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Abstract

This paper addresses two aspects of integrating mathematics education with engineer-
ing education that may address persistence of engineering majors (and STEM majors
more broadly): an emphasis on modeling as a vehicle for more authentic learning
activity (Niss et al. 2007), and the need for measures that can support academic units’
efforts to collect local data about student attainment of program goals. In this paper, we
contribute: (1) a measure for modeling self-efficacy and its corresponding design
process; (2) a measure for modeling competency and its corresponding design process;
(3) a preliminary analysis of the relationship between modeling competency and self-
efficacy. We argue that such instruments address a genuine need of engineering
departments (as well as STEM education researchers) to have a means for collecting
local data on students’ modeling self-efficacy and competency.
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Introduction

According to the Washington Accords held by the International Engineering
Alliance (2014), mathematical modeling of problems in engineering is one of
the essential skills desired of graduates in engineering. This is consistent with
other governing bodies, such as the European Network for Accreditation of
Engineering Education (2018). That is to say, engineering graduates must be able
to fluently apply mathematical knowledge to complex engineering problems.
Mathematical modeling serves an essential role in providing engineering students’
authentic experiences which leverage the engineering design theories, scientific
inquiry, technological literacy, and mathematical thinking as they are used by the
greater engineering community (Kelley and Knowles 2016). Modeling skills are
paramount for an increasingly technologically-literate job market as well as for the
societal problems whose solutions have global consequences — problems that
today’s students, are interested in solving (Su et al. 2009; Eccles and Wang
2016). Furthermore, engineering students also value instruction that integrates
the mathematics they learn with real-world applications (Giiner 2013). More,
empirical studies suggest positive gains for students who are exposed to mathe-
matical modeling in terms of their self-efficacy and robustness of mathematical
knowledge (Czocher 2017; Czocher et al. 2019; Lesh et al. 2000; Rasmussen and
Kwon 2007; Sokolowski 2015). We recently synthesized the literature to argue
that mathematical modeling, as a pedagogical approach, has the potential to
increase student interest, proficiency in mathematics, and self-efficacy(Czocher
et al. 2019). Moreover, these factors are severally and jointly positively associated
with persistence in STEM fields, including engineering. For these reasons, many
faculty have begun revising their course materials and many academic units in
STEM have made tangible changes to their programs to incorporate mathematical
modeling as a source of motivation and as a learning outcome in its own right
(Chiel et al. 2017; Moore et al. 2013; Yildirim et al. 2010).Since mathematical
modeling activities can be small-scale and can potentially be drawn from narrow
contexts, they can be easily integrated into existing engineering and mathematics
curricula (Kertil and Gurel 2016; Hallstrom and Schonborn 2019). This is espe-
cially the case for advanced mathematics courses like differential equations
(Czocher 2017; Liu and Raghavan 2009; Pennel 2009; Rasmussen and Kwon
2007) and linear algebra (Dominguez-Garcia et al. 2016; Trigueros and Possani
2013), topics that naturally lend themselves to mathematical modeling and are
often challenging courses for engineering majors to maintain interest and to learn
from but nevertheless act as gatekeepers for many engineering practices.

Taken together, this body of research points to the importance of modeling experi-
ences for engineering students learning mathematics, and the potential for instructional
innovations that incorporate modeling to positively impact their academic careers.
From the literature, we know that minor but meaningful improvements to engineering
students’ mathematical education may have outsized effects on retention due to
improvements in both understanding and affective constructs (self-efficacy; self-confi-
dence). As engineering programs and mathematics classrooms increasingly incorporate
mathematical modeling as a learning outcome, there is a need for faculty, academic
units, and programs to have ways to assess their students’ mathematical modeling
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competence and their self-efficacy in modeling. Evaluations that focus on final grades
or student perceptions provide little insight into the direct impact on engineering
students’ growth in relation to modeling. Validated, reliable, and carefully linked
assessment is vital for measuring learning outcomes and demonstrating the efficacy
of innovative pedagogies. It is also vital for continual refinement of classroom and
programmatic improvements and for synthesizing empirical findings about these out-
comes. Collecting informative data can be a high-stakes endeavor for academic units to
demonstrate meeting credentialing boards’ criteria for engineering programs. At times,
a stakeholder such as a departmental task force, may not know what should be
evaluated or how (Hoey and Nault 2008). Such barriers are superable only when
faculty have trust in the use of assessment — trust, that can be provided through “sound
methodological frameworks and robust instrumentation” (p. 187).

In a survey of mathematics education research literature from leading outlets for
work in mathematical modeling, Frejd (2013) found that the majority of modeling
assessments (at any level) were not grounded in theory but rather were based on ad hoc
constructions, personal experience, or small-scale studies of student work. More
generally, even when assessments exist, stakeholders in education may be reluctant
to adopt them or trust them enough to base policy decisions on them. Further, many of
these existing assessments are not suitable for use with advanced mathematics or within
engineering education. Prior to our work, there as a lack of validated, reliable instru-
ments for assessing growth of students’ modeling skills situated in the advanced
mathematics taken by undergraduate engineering majors. Despite the clear focus of
mathematics and engineering educators, these fields face a key impediment in explor-
ing efficacy of their instructional innovations regarding mathematical modeling.

Taken together, we view these concerns as a call for a validated, reliable instrument
capable of measuring gains associated with instructional interventions centered on
mathematical modeling. Such instruments are particularly vital for engineering pro-
grams. In this paper, we share design principles and empirical evidence to conduct a
validation study for a pair of modeling assessments situated in differential equations:

1. The Modeling Competency Questionnaire (MCQ) which assesses modeling
competencies.

2. The Mathematical Modeling Self-Efficacy Measure (MSE) targeting self-efficacy
for carrying out modeling competencies.

We document their development and their properties. We will offer evidence of their
validity and reliability, based in multiple rounds of empirical testing and describing
how the instruments’ development were grounded in the extant literature on teaching
and learning of mathematical modeling for STEM majors. As another source of
validity, and to explore and confirm the utility of the instruments, we also address
the following research questions:

1. Do the instruments reflect an association between self-efficacy and competency in
mathematical modeling?

2. Do the instruments detect significant differences in measured outcomes based on
academic major, gender, proxies for mathematical knowledge, or previous experi-
ence participating in modeling competitions?
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Thus, our contribution is to employ theory and empirical findings to validate the much-
needed instruments and thereby increase confidence in their utility.

Theoretical Framing: Operationalized Constructs and Logic Model

In this section, we provide theoretical framing for and backing from educational
literature to situate the self-efficacy and competency instruments as well as their
use. We first present a literature-based argument for the importance of modeling,
then a framework for modeling competencies and an operationalization of self-
efficacy that underscores our instrument development process. We conclude with
considerations about the intended use of instruments of this nature in engineering
education.

The Important Role of Modeling for Engineering and Other STEM Majors

Previously, we argued for the value of mathematical modeling as a pedagogical
approach to teaching mathematics in terms of its potential to ameliorate STEM
including engineering attrition rates (Czocher et al. 2019). Based on our review of
empirical results from extant research literature, we present the following inferences as
working assumptions:

*  Modeling helps students see why and how mathematics is relevant to their
coursework, their careers, and their daily lives through interesting problems to
solve (e.g., Bliss et al. 2016).

* Students are more interested in learning content relevant to them (e.g., Kim et al.
2015), and so modeling indirectly increases their motivation to learn.

*  Modeling can help students learn mathematics content, thereby increasing mathe-
matical proficiency (Sokolowski 2015; Young et al. 2011).

*  Modeling enables student-centered pedagogies, which in turn lead to gains in self-
efficacy(e.g., Schukajlow et al. 2012).

» Taken together, these strengths of modeling are precursors to persistence in math-
ematics, which is requisite for persistence across STEM majors.

As we argued previously, there is substantial accumulated evidence that mathematical
modeling is positively associated with mathematics proficiency, self-efficacy, and
answers for students the question “why is <mathematics topic> relevant to me?”
Measures of these three domains are positively associated with persistence in mathe-
matics, ultimately leading to persistence of STEM majors. Self-efficacy is an important
construct for engineering students in particular since it correlates to mathematics
achievement (Loo and Choy 2013) and their decisions to persist (Jones et al. 2010).
We view innovations in mathematics instruction that center on mathematical modeling
as particularly advantageous to engineering undergraduates since the attrition rates for
engineering majors were historically around 50% from the 1950s through the 2010s
(Geisinger and Rajraman 2013). It is thus important to be able to measure growth in
modeling skills and self-efficacy to do mathematical modeling that may be fostered by
such innovations.
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Operationalization of Modeling and Self-Efficacy

For this project, we adopt a view of mathematical modeling as a process of rendering a
non-mathematical problem about a real-world phenomenon of interest as a well-posed
mathematical problem to be solved. We focus on the cognitive activities that facilitate
the process (Kaiser 2017) and utilize a mathematical modeling cycle (MMC), such as
the one in Fig. 1, to operationalize these activities as skills or competencies (Blum and
Leiss 2007; Czocher 2016). There are many modeling cycles available in the educa-
tional literature, including some well-known ones from engineering education (e.g.,
Dym 2004). We chose to work with the version popularized by Blum and Leiss (2007)
because it has been empirically tested and expanded (Czocher 2016) as we outline
below.

According to the MMC, mathematical modeling is an iterative and cyclical process.
It begins with.

specifying a problem, that is, understanding what the real-world problem should be
or even identifying what aspect of a real-world phenomenon is worth inquiry. Then, the
modeler must separate the relevant factors from ones that can be safely ignored. These
structuring choices often involve judgment in making assumptions reflecting the
modeler’s mathematical and non-mathematical knowledge as well as their (or their
stakeholder’s) values. At times, progress through the process may be impeded by these
choices. The modeler may introduce assumptions that warrant mathematical techniques
they do not command or identify variables that make the resulting model overly
complex. Sometimes, the modeler may greatly simplify the problem by ignoring a
variable to the detriment of overall accuracy. At other times, deciding not to consider
variables may not have too great a cost to overall accuracy of predictions and usefully
simplify the problem at hand (e.g., ignoring wind resistance for an object in a short free
fall). The conditions and variables need to be mathematized, that is, presented in terms
of conventional mathematical representations. The representations may be equations,
graphs, tables, or algorithms. The representations signify relationships among quanti-
ties — how they vary and covary and the mathematical rules they obey. This part of the
process poses a mathematical question to be answered. The resulting model must be
analyzed to provide a mathematical answer. Typically, working mathematically is

3

real /\O mathematical
model

1 Understanding
model 2 Simplifying/Structuring
2 3 Mathematising
4 Working mathematically
T 5 Interpreting
real 1 N situation i
situation Zﬁl Zi\!z model g 6 Validating
6
real mathematical
results D\/ results
rest of =
the world mathematics

Fig. 1 Mathematical modeling cycle, as elaborated by Blum and Leiss (2007)

@ Springer



International Journal of Research in Undergraduate Mathematics Education

handled in mathematics classes because solving mathematical problems is their pur-
view. For example, learning techniques to solve a first-order, homogeneous, linear
differential equation would be taught in a typical course on ODEs. The mathematical
results must be interpreted in context so that the results and the model itself might be
validated. Validating involves checking that the model is representative of the situation
and articulating its limitations.

Collectively, these activities are typically referred to as modeling competencies
(Maaf3 2006). They reflect the cognitive and metacognitive complexity of blending
mathematical knowledge with real-world knowledge (Czocher 2016; Fauconnier 2001;
Stillman and Galbraith 1998; Stillman 2000). Developing these competencies is chal-
lenging for students. They often struggle to define mathematical problems from real-
world situations and to validate the models they generate because there can be an
overwhelming number of considerations. For these reasons, it is also important to
consider students’ self-efficacy related to modeling as their skills grow.

We then follow Hackett and Betz (1989); Betz and Hackett (1983); Bandura (2006)
in operationalizing self-efficacyabout a task as an individual’s perceived capacity to
successfully carry out that task. In Czocher et al. (2019), we introduced the specialized
construct mathematical modeling self-efficacy(MSE) to mean “an individual’s per-
ceived capability to carry out the interrelated activities that make up mathematical
modelling” (p. 13).

The Role of Modeling Measures in Engineering Education

Because this paper focuses on instrumentation, our last theoretical consideration is in
relation to intended use. We situate our instruments as meeting a research and engi-
neering program need for continual improvement. Continuous improvement of pro-
grams is emphasized by organizations across nations such as in the United States’
ABET (see ABET Engineering accreditation Comission 2018-2019) or Sweden’s
CDIO standards (see Malmqvist et al. 2006). Continuous improvement is adapted from
quality management and emphasizes improvement integrated with assessment through
cycles of planning via identifying a need for change, doing or implementing the
change, checking to see if the original goals are achieved, and acting to continue to
implement the innovation or make changes as a result of data collected (Temponi
2005). In engineering education (and higher education in general), it is essential to
collect data on student outcomes as part of continuous improvement (McGourty et al.
2013). In this paper, we introduce instruments that can serve to meet particular goals
related to engineering education: incorporating of modeling, and a means to collect
student outcome data through related assessments. Such data collection serves a key
role in the continuous improvement of engineering education for students and can
directly impact their education through identifying the impact of didactical changes
focused on modeling.

Modeling Self Efficacy Questionnaire

In this section, we address the first goal of this paper: presenting the modeling self-
efficacy instrument. We share the development process along with evidence of the
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validity and reliability of the instrument within the context of its development cycles.
The purpose of the instrument is to measure growth in learners’ mathematical modeling
self-efficacy. It is intended to be used as a pre/post pair to provide feedback on
educational interventions arising from educational research or pedagogical innovations
whose desired outcomes are modeling competencies. Throughout this project, we chose
to focus on the domain of differential equations because it is a standard subject required
of engineering programs and is a natural location to incorporate mathematical modeling
alongside mathematical content that was developed in response to historical, real-world
modeling problems. For these reasons, our target population is students who are
enrolled in or have previously taken differential equations (or some similar course
focusing on relationships among quantities and their derivatives).

Instrument Development

We designed a situation-specific survey instrument, with explicit reference to compe-
tencies of mathematical modeling and theory of measurement of self-efficacy(Bandura
2006). The items asked students to report self-confidence on modeling competencies
known to be instrumental to successfully carrying out mathematical modeling: making
assumptions, estimating parameters, identifying variables, mathematizing, validating,
establishing limitations, working mathematically, and communicating. The initial in-
strument had six self-efficacy statements and was subsequently modified to include all
eight competency statements (Table 1). Each item was a Likert-type statement targeting
the modeling competencies on a 100-point scale, with 10-unit intervals, from 0
(‘Cannot do’), through intermediate degrees of assurance 50 (‘Moderately certain can
do’), to complete assurance 100 (‘Highly certain can do’). The Modeling Self Efficacy
(MSE) instrument has been tested on four occasions, including the pilot run. On each
occasion, samples were drawn from an annual, international mathematical modeling
competition whose focus is on modeling with differential equations.

Round 1The initial questionnaire consisted of six self-efficacy statements. For
the 38 competitors in the questionnaire prior to the October 2017 competition, we
conducted a principal component analysis (Abdi and Williams 2010). The analysis
extracted one underlying dimension accounting for 62.49% of the variance in
scores. Cronbach’s alpha (Cronbach 1951) was then calculated on the set of six
items on the pre-test, a=10.822, reflecting a high degree of internal consistency.
For the 21 participants who completed both the pre- and post-competition ques-
tionnaires, a matched pairs #-test revealed gains in self-efficacy(Czocher and
Kandasamy 2018).

Round 2 In order to address a focal goal of the competition, we added a self-efficacy
statement regarding establishing limitations(a validating competency, see Table 1, [tem
6). We also made minor adjustments to improve clarity of the statements. A principal
component analysis was conducted for the set of pre-competition responses (n =274) to
explore dimensionality. The analysis extracted one underlying dimension accounting
for 67.12% of the variance in scores. All items were pair-wise correlated with corre-
lation coefficients greater than 0.4 and p < 0.001, respectively. Cronbach’s « for the
seven items was a=0.917, reflecting a high degree of internal consistency. Overall,
student gain in modeling self-efficacy was statistically significant (#(92)= —6.663,
p<0.001). This difference had a moderate effect-size, d=0.545. A more nuanced
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Table 1 Final MSE instrument

Rate your level of confidence by recording a number from 0 to 100 using the scale Competency
given below:

0 10 20 30 40 50 60 70 80 90 100
Cannot do at all Moderately can do  Highly certain can do

—_

. Create a differential equation model for the spread Mathematize
of smart home appliances in the United States
during the twenty-first century.

2. In (1) identify the important variables leading Identify variables
to a reasonably accurate prediction.

3. In (1) make simplifying assumptions to reduce Make assumptions
the number of important variables.

4. In (1) select an appropriate numerical, graphical, Working Mathematically
or analytic technique to solve the resulting differential equation

5. In (1) consult appropriate resources to check Validate
whether your model was reasonable.

6. In (1) list the real-life and mathematical List limitations
limitations of your model.

7. In (1) create a short presentation to convince a Communicate findings

smart appliance manufacturer that they could
rely on your model to develop their business plan.

8. Given a differential equation which describes the Estimate parameters
rate of formation of material A,

A(t)=aA@)’

and a data set of observations for time, t, amount of
material A at each time t, you could
estimate the parameters « and /5.

analysis revealed that women’s gains were greater than men’s and that gains for
students who had not previously taken differential equations were greater than for
those who had (see Czocher et al. 2019, for more details). The fact that an intervention
designed to build modeling self-efficacy showed gains contributes to validity of the
MSE scale.

Round 3 We added a self-efficacy statement regarding working
mathematically(see Table 1, Item 4) which initially was left out because the focus
was on the complementary competencies of modeling. A principal component
analysis was conducted for the full set of pre-competition data (n = 198) to explore
dimensionality. This analysis extracted one underlying dimension accounting for
61.463% of the variance in scores. Pair-wise item correlations additionally re-
vealed that all items were pair-wise correlated with correlation coefficients greater
than 0.3 and p < 0.001, respectively. Cronbach’s alpha was then calculated on the
set of eight items on the pre-test, & =0.908, reflecting a high degree of internal
consistency. Collectively the students who took both the pre- and post-competition
questionnaire showed gains in Modeling Self-Efficacy from before to after the
competition (=4.202,df=51,p<0.001).
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Summary of Field Testing

These analyses along with its creation rooted in theory of mathematical modeling
competencies suggest the Modeling Self Efficacy (MSE) scale is an internally consis-
tent, unidimensional instrument with high face and construct validity. Therefore, the
responses to the items of this instrument can be summed to measure individuals’ self-
efficacy in modeling, overall. Over time, the properties of the MSE scale have remained
stable and it is capable of measuring gains, suggesting both reliability for measuring the
modeling self-efficacy construct and utility towards that purpose.

The Modeling Competency Questionnaire

One of the most widely conducted studies and therefore accepted forms of evidence for
documenting benefit of an educational intervention is a pre—/post- with comparison
group study. Thus, our purpose in developing the Modeling Competency Questionnaire
(MCQ) was to facilitate generation of the kinds of evidence valued by researchers,
instructors and program administrators, namely, to show gains not only from before to
after a modeling-based instructional intervention but also in comparison to a control
group. For these reasons, we sought to develop a pair of parallel assessments that could
be used to conduct quasi-experimental studies of educational innovations for under-
graduate STEM majors involving mathematical modeling. That is, a student could take
one version as a pre-test and the parallel version as a post-test.

Frejd (2013) estimated that about one-third of modeling assessments were written
multiple-choice tests based on Haines et al. (2000). Items in that assessment were
designed to target a single competence within the modeling process (e.g., asking
clarifying questions, identifying variables). The distractor options were created to be
either irrelevant to the construction of a model or to consider only the real-world
constraints without mathematical constraints. The “best” answer choice considered
both real-world constraints and relevant mathematics. Despite the promise of the
instrument, there are a few substantive critiques. First, the question set was tested using
Rasch analysis on a sample of 39 students and two sets of six items, so its broader
properties are unknown. Because of this, there is some reason to question whether the
parallel forms were indeed comparable in difficulty and in content. Second, two
intervening decades of research advances have provided a wealth of information about
plausible distractor choices that align with students’ tendencies. Thus, it is possible to
improve validity of the instrument by drawing on that research to generate distractors.
Third, there have been further advances in psychometric methods allowing robust
treatment of dichotomously keyed items. Our instrument addresses these critiques.

Challenges to Assessing Modeling

One of the most challenging aspects of assessment design in this domain is managing
the many trade-offs: between specificity and generality, between authenticity and
manageability, between openness to student thinking and facility in grading. Since
success in mathematical modeling is dependent upon both mathematical knowledge
and nonmathematical knowledge about the scenario, any assessment is necessarily
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bound by the specific contexts the items are drawn from and necessarily brings with it
the uncertainty of students’ prior knowledge. Thus, there is a natural desire in assess-
ment to reduce noise in the measurement that could be introduced by many contexts;
however, an assessment drawn from a single context would not be valid for measuring
modeling competence because it would measure facility with only that specific situa-
tion. The same could be said when considering the mathematical dimension — a student
may have a deep understanding of the scientific principles at stake in a context but lack
mathematical knowledge or capacity to apply it to successfully model the scenario.
Decisions at each stage of the modeling process depend on the decisions that were
made earlier in the process. Because competencies are interconnected, assessment
design should target the reasoning underscoring student decision-making as well as
the modeling decisions. That is, an assessment of the extent to which an individual has
developed a competency should acknowledge that a student’s choices may diverge
from a normatively correct answer but also recognize their justifications for their
choices (Czocher 2019). Said plainly, an assessment in modeling treats, at minimum,
three interrelated dimensions which are context- and student-dependent: real-world
knowledge, mathematical knowledge, and capacity to relate the two. A valid assess-
ment, then, would sample students’ modeling competence across a range of scenarios
and a range of mathematical content. Accounting for students’ reasoning is challenging
to do with a multiple-choice instrument, but it is possible when distractors are rooted in
students’ ways of reasoning about modeling scenarios. Moreover, because the assess-
ment’s utility is for evaluating instructional interventions or innovations commenced by
individual faculty, programs, academic units, or researchers, the intent is not to furnish
the assessment of knowledge or skills directly to students. This kind of local data is
indispensable for understanding how or why instruction succeeds (or fails) (see, for
example, Bressoud and Rasmussen 2015) and can be based on simply-generated and
consistent measures of growth in students’ skills that are rooted in theory and empirical
studies of students’ mathematical modeling.

Our approach to multiple-choice item construction adhered to a set of constraints.
First, we insisted that the scenarios and problems were relevant and authentic. We
operationalized this constraint by drawing from source material students would en-
counter in their studies (e.g., radioactive decay) or in public, contemporary discourse
(e.g., recycling). Second, we sought to phrase question stems to appeal to multiple
domains of knowledge, including mathematics, science, engineering, and “everyday
commonsense.” Third, we drafted question stems that would target aspects of compe-
tencies via alignment with specific indicators of the modeling competencies (see
Czocher 2016). Finally, we constructed distractors based on previous research studies
treating the kinds of concerns and justifications that students exhibit while modeling.
An overview of the development process is depicted in Fig. 2.

Item and Scale Development

We developed a pool of 118 multiple choice questions (MCQs) targeting the MMC
competencies drawn from 9 real-worldscenarios and some selections from the original
Haines et al. (2000) items. We did not include working mathematically, since analysis
is typically the focus of mathematics coursework. The real-world scenarios were drawn
from research and educational materials (e.g., GAIMME report; textbooks; published
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Research Educational Informal
Literature . Materials Interviews
Pool of 118 MCQs

Mathematicians Mathematics
Construct & Educators

Content Validity,

30

Feasibility 63 Difficulty Discrimination

(Round 1) items (Round 2) items (Round 3)
Green Orange Purple
n=43 valid n=76 valid n=70 valid

Difficulty
& Option
Analysis

Difficulty
& Option
Analysis

( Discrimination Analysis )

Fig. 2 Overview of MCQ instrument development, made in Creately

research; faculty syllabi) that are appropriate to STEM undergraduates who have
completed integral calculus. We sought scenarios that treated prevalent social issues,
involved situations in the sciences where differential equations might be used, or were
suggested during interviews with STEM professors. The contexts were (briefly): a
fracking wastewater lagoon, a municipal recycling program, radioactive decay, kinemat-
ics, moth flight, population growth, carrying capacity for a population of white-tailed
deer, disease transmission, and several items from various contexts developed by Haines
and colleagues. A list of item titles and their competence targets is in Supplementary 1.
Mathematical content ranged across arithmetic, algebra, calculus, and systems of ordinary
differential equations. We drafted MCQs from each scenario, striking a balance between
information provided in the scenario set-up (so that the problems the MCQs addressed
were situated) and readability (so that multiple MCQ stems could follow, cognitively,
quickly from the set-up). A variety of question stems were used (e.g., select the most/best/
least; indicate the choice consistent with the assumptions) and responses were developed
to have a single “best” answer with four distractors at varying degrees of reasonability.
For example, reasonability for a structuring MCQ might query (un)helpful assumptions to
make. Sample MCQs are in Table 2 (scenario set-ups omitted due to space constraints).

Content and Construct Validity To establish content validity, we invited two mathe-
maticians who regularly teach differential equations to mathematics and engineering
majors to examine the questions for readability, adequacy of answer choices, correct-
ness of mathematics, and appropriateness for their students. To establish construct
validity, we invited three mathematics educators with expertise in mathematical model-
ing to evaluate the items for readability of the questions, adequacy of the answer
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Table 2 Sample MCQs targeting aspects of understanding (from Haines et al. 2000.) and mathematizing,
respectively

Understanding (clarifying questions) Mathematizing (Choosing a representation)
Consider the real-world problem Given all of the assumptions below, which equation
(do not try to solve it!): best models the growth of a human population?
What is the best size for stroller wheels? 1. The human birth rate is proportional to the
Which one of the following clarifying population present,
questions most addresses the smoothness 2. There are sufficient resources

of the ride as felt by the child? (e.g., space and ample food) for the population
to thrive, given

. People die of old age and also prematurely,
for example, due to malnutrition or inadequate
medical supplies. Deaths also occur due to
unnatural causes such as communicable disease
and violent crimes.

4. Deaths are proportional to the number of
two-party interactions

. ki and k;, are the proportionality constants for
birth rate and death rate respectively

dP __ 7. P>
L= kiPky 5

W

W

[~}

a) Does the stroller have three or
four wheels?

b) What is the distance between the b. %‘: =kP+k @
front and the back wheels? *
c) Is the seat padded? c. =k P-k, L

o,

d) How old is the child?

¢) What is the surface material that the
stroller will ride over?

_ ., P(P-1)
P — ey Py PO

P — Pk, B 2

(¢

choices, and whether the items were appropriately categorized in terms of the compe-
tency it was intended to target. We implemented revisions and suggestions, eliminating
MCQs that failed to be correct or sensible or that duplicated other items. The remaining
59 items were tested for feasibility.

Round 1 (Feasibility) The 59 items were sorted onto 3 forms to balance compe-
tencies and tested for feasibility with 14 STEM undergraduates enrolled in courses with
differential equations as a pre- or -co-requisite. Each item was followed by a set of
feedback questions about readability of the question and answer choices, why they
chose the answer they did, and whether they would have chosen a different answer had
it been available. Each scenario was followed by a set of feedback questions about
authenticity and believability of the real-world scenario, information about the scenario
that would have helped them to answer the question, and mathematics knowledge that
would have helped them answer the question. We examined whether students’ re-
sponses were conceivably correct (justifiable) based on the reasoning provided. We
revised the MCQs so that justifiable reasons would either no longer apply or else used
the student reasoning to enrich distractors. We also amended scenario set-ups to include
additional relevant (but not necessarily relevant-to-model-construction) information
where multiple individuals indicated that there was missing information. Where
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possible, we left ambiguity in the scenario intact, but removed ambiguity from the
answer selections.

Round 2 (Difficulty) Sixty-three items, including 59 from Round 1 (8 of which
were drawn from Haines & Crouch, et al.’s previous assessments), were sorted onto
two forms (Pink and Green) to balance competencies and scenarios. A total of 78
undergraduate STEM majors enrolled in courses requiring differential equations or
modeling at a large university in the United States tested the items, of whom 35
completed Pink and 43 completed Green. The mean item difficulty revealed that most
items (76%) were moderately difficult (0.20 <p <0.70). Sixteen items performed
outside this range and were flagged for restructuring. A difficulty advantage analysis
revealed that nine items were too advantageous for students who took differential
equations. None of these items were used in Round 3 (below). Six items were
advantageous for those who had not taken differential equations. Four of these were
used in Round 3 because they satisfied other constraints (see below). To analyze
distractor efficiency, we calculated the proportion of students who selected each
distractor. Of 253 distractors (62 items had 4 distractors and 1 item had 5), a majority
were selected by at least 5% of respondents. In 17 of the items, distractors were selected
more often than the keyed option. These were flagged as items with potential to be
discriminating items among students with varying abilities or as potentially requiring
restructuring.

After restructuring items flagged by the option analysis, 30 items were selected
for Round 3 on the following basis: (i) item difficulty was between 0.20 <p < 0.70
(i1) items should be sorted onto two forms (Orange and Purple) with comparable
total difficulty (iii) each form should contain the same number of items for each
competency (iv) advantage to students having completed differential equations
should not be too large. There were 28 items satisfying all criteria, so we selected
an additional two items satisfying (ii), (iii), and (iv) but with difficulty p =0.19.
Each form balanced 4 items targeting Mathematizing, 4 items targeting Validating,
4 items targeting Structuring, 2 items targeting Understanding, and 1 item
targeting Interpreting.

Round 3 (Discrimination) The Orange and Purple forms were administered to
the same sample from the international competition used in Round 4 field testing
of the MSE. Of 226 students responding to the pre-event survey, 70 provided a
valid response to the Purple form and 76 provided a valid response to the Orange
form. We defined valid to mean fewer than 5 skipped MCQs from the end of the
assessment. That is, if a respondent answered 10 of 15 questions, we counted the
response as invalid if the 5 skipped questions all appeared at the end of the
assessment because we interpreted this as not completing the assessment. In
contrast, if the 5 skipped questions were dispersed throughout, we interpreted
the student as not knowing the answer and skipping the item. Due to a survey
platform error, Recycling 4 (structuring competency) and Population 4 (validating
competency) were omitted from the difficulty and discrimination analyses.

The overall mean score for the Purple form was 5.4 (SD=2.46) and the overall
mean score for the Orange form was 5.72 (SD=2.31). An independent samples #-test
(t= —0.811, df=144, p=0.419) confirmed that there was no significant difference in
mean score across the forms implying the forms were equally difficult for this sample
as well as that the two groups’ responses had equal variance (Hartley’s F test: F'=1.13,
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p=0.30). The mean item difficulty for the Purple from was 0.39 (SD =0.176) ranging
from p=0.17 to p = 0.69. The mean item difficulty for the Orange form was 0.41 (SD =
0.165) ranging from p=0.14 to p = 0.66. Across both forms, four items performed at
or worse than chance. We further examined the difference in proportion correct on
items to ensure that students who studied differential equations did not have a signif-
icant advantage over those who did not.

To conduct discrimination analysis, we calculated the point-biserial correlation
(rPBIS) which reflects the extent to which higher ability students are more likely than
lower ability students to select the keyed option. One item from each form were
negatively correlated with the total score. One item from Purple and two from Orange
had 0<rPBIS<0.20. When the »PBIS is positive but small, it does not discriminate
sufficiently among higher- and lower-scoring examinees to contribute to the overall
quality of the assessment (DiBattista and Kurzawa 2011). These three items with
0<rPBIS<0.20 were flagged as low-discrimination items.

Finally, we estimated the reliability of the two forms. We report Revelle’s Omage
Total (wy) as a measure of internal consistency, which is appropriate in cases where the
following assumptions can be made (see Raykov 1997; Revelle and Zinbarg 2009):

1. multiple dimensions contribute to predicting the construct of interest

2. individual items measure the latent construct on different scales

3. individual items measure the latent construct with potentially differing degrees of
precision

The MCQ items meet these underlying assumptions. First, mathematical modeling
competence is widely presumed to be multidimensional; it draws on mathematical
knowledge, real world knowledge, school-based knowledge, and knowledge of how to
combine all these elements (Stillman 2000). However, when mathematical modeling is
viewed in terms of its component competencies — such as the modeling cycle view
adopted here — previous empirical research has indicated the interrelation and depen-
dence of competencies rather than dimensions that could be distilled (e.g., Czocher
2018; Hankeln 2020). For example, one’s capacity to validate in a given context is
related to one’s capacity to imagine and articulate constraints. Since all of the compe-
tencies are related to some extent, there should be a single latent variable common to all
of the items contributing to a general factor (see Revelle and Zinbarg 2009).However,
the individual items are on different scales aligned with the separate modeling compe-
tencies and individual items will have varying levels of error, due to the range of
mathematical and real world topics they treat. Further, the items are not continuous
with a normal distribution. Thus, we calculated wy to estimate reliability as it matches
the assumptions and theoretical properties of the MCQ’s development.'

Using the ‘userfriendlyscience’ package and ScaleDiagnosis() call in R, we found
the wy values for both forms. For the Purple form, wy=0.67 and for the Orange form,
wr=0.63. The scales are approaching an acceptable estimate of reliability, 0.7 with

! In accordance with standard practice, we provide Cronbach’s o for the Purple form, o= 00.489 and Orange
form, a=0.477. Because the MCQ instrument does not meet underlying assumptions, these are likely to be
gross underestimates. See (see McNeish 2018; Peters 2014; Revelle and Zinbarg 2009) for further discussion
of this issue.
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highly difficult problems (p <0.20) and wr=0.71, even accounting for the highly
difficult items and the two items with negative rPBIs.

Study of the Relationship between Modeling Self-Efficacy
and Modeling Competency

One approach to generating evidence for the meaningfulness of the instruments is to
check whether they imply an association between self-efficacy and competency within
the modeling domain. While the nature of this relationship constitutes an open question
in mathematical modeling, it has been well-established for mathematics more generally.
For this reason, we take the relationship as a status-quo to test the instrumentation
against. We share a statistical exploration of the MCQ and MSE assessments admin-
istered prior to participation in an annual international modeling challenge (described in
the next section) in order to eliminate the confounding issue of whether individuals
may have gained on either measure as a consequence of participation.

Setting

We used the data collected with participants in an international modeling competition
to answer our research questions. The non-profit organization SIMIODE (Systemic
Initiative for Modeling Investigations and Opportunities with Differential Equations)
hosts an annual modeling competition (SIMIODE Challenge Using Differential Equa-
tions Modeling [SCUDEM]) with a focus on differential equations. Since the MCQ
instrument is intended to be used with STEM students who are beginning advanced
studies in their majors, the sample is ideal for validation. The respondents for this part
of the study are a subset of those who completed Round 3 MCQ field testing and
Round 4 MSE field testing.

The competition offers participants a selection of challenging, real-world problems
that they solve over the course of a week in teams of three. Each team has a faculty
coach from their home institution. Each team submits a 2-page executive summary
describing their solution to the problem. At the end of the week, teams convene at a
local site where faculty coaches are empaneled to judge the executive summaries. The
panel communicates strengths and weaknesses of the model to its team and the teams
have an opportunity to revise their models, presenting final versions to other compet-
itors at the end of the day. The panel then ranks the competitors’ final models. A
sample problem from the 2019 competition is given in Supplementary 2.

A total of 610 participants registered for the event. They were given a pre-event
questionnaire via Survey Monkey. The pre-event questionnaire consisted of de-
mographic questions, the MSE, one form of the MCQ, and some questions to
solicit feedback about the students’ experiences doing the challenge. Here we
consider only the MSE, the MCQ and relevant demographic variables. A total of
n =226, from 119 different institutions, returned the MSE of whom 146 completed
the MCQ (70 on Purple and 76 on Orange), Table 3 provides demographic
information regarding the participants’ genders, majors (primary major mapped
to the S, T, E, and M of STEM), typical mathematics grades, and whether or not
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Table 3 Participant demographic information

Major (Type) N Grade N Taken Diff Eq? N
Science 18 A 104 Yes 31
Technology 5 B 35 No 115
Engineering 32 C

Mathematics 81 D Gender N
Other 3 F Male 95
None (High School) 4 Female 48

they had previously taken a course on differential equations. The “other” major
category included business and economics.

Establishing a Linear Relationship

We formed the scales MSE, MCQ_Purple and MCQ_Orange summing the total score
for the modeling self-efficacy assessment (out of 800) and the two versions of the
competency assessment (each out of 14). We left out one item from each of the Purple
and Orange forms due to a platform rendering error. Since the two forms of the MCQ
were statistically equivalent in terms of overall difficulty, we formed the scale MCQ,
which assigned to each participant their respective score on either MCQ Purple or
MCQ Orange. We used the MSE and MCQ scales to address the research questions.

Figure 3 shows a scatterplot of z-scores for MCQ and MSE along with a regression
line clustered by engineering or other major. It hints at a positive association between
modeling self-efficacy and modeling competency as measured by the MSE and MCQ
instruments. In order to confirm this relationship, we explored whether a linear
relationship would appropriately model the data. A normal P-P plot of standardized
residuals revealed the data points stayed close to the normal line and therefore
suggested an approximately normal distribution of the errors.

The scatterplot of standardized residuals revealed a linear pattern in the data and that
the variance was reasonably homogenous. Due to a perceptible degree of coning, we
verified homoscedasticity according to the steps outlined in Darlington (1990) and
checked whether the expected variance of studentized residues are identical for all
regressor values. A univariate analysis of variance showed that there was not a
significant relationship between the regressor values and the squared studentized
residuals (F(1,144) =2.293 p=0.132). Therefore, the data were sufficiently homosce-
dastic. With these assumptions met, we were able to assume a linear relationship for the
two constructs.

We conjectured we might need to consider nested nature of the data, since partic-
ipants attending the same institution may have performed similarly on our measures. To
explore this hypothesis, we fitted the data to a 2-level Hierarchical Linear Model
(HLM) (participants within institutions) and compared this model to one where stu-
dents were not nested. A log-likelihood ratio test illustrated that the nested model was
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Fig. 3 Scatterplot of the normalized MCQ and MSE scores, with regression line, made in SPSS

not significantly different from the non-nested model (x%(1)=0.127, p=0.614). We
conclude that differences in performance on the MCQ across institutions were not
significant. Therefore, the relationship between MCQ and MSE was best captured by a
simple linear model.

Developing and Interpreting the Linear Model

In order to establish the significance and strength of the linear relationship
between MSE and MCQ, we developed a series of linear models accounting for
MSE and other variables that have previously been posited as relevant to modeling
competency or self-efficacy. We estimated linear models that contained gender
and whether the individual had taken differential equations because our previous
work indicated these variables were worth considering (Czocher et al. 2019). We
also considered whether the participants had competed in a modeling competition
before, as a proxy for their modeling experience. Additionally, we considered
STEM major as a factor and typical grade earned in previous mathematics
coursework as a covariate. For each variable, we considered just a main effect
model (containing MSE and the variable of interest) and interaction models
(containing MSE, the variable of interest, and interaction among them). The series
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of models (detailed in Supplemenatry 3) provided evidence of an unanticipated
result: none of the conjectured variables or their interactions were significant
except for the MSE score. See Supplemenatry 3 for an overview of the coeffi-
cients from the models we tested along with corresponding p-values.

Since MSE was the only significant variable, we calculated a simple linear regres-
sion model to predict MCQ from MSE:

MCQ = 0.252-MSE (1)

The MSE coefficient® (0.252) was highly significant (2(144)=3.130, p = 0.002). Since
we used normalized scores, the coefficient also provides information about effect size.
An increase of one standard deviation on MSE predicts an increase of 0.252 standard
deviations on the MCQ. When restricting our analysis to just engineering majors,
counting those with a first major of engineering and those whose second major is
engineering (n =36) the correlation between modeling self-efficacy and competency
remained significant with a larger effect size, #(33) =0.366, p =0.033.

Discussion and Conclusions

There is an established need within the mathematics education research commu-
nity and among engineering educators to have access to well-developed measures
to support program evaluation, effectiveness of instructional innovations, and to
provide important necessary information about trends in students’ modeling self-
efficacy and competency. Within this context, this paper serves to introduce two
measures that can meet both researchers’ and programmatic needs. In particular,
engineering programs are held to high standards and frequently expected to collect
meaningful student data (Spurlin et al. 2008) and leverage the data for continual
improvement. Since modeling is an essential skill for this population (Zawojewski
et al. 2008), we contend that instruments like the MSE and MCQ could be useful
and insightful for these stakeholders to learn about what their student populations
gain from their educational experiences and make informed decisions about
programmatic changes based on what the stakeholders learn.

In this paper, we shared two research-developed modeling assessments along with
their known properties. We have also argued for their validity and reliability due to
their grounding in empirically-derived educational theories of mathematical modeling
and due to their field testing with the target populations. In doing so, we hope that these
instruments can serve to mitigate some of the known impediments engineering faculty,
program directors, and even researchers face when attempting to assess modeling-
related educational innovations (such as trust in item and construct validity, Hoey and
Nault 2008).

> We ran models with and without an intercept. The intercept was neither significantly nor meaningfully
different from zero.
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Limitations and Scope of Use

Though the sample sizes for field testing have been small, the samples themselves
were repeatedly drawn from the target population. We do note that the SCUDEM
participants self-selected into an extra-curricular competition, typically experi-
enced academic success in their mathematics coursework, and therefore the
engineering students participating may not be representative of engineering majors
in general. Thus, some features of our sample, such as their overall academic self-
efficacy and mathematical knowledge, may be higher than in the general popula-
tion. However, the sample means on the MSE (prior to the annual competition)
were 400.4 (SD =91.5), 455.4 (SD =135.4), 455.7 (SD = 125), 506.1 (SD = 164.6),
indicating that even for this sub-population of highly motivated, successful, and
energetic STEM majors, the MSE provided room for growth. Likewise, the MCQ
items selected for future forms will be based, in part, on the empirical level of
difficulty for these samples.

There are some theoretical-methodological aspects of the assessments worth
discussing that may impact their appropriateness for use as an evaluation tool.
First, the MSE is based in theories of self-efficacy and motivation that were
largely developed with Western, specifically American, cultural values. We are
optimistic about the instrument’s broader use because the samples of STEM
majors we have worked included individuals from international institutions, insti-
tutions with sizeable proportions of international students, and 2-year colleges.
However, we would recommend that stakeholders intending to make measure-
ments of modeling self-efficacy consider whether the construct as operationalized
would be appropriate for use with the cultural groups within their inquiry setting.
Second, both the MCQ and the MSE adopt an atomistic approach to measuring
modeling competence and self-efficacy, focusing on individual competencies,
rather than mathematical modeling as an integral skill (see Blomhdj and Jensen
2003) for further discussion of the strengths and weaknesses of each approach).
While theory predicts that these competencies are interrelated and contribute
towards modeling competency as a whole, the field does not yet have evidence
for these claims. Thus, we would recommend complementing these assessments
with rubrics developed for complex, open modeling problems. Third, from a
measurement perspective it is not clear that the MCQ scale is unidimensional
because its items range over modeling scenario, intended competency, and the
mathematics required for each item.

Additionally, we see these instruments as providing a mechanism for re-
searchers interested in (a) comparing instructional innovations; (b) tracking stu-
dents’ growth in modeling self-efficacy and competency; (c) providing a comple-
mentary individual, quantitative measure of modeling to compliment qualitative
studies conducted in classrooms. We stress that the intent of the MCQ and MSE is
to facilitate program and pedagogical innovations by providing feedback to the
innovators, not to evaluate knowledge of individual students. Thus, we would
advise exceptional caution using it to evaluate individual students, for example,
when assigning grades or making admissions determinations.
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Plans and Directions for Future Research

Despite our progress in developing an assessment of modeling competencies for
STEM undergraduates, there remains work to increase its utility and appropriate-
ness for its intended applications. We will continue testing more items, increasing
our pool of usable items in service of developing parallel forms that are capable of
measuring differences or gains in (quasi-) experimental studies whether that be
comparing two (or more) experimental conditions or measuring pre—/post- gains.
Our next steps will be to shift towards Item Response Theory (IRT) models to
estimate assessment reliability, to create equivalent forms, to supply item-level
details, and to investigate the possibility of competence sub-scales. Some prom-
ising work using IRT to investigate cohesiveness of subscales has recently begun
for geometry-based modeling for secondary students (Hankeln et al. 2019) while
others have investigated the feasibility of using cognitive diagnostic modeling to
explore the multidimensionality of modeling assessments intended for collegiate
mathematics (Alagoz and Ekici 2020). Continuing work in these directions will
allow the scope of applicability of the measures to expand with increased and
more varied populations. Furthermore, new samples will allow us to replicate and
test the generalizability of the relationship we unearthed between MSE and MCQ.

Conclusion

Our contribution in this paper was three-fold: (1) introduce the MSE (2) introduce
the MCQ (3) document the relationship between self-efficacy and competency in
modeling as measured by these instruments. We have argued that the respective
instruments provide a grounded means for researchers and educators to measure
two important individual-level traits within the modeling domain: self-efficacy and
competency. The instruments target the STEM population as they are in the midst
of a crucial transition from calculus to advanced mathematics, mirroring their
increasing responsibility for using mathematics to appropriately apply mathemat-
ics within their academic majors. Thus, these instruments are likely to be of value
to engineering educators whose students often populate these courses and whose
disciplines value mathematical modeling as a learning outcome.

Furthermore, we provided evidence that the relationship between modeling self-efficacy
and modeling competency is statistically significant. Surprisingly, we found self-efficacy to
be the only significant predictor of competency. This analysis allows us to make two claims:
(1) there is a linear relationship between modeling self-efficacy and competency and (2) this
relationship does not account for all variation in competency (i.e., the coefficient was 0.252
standard deviations overall and 0.366 for engineering students). We conclude that both
instruments measure important, related, but ultimately independent constructs critical to
modeling. Thus, plans for assessing modeling as a learning outcome should consider
measuring both the self-efficacy and competence constructs because both can be vital for
students’ persistence in engineering majors.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40753-020-00124-7.
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