levels [99] or expand to attack previously naive populations [100] or when climate conditions stress hosts and suppress defense responses to allow major outbreaks [101]. Currently, a handful of agents that may increase their epidemic-level eruptions constitute 'known unknowns' of biotic agent-driven mortality and are good candidates for improved mortality predictions through better understanding of biotic agent biology (e.g., see [70]).

Second, formerly innocuous insects and pathogens can unexpectedly emerge as significant agents of tree mortality [10,94,95,102–104]. Recent examples include barlower is of the genus *Pissodes*, which are not generally associated with host mortality [81] by became an important mortality agent of small pine trees in a recent California drought. Ol. Like se, *Dothistroma* needle blight went from a relatively mild endemic pathogen to an unp. Dedented tree mortality driver in its native range in British Columbia, Canada, likely due to an increase in warm, wet conditions [95]. This type of 'unknown unknown' may prove, pricularly challenging because it involves novel pest behavior, and there is often a dearth of data. Direction geared toward documenting formerly innocuous insect and pathogoreal evaluations of ongoing tree mortality is needed to better understand when formerly innocuous agants become deadly.

Third, the introduction of nonnative pests can increase Journagent-driven mortality and act as strong disarraying mortality agents because they are a second variety of 'unknown unknowns'. Examples of nonnative pests include the enteralor ship orer *Agrilus planipennis* in the eastern USA [105,106], acacia wilts of the genus *Cerricostis* in Indonesia [107], the red turpentine beetle *Dendroctonus valens* in China [92], the hark with a *Polygraphus proximus* in Russia [96], and pathogens such as *Sphaeropsis* anker widwethern and northeastern USA) and red band needle blight *Dothistroma* (extensive, ineighborhood pest challenge presents a significant opportunity for collaboration among plan physiologists, entomologists, and pathologists to target appropriations. The large presents are skellenge presents at skellenge presents at skellenge presents and forest ecosystems at lisk for non ative invasion mortality events can be identified.

Concluding Reparks and Future Perspectives

Here, we present a path forward to open new avenues of measurements and exploration directed toward tree drought mortality and terrestrial carbon cycle predictions (see Outstanding Questions). We argue that treating plant physiology and biotic mortality agents as an integrated system rather than bifurcated disciplines in data collection and prediction is a critical step toward understanding the highly variable linkages between physiology and biotic agents in drought-driven tree mortality and forest responses to global change. An essential first step in advancing tree drought mortality predictions is constraining where and when tree mortality at the hands of biotic agents is linked to stress physiology and where and when biotic agents and physiology are decoupled. Such baseline data, particularly for tropical systems where data are extremely sparse [108], will be critical for understanding the baseline natural history and shifting dynamics of host–pathogen interactions. More existentially, most of the forest pest canon and theory behind biotic agent ecology derives from low diversity temperate forests, and it remains largely

Outstanding Questions

What trait covariation axes are key in mediating tree stress responses during drought both within and among species?

What key physiolog all at nouter are most critical from only prediction either becan they how one most leverage over they how one most variable within a source?

Despi thei diversity of effects, can actic more ality agents be productively can gorized and modeled as 'stress conjunders', where effects of biotic agents are largely decoupled from tree stress physiology, and 'stress compounders', where effects of biotic agents amplify patterns of tree physiological stress?

Is it possible to predict which trees or tree species are most likely to be attacked by 'disarraying agents' (biotic agents that upend expected mortality patterns)?

Which biotic mortality agents are likely to be the most important disarrayers?

unknown how to generalize the role of biotic agents in tree mortality in the tropics [5]. Addressing these knowledge gaps requires a reframing of current field sampling and experimental design best practices such that forest demographic surveys and plant physiological measurements rigorously document both biotic agent presence in demographic surveys and the physiological consequences of trees actively fighting them.

Acknowledgments

We thank Mark Olson, Harald Bugmann, Craig Allen, Curt Dvonch, and two anonymous reviewers whose feedback was integral in revising this manuscript. A.T.T. acknowledges funding from National Science Foundation (NSF) grant 2003205, the US Department of Agriculture (USDA) National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme grant 2018-67012-31496, and the University of California Laboratory Fees Research Program Award number LFR-20-652467. L.D.L.A was supported by NSF grants 2003205 and DBI-1711243 and the National Oceanic and Atmospheric Administration (Climate and Global Change Fellowship). W.R.L.A. acknowledges funding from the David and Lucille Packard Foundation, NSF grants 1714972, 1802880, and 2003205, and the USDA National Institut of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and roecosystem Management grant 2018-67019-27850. A.J.D. and N.L.S. were funded by the US Geological Strive Acosystems Mission Area and Land Resources Research and Development program. Any use of trade, firm, or producing a research and Development program. tive purposes only and does not imply endorsement by the US Government.

Declaration of Interests

No interests are declared.

Supplemental Information

Supplemental information associated with this article can be found online at https://doi.org/16/j.tree.2021.02.001.

References

- Anderegg, W.R.L. et al. (2020) Climate-driven risks to the climate mitigation potential of forests, Science 368, eaaz7005 Trumbore, S. et al. (2015) Forest health and global change
- Science 349 814-818 De Kauwe, M.G. et al. (2020) Identifying areas at risk of drong is induced tree mortality across South-Eastern Australia. \ccite{C}
- Chang. Biol. Published online June 8, 2020. https://doi.org 10.1111/gcb.15215
- Bonan, G. (2008) Forests and climate change: forcings, feedba and the climate benefits of forests. Science 32u, 44-1449
- Anderegg, W.R. et al. (2015) Tree mortality from a htt, inse
- McDowell, N.G. et al. (2013) Ev. ating theo s of droughtinduced vegetatio using multim Jel-experiment framework. Nev Phytol. 200, 74-32
- Tai, X. et al. (2 7) Plant hydrau s improves and topography mediates pred on of aspen m ality in southwestern USA.

 New Phytol. 21. 13–127
- Rao, K. et al. (201) stellito aseg vegetation optical depth as an indicator of drougnit-driven tree mortality. Remote Sens. Environ, 227, 125-136
- Sala, A. et al. (2010) Physiological mechanisms of droughtinduced tree mortality are far from being resolved. New Phytol. 186, 274–281
- Stephenson, N.L. et al. (2019) Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383-2401
- Manion, P. (1981) Tree Disease Concepts (1st edn), Prentice-Hall
- Allen, C.D. et al. (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere 6, 129
- van Mantgem, J.P. et al. (2009) Widespread increase of tree mortality rates in the western United States. Science 323,
- 14. Barber, V.A. et al. (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668-673

- 15 Bugr .. H. et al. (2019) Tree mortality submodels drive sir plated and another great dynamics: assessing 15 models f m the and to global scale. Ecosphere 10, e02616 od, S, et al. (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539-553
- Anderegg, W.R. et al. (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of droughtinduced tree mortality across the globe. Proc. Natl. Acad. Sci. U. S. A. 113, 5024-5029
- Wright, S.J. et al. (2010) Functional traits and the growthmortality trade-off in tropical trees. Ecology 91, 3664-3674
- Hoffmann, W.A. et al. (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Chang. Biol. 17, 2731–2742
- Anderegg, W.R.L. et al. (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 562, 538-514
- Sperry, J.S. and Love, D.M. (2015) What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14-27
- Rosas, T. et al. (2019) Adjustments and coordination of hydraulic. leaf and stem traits along a water availability gradient. New Phytol. 223, 632-646
- Powers, J.S. et al. (2020) A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol. 26,
- Anderegg, W.R. et al. (2015) Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367-371
- Benito Garzón, M. et al. (2018) The legacy of water deficit on populations having experienced negative hydraulic safety margin. Glob. Ecol. Biogeogr. 27, 346-356
- Hember, R.A. et al. (2017) Relationships between individualtree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America. Glob. Chang. Biol. 23, 1691–1710
- Venturas, M.D. et al. (2020) Understanding and predicting forest mortality in the western United States using long-term forest

CellPress

Trends in Ecology & Evolution

- inventory data and modeled hydraulic damage. New Phytol. Published online October 28, 2020. https://doi.org/10.1111/
- Elith, J. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography (Cop.) 29, 129-151
- Rosner, S. et al. (2016) Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Front. Plant Sci. 7, 831
- Schenk, H.J. et al. (2015) Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci. 20, 199-205
- Jochen Schenk, H. et al. (2017) Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol. 173, 1177-1196
- Li, S. et al. (2016) Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J. 37, 152-171
- Gleason, S.M. et al. (2016) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytol. 209, 123-136
- Venturas, M.D. et al. (2017) Plant xylem hydraulics: what we understand, current research, and future challenges. J. Integr. Plant Biol. 59, 356-389
- Olson, M.F. (2020) From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology. Am. J. Bot. 107, 1328-1341
- Olson, M.E. and Arroyo-Santos, A. (2015) How to study adaptation (and why to do it that way). Q. Rev. Biol. 90, 167-191
- Hicke, J.A. and Zeppel, M.J.B. (2013) Climate-driven tree mortality: insights from the piñon pine die-off in the United States. New Phytol. 200, 301-303
- McDowell, N.G. et al. (2019) Mechanisms of a coniferous voodland persistence under drought and heat. Environ. Res. Lett. 14, 045014
- Caruso, C.M. et al. (2020) A meta-analysis of natural selection on plant functional traits, Int. J. Plant Sci. 181, 44-55
- Anderegg, L.D.L. and HilleRisLambers, J. (2016) Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Chang. Biol. 22, 1029-1045
- Camarero, J.J. et al. (2015) To die or not to die: early warning of tree dieback in response to a severe drought, J. Ecol. 10
- Gaylord, M.L. et al. (2013) Drought predisposes piñon-juniu woodlands to insect attacks and mortality. New 5 567-578
- Heres, A.-M. et al. (2014) Declining hydra performan s and low carbon investments in tree rings preu a Scots pre drought-induced mortality. Trees 28 177-1750
- Love, D.M. et al. (2019) Depen ance or one s. ds on a subsurface water subsidy: impacts. Water Resources, 55, 33–1848
- Schwartz, N.B. al. (2015, agme tin and topograph modulate in, the of drought in a tropical forest landsca_i Ecology 100, e 2677
- Anderegg, W.F. et al. (2019) \ despread drought-induced tree mortality at range e idicates climate stress exceeds species' con. ang mechanisms. Glob. Chang. Biol. 25, 3793-3802
- 47. Olson, M.E. et al. (2018) Plant height and hydraulic vulnerability to drought and cold. Proc. Natl. Acad. Sci. U. S. A. 115, 7551-7556
- Olson, M.E. et al. (2020) Tip-to-base xylem conduit widening as an adaptation; causes, consequences, and empirical priorities. New Phytol. Published online September 28, 2020. https://doi.org/10.1111/nph.16961
- Nardini, A. et al. (2021) Water 'on the rocks': a summer drink for thirsty trees? New Phytol. 229, 199-212
- De La Mata, R. et al. (2017) Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl. Acad. Sci. U. S. A. 114,
- Swemmer, A.M. (2020) Locally high, but regionally low: the impact of the 2014-2016 drought on the trees of semi-arid savannas, South Africa. African J. Range Forage Sci. 37, 31–42

- Bartholomew, D.C. et al. (2020) Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380-2393
- McDowell, N.G. and Allen, C.D. (2015) Darcy's law predicts widespread forest mortality under climate warming. Nat. Clim. Chang, 5, 669-672
- Stovall, A.E.L. et al. (2019) Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 4385
- Trugman, A.T. et al. (2018) Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552-1560
- Smith-Martin, C.M. et al. (2020) Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytol.
- Bond-Lamberty, B. et al. (2002) Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. Fl Res. 32, 1441-1450
- Witty, J.H. et al. (2003) Contributions of water supply the weathered bedrock zone to forest soil quali Ge Jerma 389-400
- Goulden, M.L. and Bales, R.C. (201 Call mia est die-off linked to multi-year deep soil drying in 112-2015 our α Nat. Geosci. 12, 632-637
- Fan, Y. et al. (2017) Hydrologic regulation plant rooting depth. Proc. Natl. Acad. Sci. S. A. 4, 105 10577

 Mackay, D.S. et al. (2020) inifers de, ind on established
- roots during drooms results om a coup of model of carbon allocation and sydraulics. New tol. 21, 679–692
- McLaughlin C. et al. 1 Hydrologic refugia, plants, and climate chan 1 Chang 101. 23, 2941–2961

 McLaughlin, B.C. et al. 120) Weather underground: subsurface hydrologic prosses mediate tree vulnerability to extreme climatic droug. Job. Chang. Biol. 26, 3091-3107
- P.Z. et al. (2018) Subsurface plant-accessible water in nour necosystems with a Mediterranean climate. Wiley Interusci, Rev. Water 5, e1277
- F se, K.L s. al. (2003) Water source utilization by Pinus jeffreyi a Arct taphylos patula on thin soils over bedrock. Oecologia
- Rempe, D.M. and Dietrich, W.E. (2018) Direct observations of ock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. U. S. A. 115, 2664-2669
- Stephenson, N.I., et al. (2018) Patterns and correlates of giant seguoia foliage dieback during California's 2012-2016 hotter drought. For. Ecol. Manag. 419-420, 268-278
- Bennett, A.C. et al. (2015) Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139
- Rowland, L. et al. (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528,
- Condit, R. et al. (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monoar, 65, 419-439
- Williamson, G.B. et al. (2000) Amazonian tree mortality during the 1997 El Niño drought. Conserv. Biol. 14, 1538-1542
- Slik, J.W.F. (2004) El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141, 114-120
- Stephenson, N.L. and Das, A.J. (2020) Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought. Nat. Commun. 11, 3402
- Woodruff, D.R. et al. (2004) Does turgor limit growth in tall trees? Plant Cell Environ, 27, 229-236
- Simonin, K. et al. (2006) Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa. Tree Physiol. 26, 493-503
- Kavanagh, K.L. et al. (2007) Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Tree Physiol. 27, 621-629
- Ambrose, A.R. et al. (2018) Leaf- and crown-level adjustments help giant sequoias maintain favorable water status during severe drought. For. Ecol. Manag. 419-420, 257-267

- Ward, D. et al. (2006) Are invasive mistletoes killing Ziziphus spina-christi? Isr. J. Plant Sci. 54, 113–117
- Worrall, J.J. et al. (2008) Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For. Ecol. Manag. 255, 686-696
- Raffa, K. et al. (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501-517
- Furniss, R.L. and Caroline, V. (1977) Western Forest Insects (no. 1339), US Department of Agriculture, Forest Service
- Hicke, J.A. et al. (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Chang.
- Kautz, M. et al. (2017) Biotic disturbances in Northern Hemisphere forests – a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26, 533-552
- Raffa, K.F. et al. (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501-517
- Huang, J. et al. (2020) Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26-36
- Wieder, W.R. et al. (2015) Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci.
- Seidl. R. et al. (2017) Forest disturbances under climate change, Nat. Clim. Chang. 7, 395-402
- Howe, M. et al. (2020) Relationships between conifer constitutive and inducible defenses against bark beetles change across levels of biological and ecological scale. Oikos 129, 1093-1107
- Diffenbaugh, N.S. and Field, C.B. (2013) Changes in ecologically critical terrestrial climate conditions. Science 341, 486-492
- Diffenbaugh, N.S. et al. (2015) Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. U. S. A. 112, 3931–3936
- Sturrock, R.N. et al. (2011) Climate change and forest diseases. Plant Pathol. 60, 133-149
- Ghelardini, L. et al. (2016) Drivers of emerging fungal diseases of forest trees. For. Ecol. Manag. 381, 235-246
- Pernek, M. et al. (2019) Outbreak of Orthotomicus erosus (Coleoptera, Curculionidae) on Aleppo pine in the Mediterranear region in Croatia. South-East. Eur. For. 10, 19-27
- 94. Marchetti, S.B. et al. (2011) Secondary insects and discuss contribute to sudden aspen decline in southwestern Colora USA, Can. J. For. Res. 41, 2315-2325
- Welsh, C. et al. (2014) Regional outbreak dynamic of Dothistroma needle blight linked to weather terns in Br. h Columbia, Canada. Can. J. For. Res. 44, 212-9
- Takagi, E. et al. (2018) Mass mortalit hies ve. by Polygraphus proximus associa d with . htrunk heter in Japan. For. Ecol. Manag. 428, 4-19

- Harrington, T.C. and Wingfield, M.J. (1998) Diseases and the ecology of indigenous and exotic pines. In Ecology and Biogeography of Pinus (Richardson, D.M., ed.), pp. 381-406, Cambridge University Press
- Kurz, W.A. et al. (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987-990
- Weed, A.S. et al. (2015) Geographically variable response of Dendroctonus ponderosae to winter warming in the western United States. Landsc. Ecol. 30, 1075-1093
- Cudmore, T.J. et al. (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 47, 1036-1043
- 101. Chapman, T.B. et al. (2012) Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93, 2175-2185
- 102. Haavik, L.J. et al. (2015) Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe. For. Ecol. Manag. 354, 190-205
- 103. Kolb, T.E. et al. (2016) Observed and anticipated impacts of drought on forest insects and diseases in the United tes. For. Ecol. Manag. 380, 321–334
- Weed, A.S. et al. (2013) Consequence of clie change for biotic disturbances in North America fore is. E. Monogr. 84. 441-470
- 105. Herms, D.A. and McCullough, D.G. (2014, "merald ash porer invasion of North America: history biology, e logy, impacts, and management. *Annu. Rev. nomo* 19, 13–0
- 106. Lovett, G.M. et al. (2016) No native fore. Insects and pathogens in the Unit States: in acts and like options. Ecol. Appl. 26, 143 1455
- 107. Tarigan, M. al. (2011) w will and die-back disease of Acacia mang ciated ith Ceratocystis manginecans and C. acaciivora sp. nov. in donesia. South African J. Bot.
- Fontes, C.G. et al. (20 Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. iana 124, 177–183
- Trur Jan, T. et al. (2020) Trait velocities reveal that mortality h driver vudespread coordinated shifts in forest hydraulic com sition. Proc. Natl. Acad. Sci. 117, 8532-8538
- Lamy, J.B. et al. (2014) Limited genetic variability and phenotypic blasticity detected for cavitation resistance in a Mediterranean ine. New Phytol. 201, 874-886
- Skelton, R.P. et al. (2019) No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. New Phytol. 223, 1296-1306
- Skelton, R.P. et al. (2018) Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiol. 177, 1066-1077