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Service liability interconnections among networked IT and IoT-driven service organizations create potential
channels for cascading service disruptions due to modern cybercrimes such as DDoS, APT, and ransomware
attacks. These attacks are known to inflict cascading catastrophic service disruptions worth billions of dol-
lars across organizations and critical infrastructure around the globe. Cyber-insurance is a risk management
mechanism that is gaining increasing industry popularity to cover client (organization) risks after a cyber-
attack. However, there is a certain likelihood that the nature of a successful attack is of suchmagnitude that an
organizational client’s insurance provider is not able to cover the multi-party aggregate losses incurred upon
itself by its clients and their descendants in the supply chain, thereby needing to re-insure itself via other
cyber-insurance firms. To this end, one question worth investigating in the first place is whether an ecosystem
comprising a set of profit-minded cyber-insurance companies, each capable of providing re-insurance services for

a service-networked IT environment, is economically feasible to cover the aggregate cyber-losses arising due to

a cyber-attack. Our study focuses on an empirically interesting case of extreme heavy tailed cyber-risk dis-

tributions that might be presenting themselves to cyber-insurance firms in the modern Internet age in the
form of catastrophic service disruptions, and could be a possible standard risk distribution to deal with in
the near IoT age. Surprisingly, as a negative result for society in the event of such catastrophes, we prove via
a game-theoretic analysis that it may not be economically incentive compatible, even under i.i.d. statistical
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conditions on catastrophic cyber-risk distributions, for limited liability-taking risk-averse cyber-insurance
companies to offer cyber re-insurance solutions despite the existence of large enough market capacity to achieve

full cyber-risk sharing. However, our analysis theoretically endorses the popular opinion that spreading i.i.d.

cyber-risks that are not catastrophic is an effective practice for aggregate cyber-risk managers, a result
established theoretically and empirically in the past. A failure to achieve a working re-insurance market
in critically demanding situations after catastrophic cyber-risk events strongly calls for centralized govern-
ment regulatory action/intervention to promote risk sharing through re-insurance activities for the benefit
of service-networked societies in the IoT age.

CCS Concepts: • Security and privacy → Distributed systems security; • Mathematics of computing

→ Probability and statistics;
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1 INTRODUCTION

Global commerce is undergoing a profound digital transformation. As it becomes increasingly
electronic and IoT driven (courtesy of the upcoming 5G technology), critical exposures in this
sector are getting highly data driven. As a result, the majority of modern business and economic
risks are subsequently becoming cyber in nature. More importantly, such cyber-risks are often
networked and accumulate in a variety of different ways, thereby affecting many lines of business.
As an example, commercial companies in diverse sectors such as automobiles, electronics, en-
ergy, finance, aerospace, etc., and their mutual trading relationships are characterized by systemic
network linkages through major software providers (e.g., Oracle for DBMS support). A cyber-
attack (e.g., an APT-driven zero day attack) motivated by a vulnerability in a software version
can have a catastrophic cascading service disruption effect that might amount to net commer-
cial losses worth billions of dollars across the various service sectors—a cyber-analog to the cur-
rent human COVID19’s1 catastrophic impact on world business. As well-documented commercial
cyber-attack examples in reality, the very recentMirai DDoS (2016), NotPetya ransomware (2017),
and WannaCry ransomware (2017) attacks due to compromise of large-scale IoT devices caused
havoc among firms in various industries (having trading relationships among them) across the
globe, resulting in huge financial losses for the firms due to them being deemed dysfunctional in
providing service. The reader is referred to Coburn et al. [2018] and the appendix for additional
examples of cyber-attacks capable of causing catastrophic systemic loss impacts.
Technically, the emergence of such large-impact cyber-attacks on the IoT terrain is not sur-

prising to say the least. Based on Advisen’s 2017 Annual Report, security is often not being built
into the design of these IoT products with the rush to get them to market. Symantec’s research
on IoT security has shown that the state of IoT security is poor: (1) roughly 19% of all tested mo-
bile apps used to control IoT devices did not use Secure Socket Layer (SSL) connections to the
cloud; (2) approximately 40% of tested devices allowed unauthorized access to back-end systems;

1The recent COVID-19 infection outbreak can be thought of as an analog of a viral APT on humans. In practice, a cyber-
COVID can be far more disastrous than the human COVID-19 as the former could stall (pervasive/ubiquitous) computing
life, which the latter does not.
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(3) around 50% did not provide encrypted firmware updates, if updates were provided at all; and (4)
IoT devices usually had weak password hygiene, including factory default passwords; for exam-
ple, adversaries use default credentials for the Raspberry Pi devices to compromise devices. The
Dyn attack compromised less than 1% of IoT devices. By some accounts, millions of vulnerable
IoT devices were used in a market with approximately 10 billion devices. XiongMai Technologies,
the Chinese electronics firm behind many of the webcams compromised in the attack, has issued
a recall for many of its devices. Based on this evidence, Shankar Somasundaram, senior director,
Internet of Things, at Symantec, expects more of Dyn-like outages in the near future.
In the wake of major targeted corporate and critical infrastructure cyber-attacks (e.g., attacks

on Sony, Target, the Ukraine power grid) in the past half decade, risk mitigation has become a top
board-level concern across many organizations worldwide. As a result, transfer-based risk man-
agement products like cyber-insurance, which currently has a rapidly growing market2 (Source:
Betterley Annual Report, 2015 [Betterley 2015], Advisen annual report 2016), is a major go-to
solution for the current corporate sector worldwide, in the event of a cyber-attack. Renowned
cyber-security expert Bruce Schneier has popularly envisioned the current digital age to be one of
incident response through third-party risk management solutions [Dambra et al. 2020]. Moreover,
such solutions bear the socially beneficial promise (over their purely technical counterparts) of
improving cyber-security by incentivizing users and organizations to voluntarily invest in appro-
priate amounts of the various elements of the portfolio [Lelarge and Bolot 2009a; Johnson et al.
2011; Anderson and Moore 2009].

1.1 Research Motivation

Market surveys suggest that demand for cyber-insurance significantly exceeds the capacity cur-
rently provided by the insurance industry. One primary reason that most insurers give for being
cautious about expanding capacity is the accumulation risk posed by cyber-threats. A major fear
among insurers here is that cyber-threats are inherently scalable and systemic through their spread
via network inter-connectivity—a single malicious email generated by a botnet activity can result
in an entire organization becoming dysfunctional with respect to the service it provides, and in
turn potentially affect business services of all other organizations that depend on it.
In the event of cascading service disruptions due to a major cyber-attack, if all these organiza-

tions were to hold responsible their parent organization(s) on which they depend for providing
services, it is quite likely that the insurance company of a certain root organization could need to
bear the responsibility of covering a huge aggregate/accumulated risk of all or multiple organi-
zations in the service chain via the design of re-insurance contracts [Millaire 2016]. Shouldering
this responsibility clearly may not be aligned with satisfying the budget constraints and profit
requirements of most risk-averse cyber-insurers open to the idea of providing re-insurance ser-
vices, let alone cyber-forensic and risk data availability challenges they might need to overcome
to implement accumulative coverage policies [Millaire 2016].
In practice, the idea of spreading aggregate cyber-risk among re-insurers is gaining traction

[Coburn et al. 2018; Kessler 2014; LI 2018] for smart society settings whereby insurers covering
aggregate cyber-risk of organizations in a given sector (e.g., manufacturing) wish to spread that
risk among insurers of firms that are higher up in the supply chain (e.g., energy companies). How-
ever, there is no mathematical analysis on the effectiveness of this idea for general individual cyber-
risk distributions, without which aggregate cyber-risk managers may not have the confidence to scale
their service markets. Moreover, there may be significant differences in the cyber and non-cyber

2Recently, Wired magazine (2019) projected a huge USD 5.5 billion cyber-insurance market by 2030, with firms like HSB,
part of Munich Re, and Bajaj Allianz starting to sell personal cyber-insurance.
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re-insurance settings. More specifically, the benefit of unlikely large-impact systemic outcomes in
the latter (as qualitatively stated in Kessler [2014]) may not apply to cyber-settings that involve a
pervasive digital world with billions of IoT devices in operation. One could argue in light of recent
empirical works [Biener et al. 2015; Eling andWirfs 2019; Romanovsky 2013] that cyber-losses are
less heavy tailed (longer tails an indicator of the likelihood of large-impact systemic outcomes)
than generally perceived to be. However, such results are clearly not definitive given (1) a popu-
larly known fact that there is a severe lack of reported rich cyber-loss data with detailed security
and exposure indicator features to be able to generalize these empirical results in a principled
fashion [Dambra et al. 2020], (2) contradictory claims by other works [McNeil et al. 2015], and
(3) the un-precedented scale of (in-secure) pervasive IoT networks of the future (not accounted
by these studies) that might easily contradict claims made in Biener et al. [2015], Eling and Wirfs
[2019], and Romanovsky [2013]. Consequently, we strongly vouch for considerable possibilities in
the IoT age of potentially several hundred systemically important vendors that could be susceptible
to concurrent and substantial business interruption in time and space. This includes (among many
others) at least eight DNS providers that service over 50,000 websites, and some of these vendors
may not have the kind of security that exists within rich cloud providers like AWS that boast of
multiple layers of security and data redundancy.
Our Focus - Our focus in this article is to conservatively analyze whether providing risk re-

insurance services, in events of systemic/cascading cyber-loss impacts of considerable degree, is
economically incentive compatible for a set of cyber-insurers that are open to the idea of providing
cyber re-insurance services to their clients, i.e., other cyber-insurance firms. Our investigation is
of immense importance to societal benefit in the age where IT-networked services are ubiquitous
in nature, and complex cyber-attacks, both on commercial and critical infrastructures, are on the
rise. A failure to properly manage risk via re-insurance services and/or a failure of re-insurance
markets is really bad for society in general as cyber-insurance companies could individually opt out
of covering aggregated cyber-risk, and a spiral effect could lead to the breakdown of a significant
portion (if not entirely) of the cyber-insurance industry in the long run. This could (1) negatively
impact overall cyber-security3 in the network of organizations tied to one another via commercial
liability relationships and (2) affect societal welfare whereby loss-induced depression could make
organizations look forward to insurance firms for support but not find it when they need it most.

1.2 Research Contributions

We make the following research contributions in this article:

—En route to proposing our system model, we first provide a mathematical intuition on why
the nature of cyber-risk distributions is a prime determinant to the success of re-insurance
markets for the aggregate cyber-risk-managing cyber-insurance industry (see Section 2).
We rely on the empirical evidence of certain cyber-risk distributions being heavy tailed
and tail dependent [Biener et al. 2015; Eling and Schnell 2020; Xu et al. 2018; Maillart and
Sornette 2010] and show why such risk types make profit-minded risk-averse cyber-
insurers go low on confidence to expand coverage markets, where coverage is on an ag-
gregate sum of such heavy-tailed cyber-risks (see Section 2). We then propose our system
model (see Section 3).

—The model leads us to the design of a formal dynamic (single-round, two-stage)
game-theoretic framework of re-insurance markets. We observe on analysis that the

3The reader is referred to Section 7 of the article, where we mention a list of papers that endorse the opinion that cyber-
insurance can help improve network security.
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re-insurance market Nash equilibrium (RMNE) is not unique and can result, even un-
der insurer-ideal settings (i.i.d. heavy-tailed cyber-risks without tail-dependence),4 in a so-
cially disadvantageous stable state, i.e., equilibrium, where individual re-insurers do not find
it incentive compatible to provide re-insurance or primary cyber-insurance services despite
the pool of cyber re-insurers having enough spare capacity at the RMNE to cover aggre-
gate cyber-losses (see Sections 3 and 4). The proof that spreading catastrophicheavy-tailed
cyber-risks (curtailed or otherwise) that are identical and independently distributed (i.i.d.), i.e.,
not tail dependent, is notan effective practice for aggregate cyber-risk managers is a surprising
new facet that we unravel in this article via theory and contrasting to many existing results.
However, our analysis theoretically endorses the popular opinion that spreading i.i.d. cyber-
risks that are not catastrophic is an effective practice for aggregate cyber-risk managers, a
result established theoretically and empirically in the past by other works.

—We mathematically characterize the conditions under which the above-mentioned socially
disadvantageous equilibrium outcomes can occur. As a main result, we observe that un-
der certain heavy-tailed cyber-risks and in situations when individual cyber-insurers have
limits on their coverage liability, the RMNE leads to non-incentive-compatible coverage out-
comes where cyber-insurers are not inclined to provide primary cyber-insurance services,
let alone re-insurance services. We validate our proposed theory behind such outcomes
with an experimental evaluation conducted on network graphs resembling a supply chain
network. Consequently, we provide some regulatory viewpoints about resolving, via the
intervention of non-private government agencies, the aggregate risk coverage challenges
arising from such socially disadvantageous equilibrium outcomes (see Sections 4, 5, 6,
and 8).

The contributions complement our two recent efforts [Pal et al. 2020c, 2020a], where we
conduct an orthogonal formal analysis on the statistical incentive compatibility of providing
cyber-reinsurance services, the first of its kind, in IoT societies under complete general cyber-risk
distribution types be it i.i.d./non-i.i.d. heavy tailed or otherwise. The analysis in these papers,
unlike here, is oblivious to re-insurer rationality while making service feasibility decisions on
risk spreading. However, they account for the complete general nature of statistical distributions
in the decision-making process.

1.3 Relevance of Our Research to Management Information Systems (MIS)

Here, we draw the specific relevance of our research contribution to the domain of modern man-
agement information systems.
The Salient MIS Features - Organizational information systems (ISs) are interrelated com-

ponents, i.e., technologies, people, and processes, working together to collect, process, store, and
disseminate information to support decision making, coordination, control, analysis, and visual-
ization in an organization. To this end, in our work, MIS is the means by which (1) information
in networked (corporate) organizations is transmitted over the Internet/Intranet, (2) the software
that displays the information such as Microsoft Excel, or (3) the data management systems that
manage organizational data such as Oracle DB. Following the philosophy laid down in Nicholas
Carr’s Harvard Business Review article [Carr 2003], we assume the organizational MISs in the IoT
age would treat information technology as a commodity that needs to be effectively managed to
(1) reduce organizational costs, (2) ensure that organizations are always running, and (3) be as
cyber-risk free as possible. However, the management goal is multi-fold challenging today, simply

4It is commonly known that heavy-tailed cyber-risks with tail dependence are troublesome to the insurance industry when
they aggregate [Eling and Schnell 2020], whereas i.i.d. cyber-risks are suitable for loss coverage.
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because IoT devices are often cheap and not very reliable to keep running always, and the security
practices for such devices are too naive to be risk-free.
Increased Proliferation of IoT-Driven Businesses to Boost Profit - Despite high cyber-

security risks to run businesses with an increased reliance on IoT, the latter technology is all
geared up to revolutionalize the former. To drive home this point, we take the retail sector as
a motivating example business application for the IoT age, where it is forecasted that 80% of global
retailers will deploy IoT solutions in the retail market by 2021. IoT applications are what allows
retailers to raise productivity, improve customer experience, reduce costs, and increase sales. Fron-
tier Economics estimates that increasingmachine-to-machine (M2M) connections by 10% would
generate a USD 2.26 trillion increase in the US GDP alone. Forward-thinking retailers are already
reaping the benefits of deploying IoT use cases in retail. According to an Oracle report on the
impact of IoT on customer excellence [Oracle 2019], 66% of surveyed retail executives state that IoT
has already positively impacted their customer experience processes. Similarly 88% of the study’s
respondents state that using IoT in retail will provide better customer insight than any other data-
gathering method. The research by Oracle cited above found that 50% of current IoT users report
better insight into their customers’ needs and preferences. It also found that 47% were now able to
provide a better and more differentiated customer experience. Most retail stores have realized the
potential of IoT to vastly improve their supply chain management, which is likely why global retail
tech spending will grow 3.6% to reach almost USD 203.6 billion in 2019. Inventory management
remains a headache for retailers. Inaccurate inventory tracking can cause overstocking, stockouts,
and shrinkage, leading to retailers estimating that their current inventories are only 66% accu-
rate. But IoT in retail can automate inventory visibility, thereby solving these problems for good.
Checkout remains one of the most labor-intensive retail operations and an unpleasant process
for customers. If a store is overcrowded, shoppers often decide to just leave. IoT solutions offer
the opportunity to automate and personalize checkout. The improved checkout system can read
tags on each item as customers leave and automatically charge the customer’s mobile payment
app. This personalization can lead to increasing revenue for the store. According to McKinsey’s
research [Bughin et al. 2015], 83% of customers say they would prefer if their shopping experience
was personalized, while store revenues are reported to increase by 20% to 30% through effective
personalization.
Managing Vulnerabilities in MIS - Increased reliance of businesses on IoT in the future im-

plies more value to cyber-hackers after attack on ISs. From a security perspective, as already
mentioned earlier, the cyber-threats to modern information systems include equipment failure,
environmental disruptions, human or machine errors, and purposeful attacks that are often so-
phisticated, disciplined, well organized, and well funded. When successful, attacks on information
systems can result in serious or catastrophic damage to organizational operations and assets, indi-
viduals, other organizations, and the nation. Therefore, it is imperative that organizations remain
vigilant and that senior executives, leaders, and managers throughout the organization under-
stand their responsibilities and are accountable for them. In addition to the responsibility to pro-
tect organizational assets from the threats that exist in today’s environment, organizations have a
responsibility to consider and manage the risks to protecting organizational assets and for man-
aging risk. It is in this regard that portfolio-based cyber-risk management (CRM) solutions (e.g.,
a mixture of self-defense solutions like anti-virus, commercial cyber-insurance, and self-insurance)
are being invested in by organizations to manage the negative impact, both, tangible (e.g., monetary
losses, devaluation of stock) and non-tangible (e.g., reputation, consumer trust), of the vulnerabilities
exploited by cyber-hackers.
Relating Our Research Contribution to MISs - In the event of a big cyber-attack on a re-

tail company (e.g., the Target data breach attack), the latter incurs huge losses, arising from both
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first-party sources (e.g., direct consumers) and third-party sources (e.g., clients of consumers).
Though it might be feasible in the best case for CRM solutions to cover first-party losses with
appropriate deductibles, third-party losses under high-impact cyber-attacks can add up from mul-
tiple sources to be too large for CRM solution providers to effectively manage. An inability to be
effective inmanaging such large risk impacts has a huge negative impact on businesses (specifically
the technologies, people, and processes) and society overall (well-being of people). The unresolved
question of interest is: can aggregate losses arising from both first-party and third-party sources af-
ter a big IoT-age cyber-attack jeopardize the CRM business so as to significantly change the means
via which MISs function so as to enable the cost-effective, resilient, and cyber-risk free operation of
IT-driven organizations?We investigate this question and provide relevant insights.

2 WHY BE SKEPTICAL OF CYBER RE-INSURANCE SERVICES?

One of the key features of insurance as a business model is its ability to pool different types of risks,
thereby reducing an underwriter’s overall risk exposure. This is particularly true for a re-insurer,
who is in a position to significantly diversify its risks by selling reinsurance to very different front-
line insurers who specialize in different sectors (e.g., retail, pharmaceutical, manufacturing, etc.).
This means that a re-insurer typically takes on a fraction of many different risks. There is also
evidence suggesting that in cyber space, re-insurers increasingly act as co-insurers through the
use of proportional treaties [Carter 2013], whereby the insurer and re-insurer split the cost of loss
coverage on each policy proportionally according to the treaty/contract whenever loss occurs,
rather than having the re-insurer only step in when the (aggregate) loss exceeds a (high) threshold
specified by a non-proportional treaty.
In this section, we provide a mathematically intuitive explanation behind being skeptical of re-

insurance services resolving the problem of successfully covering aggregate cyber-losses faced by a
set of cyber-insurers, when an IT-driven liability-networked system is subject to a cyber-attack. In
such situations, though the insurers of individual firms have the advantage of them diversifying
their coverage to multiple other insurance firms of organizations they depend upon, there is a
disadvantage angle to it as well that arises when a cyber-attack causes significant cascading losses
in a network of service-liable organizations. This implies the possibility of a single cyber-insurance
company bearing the responsibility of covering an aggregate sum of individual organizational risks
in a supply chain network. Consequently, it is not certain here that a risk-averse re-insurance firm
will always find it profitable (or even feasible) to cover aggregate losses for supply chain networks
of IT-driven industries.
Having mentioned above about the summation of individual risks, it makes sense to investigate

in the first place the impact that individual risk distributions might have on the aggregate risk
after a cyber-attack. Traditional cyber-attacks often lead to organizational risk distributions that
have short tails [Coburn et al. 2018]. On the contrary, modern cyber-attacks, fueled by the rise of
large-scale IoT technology, are likely to generate organizational risk distributions that are heavy
tailed in nature [Coburn et al. 2018]. In such settings, it is interesting to get an idea of (and com-
pare) whether the resulting aggregate risk distribution (from multiple organizational nodes) at a
re-insurer’s end is favorable to provide coverage. We consider the Normal distribution as a rep-
resentative of light-tail distributions, and the Levy and the Cauchy distributions as representative
examples of heavy-tailed risk distributions that are stable,5 i.e., a subclass of distributions whose

5A distribution is said to be stable if a linear combination of two independent random variables with this distribution has
the same distribution, up to location and scale parameters. The Normal, Cauchy, and Levy distributions are the only stable
distributions for which closed-form expressions exist and consequently help in tractable analyses.
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left tails satisfy a Pareto law and exhibit power-law decay of the form F (−x ) ≈ x−α . Here x ,α > 0,
and F is a cumulative distribution function (cdf) for a risk random variable (r.v.) X .
It is popular knowledge that for K i.i.d cyber-risk random variables X1,X2, . . . ,XK chosen from

the standard normal N (μ,σ 2), the resultant r.v.
∑K
i=1 Xi

K
is distributed with N (μ,σ 2). The system

implication of this r.v. in our article setting is a cyber-insurance company that outsources risk Xi

to re-insurer i among the K cyber re-insurers. Thus, the risk spread of the popular value-at-risk

(VaR) metric [Holton 2003], reflected through the spread parameter σ , grows as
√

1
K

of σ for a

given location parameter μ, implying a decrease in VaR6 spread on sum-averagingK risks. Thus, in
this case it is better for a cyber-insurance company to re-allocate/spread the risks from its clients
to re-insurers. Now consider a cyber-risk distribution that is Levy distributed [Forbes et al. 2011]
with location parameter μ and spread parameter σ . The pdf is given by

ϕ (x ) =
⎧⎪⎨⎪⎩
√

σ
2π e

−σ
2(μ−x ) (μ − x ) −32 ifx < μ,

0 ifx ≥ μ,

and the cdf is

F (x ) =
⎧⎪⎪⎨⎪⎪⎩

2√
π

∫ −σ√
2(μ−x )

0 e−t
2
dt ifx < μ .

1 ifx ≥ μ .

Let Lμ,σ be the class of r.v.s with the above Levy distributions. Thus, forK i.i.d cyber-risk random

variables X1,X2, . . . ,XK chosen from Lμ,σ , we get
∑K
i=1 Xi

K
∈ Lμ,Kσ . Therefore, contrary to the case

of the Normal distribution, the value-at-risk spread σ in the case of the Levy distribution increases
K-fold for a given μ, implying a K-fold increase in cyber-risk on sum-averaging K risks. Thus,
in this case it might not be beneficial for a re-insurance company to accept the multiple risks
from its clients. As another example, take the Cauchy distribution, whose pdf for a given location
parameter μ and scale parameter σ is given by

ϕ (x ) =
1

πσ

1

1 +
(
(x−μ )2
σ 2

) ,
where σ ,X ∈ Sμ,σ—the set of r.v.s with Cauchy distribution having the corresponding location
and spread parameters. The cdf of X is given by

F (x ) =
1

2
+

1

π
tan−1

(x − μ
σ

)
.

Thus, for K i.i.d cyber-risk random variables X1,X2, . . . ,XK chosen from Sμ,σ , we get
∑K
i=1 Xi

K
∈

Sμ,σ . Therefore, contrary again to the case of the Normal distribution, the value-at-risk spread σ in
the case of the Cauchy distribution does not decrease for a given μ, implying neither an increase nor
a decrease in cyber-risk on sum-averaging K risks. The Cauchy case is this intermediate between
the Levy case and the case with Normal distributions.

6We use the VaR notion of cyber-risk measure due to the fact that heavy-tailed distributions like the Levy and Cauchy
distributions do not have finite first- or second-order moments [Forbes et al. 2011]—hence functions of expected measures
of cyber-risk variables are undefined. One could well argue the use of the popular expected shortfall, i.e., CVaR, a cyber-
risk measure that is coherent and is defined as the average of the worst losses of a portfolio; however, this metric requires
existence of the statistical first moments of cyber-risks to be finite, which may not be true of catastrophic cyber-risks. Thus,
the feasibility connotations with respect to the VaR metric would coincide with that obtained with respect to the CVaR
metric. In addition, it is not difficult to see from Acerbi [2002] and Cotter and Dowd [2006] that the assumptions close to the
existence of the means of the cyber-risks in consideration are also required for applications of coherent spectral measures
of cyber-risk that generalize expected shortfall.
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Table 1. Table of Important Notations

X random cyber-risk
k coverage liability limit
s number of risk sharing cyber-insurers
j number of risks to be shared by the (re-)insurers
V (·) effective expected outcome for a cyber-insurer
Uj,s expected utility of s cyber-insurers sharing j risks equally
M maximum number of cyber-insurers in the re-insurance market
N maximum number of cyber-risks to be shared
Sν,σ Cauchy random variable, location parameter ν , scale parameter σ
Xi ∈ Sν,σ i.i.d. Cauchy random variables
μ cyber-insurance premium in terms of number of loss units
α risk-averse parameter for a cyber-insurer
q probability of a cyber-attack

Intuition-Driven Practical Insight - It is somewhat clear that light-tailed distributions might
pose less VaR to cyber re-insurers when compared to heavy-tailed distributions. Even for the case
when ci ∈ R+ |

∑K
i=1 ci = 1, instead of being a uniform 1

K
, for each i ∈ {1, . . . ,K }, we will have

σ = (
∑K

i=1 (ciσi )
1
2 )2 in case of the Levy distribution, and σ =

∑K
i=1 ciσi in case of the Cauchy dis-

tribution. In both these distributional scenarios, the VaR to re-insurers is more than in the case
when some ci = 1, for a given i , and c j = 0 for all j � i (follows from the application of results in
majorization theory [Marshall et al. 1979] (see appendix for a brief overview). This puts weight on
our skepticism that cyber re-insurance services may not be profitable in the case when individual
insurers with liability limits are faced to cover heavy-tailed cyber-risks. Note that our skepticism
also extends to scenarios where cyber-risk distributional supports are bounded (e.g., under limited
risk liabilities as mentioned in subsequent sections) for which an expected utility analysis on first
moments can be conducted.

3 A FORMAL MODEL OF A CYBER RE-INSURANCE MARKET

In this section, we present a game-theory-driven strategic market model, based on developments
in Ibragimov et al. [2009], to characterize the (in)-effectiveness of cyber-re-insurance markets for
effective aggregate cyber-risk coverage of catastrophic cyber-risks. To this end, we first provide
the setup of our model and its qualitative overview. We then follow it up with the description of a
dynamic game-induced cyber re-insurance market model and an equilibrium existential analysis.
A list of important notations used in our paper is stated in Table 1.

3.1 Model Setup

We assume that there areM cyber-insurance companies in operation in a market, and each of them
is an expected utility optimizer with identical strictly concave utility functions u. Each cyber-
insurer takes up a limited liability on consumer cyber-risk coverage, as in real practice. This is
rational on the part of the cyber-insurer for two reasons: (1) for heavy-tailed cyber-risk distribu-
tions, there is a non-zero probability that a risk-averse cyber-insurer might go default on covering
an exorbitant amount of cyber-risk due to a successful cyber-attack on its insured firms, and (2)
without a liability limit, one cannot do an expected value analysis on cyber-insurer utility func-
tions, simply because the first moments are undefined for catastrophic heavy-tailed distributions.7

7Note that not all heavy-tailed distributions represent catastrophic cyber-risks [Zolotarev 1986], and for such non-
catastrophic distributions, the mean of the distribution is finite.
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Without a loss of generality, we study the strategic feasibility of aggregate cyber-risk coverage
with curtailed coverage limits via an expected utility theoretic analysis.8 The assumption of lim-
ited liability is modeled by cyber-insurers being liable to cover losses only up to a certain amount
k . If losses exceed k , an insurer defaults on any additional loss beyond k and might resort to re-
insurance services for covering the additional loss. Thus, if a cyber-insurer takes on a random risk
X , the effective outcome (before opting for cyber re-insurance services) for the insurer once X is
realized is

V (x ) =

{
X ifX ≥ −k,
−k ifX < −k . (1)

In the special case when there is no limited liability, i.e., when k = ∞, we have V (X ) = X for all
X . If k < ∞, u is defined only on [−k,∞], and without loss of generality, u (−k ) = 0. Considering
the assumption that cyber-risks X1, . . . ,XM are i.i.d.,9 we wish to study the expected utility of
s cyber-insurance agents who share j risks equally. To this end, we define the random variable

zj,s =
∑j
i=1 Xi

s
, with cdf Fj,s . The expected utility of such risk sharing is given by

Uj,s = E(V (zj,s )) =

∫ ∞

−k
u (x )dFj,s (x ). (2)

As mentioned above, the cyber-insurance firms are assumed to be risk averse, simply because
executives with major financial and human capital investments in their own firms wish to avoid
risky situations. The value of firms in this case is a concave transformation of the payoffs and is
effectively identical to an expected utility setup [Froot et al. 1993]. We assume that each cyber-
insurer can bear risks for a maximum ofN asset lines10 spread across its client organizations. Thus,
we have 1 ≤ s ≤ M and 1 ≤ j ≤ Ns . We also assume that eachXi is non-divisible. This assumption
makes sense in practice because not every cyber-insurer will insure cyber-risks from all possible
asset lines from all possible geographical locations (e.g., could be constrained by geographical
policies). It is then evident from Section 3.1 that when Xi s are normally distributed, Uj,s is an
increasing function in both s and j, and we can expect the cyber-reinsurance market to work well
under light-tailed cyber-risks and insurance to be offered for the maximal number of cyber-risks
NM as each cyber-insurer can bear a capacity of N risks from each of the M − 1 cyber-insurers.
With respect to heavy-tailed risks, we assume i.i.d Bernoulli-Cauchy distributed cyber-risks X̃i of
the following form, for the purpose of analytical tractability, primarily due to their stable nature:

X̃i =

{
μ with probability 1 − q,
Xi , Xi ∈ Sν,σ with probabilityq,

whereXi ∈ Sν,σ are i.i.d. Cauchy random variables with location parameter ν and scale parameter
σ . Alternatively, the r.v.s X̃i are “mixtures” of degenerate and Cauchy r.v.s and can be written as

X̃i = μ (1 − ϵi ) + Xiϵi = μ + (ν − μ )ϵi + σYiϵi , (3)

8The orthogonal problem of deriving the statistical infeasibility of aggregating catastrophic cyber-risks with limits on
coverage liability and using an expected utility theoretic analysis is shown via Theorem 7.4 of the appendix. This result
establishes the equivalence of the statistical infeasibility of aggregate catastrophic cyber-risk coverage achieved via both a
VaR-centric analysis (not the focus of the article) and an expected utility-driven analysis (the focus in this article).
9Note here that we are considering catastrophically heavy-tailed distributions that are i.i.d. The popular notion (also men-
tioned in Section 1) is that non-catastrophic cyber-risks that are heavy tailed and dependent are a cause of concern for
cyber-insurance coverage markets. In this work we will show that contrary to popular intuition, even i.i.d. catastrophic
cyber-risks are a cause of concern for commercial insurance coverage.
10Each asset line might be a part of a coverage type. For example, the category of first-party coverage could include business
interruption, restoration, and crisis communications as different asset lines, whereas the category of third-party coverage
could include data breaches, network interruption, and notification expenses as examples of asset lines.
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where ϵi are i.i.d. non-negative Bernoulli r.v.s with P (ϵi = 0) = 1 − q, P (ϵi = 1) = q, andYi ϵ S0,1 are
i.i.d. Cauchy symmetric r.v.s with scale parameter σ = 1, that are independent of ϵi s. We say that
X̃i ∈ S̃qμ,ν,σ , where μ is a reflection of the premium a cyber-insurance provider collects to insure
against loss events that occur with probability q. We assume the utility function of a risk-averse
cyber-insurer to be of the following form:

u (x ) = (x + k )α , α ∈ (0, 1),

which is the power utility function. x , being a risk variable, is a Von-Neumann Morgentern

(VNM) utility function. α is the degree of risk aversion of the cyber-insurer. Note that under the
limited liability assumption, the expected utility for Bernoulli-Cauchy risks always exists.

3.2 A Qualitative Overview of Our Cyber Re-Insurance Market Model

We consider a market setting consisting of primary (traditional) strategic cyber-insurance
providers selling insurance against cyber-risks. Either some or all of these insurers can further
pool together to form a cyber re-insurance market. The setup is a two-stage game that captures
the intuitive idea that primary cyber-insurance services need to be offered before re-insurance can
be pooled. The decision of an individual cyber-insurer whether to offer primary cyber-insurance
solutions will be based on its belief of how well-functioning cyber-reinsurance markets will be in
the future. In the first stage of the game, strategic cyber-insurers simultaneously choose whether
to offer primary insurance against a set of i.i.d. cyber-risks. This assumption makes sense because
the decision to offer primary insurance is the least conservative in the presence of i.i.d. cyber-
risks. A negative decision here implies a negative decision for non i.i.d. risks as well, and one of
the goals in this article is to study the most conservative conditions under which a (re-)insurance
market can fail. In the second stage of the game, the cyber re-insurance market is formed and each
cyber-insurer decides whether to participate or not. Cyber-insurers who decide not to provide pri-
mary insurance are allowed to participate in the re-insurance market. Finally, all risks of insuring
entities participating in the re-insurance market are pooled and outcomes are realized and shared
equally among the participating re-insurers. We assume the latter primarily for tractable simplic-
ity, and secondarily because of the fact that the cost to garner information that would result in
‘proportionally’ fair re-insurer allocations might be expensive enough to result in market failure,
and to avoid such scenarios a regulatory intermediary might settle on equal sharing behavior.

3.3 Formal Market Model

Stage 1 of Market Game - We assumeM ≥ 2 cyber-insurance providers, indexed by 1 ≤ m ≤ M .
There is a set of i.i.d. cyber-risksX, where each has a distribution (cdf) F (x ) for x ∈ X. Each cyber-
insurer chooses to take on a specific number of risks, nm ∈ {0, 1, . . . ,N }, on different asset lines,
where N denotes the maximum insurance capacity forming a portfolio of cyber-risks, pm ∈ P,
where pm =

∑nm
i=1Xi , andXi ∈ X. This is the first stage of the market. The cyber-risks are assumed

to be atomic (indivisible) in nature and each risk can be chosen by at most one cyber-insurer. As
previously mentioned, this assumption reflects the situation that insurers may be tied by their
corporate policies to cover certain, but not all, lines of cyber-risk—thus we disallow divisible risks
in our model. We also assume that there are enough cyber-risks available to exhaust capacity, i.e.,
|X| = NM . In addition, we assume there are enough cyber-risks for a single cyber-insurer not to be
able to handle all of them alone. Here, |X| denotes the cardinality ofX. As the cyber-risks are i.i.d.,
only the distributional assumptions of the risks matter, so we do not concern ourselves with which
cyber-insurance provider chooses which risk to cover as long as it falls within one’s allowable set.
The portfolio pm is thus characterized completely by the number of risks nm . The total number of
cyber-risks insured is N̄ =

∑
m nm . Each cyber-insurer has the liability to cover cyber-losses up to
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an amountk ∈ [0,∞].When cyber-losses exceedk for an insurer, it defaults and first pays offk , and
then it approaches a third party, either a re-insurer or the government, to cover the excess losses.
The effective outcome under limited cyber-risk liability for an insurer taking on risk zm is V (zm ),
where V (·) is defined as in Equation (1). Each cyber-insurer is assumed (for tractable simplicity)
to have identical expected utility over cyber-risks, Um (zm ) = Eu (V (zm )), where u is defined and
continuous on [−k,∞], is strictly concave, is twice continuously differentiable on (−k,∞), and,
if k < ∞, satisfies u (−k ) = 0. The outcome of the first stage is summarized by p = (p1, . . . ,pM ) ∈
P = ΠM

m=1Pm .
Stage 2 of Market Game - In the second stage of the game, the cyber-re-insurance mar-

ket is formed. In this stage, the cyber-insurers are assumed to have perfect knowledge about
p, the outcome of the first stage of the game. Each cyber-insurer, 1 ≤ m ≤ M , sequentially de-
cides whether to participate in the re-insurance market or not, via the following rationale: First,
cyber-insurer 1 decides whether to participate in the market. This is represented through a bi-
nary variable q1 ∈ {0, 1}, where q1 = 1 denotes that cyber-insurer 1 participates in the cyber
re-insurance market and q1 = 0, otherwise. Then cyber-insurer 2 decides whether to partici-
pate, observing insurer 1’s decision. This is repeated until all M cyber-insurers have decided.
We assume that previous cyber-insurer decisions are perfectly observable. If a cyber-insurer is
indifferent between participating and not participating, it will not participate in the pooling cyber
re-insurance market. The payoff to not participating is denoted asUnm,1, and the payoff to partici-
pating is denoted asUR,t , where t =

∑
m qmnm denotes the number of participating cyber-insurers

and R =
∑
m qmnm . Cyber-insurers who agree to be part of the re-insurance market pool all their

primary cyber-insurance in the re-insurance market, i.e., amount qmpm . The total pooled risk is
therefore P =

∑
m qmpm and the number of risks R =

∑
m qmnm ∈ {0, . . . ,NM }. The outcome of

the stage 2 subgame is summarized by q = (q1, . . . ,qM ) ∈ {0, 1}M , and the outcome of the overall
game G, named as the re-insurancemarket game (RIMG), is completely characterized by (p,q).
Note that RIMG is also characterized completely by the tuple G = (u, F ,k,N ,M ).

3.4 The Existence of Market Equilibria in the RIMG

In this section, we investigate the existence and uniqueness aspects of market Nash equilibria for
both stages of the RIMG.
The second stage of the RIMG is an M-step sequential game with perfect information, and so

it is straightforward to notice that the unique subgame perfect Nash equilibrium arises as an ap-
plication of the standard backward induction technique in game theory [Maschler Michael 2013],
the rationale being that Zermelo’s theorem [Maschler Michael 2013] immediately applies and im-
plies that for each realization of the first stage of the RIMG, p = (p1,p2, . . . ,pm ), there is a unique
subgame perfect Nash equilibrium satisfying the laziness assumption (if cyber-insurers are indif-
ferent between participating and non-participating, i.e.,Unm,1 = UR,t , then they do not participate)
to the participation stage of the RIMG, q ∈ {0, 1}M . We can therefore define the equilibrium map-
ping ε : PM → {0, 1}M , with q = ε (p). Without loss of generality, we can assume that in the first
stage of the RIMG, cyber-insurers base their strategies on this equilibrium mapping. This reduces
the strategy space significantly without having any effect on the subgame perfect Nash equilib-
rium outcome. For elements p ∈ P, we define the first-stage actions of all cyber-insurers except
insurerm as

p−m = (p1, . . . ,pm−1,pm+1, . . . ,pM ) ∈ Πm′�mPm′ = P−m .

A strategy for cyber-insurerm consists of a pair A = (pm ,ηm ) ∈ Pm × {0, 1}P−m , where pm is the
chosen portfolio of cyber-insurance and ηm : P−m → {0, 1} is the participation choice, depending
on the realization of the first stage of the RIMG. Cyber-insurerm has a belief set about the other
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insurers’ first-stage actions, Bm = p−m ∈ P−m . Insurer m’s strategy, Am = (pm ,qm ), conditioned
on belief set Bm = p−m , is said to be consistent if ηm (p−m ) = ε (p̃))m , where

p̃ = ((p−m )1, . . . (p−m )m−1,pm , (p−m )m+1, . . . , (p−m )M ), (4)

where we use the notation (xi )i for the ith element of the ordered set x . Rational cyber-insurers
will consider only consistent strategies when compared to non-consistent ones as they are sub-
optimal in the participation phase of the RIMG. The inferred outcome of a consistent strategy,
Am = (pm ,ηm ), conditioned on a belief set Bm is

zm (pm |Bm ) =

{
pm if ηm (p−m ) = 0
P
t

if ηm (p−m ) = 1,

where q̃ = ε (p̃), t =
∑
m′ (q̃)m′ , P =

∑
m′ (p̃)m′ (q̃)m′ , and p̃ is as defined in Equation (4).

An M-tuple of strategies, (A1, . . . ,AM ) and belief sets (B1, . . . . . . ,BM ), where Am = (pm ,ηm )
and Bm = p−m , defines a RMNE of the RIMG, if

(1) Consistent Strategies: For each cyber-insurerm,Am is consistent conditioned on belief set
Bm .

(2) Maximized Strategies: For each cyber-insurerm, pm ∈ argmaxp′ ∈PUm (zm (p ′|Bm )).
(3) Consistent Beliefs: For each cyber-insurerm, for allm′ �m : (p−m )m′ = pm′ .

The RMNE outcome is summarized by p = (p1,p2, . . . ,pM ) and q = (η1 (p−1),
η2 (p−2, . . . ,ηM (p−M ).

4 MARKET EQUILIBRIUM ANALYSIS WITH PRACTICAL IMPLICATIONS

In this section, we derive results for our application setting, built upon constructs in Ibragimov
et al. [2009] that relate multiple RMNE’s of the RIMG to various conditions on theUj,s -defined in
Equation (2). We provide practical implications of these results on the cyber-(re)insurance market,
and lay down the proofs of all the results in Section 6.

Theorem 4.1. IfUj,s < U0,1 for all j ∈ {1, . . . ,N } and all s ∈ {1, . . . ,M }, there exists an RMNE of
the RIMG in which no cyber-insurance is offered, and the equilibrium is unique.

Practical Implications - The theorem states that the condition that expected utility U0,1 of
not sharing any risk, i.e., the primary cyber-insurance case, will be greater than that, i.e., Uj,1,
of sharing j ∈ {1, . . .N } risks by any single cyber-insurer discourages a primary cyber-insurance
market formation in the first place. In the age of cascading liability cyber-risks, this makes sense
because there is a considerable likelihood that a single cyber-insurer, in the event of heavy-tailed
cyber-risks, would have to resort (cyber-risks may be too large) to other insurers for covering
client losses, and if the latter do not find it incentive compatible to provide re-insurance services,
it is not economically incentive compatible either for a cyber-insurer to be part of a primary
coverage market as it might not be able to satisfy coverage QoS of its clients. Moreover, even
if there exists a cyber re-insurance market, there is no way to increase the expected utility by
cyber-risk sharing if only one cyber-insurer contributes risk to the cyber re-insurance market.
As a problem-alleviating step, regulators should take note of such situations and intermediate
appropriately (see Section 7.2 for more details) in the premium standardization process so that an
increasing number of cyber-insurers are incentivized to pool cyber-risk.

Theorem 4.2. If Uj,s > U0,1 for some j ∈ {1, . . . ,N } and s ∈ {1, . . . ,M }, then there does not exist
an RMNE of the RIMG in which no cyber-insurance is offered.

Practical Implications - The theorem states that under condition C1 being not satisfied, unlike
in the previous case, it does not discourage a single cyber-insurer towards primary cyber-insurance
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market formation. However, the condition does not necessarily guarantee the existence of a market
equilibrium encouraging a cyber-insurer towards primary cyber-insurance market formation.

Theorem 4.3. The RIMG leads to the existence of an RMNE if the following conditions hold:

(1) UNM,M > Uj,1 for all j ∈ {0, . . . ,N }.
(2) UNM,M > Uj,M for all j ∈ {N (M − 1), . . . ,NM − 1.

Under such an RMNE, cyber-insurance against all risks inX is offered, and all the cyber-risk insured
is pooled in the cyber re-insurance market.

Practical Implications - The theorem extends the benefits obtained on conditions satisfied in
Theorem 4.2 to the case where there is a guaranteed RMNE that allows providing cyber-insurance
against all cyber-risks, as an economically incentive-compatible solution.More importantly, amar-
ket for re-insurance services is also deemed economically incentive compatible. Conditions 1 and
2 in the theorem act as sufficient conditions for the successful existence of cyber re-insurance
markets. The conditions imply greater expected utility on pooling all re-insurable cyber-risks to-
gether as a teamwhen compared to that of handling at least one re-insurable cyber-risk by a single
cyber-insurer. Similar to that in Theorem 4.1, regulators will have a big role to play to effectively
regulate cyber-insurance premiums that satisfy such conditions.

Theorem 4.4. There is a possibility of two starkly contrasting RMNEs: RMNE1 and RMNE2, ex-
isting in the RIMG where at RMNE1 all cyber-risk is pooled in the cyber re-insurance market, and
at RMNE2 no primary cyber-insurance (subsequently cyber re-insurance) service is offered, despite a
large cyber-risk-bearing insurance capacity available in the market. Moreover, this multiple equilib-
rium situation exists if there is anM0 for allM ≥ M0 for the RIMG G = (u, F ,k,N ,M ).

Practical Implications - The possibility of the existence of two starkly contrasting RMNEs
is a disadvantage from a social welfare perspective, simply because there exists a situation
as a function of M0 where despite the pooling capacity available to re-insure cyber-risks, the
strategic cyber-insurance firms do not find it economically incentive compatible to participate
in the re-insurance, and worse, even primary insurance markets, resulting in a market failure
and sub-optimal welfare state. However, one good thing is that this situation cannot arise
when cyber-risk distributions have a finite mean and variance, which is the case for the more
probable non-catastrophic cyber events. The disadvantageous two-RMNE situation is similar to
the outcome of the popular Prisoner’s Dilemma game in non-cooperative game theory and calls
for regulatory action to effectively coordinate actions between the cyber-insurers to reach the
equilibrium that improves/maximizes social welfare.

Theorem 4.5. If (i) k = ∞ and the cyber-risks X ∈ X have finite second moments, E(X 2) < ∞, or
(ii) k < ∞ and the cyber-risks X ∈ X have E(X 2) < ∞, and E(X ) � 0, or (iii) k < ∞ and the cyber-
risks X ∈ X have E(X 2+ϵ ) < ∞ for some arbitrarily small ϵ , and E(X ) = 0, then there exists noM ≥
M0 for the RIMGG = (u, F ,k,N ,M ), for which there is a possibility of two starkly contrasting RMNEs:
RMNE1 and RMNE2, existing in the RIMG where at RMNE1 all cyber-risk is pooled in the cyber
re-insurance market, and at RMNE2 no primary cyber-insurance (subsequently cyber re-insurance)
service is offered, despite a large cyber-risk-bearing insurance capacity available in the market.

Practical Implications - The implications are similar to those of Theorem 4.4 that talk about
the ramifications of two-equilibria market states, except that here we enforce a stricter neces-
sary condition on the cyber-risk variables for the disadvantageous two starkly contrasting market
equilibria state to arise. More specifically, (1) when there are no limits on cyber-insurer liability,
cyber-risk distributions are required to have infinite second moments for two-equilibria states to
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arise, whereas (2) under the limited liability regime, cyber-risk distributions need to have both
infinite means and infinite variances for two-equilibria market states to arise. Both these conditions
indicate a propensity towards a successful presence of re-insurance markets for non-heavy/not-so-
heavy-tailed cyber risks, a trait not shown by low-probability-occurring catastrophic cyber-events. In
summary, contrasting two-equilibria market states for any M ≥ M0 can arise if and only if cyber-
risk distributions have catastrophe reflecting heavy tails.
Thus far, we analyzed the feasibility of cyber re-insurance under catastrophic cyber-risks un-

der a curtailed risk distribution model. Based on the theory of stable distributions and majoriza-
tion theory (see Appendix A), we have the following result (courtesy of Ibragimov [2009]), show-
ing that cyber re-insurance may not be a viable market proposition under the VaR metric-induced
framework for providing insurance against aggregate cyber-risks for non-curtailed risks that hit
individual organizations and having infinite first moments and unbounded distribution support.
This result generalizes the fact that one must be cautious of implementing cyber re-insurance mar-
kets under catastrophic events irrespective of whether (1) the cyber-risk distributions have finite
or infinite first moments and (2) the cyber-risk distributions have bounded or unbounded support.

Theorem 4.6. Let q ∈ (0, 12 ) and let Xi , i = 1, . . . ,n, be i.i.d. cyber-risks such that Xi ∼ CS (r ), i =
1, . . . ,n. Then

(1) VaRq (Zv ) > VaRq (Zw ) ifv ≺ w andv is not a permutation ofw (in other words, the function
ψ (w,q) = VaRq (Zw ) is strictly Schur-concave inw ∈ Rn+).

(2) In particular,VaRq (Zw ) < VaRq (Zw ) < VaRq (Zw ) for all q ∈ (0, 12 ) and all weightsw ∈ In
such thatw � w andw is not a permutation of w̄ .

Practical Implications - The theorem implies corresponding results on majorization proper-
ties of the tail probabilities ψ (w,x ) = P (

∑n
i=1wiXi > x ),x > 0, of linear combinations of heavy-

tailed r.v.s X1, . . . ,Xn : these implications generalize the results in the seminal work by Proschan
[1965], who showed that the tail probabilitiesψ (w,x ) are Schur-convex inw = (w1, . . . ,wn ) ∈ Rn+
for all x > 0 for i.i.d. r.v.s Xi ∼ LC, i = 1, . . . ,n. Schur-convexity of ψ (w,x ) for Xi ∼ LC implies
that the value at-risk comparisons in the theorem hold for i.i.d. log-concavely distributed cyber-
risks. Now let us consider the portfolio value at risk dealt with in the theorem in the borderline
case α = 1, which corresponds to i.i.d. cyber-risks X1, . . . ,Xn with a symmetric Cauchy distribu-
tion S1 (σ , 0, 0). These distributions are exactly at the dividing boundary between the class CSLC
and the class CS(1). With α = 1, we get that, for allw = (w1, . . . ,wn ) ∈ In ,Zw =

∑n
i=1wiXi =d X1.

Consequently, for all q ∈ (0, 1), the value at riskVaRq (Zw ) = VaRq (X1) is independent ofw and is
the same for all portfolios of cyber-risksXi with weightsw ∈ In , i = 1, . . . ,n. Thus, in such a case,
diversification of a portfolio has no effect on riskiness of its return. Similarly, for general weights
w = (w1, . . . ,wn ) ∈ Rn+, and α = 1 implies Zw =

∑n
i=1wiXi =d (

∑n
i=1wi )X1. Thus, the value at risk

VaRq (Zw ) = (
∑n

i=1wi )VaRq (X1) is independent of w so long as
∑n

i=1wi is fixed. Consequently,
VaRq (Zw ) is both Schur-convex and Schur-concave in w ∈ Rn+ for i.i.d. risks Xi ∼ Sσ (σ , 0, 0) that
have symmetric Cauchy distributions with α = 1.
We also analyze aggregate cyber-risk coverage feasibility for risk managers who are quite risk

averse not to comply with the VaR risk measure. We already know from a well-celebrated utility-
theoretic result due to Samuelson that for general (non-heavy-tailed) cyber-risks with bounded
statistical support, aggregate risk coverage is always feasible for a risk manager. To this end, we
extend this utility-theoretic result for curtailed catastrophic cyber-risks having heavy tails via the
following result.

Theorem 4.7. Let n ≥ 2. Then there exists a t0, such that for any t ≥ t0, there is an admissible
utility function u and a > 0, such that any cyber-risk manager with utility function, v, where v is a
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t-convex regularization of u, will have

Ev (Y1 (a)) > Ev
(
Ȳn (a)

)
.

Practical Implications - The theorem simply implies that the feasibility of covering aggre-
gate cyber-risk crucially depends on the tail properties of the expected utility function and that
if managers’ utility function at any point in the domain of large negative outcomes becomes con-
vex, then the non-feasibility of covering aggregate heavy-tailed cyber-risks may continue to hold.
On a practical note, this provides additional support for our view that the theory of unbounded cata-
strophic cyber-risk distributionsmay provide a good approximation formarkets with a limited number
of bounded catastrophic cyber-risks. In light of this theorem, it is clear that in situations when we
can assume that cyber-risk managers’ utilities are strictly concave in the whole (efficient) sup-
port of distributional outcomes, we expect tradition feasibility (for non-catastrophic cyber-risks)
results to hold whenever cyber-risks are bounded. However, in situations when the number of
cyber-risks is not large compared with the number of liabilities, and if cyber-risk manager utility
is non-concave for large negative outcomes, then it may be optimal for the latter to not participate
in aggregate cyber-risk coverage even with bounded risks.

5 EXPERIMENTAL EVALUATION

In this section we validate our theory proposed in the article by first showing experimentally,
via details from a corporate case study11 on a cyber-attack launched on a real-world US-based
cloud provider, the heavy-tailed possibility of cyber-risk. Once we establish the chances of heavy-
tailed cyber-risk, we run synthetic experiments on heterogeneous cyber-insurers and compare
and comment on the results with those obtained from theory in a homogeneous cyber-insurance
setting. Our efforts serve as a mere conservative projection of larger-scale IoT-driven supply chain
service networks.

5.1 The Real-World Case Setting

Organizational Knowhow - We deal with the case of a US-headquartered multi-national cloud
service provider (CSP),A, with a market share on the order of major public CSPs headquartered
in the United States. CSP A operates multiple regions and many data centers around the world,

11In an orthogonal study [Welburn and Strong 2019], the authors provide non-statistical point estimates (via a model) of

aggregate per-day monetary cyber-loss impacts due to cyber-attacks on three large and likely targeted firms. The firms chosen
were (1) AT&T, a large telecommunications firm; (2) Cisco Systems, a hardware firm; (3) JP Morgan Chase, a retail banking
firm; and (4)Visa, a point-of-sale firm, for their diversity, size, and potential exposure to cyber risks. To analyze the impact of
atypically large yet still fathomable cyber-incidents, the authors assumed a stoppage of all operations and services (subject
to resilience) of each company lasting 1 day. The authors projected (as point estimates) “upper bounds” of potential losses
associated with each incident rather than the statistical expectation of losses, where actual losses could be smaller (in
fact, due to cyber risk management strategies of individual firms and the resilience across supply chains). For Visa, the
direct cost of USD 33 million incurred by the 1-day outage could lead to a further USD 77 million in upstream losses. The
results of attacks on the other firms were similar: upstream supply chain losses to Cisco, JP Morgan Chase, AT&T, and
Ford were estimated to be bounded above by USD 209, USD 145, USD 700, and USD 706 million, respectively. AT&T was
projected to have the largest downstream impact in its supply chain, potentially USD 20 billion in damages in addition
to the direct and upstream impacts. Notably, with Visa being the far smaller (in annual revenue base) firm compared to
AT&T in our scenario, it had the potential for the second largest total impact from cascading failures downstream, reaching
USD 13 billion, due to its huge client base. Furthermore, in stark contrast to AT&T, a firm of similar size, Ford’s potential
downstream costs were estimated to be much lower at USD 6.4 billion. Cisco and JP Morgan Chase were estimated to have
downstream impacts of nearly USD 6 billion and USD 4 billion, respectively. These point estimate calculations reveal the

staggering potential impacts of systemic cyber risk, with potential per-day losses incurred by certain businesses that might

shoot up to USD 20 billion, representing roughly 0.1% of US GDP. The same scale of per-day average downstream impacts
were point-estimated for Maersk on real data obtained after the NotPetya cyber-attack.
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with five regional hubs to serve its customers in the United States. It has other hubs in many other
parts of the world to serve its international client base. CSP A employs a strong team of technical
security specialists who develop tools and detection systems for potential malware and devise
contingency plans and response protocols for a wide range of technical issues.
The Cyber-Attack Scenario - An area of security importance for CSP A is the space of poten-

tial vulnerabilities in their Routing Information Protocols (RIPs), the controlling system for
connecting customers to the servers in the data centers. They have a testing lab that is discon-
nected from the main network but is periodically reconnected to enable live tests of new security
systems to be performed. Following one of these routine reconnections, problems started occurring
with routers in the regional hub that controls the active data centers. A few initial failures and loss
of computing capacity meant that the operators opened reserve channels to draw capacity from
other regional hubs. The security team figured out that a malware—a binary worm—had somehow
found its way into the operational networks of the data center. The binary worm makes copies of
itself if it is not controlled by another software twin. The worm changed the Routing Information
Protocols in the routers within the regional hub and its satellite data centers. The address book to
the regional hub was effectively being erased, component by component. There are around 2,000
routers in the regional hub; some are core routers to direct the primary traffic flows, while others
are edge routers that connect to customers.
Attack Spread and Single Regional Center Impact - The worm was virulent, rapidly self-

replicating, and destructive. When it reconfigured the RIP of a router, the router could not be
repaired through remote re-programming. It required a manual process of skilled operators to find
the router in the racks of the server farms and spend several hours re-programming the firmware
to enable the router to be brought back online and to resume its function. The only saving grace
was that the worm was not disguised; i.e., it could be discovered and deleted. But the worm had
infected the system extensively and the deletion of instances of the worm led to re-infection from
unfound copies. When the worm attacked a router, the addresses controlled by that router were
lost. The machines, networks, and data were unaffected and continued to run, but their users could
no longer access them. Each affected customer found that their connection to their cloud service
provided by CSP A no longer operated. Within an hour, over 5,000 companies found that their
cloud service had failed. Around 1,000 more of CSP A’s premium rate companies had switched
their operations from the affected regional center to their alternate deployment on one of the
other four of CSP A’s centers.
Impact of Spread to Other Regional Centers - The Routing Information Protocol operated

by CSP A allows for a limited load-balancing and software transmission between their different
regional hubs. These interactions are routinely security screened to prevent malware transmission
between centers. However, the emergency protocols for load balancing and transfer of capacity
from one hub to another allowed reduced screening on high volumes of data traffic. It became
rapidly apparent that the early-stage attempts to compensate for the loss of router capacity in the
affected regional center had allowed the binary worm to spread to two other regional centers. As
capacity began to be lost from these three infected hubs, CSP A’s operational control personnel
rapidly isolated all of their other regional hubs and prevented any interaction between them to
avoid infection spreading to more centers and potentially affecting their worldwide operations
of many regional hubs in other countries. The three infected hubs suffered a complete general
system failure for all of their connected customers within an hour of the onset of the incident.
Around 17,500 companies lost cloud service, including 1,500 premium rate customers who were
unfortunate to have their alternate deployment center be one of the other infected sites.
Aftermath Effects - The large majority of CSP A’s affected customers had their cloud service

restored within 24 hours, but a small proportion were unable to be reconnected for several days,
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and for a few, even longer. Some suffered intermittent failures for quite a while. The process of
eradication of the worm and the repair of all of the affected systems took several weeks. A signif-
icant portion of the cloud industry was severely impacted in the aftermath of the event, with quite
many major CSPs suffering loss of customers as companies experimented with alternatives to third-
party cloud service providers. CSP A particularly was badly impacted, losing customers and facing
lengthy legal proceedings and lawsuits that took several years to settle. However, the economics and
utility of cloud service to companies ensured that demand for cloud service provision returned to
previous and greater levels after some time.

5.2 Estimating Aggregate Cyber-Loss Distributions

The goal of this section is to provide a brief rationale on how cyber-risk estimators (based on an
existing real-world instance) from the industry converge upon estimating aggregate cyber-loss dis-
tributions after a cyber-attack scenario and to consequently show an instance where the aggregate
loss distributions derived by these estimators follows a heavy-tailed nature. With respect to the
event on which the case study is based, as part of the loss (both first and third party) recovery pro-
cess, CSP A sought the services of a cyber-insurance firm, whose first step was to send a team of
analysts to estimate the loss distribution, hL (l ) = P (L ≥ l ). The analysts, after observing relevant
parameters after the attack scenario (e.g., commercial losses), arrived at a score, Ie ∈ [0, 10], indi-
cating the severity of the cyber-attack impact on CSP A. They also derived (using company and
loss details) an empirical relationship between Ie andMI , the overall negative impact of the cyber-
attack on CSP A’s commercial business, and usually a reflection of the combined socio-economic
impact of the attack. They arrived at the following deterministic relationship (exact constants san-
itized due to company policies):

MI = 1.35 + 0.62Ie . (5)

Note that this relationship might differ structurally (linear vs. non-linear) for different firms and
attack types in practice. In addition, the cyber-risk analysts referred to in the case study, based on
their available database of prior cyber-attack information across various companies in their client
list, statistically fitted the cyber-attack to generate the following distribution on negative impact
M :

hMI (m) = C1e
βm , (6)

where β = 1.84, and it is appropriately sanitized for the purpose of this work. Subsequently, from
Equation (5), it directly follows that

hIe (i ) = C1e
βi .

The analysts also estimated the impact intensity (due to cyber-attack percolations through an
underlying social communication network, in this case, a service liability network), Id , at a distance
ofD hops from the source organizational node in the CSP’s liability network graph after the cyber-
attack on A to obey the following relation:

Id ≥ Ie + 2.9 − 1.25 log10 (D + 10). (7)

Clearly the above equation exhibits an attenuation effect of negative impact with distance, and
it is somewhat rational and intuitive to believe so, given a single source of attack. Let Ad (Ie , Id )
denote the span (in terms of the number of network (organizational) nodes) that experiences a
cyber-attack impact intensity greater than or equal to Id for a cyber-attack of intensity Ie on the
organizational root/source node. Assuming that affected nodes are uniformly distributed across a
topological space, we have A = O (D2). We then have

A(Ie , Id ) ≥ C210
1.6(Ie−Id ) = C3e

1.6 ln10 (Ie−Id ) = C4e
3.7Ie (8)
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for a fixed Id . The analysts, using this calculation, consequently were of the opinion that the com-
mercial/economic loss L after the cyber-attack was at least proportional to A(Ie ). In addition, the
higher the value of Ie , the greater the amount of loss around the source node.Using these two facets,
the cyber-risk analysts mathematically derived the loss distribution to be of the form hL (l ) ∼ l−α , a
heavy-tailed distribution, where α ∈ [0.3, 0.76].

5.3 Synthetic Evaluation Setup of the Cyber-Insurance Market

Thus far, we have established (courtesy a case study) an important fact: statistical distributions for
aggregated cyber-risk could be heavy tailed.More specifically, for the case at hand, the cyber-insurer
of CSP A after attack analysis came up with a value ofMI = 6.7 being Bernoulli-Cauchy distributed
(based on prior data) with P (MI ≥ 6.7) = .0063. Using this specific distributional knowledge from
a real-world case (the existence of Bernoulli-Cauchy cyber-risks), we now run synthetic exper-
iments (based on our proposed Bernoulli-Cauchy cyber-risk model) by varying the number of
cyber (re-)insurers in a market situation between 5 and 10—the rationale behind which was in-
ferred based on a discussion with CSP A, for the given MI = 6.7 value. We assume that the total
number of cyber (re-)insurers covers the entire set of organizations affected by a cyber-attack. We
allow the maximum number of cyber-risks, N , incurred upon any cyber-insurer to be proportion-
ately distributed in the interval [0,50] according to the graph density [Bondy et al. 1976] of the
directed network of organization nodes under its coverage, and the maximum coverage liability
units on a given absolute scale, k , of each cyber-insurer to uniformly lie in the interval [100, 200].
The rationale behind N stems from the different liability network structures for each organization
affected by the cyber-attack, and a higher graph density associates with higher N . The rationale
behind choosing k is comparatively more straightforward in the sense that the total loss liability
that any cyber-insurer is ready to take up upon itself (on an absolute scale) is based on their market
capital that usually lies on an interval in proportion to the liability and is generally not explicitly
dependent on the liability network structure. We run multiple iterations of a Bernoulli-Cauchy
cyber-risk that hits the source node, and the location parameter, ν , of such a distribution is dis-
tributed uniformly in the range [−10,−20] with a scale parameter, σ , fixed to 1. The value of q is
uniformly set to lie in the range [.0005, 0.0063] for MI = 6.7. The cyber-insurance premiums set
by the different market insurers is set in the range of [1,10] loss units distributed proportionately
according to the graph density of the directed network of organizational nodes under their cover-
age, in line with the idea of differentiated pricing based on liability network topologies [Pal et al.
2017]. The degree of risk aversion, α , is set to be uniformly distributed in the interval [0.03, 0.04]
based on a discussion with CSP A.

5.4 Evaluation Results

Having established the possibility of heavy-tailed cyber-risks faced by the insurer of a catastrophic
cyber-attack source, the main question at hand is: do individual expected utilities of cyber-risk-
pooling insurers at market equilibrium support the formation of a successful cyber-risk re-insurance
market? To this end, we investigate the trends in the expected utility accrued by individual cyber-
insurers pooled in a cyber-risk-sharing task, with respect to the number of cyber-risks shared and
the number of sharers, i.e., cyber-insurers. We run multiple random instances of cyber-risk at-
tacks on the source node and plot expected utility curves for organizational insurers of arbitrarily
chosen liability network nodes without loss of generality, due to the sameness of the plots. Our
goal is to observe expected utility trends, under relaxed assumptions of heterogeneous cyber-risk cov-
erage agents, at market equilibrium and compare the results with our proposed theory derived on the
assumption of homogeneous cyber-insurer agents.
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Fig. 1. Cyber-risk sharing for three random instances [graph density ∈ (0, 0.25)].

Fig. 2. Cyber-risk sharing for three random instances [graph density ∈ [0.25, 0.5)].

Fig. 3. Cyber-risk sharing for three random instances [graph density ∈ [0.5, 0.75)].

Fig. 4. Cyber-risk sharing for three random instances [graph density ∈ [0.75, 1)].

We observe from the plots in Figures 1 through 4 that for a moderate number of cyber-risks,
j, there is no way to increase expected utility compared with staying away from covering cyber-
risks altogether (result in accordance with Theorem 5.1). A risk-taker, i.e., cyber-insurer, has the
option of not entering the market and must therefore earn a utility premium to be willing to take
on cyber-risk (i.e., to offer cyber-insurance). No cyber-insurer will therefore choose (as expected
utilities are below zero) to invest in cyber-risks that cannot be pooled. Moreover, if a cyber-insurer
believes that no other insurer will pool cyber-risks, it will not take on risks, whether it can pool it
or not. Thus, even though the situation with full diversification and cyber-risk sharing UNM,M is
preferred over the no cyber-risk situation U0,1, at least a threshold number (the s value for which
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the expected utility of the cyber-insurer is positive) of cyber-insurers must agree to pool cyber-
risk for risk sharing to be worthwhile (result in accordance with Theorems 5.2 and 5.3). In this
situation, there may be a coordination problem: even though all the cyber-insurers would like
to reach UNM,M , they may be stuck in U0,1. Clearly, the limited liability assumption is important
to the success of cyber re-insurance markets: if liability were unlimited, no agent would take on
cyber-risk, and diversification of cyber-risk to other cyber-insurers is always inferior (result in
accordance with Theorems 5.4 and 5.5). However, we note that the probability for default in the
situation with full pooling and cyber-risk diversification is small: approximately around the range
of [0.3%, 0.6%] (model based).

6 MATHEMATICAL PROOFS OF RESULTS

In this section, we provide detailed mathematical proofs of our obtained results. Some of the proof
constructs are borrowed from Ibragimov et al. [2009].

Proof of Theorem 4.1. The condition C1: Uj,s < U0,1 for all j ∈ {1, . . . ,N } and all s ∈
{1, . . . ,M } implies Uj,1 < U0,1 for all j ∈ {1, . . . ,N }. Thus, it is clearly not optimal for any cyber-
insurer who does not participate in the cyber re-insurance market to offer traditional insurance.
C1 implies that it is optimal for cyber-insurerm to not offer non-traditional cyber-risk coverage, as
any cyber-risk sharing with up to N risks is inferior to not taking on risk. Thus, it is an equilibrium
for no one to offer traditional cyber-insurance and is self-evidently unique. �

Proof of Theorem 4.2. If Un,s > U0,1 for n ≥ 1 and s = 1, then any cyber-insurer will strictly
improve by taking onn cyber-risks. ForUn,s > U0,1 for some s > 1, the proof is a direct consequence
of the equilibrium structure of the Stage 2 participation subgame of the RIMG. For example, cyber-
insurer 1 strictly improves by pooling n cyber-risks into the cyber re-insurance market, as cyber-
insurer 2, . . . ,s∗ will then choose to participate in the subgame for some s∗ = argmaxt {t : Un,t >
U0,1}, whereas cyber-insurers s∗ + 1, . . . ,M will choose not to participate. This leads to a strict
improvement for all cyber-insurers 1, . . . ,s∗. Thus, cyber-insurer 1 will deviate from the assumed
strategy of not offering cyber-insurance, and thus this strategy cannot be an equilibrium. �

Proof of Theorem 4.3. Under the conditions provided in the theorem, if cyber-insurerm be-
lieves that all other cyber-insurers will participate in the cyber re-insurance market, by choosing
N cyber-risks and participating, UNM,M can be achieved. This clearly dominates any alternative
strategy of not participating in the market, which will lead toUn,1 for 1 ≤ n ≤ M , or of participat-
ing and offering fewer cyber-risks, which will lead to Un,M for N (M − 1) ≤ n ≤ NM − 1. All the
alternative strategies are thus strictly dominated by the strategy leading toUNM,M . �

Proof of Theorem 4.4. The possibility of the existence of multiple (2) RMNEs is shown via an
existential argument as follows: for N = 20,M = 5, X̃ ∈ S̃qμ,ν,σ , along with Cauchy-Bernoulli cyber-
risk random variables having parameters μ = 1, ν = -9, σ = 1, q = 0.05, and power utility functions
u (x ) = (x + k )α , with k = 100 and α = 0.0315 satisfies (proved below) the following conditions
simultaneously:

(1) Uj,s < U0,1 for all j ∈ {1, . . . ,N } and all s ∈ {1, . . . ,M }.
(2) UNM,M > Uj,1 for all j ∈ {0, . . . ,N }.
(3) UNM,M > Uj,M for all j ∈ {N (M − 1), . . . ,NM − 1.

The proof of the satisfiability of these conditions (see below) will lead to two starkly contrasting
RMNEs as mentioned in the theorem forM ≥ M0 = 5.
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Wefirst show thatUj,s < U0,1 for all j ∈ {1, . . . ,N } and all s ∈ {1, . . . ,M }. We do this by studying

F (j,y) =

j∑
n=1

jCnq
n (1 − q) j−nWj,n, 1

y
+ (jμy + k )α ,

for the parameter values q = 0.05, μ = 1, ν = −9, α = 0.0315, σ = 1, k = 100. By verifying that
F (j,y) < 0 for y ∈ (0, 1], for j = 1, 2, . . . , 20, this implies that Uj,s < U0,1 for all s ∈ {1, 2, . . .} and
each feasible j. F (j,y) is an increasing function of j for a fixed y, so F (20,y) being strictly negative
for y ∈ (0, 1] is sufficient for condition (1) in the theorem to be satisfied.
To show conditions (2) and (3) in the theorem, let us consider the asymptotics ofUtM,M , where

t is a fixed natural number, as M → ∞. In what follows →P denotes convergence in probability
and →d denotes convergence in distribution. We first mathematically characterize Uj,s for the
power utility functionu (x ) = (x + k )α , α ∈ (0, 1), with k < ∞ (denoting limited coverage liability)
as follows:

Uj,s = E ��
∑j

i=1 X̃i

s
+ k�	

α

+

or

Uj,s = E ��
μj + (ν − μ )∑j

i=1 εi + σ
∑j

i=1 εiYi

M
+ k�	

α

+

,

or

Uj,s =

j∑
n=1

jCnq
n (1 − q) j−nWj,n,s +

( jμ
s
+ k
)α
, (9)

where

Wj,n,s =
1

π

∫ ∞

− r
b

(bx + r )α

1 + x2
dx , b =

nσ

s
, r = k +

(j − n)μ + nν
s

.

The closed-form expression for the integral becomes

Wj,n,s =
bα (1 + r

b
)
α
2

sin(πα )
× sin

(πα
2
+ α tan−1 (br )

)
.

According to Equation (9), we have

UtM,M = E ��
∑tM

j=1 X̃i

M
+ k�	

α

+

or

UtM,M = E ��μt + (ν − μ )
∑tM

i=1 εj + σ
∑tM

j=1 εjYj

M
+ k�	

α

+

,

where εj are i.i.d. nonnegative Bernoulli r.v.s with P (εj = 0) = 1 − q, P (εj = 1) = q, and Yj ∈ S0,1
are i.i.d symmetric Cauchy r.v.s with scale parameter σ = 1 that are independent of ϵ ′j s. By the law
of large numbers, ∑tM

j=1 εj

M
→P tEϵ1 = tq, (10)

asM → ∞. Since the characteristic function of a symmetric Cauchy r.v. X ∈ S0,σ is given by

E exp(iyX ) = exp(−σ |y), (11)
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we obtain that the characteristic function f (y) = E exp(iyWM ) ofWM =

∑tM
j=1 εjYj

M
satisfies

f (y) =

[
E exp

(
iyϵ1Y1
M

)] tM
=

[
1 + q

(
exp

(
− |y |
M

)
− 1
)] tM

→ exp(−qt |y)y ∈ R, (12)

as M → ∞. Because, according to Equation (11), exp(−tq |y) is the characteristic function of the
r.v., tqY1, we conclude from Equation (12) that

WM →d tqY1, (13)

asM → ∞. Relations (13) and (10) imply that, asM → ∞,

VM = ��μt + (ν − μ )
∑tM

i=1 εj + σ
∑tM

j=1 εjYj

M
+ k�	

α

+

→d (μt + (ν − μ )tq + σtqY1 + k )α+ . (14)

Because, as it is not difficult to see, the sequence of r.v.s VM s is uniformly integrable, from Equa-
tion (14) we get (from a result in Ash et al. [2000]) that

UtM,M = E ��μt + (ν − μ )
∑tM

i=1 εj + σ
∑tM

j=1 εjYj

M
+ k�	

α

+

converges to

G (t ) = E(μt + (ν − μ )tq + σtqY1 + k )α+ ,

or

G (t ) =
(
t2q2σ 2 + (k + t (μ − qμ + qν ))2

) α
2 × csc(πα ) sin

(
1

2
α

(
π + 2 tan−1

(
k + t (μ − qμ + qν )

qtσ

)))
,

asM → ∞. In particular,

lim
M→∞

UnM,M = G (n), n = 1, . . . ,N .

It is straightforward to see that G (N ) > U0,1.
Let us now show thatUN (M−1),M < UN (M−1)+1,M <, . . . ,UNM−1,M . Let 0 ≤ m ≤ M − 2. Note that,

for Y ∈ S0,σ and α ∈ (0, 1), z ∈ R, the expectation E(Y + z)α−1+ is finite and well defined because
the integral

∫ ∞
−z

dx
πσ (x+z )1−α (1+x 2 )

converges. This, by induction and conditioning arguments, implies

that the expectation E(
∑N (M−1)+m
j=1 X j

M
+ k )α−1+ is finite and positive, i.e.,

0 < E ���
∑N (M−1)+m

j=1 X j

M
+ k�
	

α−1

+

< ∞. (15)

Using a Taylor expansion, it is not difficult to check that the following inequality holds for all
x , z ∈ R, and for all α ∈ (0, 1):

(x + z)α+ ≥ zα+ + αxz
α−1
+ , (16)

with strict inequality for x , z > 0. Let X ′1 = μ + (ν − μ )ε ′1 + σε ′1Y ′1 denote an r.v. with Bernoulli-
Cauchy distribution, where ε ′1 is a non-negative Bernoulli r.v. with P (εi = 0) = 1 − q, P (εi = 1) = q,
and Y ′1 ∈ S0,1 is a symmetric Cauchy r.v. with scale parameter σ = 1 independent of ε ′1. Suppose
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further that ε ′1 andY
′
1 are independent of the r.v.sX j , j = 1, . . . ,N (M − 1) + 1. Using Equations (15)

and (16) we get that, for all s > 0,

E ���
∑N (M−1)+m

j=1 X j + X
′
1

M
+ k�
	

α

+

I ( |Y ′1 | < sM ) > E ���
∑N (M−1)+m

j=1 X j

M
+ k�
	

α

+

P ( |Y ′1 | < sM )

+(
α

M
E[X ′1I ( |Y ′1 | < sM]E ���

∑N (M−1)+m
j=1 X j

M
+ k�
	

α−1

+

,

(17)

where I (·) is the indicator function. We further have, by the definition of X ′1, ε
′
1, and Y

′
1 and using

the symmetry of the distribution of Y ′1 ,

E[X ′1I ( |Y ′1 | < sM )] = (μ + (ν − μ )q)P ( |Y ′1 | < sM ) + σqE[Y ′1 I ( |Y ′1 | < sM )] (18)

or

E[X ′1I ( |Y ′1 | < sM )] = (μ + (ν − μ )q)P ( |Y ′1 | < sM ), ∀s > 0.

The inequalities in Equations (17) and (18) imply that, for all s > 0,

E ���
∑N (M−1)+m

j=1 X j + X
′
1

M
+ k�
	

α

+

I ( |Y ′1 | < sM ) > E ���
∑N (M−1)+m

j=1 X j

M
+ k�
	

α

+

P ( |Y ′1 | < sM )

+
α (μ + (ν − μ )q)

M
P ( |Y ′1 | < sM ).

(19)

Letting s → ∞, we obtain

UN (M−1)+m+1 = E ���
∑N (M−1)+m

j=1 X j + X
′
1

M
+ k�
	

α

+

,

or

UN (M−1)+m+1 = E ���
∑N (M−1)+m

j=1 X j

M
+ k�
	

α

+

+
α (μ + (ν − μ )q

M
. (20)

It is easy to check that, for the values of the parameters chosen in the theorem, μ + (ν − μ )q =
0.5 > 0. From Equation (20) we thus conclude that

UN (M−1)+m+1 = E ���
∑N (M−1)+m

j=1 X j

M
+ k�
	

α

+

= UN (M−1)+m

for all 0 ≤ m ≤ M − 2. Thus, the conditions for a risk-sharing diversification equilibrium are sat-
isfied for allM ≥ M0, hence proving the theorem. �

Proof of Theorem 4.5. Assume that there exists a two-equilibrium state to an instance,
(u, F ,∞,N ,M ), of the RIMG for arbitrarily large M , for a strictly concave, twice continuously
differentiable utility function u and distribution F satisfying∫ ∞

−∞
x2dF = C < ∞. (21)

For notational convenience, we assume that F is differentiable, so that with pdf ϕ = dF
dx

is well
defined. However, the whole proof goes through step by step without this restriction. Without
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loss of generality, we can assume u (0) = 0, u ′(0) = 1. For a genuine two-equilibria state to exist, it
must be the case that for arbitrarily largeM , we have

UNM,M > 0, (22)

and
U1,M < 0. (23)

However, a necessary condition for Equation (22) to hold for arbitrarily largeM is that E[X ] ≤ 0,
as seen by the following argument: assume that μ = E[X ] > 0. We define

U (ε ) =

∫ ∞

−∞
u (ϵx )ϕ (x )dx .

We decompose
u (x ) = x − t (x ) = x − x2z (x ),

where t (0) = t ′(0) = 0, t ′′ > 0, t (x ) < x , z (x ) is continuous, and both t and z are non-negative. We
then have

U (ϵ ) = ϵμ − ��
∫ − 1

ε

−∞
t (εx )ϕ (x )dx +

∫ 1
ε

− 1
ε

(εx )2z (εx )ϕ (x )dx +

∫ ∞

1
ε

t (εx )ϕ (x )dx�	 . (24)

The
∫ ∞

1
ε

term is clearly o(ε ), as∫ ∞

1
ε

t (εx )ϕ (x )dx ≤
∫ ∞

1
ε

εxϕ (x )dx ≤ ε

∫ ∞

1
ε

xϕ (x )dx ≤ C2ε
2.

Furthermore, as z (x ) is continuous, it is bounded on [−1, 1], so Holder’s inequality can be used to

bound the
∫ 1

ε
1
ε

term by

∫ 1
ε

1
ε

(εx )2x (εx )ϕ (x )dx ≤ ε2 max
−1≤y≤1

|z (x ) | ×C = C3ε
2,

so the second term is also of o(ε ). Finally, the
∫ − 1

ε

−∞ term is also o(ε ), as∫
−∞
−1
ε
t (εx )ϕ (x )dx =

∫ − 1
ε

inf ty

t (εx )

t (x )
t (x )ϕ (x )dx ≤ εt ′(−1) ×

∫ − 1
ε

−∞
t (x )ϕ (x )dx = o(ε ),

where we use Holder’s inequality to move the t (ϵx )
t (x ) outside of the integral, and the inequality

t (εx )

t (x )
≤ εt ′(−1),

which must hold for x ≥ 1
ε
, as t is convex. Finally,∫ − 1

ε

−∞
t (x )ϕ (x )dx = o(1),

as the integral Eu (X ) could otherwise not exist. This altogether implies that U (ε ) = εμ − o(ε ),
which is strictly positive for small enough ε . Therefore, if E(X ) > 0, then U1,M will be strictly
positive for large enough M , and no genuine two-equilibrium state can therefore exist. However,
if E(X ) ≤ 0, then a two-equilibrium state cannot exist, as Jensen’s inequality implies that UNM,M

is strictly negative for arbitraryM > 0 and N > 0 and thusUNM,M < U0,1. This proves the theorem
for clause (i). Now assume that there exists a two-equilibrium state to the game (u,ϕ,k,N ,M ) for
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arbitrarily large M , for a strictly concave, twice continuously differentiable utility function u and
distribution ϕ, satisfying ∫ ∞

−∞
x2ϕ (x )dx = C < ∞. (25)

Without loss of generality, we can assumeu (0) = 0,u ′(0) = 1. IfE(X ) > 0, then the same argument
as in the proof of the first part of Theorem 4.5 rules out the two-equilibria state forM ≥ M0, as the
limited liability increasesU1,M compared to the unlimited liability case. Thus, forM large enough,
U1,M must be strictly positive and a two-equilibrium state cannot exist. If E[X ] = μ < 0, then
we can use the law of large numbers to show that as M becomes large, XNM = (NM )−1

∑NM
i=1 Xi

converges in distribution to μ. Thus, limM→∞ E((XNM + kNM )+ − kNM ) = μ, so for some large
enoughM0, limM→∞ E((XNM + kNM )+ − kNM ) < 0 for allM ≥ M0. Jensen’s inequality therefore
again implies thatUNM,M is strictly negative forM ≥ M0 and thusUNM,M < U0,1, so there cannot
be a two-equilibria state, thus proving the theorem regarding part (ii) of the theorem clause. We
now prove thatUNM,M < U0,1 = 0 for largeM . We define

γ = min
x ∈[− k2 ,

k
2 ]
u ′′(x ).

As u is strictly concave and twice continuously differentiable, γ > 0. We define

ũx = x − γ

2
x2I[− k2 ,

k
2 ]
,

where IA is the indicator function on the set A, implying that u (x ) ≤ ũ (x ) for all x ∈ [−k,∞).
Similar toUj,s , we define Ũj,s , the “utility” of sharing j cyber-risks equally among s cyber-insurers,
for insurers with “utility” functions ũ. ClearlyUj,s ≤ Ũj,s , so if ŨNM,M < 0 for largeM , thenUj,s <
0 for large M and there cannot be a two-equilibria state for an M0 such that M ≥ M0. We next
define Y1 =

∑N
i=1Xi and study uniform portfolios of i.i.d. cyber-risks Y1, . . . ,YM by defining ȲM =∑M

m=1 YM
M

. As E(ȲM ) = 0, the condition ŨNM,M < 0 for largeM can be written as

ŨNM,M = E(ȲM I[−k,∞) ) −
γ

2
E(Ȳ 2

M I[− k2 ,
k
2 ]
) < 0. (26)

We begin by bounding E(Ȳ 2
M I[− k2 ,

k
2 ]
) from below. From the central limit theorem, we know that

ZM =
√
MYM converges in distribution to Z ∼ N (0,σ 2), so E(Z 2

M I[− k2 ,
k
2 ]
) → C > 0, as M grows.

Now since

ME(Ȳ 2
M I[− k2 ,

k
2 ]
) ≥ ME(Ȳ 2

M I[− k

2
√
M
, k

2
√
M

) = E(Z 2
M I[− k2 ,

k
2 ]
]),

we can conclude that for largeM ,

γ

2
E(Ȳ 2

M I[− k2 ,
k
2 ]
) ≥ C ′

M
, C ′ > 0. (27)

We next boundE(ȲM I[−k,∞) ) from above. AsE(ȲM ) = 0, we haveE(ȲM I[−k,∞) ) = −E(ȲM I[−∞,−k ) ).
From the Cauchy-Schwarz inequality, we know that

−E(ȲM I[−∞,−k ) ) ≤ E
(
Ȳ 2
M

) 1
2 E(I (−∞,−k ) )

1
2

(as I 2
(−∞,−k ) = I (−∞,−k )). Of course,E(Ȳ 2

M ) = σ 2

M
. Moreover, Rosenthal’s inequality [Rosenthal 1973]

implies that E(Y 2+ϵ
M

) ≤ C ′′

M1+ ϵ2
, and by Markov’s inequality [Ross 2014], we therefore know that

E(I (−∞,−k ) ) = P (x < −k ) ≤
E(Y 2+ϵ

M
)

k2+ϵ
≤ C ′′k−(2+ϵ )

M1+ ϵ2
.
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Overall, this implies that

E(ȲM I (−k,∞) ) ≤
√

σ 2

M

√
C ′′k−2+ϵ

M1+ ϵ2
=

C ′′′

M1+ ϵ4
.

The bounds in Equation (27) are therefore

ŨNM,M ≤
C ′′′

M1+ ϵ4
− C ′

M
, C ′ > 0,

which is strictly negative for largeM . Thus, asUNM,M ≤ ŨNM .M , we know thatUNM,M ≤ U0,1 = 0
for large M . Therefore, there cannot be any two-equilibria state that can arise in this case either,
hence proving the theorem for case (iii). �

Proof of Theorem 4.7. It is evident from the scenario of non-curtailed cyber-risk with finite
support (see Theorem 3 in Pal et al. [2020b]) that for any t > 0, we can choose an a such that

FY1 (a) (−t ) < FȲn (a) (−t ).

We have∫ −t

−∞
−tdFY1 (a) (x ) +

∫ ∞

−t
xdFY1 (a) (x ) =

∫ −t

−∞
−tdFYn (a) (x ) +

∫ ∞

−t
xdFYn (a) (x ) − s, s > 0.

s > 0 follows from Rothschild and Stiglitz [1970] and that Y1 (a) is a mean preserving spread of
Ȳn (a). Specifically, the integral takes the form

∫
QdF , where Q (x ) = (x + t )+ − t is convex and

therefore −Q is concave. For a specific a, we can clearly choose an admissible utility function u,
such that�����
∫ ∞

−t
u (x )dFY1 (a) (x ) −

∫ ∞

−t
xdFY1 (a) (x )

����� ≤ s

6
,

�����
∫ ∞

−t
u (x )dFYn (a) (x ) −

∫ ∞

−t
xdFYn (a) (x )

����� ≤ s

6
,

and, for t large enough,�����
∫ −t

−∞
v (x )dFY1 (a) (x ) −

∫ −t

−∞
−tdFY1 (a) (x )

����� ≤ s

6
,

�����
∫ −t

−∞
v (x )dFȲn (a) (x ) −

∫ −t

−∞
−tdFȲn (a) (x )

����� ≤ s

6
.

We therefore have∫ ∞

∞
v (x )

[
dFY1 (a) (x ) − dFȲn (a) (x )

]
=

∫ ∞

−∞
(Q (x ) +v (x ) −Q (x ))

[
dFY1 (a) (x ) − dFȲn (a) (x )

]
= s +

∫ −t

−∞
(v (x ) − (−t ))

[
dFY1 (a) (x ) − dFȲn (a ) (x )

]
+

∫ ∞

−t
(u (x ) − x )

[
dFY1 (a) (x ) − dFȲn (a) (x )

]
≥ s −

�����
∫ −t

−∞
(v (x ) − (−t ))dFY1 (a) (x )

����� −
�����
∫ −t

−∞
(v (x ) − (−t ))dFȲn (a) (x )

�����
−

�����
∫ ∞

−t
(u (x ) − x )dFY1 (a) (x )

����� −
�����
∫ ∞

−t
(u (x ) − x )dFȲn (a) (x )

�����
≥ s − 4 s

6
=

s

3
.

Altogether, this implies that

Ev (Y1 (a)) ≥ Ev (Ȳn (a)) +
s

3
,

and as s > 0, we are through. �
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7 RELATEDWORK

In this section, we cite other works most related to ours in this article. However, we would like
to emphasize upfront that a formal analysis on the economic incentive compatibility of cyber-
reinsurance services under heavy-tailed (i.i.d. in our work) cyber-risk distribution type is absent in
(IoT) literature for cyber-insurance or network risk management settings, and our efforts here in
this direction are completely new to the best of our knowledge. In two very recent efforts [Pal et al.
2020c, 2020a], we proposed an orthogonal formal analysis on the statistical incentive compatibility
of providing cyber-reinsurance services, the first of its kind, in IoT societies under complete general
cyber-risk distribution types be it i.i.d./non-i.i.d. heavy tailed or otherwise. The analysis in these
papers, unlike here, is oblivious to re-insurer rationality while making service feasibility decisions
on risk spreading. However, they account for the complete general nature of statistical distributions
in the decision-making process.

7.1 Success of Cyber-Insurance Markets

In this work we investigated the feasibility of a pool of cyber-insurers getting together to cover ag-
gregate cyber-risks of a heavy-tailed statistical nature. However, a pre-cursor to having aggregate
risk-covering cyber re-insurance markets is working successful primary cyber-insurance markets
in the first place. To this end, recent research works on cyber-insurance [Hoffman 2007; Lelarge
and Bolot 2009b; Shetty et al. 2010] have mathematically shown the existence of economically in-
efficient insurance markets. Intuitively, an efficient market is one where all stakeholders (market
elements) mutually satisfy their interests. These works state that cyber-insurance satisfies every
stakeholder apart from the regulatory agency (e.g., government), and sometimes the cyber-insurer
itself. The regulatory agency is unsatisfied as overall network robustness is sub-optimal due to
network users not optimally investing in self-defense mechanisms, whereas a cyber-insurer is un-
satisfied due to it potentially making zero expected profit at times. In Pal and Golubchik [2010], the
authors proposed a Coasian bargaining approach among cyber-insured network entities to achieve
an efficient insurance market; however, costless bargaining under which the Coase theorem holds
is idealistic in nature and might not be feasible to implement in practice. Lelarge and Bolot [2009b]
recommended the use of fines and rebates on cyber-insurance contracts to make each user invest
optimally in self-defense and make the network optimally robust. However, their work neither
mathematically proves the effectiveness of premiums and rebates in making network users invest
optimally nor guarantees the strict positiveness of insurer profits at all times. In recent works [Pal
et al. 2011, 2014, 2018; Khalili et al. 2018], the authors overcome the drawbacks of the mentioned
existing works and propose ways to form provably efficient monopolistic cyber-insurance mar-
kets by satisfying market stakeholders, including a risk-averse cyber-insurer, in environments of
interdependent risk. Naghizadeh and Liu [2014], Pal et al. [2011], and Naghizadeh and Liu [2016]
further state the importance of compulsory insurance for optimizing social welfare for primary
cyber-insurance markets. In addition, andmore importantly, recent major successful cyber-attacks
on large commercial organizations have significantly increased board-level concerns to maintain
business reputation amongst clients and subsequently accelerated the adoption of cyber-insurance
products in the industry.
Drawbacks - These works are completely orthogonal in their goals, when compared to our

effort (i.e., economically investigating primary cyber-insurance market success vs. statistically in-
vestigating the effect of heavy-tailed cyber-risks on the existence of aggregated insurance cov-
erage markets), and do not investigate the effect of aggregated cyber-risk on the inclination of a
cyber-insurer to participate in (insurance/re-insurance) coverage markets for a service-networked
setting—a prime determinant for the expansion of the insurance industry for the modern
cyber-age.
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7.2 On the Heavy-Tailed and Dependent Nature of Cyber-Risk

There are quite a few instances in the practical real world where cyber-risks have shown heavy-
tailed impact. Maillart and Sornette [2010] analyzed a Datalossdb 2017 dataset consisting of 956
personal identity loss incidents that occurred in the United States between the years 2000 and
2008. They found that the personal identity losses per incident, denoted by X , can be modeled by
a heavy-tail distribution P (X > n) ∼ nα , where α = 0.7 +/− 0.1, and more importantly, this result
holds for a variety of organizations: business, education, government, or a medical institution.
Because the probability density function of the identity losses per incident is static, the situation
of identity loss is stable from the point of view of the breach size. Edwards et al. [2016] analyzed a
Privacy Rights Clearinghouse database of 2017 consisting of 2,253 breach incidents that spanned
over a decade from 2005 to 2015. These breach incidents include two categories: negligent breaches
(i.e., incidents caused by lost, discarded, stolen devices or other reasons) and malicious breaching
(i.e., incidents caused by hacking, insider, and other reasons). They showed that the breach size
can be modeled either by log-normal or log-skew-normal distribution that are not heavy-tailed
distributions in a mathematically precise sense, but have long tails, or by Pareto distributions that
are heavy tailed. Wheatley et al. [2016] merged and analyzed cyber-breach incidents from the
Datalossdb and the Privacy Rights Clearinghouse database spanning over a decade (2000 to 2015).
They used the Extreme Value Theory (EVT) [Embrechts et al. 2013] to study the maximum
breach size and further modeled the large breach sizes by a doubly truncated heavy-tailed Pareto
distribution. There are also studies establishing the dependence among cyber risks. Notable among
them are Herath and Herath [2011], Pal et al. [2019, 2020c], Mukhopadhyay et al. [2013], Böhme
and Kataria [2006], Xu et al. [2017, 2018], Xu and Hua [2019], and Peng et al. [2018].
Drawbacks - Existing empirical research in cyber-security has been successful in elucidating

the heavy-tailed and tail-dependent nature of cyber-risk; however, it is yet to propose formally
proven directions to allow a profit-minded cyber-risk manager to judge whether a collection of such
risks is suitable to aggregate, under various degrees of heavy-tailedness. This decision-making prob-
lemwill increasingly arise in the IoT agewheremajor cyber-risks affecting smart societies will give
rise to systemic effects that cyber-risk managers have to deal with. It is a common perception from
empirical studies and traditional insurance literature [Samuelson 1967] that i.i.d. non-catastrophic
cyber-risks, even though heavy tailed, are suitable for aggregation. In this article, as a first, we
showed quite the contrast for i.i.d. catastrophic heavy-tailed risks.

7.3 Analyzing Network Effects of Cascading Events upon Cyber-Insurers

The typical cyber re-insurance scenario will arise in a service network setting where insurance
companies covering individual organizations are willing to diversify their client cyber-risks among
multiple other cyber-insurers. The liability network effects when such a network of cyber-insurers
is hit via coverage demands after a catastrophic cyber-attack are a function of (1) the probability of
an organization being hit by cyber-attacks and (2) the effect aggregate cyber-risks can have on po-
tential risk-covering organizations, e.g., re-insurers. Nearly all research (to the best of our knowl-
edge) in the information security community has only works in (1), i.e., mathematical/simulation
models for estimating the probability of a consumer (e.g., organization, end-user) getting infected
by cyber-attack vectors (e.g., APTs) (see survey in Böhme et al. [2010]) [Böhme et al. 2017]. If we
denote such a probability distribution for each consumer i by Fi , we emphasize that evaluating Fi
actually involves mathematically capturing the spread of the infection (attack) vector (e.g., a virus,
bot), and is not the focus of this article. The interested reader is referred specifically to Lelarge and
Bolot [2009b], Lorenz et al. [2009], and Ganesh et al. [2005] to get insights on statistical mean field
models to mathematically and robustly evaluate F (). Regarding the costs faced by the consumers
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on getting cyber-attacked, the readers are referred to Riek and Böhme [2018]. In terms of the pro-
cess of the physical spread of attacks in networks, a related literature has directly originated from
the study of cascades. Various models have been developed in the computer science and network
science literatures, including the widely-used threshold models [Granovetter 1978] and percola-
tion models [La 2016, 2018a, 2018b; Watts 2002; Molloy and Reed 1998, 1995; Newman et al. 2001;
Chung and Lu 2002]. A fewworks have applied these ideas to various economic settings, including
Durlauf [1993] and [Bak et al. 1993] in the context of economic fluctuations; [Morris 2000] in the
context of contagion of different types of strategies in coordination games; and more recently, [Gai
and Kapadia 2010] and [Blume et al. 2011] in the context of spread of an epidemic-like financial
contagion, where the seminal papers of [Allen and Gale 2000] and [Freixas et al. 2000] developed
some of the first formal models of contagion over financial networks.
The only work to the best of our knowledge that has considered the effect of the insurance

network and aggregate cyber-risks on cyber-insurance companies is the contribution by Pal et al.
[2020d]. More specifically, the authors conduct a robust network analysis and surprisingly find that
the specific underlying service network and a broad family of statistical cyber-risk distributions
(including heavy-tailed distributions) did not have “much” of an effect (the network in general,
though, plays a role) on the increase in the amount of “to be covered expected loss” in the aftermath
of a catastrophic cyber-attack. What primarily mattered was (1) the revenue base of the service-
providing organization and (2) the extent of reliance of an organization upon others. This result is
beneficial and impactful in the sense that cyber-insurers mostly do not have complete knowledge
of the underlying topology that ties service organizations together, and it is equally difficult to get
a precise estimate of cyber-risk distributions.
Drawbacks - What we are concerned about with respect to contributions made in the arti-

cle is part (2), i.e., the investigation (given that part (1) as above-mentioned is taken care of) of
how aggregate cyber-risk arising from multiple network nodes, i.e., cyber-insurers covering in-
dividual risks of organizations in the event of a cyber-attack, affects the incentive compatibility
mindset of the aggregate risk-covering node. To the best of our knowledge, none of the existing
works have tackled this issue statistically and economically (as we have done), and this is precisely
what is important when considering whether a market for cyber re-insurance will thrive in the
modern cyber-age. As mentioned above, Pal et al. [2020d] give a statistical and network-oblivious
perspective to the problem at hand, but they do not comment on the incentive compatibility of cover-
ing aggregate cyber-risk. They only claim that the specifics underlying connected service network
topology, in addition to the cyber-risk distributions, do not contribute relatively significantly to
the increase in the expected cyber-losses in the aftermath of a catastrophic cyber-attack.

8 DISCUSSION

In this section, we first provide a stance about the possibility of commercial risk management or-
ganizations encountering heavy-tailed cyber-losses in the IoT age, as viewed by some corporate
leaders in the current cyber-insurance market space. Second, we briefly describe the state of cur-
rent cyber re-insurance markets. Finally, we discuss the role of regulation in preventing societal
unwanted situations where profit-minded cyber re-insurers shy away, i.e., do not feel incentive
compatible, from providing re-insurance services for the benefit of society even if they can, in this
hour of need.

8.1 Industry Expert Views on Cyber-Insurance in the IoT Age

According to Pascal Millaire, a cyber-insurance expert and the chief executive officer of Cyber-
Cube, the insurance industry has a long way to go to meet cyber coverage business interruption
needs. He noted, “I think today we’re only scratching the surface when it comes to the need for
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business interruption cover in the cyber space,” agreeing that the IoT will push the issue to a crisis
point. The IoT age will unlock over USD 10 trillion in new economic activity globally with a pro-
jected 50 billion IoT devices to be in operation by 2025. While many of these devices will work
well and benefit society, many will be vulnerable even to naive cyber-attacks. To make things
worse, due to common software platforms and applications running on many of these devices,
the attack-impact effects will be correlated in time and space. Consequently, when these fail,
it will not be unreasonable to expect significant aggregate cyber-loss impacts with statistically
very heavy tails, simply because with increasing inter-connectivity, the cost of a failed connection
goes higher. According to data released by UK regulatory authorities in 2019, enterprise-related
cyber-losses are ranked higher in the country when compared to flood, Japan earthquakes, and
most other catastrophes other than California earthquakes and Atlantic hurricane-related losses.
Michael Tannenbaum, executive vice president for Financial Lines for Chubb, believes that cyber-
insurance coverage can address and mitigate such impacts via adding services such as call centers,
threat notifications, surge protection, IT restoration, and legal services that help clients counter a
threat quickly and mitigate long-term damages. At the same tine, cyber-insurers need to be able
to facilitate hundreds of claims at the same time when business interruption-related cyber-attacks
strike.

8.2 On Current Cyber (Re)-Insurance Markets

Re-insurance is still a nascent market with emerging risks that are yet to be priced or modeled ad-
equately (courtesy SCOR Report, 2017 [Coburn et al. 2018]). Because cyber re-insurers concentrate
the risks ceded to them by insurance companies, the aggregation of cyber exposure coming from
cyber-specific or standard products is exacerbated. Developing modeling capabilities to get a grip
on clash of risks and cyber catastrophes is a condition for the cyber re-insurance market to grow.
The current global reinsurance market is estimated to be worth approximately USD 525M. Most
cyber re-insurers have only just entered the cyber insurance market. Because of the modeling
and pricing issues mentioned above, it remains mostly a proportional market with approximately
95% of cyber re-insurance premiums being written by re-insurers on a quota share basis. More
importantly, unlike other lines of insurance, cyber has only a short history of experience, and
actuarial analysis is made more complicated by rapid changes in the threat and loss patterns
from year to year. Instead, cyber-insurance companies have sold policies that represent relatively
limited exposure to themselves, chiefly through constraining the level of limit that they provide.
An estimated half of all cyber insurance policies sold are for limits of less than $1 million, i.e., the
total amount that insurers are prepared to pay out from any cyber event is capped at $1 million.
Limits of over $10 million are rare (less than 10% of policies written), and for a company to obtain
cyber insurance coverage of $100 million (quite a possible scenario for cyber re-insurance) or more
requires the construction of complex “towers” of coverage involving many different insurance
companies, each taking a small slice. Limits are increasing over time as cyber-insurers gain
confidence, but the protection being offered is not what is being requested by the market. Things
could get worse liability-wise in the future densely device-populated era of the IoT with (cloud-
connected) IoT environments like smart-homes, smart (water) grid, smart agriculture, etc., being
increasingly reliant upon cyber-insurance companies in situations of service failures. Add to this
the extreme risk-averse mindset of cyber-insurers towards cyber-catastrophes and the thought
of future cyber-attack scenarios such as a worse version of the 2017 NotPetya malware, instead of
causing multi-million-dollar losses to several dozen corporations, hitting thousands of companies,
triggering full-limit claims from a sizeable proportion of the insurer’s portfolio. In such cases the
cyber-insurer could have run a cyber insurance business for a decade profitably, achieving low
loss ratios, and then have a single year in which all the reserves it has built up or more are wiped
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out. The frequency and the severity of these multiple-claim catastrophes determine the long-term
profitability and viability of cyber risk as a line of insurance business, and through our analysis
in this article, we show that such multiple-claim catastrophes may indeed be not incentive
compatible for a flourishing cyber re-insurance industry, unless government regulation plays an
important role.

8.3 The Role of a Regulator

It is well known [Bruggeman et al. 2010] that the private catastrophe insurance markets for earth-
quakes, wind damage, floods, terrorism, and the current COVID-19 outbreak have failed (in our
work the analogous state of providing no cyber re-insurance coverage on a cyber-catastrophe),
one after the other, over the last 25 years. As a result, in both the United States and Europe, gov-
ernments have been forced to intervene and design risk management plans. The plans were often
created under time pressure and they differ substantially in their details; see OECD measures in
Bruggeman et al. [2010] for descriptions of both the European and U.S. plans. However, it is in-
triguing to find that they actually share a fundamental design feature, namely that each government
plan has, in effect, created a mechanism through which, similar to our results, a coordinated equilib-
rium is established, where providing re-insurance is incentive compatible.We envision and recommend
such a similar intervention to boost the success of cyber (re-)insurance markets. For example, an act
could be passed for cyber-insurance firms to offer cyber-catastrophe coverage as a rider to their
standard primary coverage. A quid pro quo arrangement could be worked out where the federal
government can provide cyber re-insurance for the highest layer of risk, whereas the state govern-
ments are responsible for private cyber-insurers to cover traditional cyber-risks. Thus, the primary
force of such an act is that it will require a coordinated equilibrium in which all cyber-insurers
must find it economically incentive compatible to offer cyber coverage upon a cyber-catastrophe;
thereby, quite systematically (in accordance to results obtained by us in the article), government
interventions to support catastrophe cyber-insurance markets can, in effect, boost the success of
cyber re-insurance markets. However, in extreme circumstances (aggregate losses in the order of
hundreds of billions or trillions of U.S. dollars), the market for cyber re-insurance can fail, and the
governments need to take up the mantle of cyber-risk coverage. As a current related example in
an analogous context of the recent 2020 COVID-19 outbreak, we observed that governments from
most parts of the world, in order to boost the economy, provided monetary support (analogous to
re-insurance) of amounts (in multi-billion U.S. dollars) far greater than any re-insurer is incentive
compatible with or capable of. Our rationale behind promoting necessary government/regulatory
intervention in the aftermath of catastrophic cyber-attacks stems from the fact that the COVID
attack only causes disruptions of a certain section of the service sector,12 leading to a negative
commercial impact of multi-billion U.S. dollars, whereas a cyber-COVID-19 could cause a dis-
ruption in a major portion or the entire (IT/IoT-driven) service sector, consequently leading to an
adverse commercial impact of trillions of U.S. dollars. Such amounts of risk can only be covered via
government agencies, in addition to voluntary support by wealthy private agencies (e.g., Google,
Facebook) playing integral roles in the IT/IoT services business.

9 ARTICLE SUMMARY

The IoT age will unlock over USD 10 trillion in new economic activity globally with a projected
50 billion IoT devices to be in operation by 2025. While many of these devices will work well and
benefit society, many will be vulnerable even to naive cyber-attacks. To make things worse, due to
common software platforms and applications running on many of these devices, the attack-impact

12People can still work online by staying at home, which might not be possible in case of a cyber-lockout.
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effects will be correlated in time and space. Consequently, when these fail, it will not be un-
reasonable to expect significant aggregate cyber-loss impacts with statistically very heavy
tails, simply because with increasing inter-connectivity, the cost of a failed connection goes
higher. In this article, we investigated the robustness of cyber re-insurance mechanisms to cover
aggregate cyber-losses incurred by organizations in a service-liability setting, under events of
catastrophic cyber-attacks. Such attacks, often characterized by a specific form of heavy-tailed
cyber-risk distributions, are increasingly (and also predictably) on the rise due to the emergence
and pervasive prevalence of IoT technologies in myriad application spaces covering all walks of
life. Surprisingly, as a negative result for society in the event of such catastrophes, we proved via
a game-theoretic analysis that it may not be economically incentive compatible (even under the
ideal constraint of i.i.d. cyber-risk distributions) at a Nash equilibrium for limited liability-taking
risk-averse cyber-insurance companies to offer cyber re-insurance solutions, a sharp contrast to
existing empirical results that show feasibility of cyber-risk spreading for (non-catastrophic) i.i.d.
cyber-risks, this despite the existence of large enough market capacity to achieve full cyber-risk
sharing. We validated this result via an experimental evaluation based on a real-world cyber-
attack setting on a commercial cloud infrastructure. Our efforts serve as a mere conservative
projection of larger-scale IoT-driven supply chain service networks. A potential failure to achieve
a working cyber (re-)insurance market in such demanding situations strongly calls for centralized
government regulatory action/intervention to promote cyber-risk sharing through re-insurance
activities for the benefit of service-networked societies.
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