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Abstract
Purpose of Review We summarize the general structure of modern terrestrial ecosystem models and investigate how advances in
trait-based modeling approaches help to better constrain predictions for ecosystem sensitivity to global change.
Recent Findings In ecosystem models, empirical parameters are increasingly being replaced with plant physiological trait-based
parameters, which can be directly measured in the field. The needs to predict long-term terrestrial ecosystem dynamics under
climate change have spurred novel model developments including the representation of (i) vegetation processes across the critical
zone, (ii) wood and belowground ecophysiology, and (iii) the effects of physiological trait acclimation.
Summary Trait-based modeling of terrestrial ecosystems allows for the direct integration of measured plant ecophysiology with
model processes, increasing the potential to constrain uncertainty and improve predictions under novel climate regimes.
However, such increased model complexity requires careful model design, standardized intercomparisons, and benchmarking
for model responses to both climate extremes and long-term trends.
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Introduction

Terrestrial ecosystems host enormous biological diversity and
provide vital ecosystem services to human and natural sys-
tems [1]. From a biogeochemical perspective, terrestrial eco-
systems sequester approximately a quarter of anthropogenic
CO2 emission annually [2], contribute disproportionately to
inter-annual variability in the global carbon cycle [3], and
exert diverse and complex climate feedbacks [4]. Therefore,
terrestrial ecosystem dynamics are a central component of
Earth system models (ESMs), which are a primary tool for
understanding the dynamic responses of the Earth system to

a rapidly changing climate and increased anthropogenic dis-
turbance [5]. Despite the known importance of terrestrial pro-
cesses in Earth system feedbacks, internal model uncertainty
associated with terrestrial ecosystem processes exceeds the
uncertainty associated with different climate scenarios in the
current generation of ESMs, even at the decadal and longer
time scale [5], implying the paramount need to improve ter-
restrial ecosystem models.

Vegetation is the foundation of all terrestrial ecosystems
and regulates the carbon-water-energy nexus as well as other
biogeochemical cycles from local to global scales. Because of
its foundational role as primary producer, vegetation is the
focus, and in many cases the only life form incorporated in
the ecosystem component of ESMs. Historically, ecosystem
model development was motivated to represent biological and
Earth system processes at two contrasting scales. At the global
scale, the need to explain biogeographic patterns, biogeo-
chemical cycles, and their interactions with climate spurred
development of the very first generation of dynamic global
vegetation models (DGVMs) [6]. DGVMs prognostically
simulate the distribution of vegetation plant functional types
(PFTs) instead of merely prescribing vegetation types from
land cover maps. In these early DGVMs, vegetation was
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simplified as multiple “green blankets” (usually referred to as
big leaf models) with no explicit representation of ecosystem
structures within a model grid cell (usually > 1° in spatial
resolution). In contrast, at the stand scale, individual-based
models (IBMs or stochastic gap models) aim to predict forest
dynamics by explicitly simulating the fate of individual trees
with consideration of stochasticity within a finite population
[7, 8]. In recent decades, cohort-based models, such as the
ecosystem demography (ED) model, integrate the global
scope of big leaf models with a more detailed representation
of vegetation demography drawn from IBMs into vegetation
classes or “cohorts”within terrestrial biosphere models [8, 9•].
Such refinement of ecosystem structure in models benefits
from a more mechanistic representation of ecophysiological
processes, such as competition for light within a canopy. As a
result, model parameters that used to be highly empirical and
require calibration and/or tuning can now be directly connect-
ed with field observations of plant physiological traits.

The development of ecosystem models toward trait-based
approaches over empirical functions has several advantages.
First, trait-based models have the potential to bemore accurate
when predicting ecosystem responses to unprecedented novel
climate regimes because they better reflect the ecophysiolog-
ical processes underlying ecosystem responses to climate var-
iations [10•]. Thus, trait-based models can reduce model pre-
dictive error associated with physiological processes [11], as
well as the need for empirical model parameters or constraints
[12]. Second, trait-based models can better account for plant
functional diversity compared with the traditional
physiognomy-based PFTs (e.g., evergreen broad-leaf forest).
Third, trait-based models allow for assimilation of the wealth
of global functional trait data to reduce model predictive error
associated with parameter uncertainty [11, 13•]. Lastly, trait-
based approaches empower ecosystem models to become the
platform for numerical experiments that can help to generate
and evaluate hypotheses in an iterative feedback loop between
modelers and eco-physiologists.

Recent reviews on ecosystem modeling span vegetation
demographics [9•], the evolution of gap models [8], hydrody-
namics [14], and agricultural ecosystem modeling [15].
However, despite the rapid evolution and model development
in trait-based modeling, a review on advances and challenges
of trait-based approaches in mechanistic terrestrial ecosystem
modeling is lacking. Here, we aim to summarize (1) the key
ecophysiological processes in modern trait-based ecosystem
models, drawing on developments from approximately the
last decade up to 2020, (2) the incorporation of new model
processes, physiological traits, and the associated predictive
benefits, particularly in the context of model predictions dur-
ing a time of rapid global change, and (3) the trade-offs asso-
ciated with more mechanistic, but also more complex ecosys-
tem models. Finally, we make recommendations as to the
usage, interpretation, and future development of trait-based

ecosystem models targeted at a wide-ranging audience from
field-based ecophysiologists to Earth system scientists and
ecosystem modelers.

Key Process-Based Modules That Comprise
Modern Terrestrial Ecosystem Models

Modern terrestrial ecosystem models consist of interacting
modules (here defined as relatively self-contained sub-
models) that reflect distinct ecophysiological processes and
their integral to capturing ecosystem dynamics at time scales
ranging from minutes to decades. Inevitably, these ecophysi-
ological processes are tightly coupled with land surface pro-
cesses such as carbon, water, nutrient, and energy balances,
forming an integrated terrestrial biosphere model (TBM) that
simulates terrestrial ecosystem dynamics and the associated
physical, chemical, and biological processes at regional to
global scales for coupling with ESMs. Here, we focus only
on the plant physiological processes that occur at the individ-
ual scale and the ecological interactions that occur between
individuals. These ecosystem processes are nested within oth-
er land surface processes in the Earth system. In this section,
we summarize the general module structure shared by most
mainstream ecosystem models (Fig. 1), as well as common
implementations of these modules. Subsequently, we discuss
novel developments and future research needs for trait-based
modeling.

Individual-Level Modules

Resource acquisition is the foundational process in terrestrial
ecosystems. The representation of resource acquisition in ter-
restrial ecosystem models begins at the leaf-level with the
photosynthesis-stomata module. The purpose of the photosyn-
thesis module is to predict leaf-level carbon assimilation from
measurable biochemical parameters (or physiological traits)
and abiotic environment (such as intercellular CO2 concentra-
tion, light, and temperature). The stomatal module bridges the
leaf intercellular space with canopy air spaces and
biophysically constrains carbon and water fluxes from the
aspect of gas diffusion. The most commonly used framework
in ecosystem models is the Faqhuar, von Caemmerer, and
Berry system [29]. Collectively, the photosynthesis-stomata
modules form the foundation for mechanistic ecosystem pre-
dictions under climate change. In addition to leaf-level photo-
synthesis, the rhythmic seasonal changes, or phenology, of
plant leaf area are also important for characterizing vegetation
carbon gain [30]. Generally, ecosystem models simulate sea-
sonal dynamics of leaf area using abiotic cues such as light,
temperature, and water for deciduous trees while assuming a
constant leaf area for evergreen trees [31]. In contrast to the
aboveground, ecosystem model representation of
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belowground resource usage is relatively simple due to limited
data availability and mechanistic knowledge on belowground
processes. Key belowground processes, including water and
nutrient acquisition (if applicable), are usually represented
using empirical functions dictated by belowground plant root
biomass [32].

Resource allocation is coupled to resource acquisition and
describes how plants distribute resources, particularly carbon
derived from photosynthates, among different tissues, includ-
ing leaves, stems, roots, and nonstructural carbohydrate re-
serves (NSC). In ecosystem models, the carbon gained by an
individual through photosynthesis, or the gross primary pro-
duction (GPP), is allocated based on a distinct hierarchy of
priorities for different physiological processes. First, carbon is
used to satisfy processes which maintain plant activity includ-
ing autotrophic respiratory costs of different organs (leaves,
stems, and roots), and necessary tissue turnover from pheno-
logical processes or disturbance. Extra carbon is then allocated
to structural and reproductive growth following allometric re-
lationships [10•]. At the cutting edge of ecosystem model
development, some models have begun to incorporate plant

defense investment, including bark growth [33] and VOC
emissions [34].

Resource acquisition and allocation ultimately determine
key plant life history events such as recruitment and mortality,
bridging individual- and ecosystem-scale processes (Fig. 1)
and enabling the prediction of long-term ecosystem dynamics
[35]. In traditional big leaf ecosystem models without vegeta-
tion demographics, seedling recruitment is absent, and new
plant individuals are added to a common biomass pool of a
given PFT within a given grid cell. Thus, recruitment is anal-
ogous to growth in that both increase the PFT biomass pool.
The introduction of vegetation demographics into modern
ecosystem models [9•] requires explicit consideration of veg-
etation recruitment and its sensitivity to different environmen-
tal factors because the states of the seemingly insignificant
understory seedlings have the potential to determine ecosys-
tem structure and composition decades in the future [36].

Mortality, and especially mortality of large individuals, can
strongly affect vegetation carbon storage in the Earth system
[37]. However, the mortality module in ecosystem models has
been recognized as one of the most mechanistically uncertain

Fig. 1 Key process-basedmodules (rectangles) within modern ecosystem
models, separated into individual-level physiological processes (green)
that operate from minute to seasonal scales and community to
ecosystem-level ecological processes (orange) that operate beyond
seasonal times scales. Life history events bridge the two scales and are
thus colored by both green and orange. Arrows denote the dominant
direction of interactions between modules. In most ecosystem models,

belowground resource acquisition will directly exert limitation on
aboveground resource acquisition using semi-empirical parameters.
Novel model developments of resource storage and circulation (dashed
green rectangle) can represent resource flows within plants in a more
mechanistic way and interfaces with both resource acquisition and
allocation. Select trait-based parameters in each module as summarized
in Table 1 are shown in red circles and ellipses
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processes, the impacts of which are especially apparent for
predictions over long (decades to centuries) time scales
[38•]. Most ecosystemmodels include a backgroundmortality
rate, which is insensitive to environmental stressors and stand
density and is usually constrained by observed maximum tree
size or age (in models with vegetation demography) [38•, 39].
Stress-driven mortality is usually limited to mortality driven
by carbon starvation based on a variety of metrics ranging
from net primary productivity, growth rates, or plant carbon
balance [38•]. In practice, carbon starvation mortality in eco-
system models has mostly been optimized for systems where
the stress of light competition dominates, rather than other
stressors such as water or nutrient stress [40]. Ecosystemmod-
el mortality modules may also represent mortality from other
biotic stresses such as low temperature, hydraulic failure, and
insect attack [41], which can be more dominant processes
during extreme events [42].

Ecosystem-Level Modules

Ecosystem-level processes can be organized into two inter-
connected ecological themes: biodiversity and heterogeneity
(Fig. 1). Biodiversity across multiple scales strongly shapes
ecosystem function and sensitivity to environment [43]. In
fact, ecosystem diversity is both a key motivation and a grand
challenge for improving ecosystem dynamics within Earth
system models [5]. The most common method for
representing biodiversity in ecosystemmodels is throughmul-
tiple co-occurring PFTs, a conceptual group of species that
perform similar functions in the ecosystem. The level of eco-
system complexity can range from relatively simplistic, such
as a tree PFT shading a grass PFT, to more sophisticated, such
as competition between trees of different size of the same PFT
and between different PFTs in demography-enabled models.
Depending on the model, competition for resources may in-
clude light, water, nutrients, or multiple co-limiting resources.
PFTs are often defined by life forms and physiognomy (e.g.,
deciduous broadleaf trees and evergreen needleleaf trees) with
biome boundaries constrained by empirical climate envelopes
[12]. This approach has the advantage of easy parameteriza-
tion and is readily able to be integrated with landscape-scale
observations. However, the lack of (i) mechanistic represen-
tations of biome shifts [12] and (ii) functional diversity within
each biome makes it impossible to robustly simulate ecosys-
tems under novel climate regimes and thus difficult to predict
ecosystem resilience to global change [44]. Therefore, recent
modeling studies tend to define multiple competing PFTs fol-
lowing key plant functional and demographic trait trade-offs,
especially in hyper-diverse tropical forests [45–47]. In addi-
tion to competition among plants, there are other ecological
interactions among diverse life forms such as symbiosis, pre-
dation, and parasitism. Due to limited observations and mech-
anistic understanding of complex ecological interactions

across life forms, few ecosystem models mechanistically in-
clude these interactions (but see [48] for representing parasitic
lianas in the ED2 model).

Heterogeneity due to variations in ecosystem structure rep-
resents another layer of complexity that affects ecosystem
dynamics in conjunction with biodiversity. Variations in abi-
otic and biotic conditions like tree size distribution, soil type,
and topography regulate the micro-environment for individ-
uals [49, 50]. It is thus critical to represent within-ecosystem
heterogeneity because some ecological and ecophysiological
processes, like photosynthesis and plant hydraulics, scale non-
linearly within the canopy or among individuals [9•, 51].
Failing to capture these heterogeneous effects on ecosystem
dynamics in an ecosystem model can result in cascading ef-
fects and diverging predictions for ecosystem structure and
function over decadal scales [52, 53].

To account for sub-grid scale heterogeneity, modern eco-
system models are increasingly incorporating vegetation de-
mography (i.e., explicit representation of tree size distribu-
tions and the associated competition for resources, see [9•]),
enabling for the prediction of nonlinear dynamics associated
with light competition within a forest canopy and the physio-
logical constraints of vegetation hydraulics that scale with tree
size (to name a few processes). Vegetation demography,
which is controlled by the self-organized individual-level re-
source competition [54], is also strongly shaped by natural and
anthropogenic disturbances. We subsequently review three
major disturbance types included in ecosystem models, in-
cluding fire, biotic disturbance, and anthropogenic
disturbance.

Among disturbance types, fire is the most commonly rep-
resented in ecosystem models [41, 55–57] due to its large
impact on not only vegetation but also other Earth system
processes (e.g., carbon, water, and energy fluxes). The level
of detail and complexity varies widely across fire models, but
some models have even included the impact of functional
traits such as bark thickness on plant survival with fire [33,
58]. In fact, the importance and complexity of fire dynamics
have led to the development of a number of stand-alone fire
models [57]. Though the inclusion of fire modules within
ecosystem models is by no means a new development, it is
still an active area of research and validation. For example,
none of the ecosystem models used in climate change predic-
tions were able to capture the extent of the severe fire season
in Australia in 2019 [59], and a fire model intercomparison
has not yet been included in the Coupled Model
Intercomparison Project (CMIP) as of Phase 6 [60].

Other natural disturbance types, such as tree windthrow,
are usually modeled as prescribed events or constant distur-
bance rates (e.g., [41]) with increasing efforts toward more
mechanistic representations (e.g., wind [61] and lightning
[62]). Meanwhile, few modeling studies explicitly include bi-
otic disturbances from herbivores and insect attacks other than
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by treating them as prescribed events that modify ecosystem
states empirically [63, 64]. Finally, anthropogenic distur-
bances such as logging and land use changes are usually in-
troduced as external forcing to ecosystem models and are
based on historical land use data sets and stand-alone land
cover and land use models [65].

A common trend of model development is to replace em-
pirical parameters and functions with mechanistic trait-driven
approaches (see Table 1). Though this trait-based approach
has the potential to improve ecosystem model predictions, in
practice, biological systems are extremely complex and bio-
logical traits are more variable and dynamic than their physi-
cal parameter counterparts used in ecosystem models. In the
next two sections, we summarize the progress and challenges
toward representing biological complexity, and specifically
hone in on temporal variations of trait-based parameters, to
attain realistic predictions at decadal or longer time scales.

Beyond the Canopy: Integrating Plant
Function Across the Critical Zone

Vegetation function connects natural processes across the crit-
ical zone (Earth’s permeable near-surface layer) from tens of
meters above the ground at the top of forests’ canopies, all the
way to the deep groundwater tapped by tree roots. Historical
ecosystem model development focused mainly on canopy
processes [6, 31, 66–68] for several reasons. First, canopy
leaves exert the first-order control on plant resource acquisi-
tion and ecosystem carbon and water dynamics. Second, can-
opy states and dynamics such as leaf area index (LAI), leaf
carbon assimilation rates, and evapotranspiration are relatively
easier to measure across scales with the increasing prevalence
of high resolution environmental remote sensing products [69,
70] compared to belowground processes.

Recent advances in canopy ecophysiology have led to
more mechanistic and trait-based canopy models, although
many of them are still experimental and have not been inte-
grated into ecosystem models as standard components. Some
examples of these experimental new developments include
the representation of triose phosphate use (TPU) limitation
to photosynthesis [29], optimality-based stomatal conduc-
tance models [71], and optimality-based ecohydrological
equilibrium models [72]. Another avenue of active research
pertains scientists’ physiological understanding of leaf func-
tion (such as maximum photosynthetic rate), and how leaf
function varies with phenological stage due to ontogenetic
changes [73], especially in tropical evergreen forests with
mild climatic seasonality [74]. Modeling experiments suggest
that these phenological processes can substantially change
ecosystem carbon budgets [75–78].

The canopy-centric view in ecosystem models has increas-
ingly been recognized as myopic, given that canopy function

is tightly coupled to stem and belowground processes.
Moving forward, it is widely acknowledged that a better rep-
resentation of the integrated critical zone, and in particular
belowground processes, should be one priority in model de-
velopment [32, 79, 80].

Wood biology has also been long under-represented in
ecosystem models [79]. Woody stems regulate the transport
of water, sugar, and nutrients through formation and mainte-
nance of xylem and phloem, thus comprising a fundamental
part of organismal metabolism. In contrast, in ecosystem
models, stems are generally represented as a passive biomass
pool dictated by empirical allometric equations [81].
However, an increasing realistic representation of wood biol-
ogy is becoming amore standardmodule in ecosystemmodels
(Fig. 1). For example, xylem vessels in the stem transport
water from roots to canopy and thus link resource acquisition
from both the above- and belowground.Water transport in the
xylem can become the major bottleneck for plant water use,
carbon assimilation, and survival even with adequate soil wa-
ter supply [82]. While plant water stress functions and param-
eters are highly uncertain among ecosystem models [40, 83],
incorporating hydrodynamics along the soil-plant-atmosphere
continuum allows for a more mechanistic simulation of plant
water stress for both acquisition, resource allocation, and plant
life history (see [14, 84] for excellent reviews). Recently, the
incorporation of plant hydraulics has received significant at-
tention in the ecosystem modeling community [46, 85–87],
fueled by the increasing availability for key hydraulic traits
such as xylem hydraulic conductivity and vulnerability [88].
In hydraulically enabled ecosystem models, the downregula-
tion or catastrophic failure of plant physiological activities
under water stressed conditions where plant water potentials
(a diagnostic of plant water status) become critically negative
(see Table 1) is explicitly represented. Importantly, the phys-
iological traits governing plant responses to water stress can
be directly measured and mapped spatially with increasing
capacity [85, 88–90].

Wood biology also affects tree carbon sink capacity (respi-
ration costs and growth activity, in contrast carbon source
capacity, which is regulated by photosynthetic carbon supply).
As described in the last section, resource allocation in ecosys-
tem models is tightly coupled to GPP (carbon source capaci-
ty), and thus variability in growth and other investments al-
ways tracks variability in GPP at all time scales.
However, this modeling framework contradicts field ob-
servations on the seasonal and inter-annual variability in
woody growth rates [91, 92]. Therefore, ecophysiologists
have begun experimenting with sink-driven frameworks
by representing growth needs as a function of environ-
mental factors [93]. A sink-centric representation may
change the sensitivity of ecosystem carbon drawdown
and storage to climate change. To better integrate the pro-
cess of sink-driving growth, ecosystem models need to
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Table 1 Summary of select trait-based parameters for ecophysiological processes in ecosystem models

Trait-based parameter groups Label in
Fig. 1

Parameter
uncertainty*

Abiotic drivers of
trait acclimation**

Notes

Photosynthetic capacity A1 Low Temperature
Light
[16, 17]

e.g., Vcmax, Jmax, TPUmax
Can vary due to leaf aging and leaf position in the canopy

Temperature sensitivity of
photosynthetic capacity

A2 Medium Temperature
[18]

e.g., Q10 or activation energy for Vcmax and Jmax

Stomatal sensitivity A3 Medium CO2 [19] e.g., stomatal slope in traditional stomatal models and marginal
water use efficiency in stomatal optimality models

Thresholds for leaf flushing and
shedding

A4 Medium Unknown e.g., thresholds for growing degree days, photoperiod, and soil
moisture

Leaf structural traits A5 Medium Light [17, 20] e.g., leaf mass per area, leaf size

Root biomass spatial distribution B1 Medium-high Soil moisture and
nutrient supply
[21]

e.g., maximum depth, lateral and vertical distribution

Root uptake potential for nutrients B2 High Unknown Mainly for nitrogen and phosphorus

Root structural traits B3 High Unknown e.g., root specific length/area

Root mycorrhizae association B4 Medium Unknown e.g., arbuscular mycorrhizae, ecto-mycorrhizae, and nitrogen
fixation

Root/shoot ratio C1 Medium-high Moisture [22]

Stoichiometry C2 Medium-high Unknown e.g., C:N, C:P ratios

Biomass allometry C3 Medium-high Light [23]
Moisture [24]

Aboveground allometry is relatively well characterized but
belowground allometry has high uncertainty

Wood density C4 Low-medium Unknown Determines carbon density of a given stem volume

Respiration rates and temperature
sensitivity

C5 Low-medium Temperature [25] Uncertainty of leaf respiration is relatively low while wood and
root respiration have limited data

Tissue turnover rates (or
maintenance cost)

C6 Medium-high Unknown Leaf turnover rates can be constrained by leaf longevity while
branch turnover is highly uncertain

Carbon partitioning between
reproductive and structural
growth

C7 High Unknown Can be size dependent

Hydraulic conductance H1 Medium CO2 [26] Including conductivity and sapwood area

Hydraulic vulnerability H2 Medium Water [27] e.g., Turgor loss point and P50 (water potential with 50% loss of
conductivity)

Hydraulic Capacitance H3 Medium Unknown Include saturated water content and other parameters from
pressure-volume curves

Allocation and turnover rates of
non-structural carbohydrates

S1 High Unknown

Seed germination, dispersal, and
seedling survival

R1 High Unknown

Background mortality rates M1 Medium Unknown Independent from plant density

Density-dependent mortality rates M2 Medium Unknown Mortality due to carbon stress

Mortality sensitivity to biotic stress
and natural disturbance

M3 High Unknown e.g., mortality threshold for hydraulic failure, flooding, fire, and
wind

*Check [28] for a more quantitative analysis of parameter uncertainty

**Note that trait acclimation is often not incorporated in ecosystem models

To improve readability, we group closely related parameters and relate them to the relevant modules in Fig. 1. We qualitatively assess the uncertainty of
each parameter group using a three-tier classification: (i) traits with little or well-characterized variability across scales are labeled as low parameter
uncertainty; (ii) traits with a qualitative understanding of variability but that are less well constrained than (i) are labeled as medium parameter
uncertainty; (iii) traits with very limited understanding of variability are labeled as high parameter uncertainty. Finally, we identify the key abiotic
factors that have been found to be important in trait acclimation from the literature
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simulate non-structural carbohydrates and other more la-
bile and flexible resource storage pools [94] so that the
source and sink capacities are partially decoupled.

Finally, woody respiration is generally overlooked or high-
ly empirical in ecosystem models (e.g., implicitly included by
a growth efficiency parameter [56]). In contrast, physiologists
and ecologists have found that wood respiration can comprise
one-third of canopy leaf respiration [95]. Thus, partitioning
wood respiration into maintenance and growth-driven compo-
nents with explicit linkages with plant size [96] would be
helpful to constrain ecosystem carbon budgets in future eco-
system model developments.

Similar to woody stem processes, plant roots and the rhi-
zosphere have long been represented in a simplistic manner or
are totally absent in many ecosystem models, largely due to
serious data limitations for the belowground [32]. However,
there is strong interest across fields including plant ecologists,
microbiologists, biogeochemists, and modelers to improve
understanding and modeling of the belowground [32, 97].
For example, in a recent experimental ecosystem model de-
velopment, the coupling of vegetation dynamics and rhizo-
sphere root-microbe nutrient competition enabled a more re-
alistic representation of soil nutrient limitation on biomass
storage when compared to observed ecosystem responses
[98]. Further, ecosystem models that include a representation
of major plant-microbe symbiosis (e.g., facultative N-fixation,
mycorrhizal association) predict higher vegetation carbon
storage compared to models where these processes are absent
[99, 100•]. These two model examples demonstrate the poten-
tial importance of the belowground on terrestrial carbon cy-
cling and serve as a platform for future research.

In addition to nutrients, water uptake is also highly depen-
dent on root structure and traits, especially in arid and semi-
arid ecosystems. Important physiological attributes include
rooting depth, root spatial distribution, and their inter-
specific variations [101]. Understanding both within- and
between-species variations has been recognized as increasing-
ly valuable given the introduction of vegetation demography
into ecosystem models because water stress responses can be
size-dependent [102]. While most models assume an expo-
nential distribution of root biomass with soil depth following
ecosystem-level observations [103] and ecohydrological the-
ory [104], the root distribution and its absolute rooting depth
can be extremely variable depending on local hydrological
conditions and species composition [102, 105]. Thus
root morphology and root water access can contribute
to the predicted uncertainty in plant water stress across
space and time. Experimental model developments using
a dynamic root hydraulic framework where water avail-
ability dictates plant root investment have recently been
tested in some water-limited ecosystems [21]; however,
this is still an area of active research. Finally, structural
roots can also act as a large biomass storage, accounting

for 10–20% total biomass in moist forests and up to
50–90% in dry and grassy ecosys tems [103] .
Overlooking structural root carbon pools or assuming a
constant root/shoot ratio can lead to biases in carbon
storage estimation in ecosystem models.

In sum, the expansion of trait-based processes beyond the
canopy is shown to improve model performance [46, 85, 102]
and significantly change long-term model predictions [98,
100•] while comprehensively evaluating the effects of incor-
porating these processes remain challenging at regional to
global scale because of the increased model complexity and
parametric uncertainty (Table 1). Moving forward, under-
standing how trait-based parameters across plant organs are
related remains a critical area of research. Indeed, some stud-
ies have shown strong trait correlations driven by either coor-
dination or trade-offs to form resource usage niches within a
given plant organ ( [106–108]; but see [88] for a lack of trade-
off for hydraulic traits). However, within-species, among-spe-
cies, and cross-site patterns can differ significantly [109], and
in some cases, coordination along the economic spectra is
weak or absent [110]. Since trait assemblages represent a
unique resource use strategy that may underlie distinctive re-
sponses to climate change, either overstating or understating
such trait correlations can lead to potentially large biases for
future ecosystem predictions. This biological complexity can
result in uncertainty in ecosystem model predictions and sub-
sequent compensating errors when validating model predic-
tions against present-day observations. Although the uncer-
tainty associated with unknowns in the physiology can be
partly mitigated through new techniques such as integrating
trait and ecosystem dynamics observations into ecosystem
models using Bayesian frameworks [13•], overcoming the
biological complexity challenge ultimately requires novel data
collection [69], open and effective data sharing [111], and
careful data interpretation drawing on ecological and evolu-
tionary theory.

Acclimation and Adaptation: Trait Plasticity
to Environmental Changes

Plant traits are normally assimilated into ecosystem models as
fixed parameters for each PFT. However, plant traits can vary
widely in space and time, even within the same species [109,
112–114]. In fact, many key ecosystem model parameters
respond to abiotic environmental changes (Table 1) such as
temperature, moisture, light, nutrients, and CO2 through accli-
mation (within a life cycle) and adaptation (across many gen-
erations) of plant physiological traits. Representing such trait
evolution is another priority for trait-based ecosystem models
[115] because trait acclimation and adaptation may greatly
modify biosphere-climate feedback [116]. In this section, we
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review the recent progress and challenges in modeling key
trait plasticity responses to environmental changes.

The most widely studied trait plasticity response is thermal
acclimation of plant photosynthetic traits, such as the maxi-
mum rate of carboxylation (a photosynthetic trait) and leaf
dark respiration under warming [114, 116, 117]. In ecosystem
models, the temperature sensitivity of photosynthetic param-
eters is typically represented through literature-constrained
Q10 relationships representing enzymatic sensitivity to tem-
perature. However, these Q10 relationships in ecosystem
models include no acclimation or adaptation to changes in
temperature with routine exposure. In contrast, meta-
analyses of spatial variations in plant traits provide evidence
for significant temperature acclimation in the sensitivity of
photosynthetic [18] and respiratory [118] parameters. In addi-
tion, warming experiments [114, 119] and optimality theory
[16, 120] further support meta-analysis diagnosed acclimation
trends. Recent physiological evidence indicates that such trait-
temperature acclimation can happen as quickly as 2 weeks
[114] and counters enzymatic sensitivity such that photosyn-
thesis and respiration rates are relatively stable across a gradi-
ent of growth temperatures, in contrast to the strong tempera-
ture sensitivity currently represented in ecosystemmodels [16,
120]. As a result, if thermal acclimation processes are included
in ecosystemmodels, projections for terrestrial carbon seques-
tration and storage may increase [117], depending on the rel-
ative change in sensitivity of photosynthesis versus
respiration.

Another well-documented plasticity for plant biochemical,
structural, and allometric traits is driven by light availability
[17, 20, 113]. However, the extent to which these plasticities
are represented is generally confined to photosynthetic accli-
mation in sunlit versus shade leaves [67], and the full impli-
cations of the light-driven plasticity (e.g., changes in leaf mass
per area, leaf longevity, and allometry as presented in [17])
under global change are not well constrained. Aside from
temperature and light, increasing CO2 and changing moisture
conditions can also influence the slope parameters in stomatal
conductance modules [19] and plant hydraulic traits [26, 27].

In contrast to acclimation that can happen in a relatively
short period of time, genetic adaptation takes multiple gener-
ations and thus is hard to measure and model with few at-
tempts to account for mutation and adaptation in ecosystem
models [115]. The physiology of adaptation of these processes
has not yet been constrained to the point where it is feasible to
include a representation in ecosystem models.

Given our limited understanding of the physiology of ac-
climation and adaptation, an alternate approach is to use opti-
mality theory to estimate the best set of traits from an eco-
evolutionary perspective [121•]. Coupled with evolutionary
stable strategy analyses, optimality theory can help to generate
the equilibrium sets of traits for an ecosystem [122], which in
turn can constrain a best-case scenario prediction (where

plants are super plastic and adaptive) for ecosystem dynamics
under global change. Another enticing feature of optimality-
basedmodels is the compression of trait-based parameters into
several key factors controlling coordination and trade-offs
[121•]. However, understanding the time scale of reaching
optimal equilibrium is a crucial consideration when aspiring
to attain realistic future predictions, especially considering the
changing disturbance regimes and increasing frequency of
climate extremes. As an example, the novel P-model built
on the optimality rules was able to capture average spatiotem-
poral ecosystem carbon fluxes but showed substantial biases
during climate anomalies without additional constraints [123].
Overall, using optimality theory to constrain spatiotemporal
variability in trait-based parameters holds significant potential
for both improving the next-generation ecosystem models and
enhancing our understanding as ecologists and physiologists
as to the variations and limits of trait acclimation and adapta-
tion. However, such optimality approaches can only be suc-
cessful with careful model benchmarks for both long-term
trends and responses to climate extremes [124, 125].

Conclusion

Ecosystem models serve as our main tool for predicting the
future fates of our terrestrial ecosystems, and for informing
effective mitigation plans to prevent catastrophic turning
points in ecosystem structure and function under the ongoing
rapid climate change [5, 115, 126–128]. While near-term var-
iability in ecosystem dynamics can be successfully forecasted
with minimalistic empirical models, such as data-driven
models based on empirical relationships and remote sensing
products [129], projecting long-term evolution of terrestrial
ecosystems under novel climate regimes requires ecosystem
models that consider ecophysiological and evolutionary pro-
cesses. Our review summarizes the recent progress in ecosys-
tem models toward a more explicit representation of physio-
logical processes using plant functional traits and lays out
major challenges for future trait-based model development
(summarized below).

1. Development of trait-based models often increases the
complexity of model structures by increasing the number
of physiological and ecological processes (Fig. 1). While
such complexity may help to make more rigorous model
predictions of ecosystem functions (such as productivity,
evapotranspiration, and biomass), it can hinder effective
interpretation ofmodel intercomparisons, especially when
the comparisons only focus on high-level model outputs.
As a community, we must carefully consider how we can
gain knowledge about ecosystem sensitivity to global
change from a range of complex models with different
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assumptions of ecosystem dynamical processes that are
often not apparent to the user of model products.

2. Compared with the traditional physiognomy-based PFT
configuration, trait-based models require a more detailed
representation of trait diversity for canopy leaves and in-
creasingly stems and roots (Table 1). As a community, we
must effectively incorporate plant functional diversity in
trait-based models while maintaining model parsimony
and identify priority datasets of traits and observations
on vegetation dynamics for model parameterization and
benchmarking.

3. In the context of climate change, the role of trait acclima-
tion and adaptation in determining ecosystem sensitivity
to various environmental factors has been identified as
important, but more data is needed to parameterize eco-
system models. As a community, to advance this difficult
problem, we need to identify what the key trait plasticities
are to long-term climate regime shifts, at which point we
can move towards determining how to incorporate these
plasticities, while still capturing ecosystem dynamics to
short-term environmental perturbations.

Comprehensively addressing these three challenges re-
quires close collaboration between modelers, ecosystem ecol-
ogists, ecophysiologists, evolutionary biologists, and climate
scientists. Here, we make the following recommendations for
the usage, future development, and applications of trait-based
ecosystem models.

1. Conducting standardized intercomparison studies for sub-
modules (e.g., [29]) with homogenized inputs in addition
to ecosystem models as a whole is critical to understand-
ing the distinctive behaviors in sub-modules and diagnos-
ing idiosyncratic model behaviors. Such module inter-
comparisons will require a more modular design of the
models within the generalized overarching modeling
framework for ecosystem processes. One possible method
of systematic organization could require organizing pro-
cesses according to key resource stocks and flows, as well
as the dominant time scales of the associated dynamics (as
outlined in Fig. 1) so that each sub-module has a set of
well-defined and stable inputs and outputs. However,
restructuring existing code can require careful planning,
software engineering, and monetary resources.

2. Understanding coordination and trade-offs among physi-
ological traits that affect plant carbon-, water-, and
nutrient-use strategies is critical to constraining the trait-
based parameter spaces. We recommend approaching this
problem both through further measurements of trait coor-
dination in conjunction with optimality theory and other
organizing principles revealed for ecosystem dynamics
[122]. In particular, belowground traits and dynamics
are still the most uncertain processes followed by wood

biology. These types of measurements need to be priori-
ties for future data collections.

3. Constraining model sensitivity to trait-based parameters
under different scenarios (e.g., long-term climate change
and extreme events) is critical when prioritizing data
needs for model parameterization. Such analyses are pos-
sible using Bayesian data assimilation system such as the
Predictive Ecosystem Analyzer (PEcAN, [11, 13•]) and
would benefit significantly from coordination and integra-
tion with ecosystem experiments [124, 125].
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