Coalescent Computing

Kyle C. Hale
khale@cs.iit.edu
Illinois Institute of Technology
Chicago, Illinois, USA

ABSTRACT

As computational infrastructure extends to the edge, it will
increasingly offer the same fine-grained resource provision-
ing mechanisms used in large-scale cloud datacenters, and
advances in low-latency, wireless networking technology
will allow service providers to blur the distinction between
local and remote resources for commodity computing. From
the users’ perspectives, their devices will no longer have
fixed computational power, but rather will appear to have
flexible computational capabilities that vary subject to the
shared, disaggregated edge resources available in their phys-
ical proximity. System software will transparently leverage
these ephemeral resources to provide a better end-user expe-
rience. We discuss key systems challenges to enabling such
tightly-coupled, disaggregated, and ephemeral infrastructure
provisioning, advocate for more research in the area, and
outline possible paths forward.

CCS CONCEPTS

« Computer systems organization — Cloud comput-
ing; - Hardware — Wireless devices; « Software and its
engineering — Cloud computing.

KEYWORDS

edge computing, disaggregated hardware, operating systems,
wireless networks

ACM Reference Format:

Kyle C. Hale. 2021. Coalescent Computing. In 12th ACM SIGOPS
Asia-Pacific Workshop on Systems (APSys "21), August 24-25, 2021,
Hong Kong, China. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3476886.3477503

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys °21, August 24-25, 2021, Hong Kong, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8698-2/21/08...$15.00
https://doi.org/10.1145/3476886.3477503

1 INTRODUCTION

We envision edge deployments (i.e., “cloudlets” [52]) that
expose virtualized resources which can transparently aug-
ment user devices, and which can automatically scale up
or down based on available resources, user demand, user
proximity (network latency), available network bandwidth,
and spot pricing. From the users’ perspective, it appears as
if their device (laptop, thin client, or smart phone) acquires
increased computational power (increased memory or disk
capacity, increased CPU count, or high-end GPU) when they
wander near such a deployment, for example, into their local
coffee shop’. When the user leaves the area, the resources
are revoked, and the user’s device appears as it did before.

Since Satyanarayanan first laid out the basis for this vision
nearly two decades ago with Cyber Foraging [5], hardware,
software, and networking technologies have advanced to the
point where it will soon be possible for the transparent coa-
lescence of disaggregated computational resources to client
machines to occur at a fine granularity and over short time
scales. We call this notion Coalescent Computing, a type of
Cyber Foraging for disaggregated hardware at the edge.

Cyber Foraging generally relies on discoverable services in
users’ local environments, and on the ability to offload appli-
cation components to remote—and generally more capable—
machines [51]. This offloading usually happens at the gran-
ularity of virtual machines [24]; while the end user may be
unaware of the local/remote distinction in this scenario, it is
still present for the application programmer and system soft-
ware. Though applications can be automatically partitioned
into loosely-coupled components to make them amenable
to such cloud offload [11, 29], and while VM migration can
be used to ship applications to the cloud transparently [23],
we believe that there is an opportunity to leverage the in-
creasingly hierarchical and disaggregated structure of cloud
resources at the edge [60, 61] to support applications that
are more tightly coupled, including enhanced gaming, aug-
mented reality (AR) [70], virtual reality (VR) [65], interactive
data analysis [53], and IoT [68].

One goal of classic distributed operating system work
from the 70s and 80s was to hide loosely-coupled distributed
machines behind the illusion of a single, logical system (a

I The authors acknowledge that since we are currently living in a pandemic
some readers might find this particular example far-fetched!

https://doi.org/10.1145/3476886.3477503
https://doi.org/10.1145/3476886.3477503
https://doi.org/10.1145/3476886.3477503

APSys ’21, August 24-25, 2021, Hong Kong, China

e edge servers

o= SEE
L=

1

0

1

|

i

! edge servers

' <
1

\

\
\

Figure 1: Coalescent Computing

single system image [9]). While commercially this did not
come to pass (except for limited components, e.g. file sys-
tems), a natural question now arises: is it time to reconsider
this aspiration for our modern computational ecosystem?
In the datacenter, the answer seems to be yes. High-speed
interconnects (e.g. InfiniBand) within the datacenter have
increasingly made resource sharing between systems feasi-
ble [31, 62], for example shared remote memory [1, 15,45, 71]
or remote swap [2, 22, 49]. I/O device virtualization is becom-
ing more sophisticated, with efficient offload enabled by API
remoting [4, 16, 50], and device sharing among tenants [66].
These trends, along with hardware proposals for scale-out
systems [21, 36, 43] and disaggregated hardware on the hori-
zon [3, 12, 18, 28] point towards a datacenter that consists of
loosely-coupled, disaggregated resources. LegoOS, a notable
first step in disaggregated operating systems, embraces this
view of the datacenter while retaining Linux ABI compati-
bility [55], and GiantVM demonstrates how to virtually and
transparently compose datacenter resources [69].

While datacenters obviously benefit from low-latency,
wired interconnects and relatively static hardware config-
urations, the momentum in disaggregation is encouraging
for commodity computing at the edge as well, and we argue
that there is a ripe opportunity for OS research to make Co-
alescent Computing a reality. Below we describe Coalescent
Computing in more detail, discuss some of its key research
challenges, and ideas for OS design to investigate the space.

2 COALESCENT COMPUTING

Coalescent Computing can be captured succinctly with the
following principle:

Kyle C. Hale

high-end
workstation

small edge rack

(.
LML
LI OO
LI
) (.
e (.
(.
L]

Figure 2: Coalescence of disaggregated remote cores
and a GPU in the user’s proximity.

Coalescence Principle: Users’ devices experi-
ence a coalescence of resources proportional to
proximity as users move through the physical
environment.

Figure 1 depicts the Coalescence Principle at work. The
number of resources coalesced into a user’s device is in-
versely proportional to the user’s network distance to the
hosting machines?. While in most cases those hosting ma-
chines will be stationary, in some cases, users with less con-
strained devices may offer their resources to nearby users,
as in Femtocloud [25]. Other metrics, such as pricing, net-
work congestion, and power budgets for the systems hosting
disaggregated resources will also affect availability.

As a user navigates the physical environment, the OS on
their device queries nearby resource availability, and puts
in bids for resources based on current and historical system
load. For instance, a user that just finished a recorded Zoom
call might cause a CPU spike that triggers their OS to bid
for nearby leasable CPUs to aid in video encoding. If no
such resources are available, the system can either borrow
resources from the traditional cloud (with a latency penalty),
or fall back to local resources. Figure 2 depicts a scenario
where a user is playing a CPU and GPU-intensive game that
outstrips the abilities of his or her laptop. The user is in
nearby proximity of a high-end workstation housing several
GPUs and an edge rack that contains a collection of disag-
gregated CPUs. The user sees both physical resources on
the local machine (1)) and virtual resources from remote
systems ((2)). To accommodate system load, the device’s Co-
alescent OS transparently discovers, negotiates, and acquires
a virtual GPU @) and four virtual cores 3) from the rack
over the wireless link. This reactionary resource provision-
ing is reminiscent of computational sprinting [38, 48] and
JIT-provisioned Cyber Foraging [24], but it happens at the
granularity of disaggregated cores and devices. Note that a
corollary of the Coalescence Principle is that as users leave

2This may or may not correspond to physical distance, e.g. in wired settings.

Coalescent Computing

the environment resources are relinquished and the system
gracefully migrates any necessary computations or state
back to the local machine, or to the cloud if WAN latencies
can be tolerated.

We expect a system implementing Coalescent Computing
to have the following properties:

Transparency. While users may set coalescence policies
ahead of time, the system transparently acquires and relin-
quishes resources nearby in the environment; this is a key
distinguisher from typical cloud offload. Acquisition here
does not mean sole ownership of the physical remote re-
source, and does not necessarily imply that the user should
be charged for it. For example, an idling user’s system may
make resource reservations, but as long as the user is idle,
the OS or monitor on the remote system is free to schedule
other work. Quality-of-Service (QoS) policies and the degree
of sharing can be determined by providers, and will likely
change from user to user. Because users’ resource acquisi-
tion policies may be at odds with one another, and because
applications have diverse requirements, policy enforcement
will involve solving a challenging, multi-objective optimiza-
tion problem [20] on hosts that expose resources. While
there are effective techniques for solving such scheduling
problems in the datacenter—for example with recommender
systems [13] or reinforcement learning and Bayesian opti-
mization [47]—in this setting user mobility will significantly
affect resource availability and users’ devices may coalesce
resources from different providers, rendering a centralized
scheduling mechanism ineffective. One possible path for-
ward is to combine application profiling (informing resource
requests) with decentralized versions of ML-based schedulers
(guiding resource grants). Thus, sets of leasable resources
(servers, desktops, and possibly user devices) form ad hoc
networks to run a distributed, coalescent scheduler.

The user can monitor currently “attached” resources using
familiar means. For example, /proc/cpuinfo in a Coales-
cent OS exposing a Linux-like interface would include both
physical CPUs on the device and virtual CPUs coalesced
from a nearby edge server. Similarly, /proc/meminfo would
show remotely coalesced pages (though sub-page granularity
remote memory is a possibility [49]).

At a surface level, the OS sees the remote CPUs (and other
resources) just like normal CPUs, and once they are properly
initialized and booted, the OS can schedule work on them.
However, the OS must take care in how it schedules work
on remote resources when applications are tightly coupled,
so must have some notion of resource localization (see Sec-
tion 3.2). This bears some similarity to NUMA-awareness,
but is more challenging given the inherent dynamism of
resources whose coalescence depends on user proximity.

APSys 21, August 24-25, 2021, Hong Kong, China

Performance. Users will expect their devices to be respon-
sive. While there is more flexibility here than in the datacen-
ter environment, the underlying technology presents more
challenges too (Section 3). In particular, as resources attach
and detach from user devices, it should not perceptibly affect
response times.

While the single-system image abstraction is a compelling
one (e.g., CPU cores come and go as the user moves around),
not all applications will want to use those cores, since their
use comes with a latency penalty. The system must be aware
of the distinction between latency-sensitive and throughput-
sensitive workloads [56], and must guide resource coales-
cence with that in mind. We believe that there is likely a
sweet spot for applications that thrive in a coalescent set-
ting. For applications with components that communicate
quite often (e.g., a tightly-coupled, multi-threaded stencil
code), decoupling the components will incur a significant
penalty. On the other hand, loosely-coupled applications that
perform bulk computations (e.g., rendering a single scene)
can be sufficiently handled by offloading to a distant cloud.
Thus, identifying applications that fit into this sweet spot is
a primary concern.

Resilience. Though we can envision Coalescent Comput-
ing extending to wired environments®, systems will more
often need to make do with unreliable wireless connec-
tions. A Coalescent OS must deal with dropped connections
gracefully, for example using replication and fail-over, or
by periodic checkpointing. In any case, techniques applied
to achieve resilience should avoid centralized coordination
given the ephemeral proximity of resources. However, some
systems—for example edge servers housed in a back room
cabinet—will be more static by nature, will have a constant
power source, and will likely have a reliable wired connection
to the internet, and thus should be weighted more heavily
when choosing coordinating nodes.

Customizability. While users need not normally tend to
resource coalescence policies, we anticipate that there will
arise scenarios where customization will be advantageous.
For example, users may set a lower threshold on battery
levels at which the system discovers, negotiates, and leases
resources, thus limiting power consumption by the wireless
radio and by the system itself. Even if one user has a high-
end laptop, he or she likely would not want another user
pegging one of the CPUs when the battery is on its last
leg. Other users might prefer more detailed performance
tuning, for example setting thresholds on swap space using
remote memory, capacity limits on leased resources, CPU
load thresholds for offloading, and so on.

3For example, inductive charging surfaces seen in some coffee shops now
might one day incorporate network interfaces.

APSys 21, August 24-25, 2021, Hong Kong, China

Technology Latency
SoL lower bound at 10m 33 ns
Cross-core cache-coherence 100-200 ns [30]
soNUMA (proposed) 300 ns [43]
Cross-socket (QPI) 355 ns [10]
Inter-processor Interrupts (IPI) ~500 ns [26]
PCle Gen 3 900 ns [40]
InfiniBand RDMA (one-sided) 1 ps [32]
WiFi 6E (reported) ~2 ms [14]
5G URLLC (reported) 1 ms 19, 37]
5G (first-hop) 14 ms [39]
Typical WiFi (90" %-ile) 20 ms [58]

Table 1: One-way latency for common and emerging
networking technologies.

Privacy and Security. When users offload computation to
cloud resources or instantiate VMs on public infrastructure,
they place some degree of trust in the provider, since they
direct the action. With Coalescent Computing, a user’s ap-
plication may be run on untrusted hardware, potentially
divulging sensitive information. Some malicious users may
be incentivized to lease out their resources just to compro-
mise other users’ data. Others may coalesce resources from
nearby users (possibly coordinating with other bad actors
nearby) to carry out a denial-of-service attack. Systems must
have mechanisms in place to mitigate such scenarios. This
is a problem that also plagues decentralized volunteer com-
puting systems [17, 33]. Proper isolation using hardware
support, virtualization, and collaborative monitoring and
reporting of bad actors can alleviate the effects of malicious
behavior.

3 CHALLENGES

We now discuss major challenges both in hardware and in
OS design that impede progress in realizing Coalescent Com-
puting.

3.1 Hardware

The overriding challenge for Coalescent Computing from
the hardware perspective will be the performance charac-
teristics of wireless links. Table 1 lists single-hop latencies
for various interconnects up and down the stack reported by
others. Cache line transfers on the coherence network be-
tween Nehalem cores land in the 100-200ns range, whereas
high-performance InfiniBand cards are still more than 3X
that latency at ~1us. As Shan et al. have already shown in
the datacenter environment, this puts coherent resources off
the table for now [55]. This especially rings true for wire-
less technologies (last four rows of Table 1). Typical WiFi

Kyle C. Hale

connections have reasonably low first-hop latency at 20ms,
but there is a long tail that puts the damper on deterministic
performance. However, emerging, ultra-low latency wireless
standards like 5G URLCC (designed with applications like
wireless factory automation and AR in mind) and WiFi 6E
bring the latency down by an order of magnitude and are
reported to reduce latency variance significantly. Coherence
will still be out of reach, but with the right OS support we
believe Coalescent Computing can be realized over these
low-latency wireless links. For reference, the first row of the
table shows the speed-of-light delay at 10m, which we can
view as a lower bound on the latency of future wireless net-
working between edge systems. While there is much work
on characterizing and improving the performance of wireless
links, little has been done to guide automated decisions based
on their properties. In particular, for a coalescent system to
work properly, it must be able to infer signal strength (and
user distance) accurately in order to project the impacts on
application performance and thus guide coalescence dynam-
ically. This is an open problem.

Unfortunately, current wireless interfaces are not suit-
able for operating with disaggregated resources. Prototype
systems for disaggregated hardware today make heavy use
of RDMA capabilities and fixed network latencies. WiFi in-
terfaces could be optimized for Coalescent Computing, for
example by customizing the wire protocol for resource ac-
quisition, and by integrating low-power mechanisms for re-
source discovery, as in BlueTooth Low Energy (BLE). These
NICs might also incorporate features we see in high-end
cards today like RDMA, atomics, and memory protection.
The NICs might also be integrated near the processors to
act as a proxy socket to facilitate communication between
remote resources, as in sONUMA [43].

While the OS may employ loosely-coupled monitors on
remote resources (Section 3.2), users may want to customize
the software they run on these resources. This will require
enhanced lightweight virtualization in wireless NICs, namely
self virtualization (e.g., SR-IOV) and boot protocols that in-
corporate disaggregated hardware (extended PXE). NICs on
the users’ systems must coordinate with the BIOS (e.g. via
a lightweight platform management controller or a BMC)
in order to keep hardware information exposed to the OS
(namely, ACPI tables that enumerate NUMA regions and pro-
cessor information like the SRAT and SLIT tables) consistent
with coalesced resources. ACPI likely needs to be extended
to support Coalescent Computing, and platform hardware
will need to route the boot sequence (e.g. the SIPI and IPI se-
quence on x86 chips) through something like an APICv [41]
rather than applying the traditional trap-and-emulate model.

Coalescent Computing

3.2 Software

A Coalescent OS will need to support the following: per-
formance, disaggregation, resource discovery, adaptation,
hardware heterogeneity, and fault tolerance. Several OSes
from the research community support some of these fea-
tures, but not all. For example, LegoOS is the first OS de-
signed for disaggregated hardware [55], and provides a good
foundation to build upon for Coalescent Computing. The
idea of stateless, loosely-coupled monitors running on disag-
gregated hardware components will serve a Coalescent OS
as well. However, the LegoOS design focuses on datacenter
applications, and the ExCache-based memory management,
the global resource managers, and the InfiniBand/RDMA-
based RPC will not transfer easily to a wireless edge setting
without significant hardware enhancements.

Performance. To reconcile privacy and performance, users
will likely want their code and data to reside in isolated en-
vironments. This means that monitors will need to employ
very lightweight, fast-start hardware virtualization, which
we have previously shown is possible on the order of mi-
croseconds®. Light-weight, virtual execution environments
will be launched on-demand to host second-level monitors
from the mobile user’s system. Hardware monitors will iso-
late user monitors from one another. Virtualization hardware
enhancements discussed in the previous section will make
this more efficient, and a Coalescent OS will likely incorpo-
rate something like the boot drivers used in Barrelfish/DC to
account for dynamically changing CPU information not sup-
ported in ACPI [67]. The CPU boot process will look much
more like the plug-and-play PCI probing process present
in commodity OSes today. For undersubscribed CPUs, the
resource monitor may use CPU hot-remove functionality to
space-partition the user monitor, reminiscent of co-kernels in
Pisces [46]. As with Barrelfish/DC, decoupling the OS from
the underlying hardware will allow for greater flexibility
with dynamic OS updates as well, as was also demonstrated
in K42 [8].

Performance will be mainly limited by network latency
and bandwidth. A Coalescent OS will have to employ aggres-
sive techniques to hide network latency and variability. The
OS can avoid expensive coherence traffic by using message
passing in lieu of shared memory, for example as is done in
Barrelfish [7] and LegoOS. Serialization costs and software
overheads must also be avoided, as we are learning with
disks as SSDs become faster [35]. For remote memory perfor-
mance, skewed access distributions may help [21], allowing
caches to be used to take advantage of temporal locality, but
it is unlikely to produce the same benefits we see in the data-
center. That said, similarities between users in geographical

“Citation elided for double-blind review

APSys 21, August 24-25, 2021, Hong Kong, China

proximity may offer hope, and the same principles that en-
able CDNs will present opportunities for deduplication and
sharing in edge systems [61].

Coalescent systems will benefit from QoS policies. These
policies can be set based on provider inputs (e.g. informed by
user account balance), social credits (“how many CPU hours
has the user leased out?”), current system load, physical
proximity, and the user’s affinity for particular resources
(“only coalesce memory, not CPU or accelerators”).

The system should also employ best effort coalescence
of resources; namely, if network conditions are incapable
of providing adequate performance, resource negotiations
should fail, and applications can run on local resources or
fall back to the traditional cloud. This best-effort behavior
has already been demonstrated for servicing I/O requests in
MittOSs [27].

Generally speaking, as Schwarzkopf et al. aptly point
out [54], deterministic performance was the albatross for
early distributed OSes, and we must be mindful of the lessons
learned there [59, 63]. Hardware improvements will certainly
help, but exposing performance variability to the OS is para-
mount for it to make acceptable decisions.

Heterogeneity. Disaggregated CPUs, GPUs, FPGAs, mem-
ory, and storage will inevitably be more heterogeneous than
in a typical datacenter. A Coalescent OS must handle this
heterogeneity transparently. Monitors written for different
devices can expose a unified interface, but applications must
be able to run on diverse hardware, including different ISAs,
especially as competitors to x86 gain prominence. This sys-
tem might require applications be compiled into fat binaries,
but a more flexible approach would employ an intermediate
representation (IR) to dynamically adapt the application to
the ISAs of nearby resources, as in Helios [42]. Such a system
would make judicious use of just-in-time (JIT) compilers on
edge nodes, or in cases where performance is less critical,
language VMs. Using JIT compilation to address heterogene-
ity adds another layer of complexity for performance, as
it can introduce even more variability. Managing this vari-
ability is critical for Coalescent Computing, but we have
only scratched the surface of minimizing JIT compilation
latency [34].

Resource Discovery. As users navigate the physical environ-
ment, their devices must query nearby systems for available
resources. This resource discovery process must occur often
enough to react to load spikes, but not so often as to drain
device battery and congest the local network. The OS and
hardware might employ UPnP here [44], as in Slingshot [57],
but the protocol will likely need to be enhanced to include
resource load information and performance characteristics.
When negotiating coalescence, the OS will automatically

APSys ’21, August 24-25, 2021, Hong Kong, China

choose a subset of nearby resources subject to user prefer-
ences and system load.

Programming Model. The Coalescent OS can by default
transparently migrate computation between local and remote
machines. For example, for each new vCPU added to the
system via Coalescence, the OS exposes a new run queue, e.g.,
over distributed shared memory. The OS can add a thread
to the remote run queue as it would on the local system,
but with a performance penalty. For example, the code in
Listing 1 shows a trivial example of creating a worker thread
that processes tasks in a shared queue. The Coalescent OS is
free to schedule this thread on a remote vCPU if available.
However, since the user is mobile, that remote vCPU may
disappear. The remote worker thread might dequeue work
from the shared queue then fail, losing that work. There are
of course many techniques for handling failures and ensuring
consistency in distributed systems, but in a language like C
where mutations on shared state can happen anywhere, it is
quite challenging to apply these techniques transparently.

void worker () {

(1) {

3 work_t + work =

static

while
dequeue_work () ;
A do_work (work) ;

o)

o

void main() {
9 pthread_t thr;
10 pthread_create(&thr, NULL, worker, NULL);

11 pthread_join (thr, NULL);

Listing 1: Creating a worker thread.

One possibility is to expose remote resources and the
potential for failure to the programmer. Listing 2 shows
such an example using a CC-aware wrapper around the
pthreads runtime. Here the programmer explicitly places
constraints on the remote vCPUs that the thread can run
on by specifying the maximum acceptable latency to the
remote vCPU in ps. The programmer also indicates that the
system should favor remote vCPUs over local ones when
available (EAGER_REMOTE). Finally, the programmer specifies
that when a failure is detected by the runtime, the thread
should be recreated on the local machine after a failure is
handled by user-specified code (here the programmer pro-
vides code to recover the work queue, e.g., with a persistent
write-ahead log).

I #include <cthread.h>
cthread_attrs {
100, //

2 static struct

3 .latency_bound = usec

2

Kyle C. Hale

.strategy = EAGER _REMOTE,
.failure = RETRY_LOCAL,
} cta;
static int handle_failure () {

return recover_work_queue () ;

}

void main () {
cthread t thr;

cthread_create(&thr, &cta, fun, NULL,
handle_failure);
cthread_join (thr, NULL);

}

Listing 2: Creating a worker thread with failure
recovery using an explicit CC APL.

In many cases, it will be preferable to manage functions
running on remote resources, rather than execution contexts.
In this case, the Coalescent OS can expose a function-as-a-
service (FaaS) API as well. In addition to the typical FaaS
event-triggered function invocation model, a CC FaaS API
might also allow for RPC-like, synchronous invocations via
language annotations. For example, a programmer might
specify that a function can run on remote resources by using
a virtine (virtual subroutine) [64], as shown in Listing 3.

virtine int fun() {
do_work () ;

Listing 3: Coalescence with a virtine.

In this case, if remote resources are available, the invoca-
tion of fun will cause a light-weight, isolated VM (or con-
tainer) to be spawned on the remote vCPU and the function
will run to completion.

Adaptation and Fault Tolerance. A Coalescent OS will need
to adapt to changing network conditions and resource avail-
ability. Ideas from systems like Chroma apply here [6]; re-
sources must be monitored, and application usage estimated
so that applications can scale up and down depending on
what is available. The system may leverage redundant com-
putations across multiple resources to mitigate tail latency
and for resilience.

To handle failures, a coalescent system will likely em-
ploy replicas and periodic checkpointing. Replication will be
more challenging than in the datacenter environment given
increased mobility, but replica selection can be informed
by mobility characteristics of different systems. A server
plugged into the wall would be a better choice for fail-over
rather than a nearby laptop. Replicas might exist in hierar-
chies based on the environment. For example, a secondary

Coalescent Computing

replica may be placed on the nearby edge server, and a ter-
tiary replica may be instantiated in the cloud with relaxed
consistency. Append-only storage can be used to persist state
changes and aid in failure recovery.

When component or connection failures occur, or when
the user moves out of range , the system must decide how
to react. This will largely depend on application resource
demands and latency sensitivity. For example, when a user
training a neural network decides to move away from a
resource-rich area, the training can be shipped off to the
cloud to complete. However, a user running an immersive
augmented reality application may prefer to have all compu-
tation and state migrated back to the local device, perhaps
trading off degraded quality for responsiveness.

4 CONCLUSION

Several challenges remain for Coalescent Computing which
we do not touch on here, but which we do plan to investi-
gate. These include the storage interface, resource naming,
and a more detailed treatment of privacy and security (e.g.
authentication).

The building blocks for Coalescent Computing are gradu-
ally being put in place. We will soon stand at the confluence
of disaggregated hardware, hierarchically distributed clouds,
and ultra low-latency wireless networks. We argue that ex-
ploring systems that support this model will not only put
more computational power at users’ fingertips, but will also
shed light on new avenues of systems research.

ACKNOWLEDGEMENTS

This paper would not have been possible without valuable
discussions and feedback from Conghao Liu, Brian Tauro,
Nicholas Wanninger, Rich Wolski, Peter Dinda, and Nikos
Hardavellas. This work is supported by the United States
National Science Foundation via awards CNS-1718252, CNS-
1763612, CNS-1730689, CCF-1757964, CCF-2029014, and CCF-
2028958.

REFERENCES

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Sub-
rahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. 2018. Remote Regions: A Simple Abstraction for
Remote Memory. In Proceedings of the 2018 USENIX Annual Technical
Conference (Boston, MA, USA) (USENLX ATC ’18). USENIX Association,
USA, 775-787. https://dl.acm.org/doi/10.5555/3277355.3277430
Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2020. Can Far Memory Improve Job Through-
put?. In Proceedings of the 15'" European Conference on Computer
Systems (Heraklion, Greece) (EuroSys °20). Association for Comput-
ing Machinery, New York, NY, USA, Article 14, 16 pages. https:
//doi.org/10.1145/3342195.3387522

—
Do
—

APSys ’21, August 24-25, 2021, Hong Kong, China

[3] Krste Asanovié. 2014. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In Proceedings of the 12t" USENIX Con-
ference on File and Storage Technologies (FAST ’14). USENIX Association,
Santa Clara, CA.
Marco Bacis, Rolando Brondolin, and Marco D. Santambrogio. 2020.
BlastFunction: An FPGA-as-a-Service System for Accelerated Server-
less Computing. In Proceedings of the 23”4 Conference on Design, Au-
tomation and Test in Europe (Grenoble, France) (DATE "20). EDA Con-
sortium, San Jose, CA, USA, 852-857.
Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen,
and Hen-I Yang. 2002. The Case for Cyber Foraging. In Proceedings of
the 10th Workshop on ACM SIGOPS European Workshop (Saint-Emilion,
France) (EW ’10). Association for Computing Machinery, New York,
NY, USA, 87-92. https://doi.org/10.1145/1133373.1133390
Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park, and
Tadashi Okoshi. 2003. Tactics-Based Remote Execution for Mobile
Computing. In Proceedings of the 15* International Conference on Mobile
Systems, Applications and Services (San Francisco, California) (MobiSys
’03). Association for Computing Machinery, New York, NY, USA, 273-
286. https://doi.org/10.1145/1066116.1066125
Andrew Baumann, Paul Barham, Pierre Evariste Dagand, Tim Har-
ris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach,
and Akhilesh Singhania. 2009. The Multikernel: A New OS Architec-
ture for Scalable Multicore Systems. In Proceedings of the 22"¢ ACM
Symposium on Operating Systems Principles (SOSP *09). 29-44.
Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva,
Orran Krieger, Robert W. Wisniewski, and Jeremy Kerr. 2005. Providing
Dynamic Update in an Operating System. In Proceedings of the 2005
USENIX Annual Technical Conference (Anaheim, CA) (USENLX ATC
’05). USENIX Association, USA, 32.
Rajkumar Buyya, Toni Cortes, and Hai Jin. 2001. Single System Image.
The International Journal of High Performance Computing Applications
15, 2 (2001), 124-135. https://doi.org/10.1177/109434200101500205
[10] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn
Reinman, and Peng Wei. 2016. A Quantitative Analysis on Microar-
chitectures of Modern CPU-FPGA Platforms. In Proceedings of the
5374 Annual Design Automation Conference (Austin, Texas) (DAC ’16).
Association for Computing Machinery, New York, NY, USA, Article
109, 6 pages. https://doi.org/10.1145/2897937.2897972
[11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. 2011. CloneCloud: Elastic Execution between Mobile
Device and Cloud. In Proceedings of the 6! Conference on Computer
Systems (Salzburg, Austria) (EuroSys ’11). Association for Computing
Machinery, New York, NY, USA, 301-314. https://doi.org/10.1145/
1966445.1966473
[12] I-Hsin Chung, Bulent Abali, and Paul Crumley. 2018. Towards a Com-
posable Computer System. In Proceedings of the International Confer-
ence on High Performance Computing in Asia-Pacific Region (Chiyoda,
Tokyo, Japan) (HPC Asia ’18). Association for Computing Machinery,
New York, NY, USA, 137-147. https://doi.org/10.1145/3149457.3149466
[13] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proceedings of the
184" International Conference on Architectural Support for Programming
Languages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13).
Association for Computing Machinery, New York, NY, USA, 77-88.
https://doi.org/10.1145/2451116.2451125
[14] Gino Dion. 2020. Wi-Fi 6 and Wi-Fi 6E: better, faster, more. https:
//www.nokia.com/blog/wi-fi- 6-and-wi-fi- 6e-better-faster-more/. Ac-
cessed 2020-01-31.
[15] Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In Proceedings
of the 11" USENIX Symposium on Networked Systems Design and

[4

[l

[5

—

G

—

[7

—

8

[t

[9

—

https://dl.acm.org/doi/10.5555/3277355.3277430
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/1133373.1133390
https://doi.org/10.1145/1066116.1066125
https://doi.org/10.1177/109434200101500205
https://doi.org/10.1145/2897937.2897972
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/3149457.3149466
https://doi.org/10.1145/2451116.2451125
https://www.nokia.com/blog/wi-fi-6-and-wi-fi-6e-better-faster-more/
https://www.nokia.com/blog/wi-fi-6-and-wi-fi-6e-better-faster-more/

APSys ’21, August 24-25, 2021, Hong Kong, China

Implementation (NSDI ’14). USENIX Association, Seattle, WA, 401—
414. https://www.usenix.org/conference/nsdil4/technical-sessions/
dragojevi{¢}

[16] José Duato, Antonio J. Pefia, Federico Silla, Rafael Mayo, and Enrique S.
Quintana-Orti. 2010. rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters. In Proceedings of the 2010 In-
ternational Conference on High Performance Computing and Simulation
(Caen, France). 224-231. https://doi.org/10.1109/HPCS.2010.5547126

[17] Arnaud Durand, Mikael Gasparian, Thomas Rouvinez, Imad Aad,

Torsten Braun, and Tuan Anh Trinh. 2015. BitWorker, a Decen-

tralized Distributed Computing System Based on BitTorrent. In Pro-

ceedings of the 13t International Conference on Wired/Wirless Inter-

net Communications (Malaga, Spain) (WWIC ’15). Springer, 151-164.

https://doi.org/10.1007/978-3-319-22572-2_11

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan

Milojicic. 2015. Beyond Processor-centric Operating Systems.

In Proceedings of the 15'" Workshop on Hot Topics in Operat-

ing Systems (HotOS XV). USENIX Association, Kartause Ittingen,

Switzerland. https://www.usenix.org/conference/hotos15/workshop-

program/presentation/faraboschi

Thomas Fehrenbach, Rohit Datta, Baris Goktepe, Thomas Wirth, and

Cornelius Hellge. 2018. URLLC Services in 5G Low Latency Enhance-

ments for LTE. In Proceedings of the 88" IEEE Vehicular Technol-

ogy Conference (VIC-Fall). 1-6. https://doi.org/10.1109/VTCFall.2018.

8690663

Yaru Fu, Xiaolong Yang, Peng Yang, K.Y. Wong, Zheng Shi, Hong Wang,

and Tony Q.S. Quek. 2021. Energy-efficient offloading and resource

allocation for mobile edge computing enabled mission-critical internet-
of-things systems. EURASIP Journal on Wireless Communications and

Networking (Feb. 2021). https://doi.org/10.1186/s13638-021-01905-7

Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,

Boris Grot, and Vijay Nagarajan. 2018. Scale-out ccNUMA: Exploiting

Skew with Strongly Consistent Caching. In Proceedings of the 131"

EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for

Computing Machinery, New York, NY, USA, Article 21, 15 pages. https:

//doi.org/10.1145/3190508.3190550

[22] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G. Shin. 2017. Efficient Memory Disaggregation with Infin-

iswap. In Proceedings of the 14" USENIX Symposium on Networked

Systems Design and Implementation (NSDI °17). USENIX Association,

Boston, MA, 649-667. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/gu

Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu,

Brandon Amos, Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev

Satyanarayanan. 2017. You Can Teach Elephants to Dance: Agile VM

Handoff for Edge Computing. In Proceedings of the 2% ACM/IEEE

Symposium on Edge Computing (San Jose, California) (SEC ’17). As-

sociation for Computing Machinery, New York, NY, USA, Article 12.

https://doi.org/10.1145/3132211.3134453

Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and

Mahadev Satyanarayanan. 2013. Just-in-Time Provisioning for Cyber

Foraging. In Proceeding of the 11‘" Annual International Conference on

Mobile Systems, Applications, and Services (Taipei, Taiwan) (MobiSys

’13). Association for Computing Machinery, New York, NY, USA, 153-

166. https://doi.org/10.1145/2462456.2464451

Karim Habak, Mostafa Ammar, Khaled A. Harras, and Ellen Zegura.

2015. Femto Clouds: Leveraging Mobile Devices to Provide Cloud Ser-

vice at the Edge. In Proceedings of the 8! IEEE International Conference

on Cloud Computing (New York City, NY, USA) (CLOUD ’15). IEEE,

9-16. http://doi.org/10.1109/CLOUD.2015.12

Kyle C. Hale and Peter Dinda. 2018. An Evaluation of Asynchro-

nous Events on Modern Hardware. In Proceedings of the 26'" IEEE

(18

[t

[19

-

[20

=

[21

—

[23

=

(24

=

[25

[

[26

—

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Kyle C. Hale

International Symposium on the Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (Milwaukee, WI, USA)
(MASCOTS ’18). IEEE. http://doi.org/10.1109/MASCOTS.2018.00041
Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gu-
nawi. 2017. MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface. In Proceedings of the 26"
Symposium on Operating Systems Principles (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 168-183. https:
//doi.org/10.1145/3132747.3132774

Hewlett-Packard, Inc. [n.d.]. The Machine: A New Kind of Computer.
https://www.hplL.hp.com/research/systems-research/themachine/. Ac-
cessed: 2020-01-10.

Galen C. Hunt and Michael L. Scott. 1999. The Coign Automatic Dis-
tributed Partitioning System. In Proceedings of the 3"¢ Symposium on
Operating Systems Design and Implementation (New Orleans, Louisiana,
USA) (OSDI ’99). USENIX Association, USA, 187-200.

Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann,
Sabela Ramos, and Timothy Roscoe. 2016. Machine-Aware Atomic
Broadcast Trees for Multicores. In Proceedings of the 12t% USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’16). USENIX Association, Savannah, GA, 33-48. https://www.usenix.
org/conference/osdil6/technical-sessions/presentation/kaestle

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of the
2016 USENIX Annual Technical Conference (Denver, CO, USA) (USENIX
ATC ’16). USENIX Association, 437-450. https://www.usenix.org/
conference/atc16/technical-sessions/presentation/kalia

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. De-
sign Guidelines for High Performance RDMA Systems. In Proceedings
of the 2016 USENIX Annual Technical Conference (USENLX ATC ’16).
USENIX Association, Denver, CO, 437-450. https://www.usenix.org/
conference/atc16/technical-sessions/presentation/kalia

Nils Kopal, Matthdus Wander, Christopher Konze, and Henner Heck.
2017. Adaptive Cheat Detection in Decentralized Volunteer Com-
puting with Untrusted Nodes. In Proceedings of the 17t IFIP In-
ternational Conference on Distributed Applications and Interopera-
ble Systems (Neuchatel, Switzerland) (DAIS ’17). Springer, 192-205.
https://doi.org/10.1007/978-3-319-59665-5_14

Martin Kristien, Tom Spink, Harry Wagstaff, Bjorn Franke, Igor Bohm,
and Nigel Topham. 2019. Mitigating JIT Compilation Latency in Vir-
tual Execution Environments. In Proceedings of the 15'" ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Providence, RI, USA) (VEE ’19). Association for Computing
Machinery, New York, NY, USA, 101-107. https://doi.org/10.1145/
3313808.3313818

Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and
Jinkyu Jeong. 2019. Asynchronous I/O Stack: A Low-latency Kernel I/O
Stack for Ultra-Low Latency SSDs. In Proceedings of the 2019 USENIX
Annual Technical Conference (USENLX ATC ’19). USENIX Association,
Renton, WA, 603-616. https://www.usenix.org/conference/atc19/
presentation/lee-gyusun

Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,
Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin
Idgunji, Emre Ozer, and Babak Falsafi. 2012. Scale-out Processors. In
Proceedings of the 39" Annual International Symposium on Computer
Architecture (Portland, Oregon) (ISCA °12). IEEE Computer Society,
USA, 500-511.

Patrick Merias. 2018. Study on physical layer enhancements for NR
ultra-reliable and low latency case (URLLC). Technical Report TR 38.824,
release 16. 374 Generation Partnership Project (3GPP).

https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1007/978-3-319-22572-2_11
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi
https://doi.org/10.1109/VTCFall.2018.8690663
https://doi.org/10.1109/VTCFall.2018.8690663
https://doi.org/10.1186/s13638-021-01905-7
https://doi.org/10.1145/3190508.3190550
https://doi.org/10.1145/3190508.3190550
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3132211.3134453
https://doi.org/10.1145/2462456.2464451
http://doi.org/10.1109/CLOUD.2015.12
http://doi.org/10.1109/MASCOTS.2018.00041
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1007/978-3-319-59665-5_14
https://doi.org/10.1145/3313808.3313818
https://doi.org/10.1145/3313808.3313818
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://www.usenix.org/conference/atc19/presentation/lee-gyusun

Coalescent Computing

[38] Nathaniel Morris, Christopher Stewart, Lydia Chen, Robert Birke,
and Jaimie Kelley. 2018. Model-Driven Computational Sprinting. In
Proceedings of the 13*" European Conference on Computer Systems
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery,
New York, NY, USA, Article 38, 13 pages. https://doi.org/10.1145/
3190508.3190543

Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu
Liu, Feng Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial
5G Performance on Smartphones. In Proceedings of The Web Conference
(Taipei, Taiwan) (WWW °20). Association for Computing Machinery,
New York, NY, USA, 894-905. https://doi.org/10.1145/3366423.3380169
Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio Lopez-Buedo, and Andrew W. Moore. 2018. Under-
standing PCle Performance for End Host Networking. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (Budapest, Hungary) (SIGCOMM ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 327-341.
https://doi.org/10.1145/3230543.3230560

Khang T. Nguyen. 2013. APIC Virtualization Performance Testing and
Iozone. https://software.intel.com/content/www/us/en/develop/blogs/
apic-virtualization-performance-testing-and-iozone.html. Accessed
2020-12-20.

[42] Edmund B. Nightingale, Orion Hodson, Ross Mcllroy, Chris Hawblitzel,
and Galen Hunt. 2009. Helios: Heterogeneous Multiprocessing with
Satellite Kernels. In Proceedings of the 22" ACM SIGOPS Symposium
on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09).
Association for Computing Machinery, New York, NY, USA, 221-234.
https://doi.org/10.1145/1629575.1629597

Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2014. Scale-out NUMA. In Proceedings of the 19"
International Conference on Architectural Support for Programming
Languages and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS
’14). Association for Computing Machinery, New York, NY, USA, 3-18.
https://doi.org/10.1145/2541940.2541965

[44] Open Connectivity Foundation. 2021. UPnP Standard.
https://openconnectivity.org/developer/specifications/upnp-
resources/upnp/. Accessed 2020-11-05.

John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Maziéres, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. 2010. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. SIGOPS Operating Sys-
tems Review 43, 4 (Jan. 2010), 92-105. https://doi.org/10.1145/1713254.
1713276

Jiannan Ouyang, Brian Kocoloski, John R. Lange, and Kevin Pe-
dretti. 2015. Achieving Performance Isolation with Lightweight Co-
Kernels. In Proceedings of the 24" International Symposium on High-
Performance Parallel and Distributed Computing (Portland, Oregon,
USA) (HPDC ’15). Association for Computing Machinery, New York,
NY, USA, 149-160. https://doi.org/10.1145/2749246.2749273

Tirthak Patel and Devesh Tiwari. 2020. CLITE: Efficient and QoS-
Aware Co-Location of Multiple Latency-Critical Jobs for Warehouse
Scale Computers. In Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (San Diego, CA, USA) (HPCA
°20). IEEE, 193-206. https://doi.org/10.1109/HPCA47549.2020.00025
Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P. Pipe, Thomas F. Wenisch, and Milo M. K. Martin. 2012. Com-
putational Sprinting. In Proceedings of the 18" IEEE International
Symposium on High-Performance Computer Architecture (HPCA ’12).
IEEE Computer Society, USA, 1-12. https://doi.org/10.1109/HPCA.
2012.6169031

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far

(39

[’

(40

[t

(41

—

[43

=

[45

[t

[46

=

(47

—

[48

[t

[49

—

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

APSys ’21, August 24-25, 2021, Hong Kong, China

Memory. In Proceedings of the 14'" USENIX Symposium on Operating
Systems Design and Implementation (OSDI °20). USENIX Association,
315-332. https://www.usenix.org/conference/osdi20/presentation/
ruan

Ardalan Amiri Sani and Thomas Anderson. 2019. The Case for I/O-
Device-as-a-Service. In Proceedings of the 17*" Workshop on Hot Topics
in Operating Systems (Bertinoro, Italy) (HotOS XVII). Association for
Computing Machinery, New York, NY, USA, 66-72. https://doi.org/
10.1145/3317550.3321446

Mahadev Satyanarayanan. 2015. A Brief History of Cloud Offload: A
Personal Journey from Odyssey Through Cyber Foraging to Cloudlets.
GetMobile: Mobile Computing and Communications 18, 4 (Jan. 2015),
19-23. https://doi.org/10.1145/2721914.2721921

Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. 2019. The
Computing Landscape of the 21st Century. In Proceedings of the 20"
International Workshop on Mobile Computing Systems and Applications
(Santa Cruz, CA, USA) (HotMobile ’19). Association for Computing Ma-
chinery, New York, NY, USA, 45-50. https://doi.org/10.1145/3301293.
3302357

Mahadev Satyanarayanan, Guenter Klas, Marco Silva, and Simone
Mangiante. 2019. The Seminal Role of Edge-Native Applications. In
Proceedings of the 2019 IEEE International Conference on Edge Comput-
ing (EDGE °19). 33-40. https://doi.org/10.1109/EDGE.2019.00022
Malte Schwarzkopf, Matthew P. Grosvenor, and Steven Hand. 2013.
New Wine in Old Skins: The Case for Distributed Operating Systems
in the Data Center. In Proceedings of the 4'" Asia-Pacific Workshop on
Systems (Singapore, Singapore) (APSys ’13). Association for Computing
Machinery, New York, NY, USA, Article 9, 7 pages. https://doi.org/10.
1145/2500727.2500739

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. Le-
goO0S: A Disseminated, Distributed OS for Hardware Resource Disag-
gregation. In Proceedings of the 13*% USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18). USENIX Association,
Carlsbad, CA, 69-87. https://www.usenix.org/conference/osdi18/
presentation/shan

Jan Solanti, Michal Babej, Julius Ikkala, and Pekka Jadskeldinen. 2020.
POCL-R: Distributed OpenCL Runtime for Low Latency Remote Of-
floading. In Proceedings of the International Workshop on OpenCL (Mu-
nich, Germany) (IWOCL °20). Association for Computing Machin-
ery, New York, NY, USA, Article 19. https://doi.org/10.1145/3388333.
3388642

Ya-Yunn Su and Jason Flinn. 2005. Slingshot: Deploying Stateful Ser-
vices in Wireless Hotspots. In Proceedings of the 3"¢ International
Conference on Mobile Systems, Applications, and Services (Seattle, Wash-
ington) (MobiSys ’05). Association for Computing Machinery, New
York, NY, USA, 79-92. https://doi.org/10.1145/1067170.1067180
Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian
Zhao, Zimu Li, and Thomas Moscibroda. 2016. Characterizing and
Improving WiFi Latency in Large-Scale Operational Networks. In
Proceedings of the 14'" Annual International Conference on Mobile
Systems, Applications, and Services (Singapore, Singapore) (MobiSys
’16). Association for Computing Machinery, New York, NY, USA, 347-
360. https://doi.org/10.1145/2906388.2906393

Andrew S. Tanenbaum and Robbert Van Renesse. 1985. Distributed
Operating Systems. Comput. Surveys 17, 4 (Dec. 1985), 419-470. https:
//doi.org/10.1145/6041.6074

Liang Tong, Yong Li, and Wei Gao. 2016. A hierarchical edge cloud
architecture for mobile computing. In Proceedings of the 35'" An-
nual IEEE International Conference on Computer Communications (San
Francisco, CA) (INFOCOM ’16). IEEE, 1-9. https://doi.org/10.1109/
INFOCOM.2016.7524340

https://doi.org/10.1145/3190508.3190543
https://doi.org/10.1145/3190508.3190543
https://doi.org/10.1145/3366423.3380169
https://doi.org/10.1145/3230543.3230560
https://software.intel.com/content/www/us/en/develop/blogs/apic-virtualization-performance-testing-and-iozone.html
https://software.intel.com/content/www/us/en/develop/blogs/apic-virtualization-performance-testing-and-iozone.html
https://doi.org/10.1145/1629575.1629597
https://doi.org/10.1145/2541940.2541965
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://doi.org/10.1145/1713254.1713276
https://doi.org/10.1145/1713254.1713276
https://doi.org/10.1145/2749246.2749273
https://doi.org/10.1109/HPCA47549.2020.00025
https://doi.org/10.1109/HPCA.2012.6169031
https://doi.org/10.1109/HPCA.2012.6169031
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1145/3317550.3321446
https://doi.org/10.1145/3317550.3321446
https://doi.org/10.1145/2721914.2721921
https://doi.org/10.1145/3301293.3302357
https://doi.org/10.1145/3301293.3302357
https://doi.org/10.1109/EDGE.2019.00022
https://doi.org/10.1145/2500727.2500739
https://doi.org/10.1145/2500727.2500739
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://doi.org/10.1145/3388333.3388642
https://doi.org/10.1145/3388333.3388642
https://doi.org/10.1145/1067170.1067180
https://doi.org/10.1145/2906388.2906393
https://doi.org/10.1145/6041.6074
https://doi.org/10.1145/6041.6074
https://doi.org/10.1109/INFOCOM.2016.7524340
https://doi.org/10.1109/INFOCOM.2016.7524340

APSys ’21, August 24-25, 2021, Hong Kong, China

[61] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru Iosup. 2020.
Sharing and Caring of Data at the Edge. In Proceedings of the 374
USENIX Workshop on Hot Topics in Edge Computing (HotEdge °20).
USENIX Association. https://www.usenix.org/conference/hotedge20/
presentation/trivedi

Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support
for Datacenter Applications. In Proceedings of the 26*" Symposium on
Operating Systems Principles (SOSP ’17). 306-324. https://doi.org/10.
1145/3132747.3132762

Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. 2015. From Lone
Dwarfs to Giant Superclusters: Rethinking Operating System Abstrac-
tions for the Cloud. In Proceedings of the 15*% Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association, Kartause Ittingen,
Switzerland. https://www.usenix.org/conference/hotos15/workshop-
program/presentation/vasilakis

Nicholas Wanninger, Joshua J. Bowden, and Kyle C. Hale.
2021. Virtines: Virtualization at Function Call Granularity.
arXiv:2104.11324 [cs.PL]

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and
Shuaiwen Leon Song. 2021. Q-VR: System-Level Design for Future
Mobile Collaborative Virtual Reality. In Proceedings of the 26'" ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 587-599.
https://doi.org/10.1145/3445814.3446715

Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and
Christopher J. Rossbach. 2020. AvA: Accelerated Virtualization of
Accelerators. In Proceedings of the 25'" International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing

(62

—

(63

—_

(64

[l

(65

[’

(66

=

[67]

[68]

[69]

[70]

[71]

Kyle C. Hale

Machinery, New York, NY, USA, 807-825. https://doi.org/10.1145/
3373376.3378466

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe.
2014. Decoupling Cores, Kernels, and Operating Systems. In Proceed-
ings of the 11*" USENIX Symposium on Operating Systems Design and
Implementation (Broomfield, CO, USA) (OSDI ’14). USENIX Association,
USA, 17-31.

Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon
Chatziliadis, Ankit Chaudhary, Bonaventura Del Monte, Dimitrios
Giouroukis, Philipp M Grulich, Ariane Ziehn, and Volker Mark. 2020.
NebulaStream: Complex analytics beyond the cloud. In Proceedings
of the International Workshop on Very Large Internet of Things (Tokyo,
Japan) (VLIoT ’20).

Jin Zhang, Zhuocheng Ding, Yubin Chen, Xingguo Jia, Boshi Yu,
Zhengwei Qi, and Haibing Guan. 2020. GiantVM: A Type-II Hy-
pervisor Implementing Many-to-One Virtualization. In Proceedings
of the 16'" ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (Lausanne, Switzerland) (VEE °20). As-
sociation for Computing Machinery, New York, NY, USA, 30-44.
https://doi.org/10.1145/3381052.3381324

Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the Networking Chal-
lenges of Mobile Augmented Reality. In Proceedings of the Workshop
on Virtual Reality and Augmented Reality Network (Los Angeles, CA,
USA) (VR/AR Network ’17). Association for Computing Machinery,
New York, NY, USA, 24-29. https://doi.org/10.1145/3097895.3097900
Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A Reliable and Highly-Available Non-Volatile Mem-
ory System. In Proceedings of the 20" International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Istanbul, Turkey) (ASPLOS ’15). Association for Computing Machinery,
New York, NY, USA, 3-18. https://doi.org/10.1145/2694344.2694370

https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762
https://www.usenix.org/conference/hotos15/workshop-program/presentation/vasilakis
https://www.usenix.org/conference/hotos15/workshop-program/presentation/vasilakis
https://arxiv.org/abs/2104.11324
https://doi.org/10.1145/3445814.3446715
https://doi.org/10.1145/3373376.3378466
https://doi.org/10.1145/3373376.3378466
https://doi.org/10.1145/3381052.3381324
https://doi.org/10.1145/3097895.3097900
https://doi.org/10.1145/2694344.2694370

	Abstract
	1 Introduction
	2 Coalescent Computing
	3 Challenges
	3.1 Hardware
	3.2 Software

	4 Conclusion
	References

