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In this theoretical paper we compare the Piagetian perspective on knowledge construction to
mathematical model construction, with the aim to understand how mathematical modeling
enables learning of mathematics and learning of science, as is often claimed. We do this by
examining data through two lenses: (i) examining the role of cognitive conflict as it arises during
validation of a model and (ii) viewing model validation as a reflection on activity-effect
relationship. We explain why we chose to look deeply into model validation specifically, present
examples for each lens, and consider implications.
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There has been much interest over the past few decades in the teaching and learning of
mathematical modeling. Typically, investigations seek to understand the process of model
construction. However, research has also looked into how learning of curricular mathematics
beyond modeling may occur as students generate and validate their mathematical models (Zbiek
& Connor, 2006). Taking on a Neo-Vygotskian, socio-cultural perspective, Zbiek and Connor
elaborated on the cognitive processes that constitute modeling as to situate thinking about how
learning takes place during mathematical modeling. In addition, empirical studies have also
shown how a modeling approach to instruction may have an impact on student achievement (e.g.
Czocher, 2017; Schukajlow et al, 2012). At the same time, two lines of inquiry have used
mathematical modeling as an instructional paradigm to guide students’ construction of
mathematical knowledge. The first uses mathematical modeling tasks to teach mathematical
concepts (Lesh et al., 2000) and the second uses the term model to capture the evolution of
conceptual models through mathematical activity (Gravemeijer, 1999; Lesh, Doer, Carmona, &
Hjlmarson, 2003). Both lines of inquiry agree that mathematics can be learned through
constructing models. However, for one to know how mathematical modeling can best be
leveraged to learn mathematical concepts, one first needs to understand how mathematical
modeling may enable learning. In this paper, we illuminate data drawn from cognitive modeling
task-based interviews using two theoretical lenses on mathematical modeling in order to
elaborate how learning may enabled through mathematical modeling.

Perspective on Learning and Knowledge Construction

In order to understand how learning is occasioned through modeling we take on a Piagetian
view on learning and knowledge construction. In this view, learning is considered as a process of
transforming one’s way of knowing and acting. According to Piaget, all construction consists of
activity and all activity is goal-directed. In this sense, all construction (of cognitive structure) is
goal directed (von Glasersfeld, 1983). Hence, we begin from the position that mathematical
modeling is a goal-directed activity and the modeler is working towards an anticipated model as
a goal. Two theories have been highlighted in the constructivist perspective as ways of learning
to occur: the theory of equilibration and reflective abstraction. To support our view of modeling
as a process of construction, we adapt both these views to mathematical modeling and compare
their merits.



Theory of equilibration

One tenet highlighted in constructivist theory is that conceptual transformation is induced by
a perturbing experience. Perturbation is experienced when the cognizing subject is met with a
constraint or clash in the externalized world and therefore goes through adaptation to regain
equilibrium (absence of clashes). According to Piaget, disequilibria is stimulated by conflict,
either between an individual’s action schemes and external realities or among different schemes
within an individual. The cognitive structure undergoes assimilation and accommodation
repeatedly until it seems “fit” in the externalized world. A scheme is an intellectual structure that
organize events as they are perceived and classified according to common characteristics.
Assimilation is the cognitive process by which a person integrates new matter into existing
schemata or patterns of behavior. Assimilation does not result in a change of schemata, but it
does affect the growth and its part of the development. Accommodation modifies the cognitive
structure (scheme) to make it “fit” the external world. According to Piaget, accommodation can
happen in two ways: one can create a new scheme in which to place the new stimulus or modify
an existing schema so that the stimulus fits into. Both forms of accommodation result in change
in the configuration. Piaget refers to the process of assimilation and accommodation as
adaptation (Wadsworth, 2004).

Scholars have since explored the contours of disequilibria and cognitive conflict in different
ways. Limon (2001) defined cognitive conflict as something that occurs when a students’ mental
balance is disturbed by experiences that do not fit their current understanding. Zazkis & Chernoff
(2007) stated cognitive conflict is “invoked when a learner is faced with a contradiction or
inconsistency of his or her ideas” (p. 196). Berlyne (1970) elaborated cognitive conflict as “a
condition in which mutually interfering processes occur simultaneously and in which selection of
a motor response from a set of competing alternatives is therefore hampered” (p. 968), which is
more amenable to empirical work seeking to understand it in the context of mathematics teaching
and learning. Zazlavasky (2015) argued that perplexity, confusion and doubt are often associated
with and evoked by cognitive conflict, suggesting that they may be used as proxies for
identifying instances of cognitive conflict. Within the literature on mathematical modeling, Lesh
et al (2003) identified three kinds of cognitive conflicts arise as models are constructed: within-
model mismatches, model-reality mismatches, and between-model mismatches. Researchers
have studied how cognitive conflict influences or changes a students’ conceptual understanding
(Chan, Burtis, & Bereiter, 1997; Ernest, 1996). At the same time, there is also a body of research
questioning the role of cognitive conflict in the learning of a concept with evidence that
cognitive conflict is only one of the many important factors contributing to learning a concept
(Kang, et al., 2004; Zimmerman & Bloom, 1983).

Theory of Reflective Abstraction

The theory of equilibration only considers how a conceptual change is established when there
is a presence of clashes between the cognizing subject and the stimuli. However, it is incapable
of explaining how we learn during the absence of clashes. Reflective abstraction addresses this
issue. Piaget’s (2001) reflective abstraction is a process by which higher level mental structures
could be developed from lower level structures. This is done in two phases. In the first phase, the
structure at the lower developmental level is projected onto a higher level and in the second
phase these structures are reorganized (Campbell,2001). Piaget (2001) acknowledged that
reflective abstraction is not necessarily a conscious process.

Reflective abstraction was a significant contribution to addressing the learning paradox
(Pascual-Leone, 1976) because it allows for knowledge to be constructed from already-existing



knowledge. Simon and colleagues elaborated on reflective abstraction, offering a new
explanation for conceptual learning in mathematics that not only addresses the learning paradox
but also can contribute to the basis for the design of mathematics instruction (Simon, Tzur,
Heinz, & Kinzel, 2004). The mechanism, Reflection on Activity-Effect Relationship (Ref*AER)
builds on von Glaserfeld’s (1995) tripartite model of a scheme: (1) recognition of a certain
situation (S), (2) specific activity associated with that situation (A), and (3) the expectation that
the activity produces a certain, previously experienced result or the anticipated the activity-effect
relationship (A/E) (Tzur & Simon, 2004). According to Simon and colleagues, an occasion that
can result in learning is present when a learner sets a goal (G). The goal is then assimilated into
situations (S) that are part of the learner’s existing conceptions. From the set of conceptions
related to S, activities (A) are called upon to work towards the goal to which the learner
anticipates the effect of these activities (A/E). While carrying out these activities, the learners’
mental systems engage in continual monitoring, including distinguishing effects of the activity
that advance the goals from effects that do not advance them. During the reflection, the learner
identifies patterns in the outcomes and abstracts a relationship between the activity and the effect
it had on reaching the goal. This abstraction results in a new activity-effect relationship. Here,
activities refer to mental activities, the learners’ goal are not necessarily conscious, and the
effects are the assimilatory conceptions that the learner brings to the situation.

Perspective on Mathematical Model Construction

We view mathematical modeling as a goal-directed activity. To elaborate the modeling
process, we appeal to the cognitive perspective on modeling (Kaiser, 2017) where a
mathematical model is considered to be a cyclic process that transforms a real-world problem
into a mathematical problem. From this perspective it is common to represent model construction
through a mathematical modeling cycle (MMC) such as Blum & Leif3’s (2007) characterization.
Empirical studies have described dimensions along which a model can change as it is constructed
(Czocher & Hardison, 2019) and different ways a modeler can validate her model (Czocher,
2018). Validation is a crucial part of mathematical modeling, because non-viable models are of
little use for solving real-world problems. In many mathematical modeling cycles, validating
occurs at the end of the process (e.g. Blum & Leif3’s, 2007). However, Czocher (2018) argued
that validating not only occurs when one checks the final results against the real-world
phenomena, she attempted to model but in different ways throughout model construction. When
a student attempts to validate her model, she holds two models in her mind: the model she is
constructing and the model she anticipates constructing. As a consequence of this comparison,
the modeler chooses to accept, revise, or reject the model she is constructing. In this way,
validating is responsible for the iterative nature of modeling as well as ongoing monitoring
(Czocher, 2018). Therefore, we conclude that since (a) the outcomes of validating lead to
modifications of the model, and (b) modelers validate both their final products and monitor their
evolving models, validating has a significant contribution in model construction.

For these reasons, we argue that looking deeply into model validation will lead us to
understand how learning happens through modeling. To move the field forward, the paper
focuses on what happens during validation that leads to the acceptance, rejection or revision of
the model, specifically by looking at model validation through two related but different lenses:
(1) cognitive conflicts during model validation and (2) viewing validation as a ref* AER.
Informed by the review of the relevant constructs, we conceptualize cognitive conflict that arises
during validating the model as a discomfort the modeler experiences due to a perceived
discrepancy between the model under construction and the model she anticipates constructing.



At the same time, validating can be seen as a reflection on Activity-Effect relationship. When a
student engages in a modeling task, she is working towards a goal(G) of modeling a real-world
situation. To reach this goal, she calls upon activities or activity sequences (A), which she had
previously abstracted as having certain effects (A/E), that will help her to map her understanding
of the real-world situation to a mathematical structure. While executing these activities, she then
monitors the effects of these activities through the interpretation of her constructed model. Then,
validation is the reflection that compares the anticipated effect to the constructed effect. As
Simon and colleagues stated, “the ability to set the goal subsumes the ability judge the results”
(2004, p.318).

We make the case that if cognitive conflicts and reflective abstraction contribute to the
construction of knowledge, then in the mathematical modeling context, it is through model
validation that cognitive conflict and ref* AER enable learning. This paper first presents an
analysis using the first lens to investigate the decisions made during validation, addresses the
constraints, and then presents the second lens that could address the limitations of the first.

Methods
Data for this study were drawn from a larger study of one-on-one modeling task-based
interviews with undergraduate STEM majors at a large university in the United States. The
students were enrolled in a semester course on differential equations. The overarching goal of the
interviews were to explore and document students’ mathematical reasoning during modeling.
We present examples, to illustrate our case, from one student Jayden, working on the falling
body problem.

The falling body problem: On November 20, 2011, Willie Harris, 42, a man living on the
west side of Austin TX died from injuries sustained after jumping from a second-floor
window to escape a fire at his home. What was his impact speed?

Jayden was purposefully selected to look deeply into the mechanisms of model validation,
because he employed multiple strategies to model the scenario and exhibited observable
modeling mechanisms that helped us in explaining our lenses on model validation. Our primary
research goal was to build second-order models (Steffe & Thompson, 2000) of his mental
activities to explain the factors that shaped his decisions about revising his mathematical model
(or not) as an outcome of his engagement in model validation. Since we did not have direct
access to Jayden’s mental activities, the second-order models are what we inferred from Jayden’s
observable activities including his language, verbal descriptions and discourse, written work, and
on occasion gestures, when they were salient.

For our retrospective analysis of Jayden’s engagement with the falling body task, we carried
out five rounds of data analysis to arrive at examples that could serve for theory-building. First,
we coded the interview for instances of validating, using the method of constant comparison and
according to the operationalization in Czocher (2018). Next, we surveyed the validating
instances for any identifiable cognitive conflicts and these instances were isolated. Third, we
selected examples illustrating cognitive conflict to seek evidence of learning. Fourth, we
catalogued instances of validation that failed to be instances of cognitive conflict. Fifth, we
applied ref*AER to explain the failed examples. Below, we share illustrations of the third and
fifth steps.



Findings

Lens 1 - Cognitive Conflicts during Model Validation

We offer two illustrations of when cognitive conflict arose for Jayden during model
validation. We leverage the illustrations to explain how Jayden modified the model under
construction to accommodate the anticipated model or otherwise left the conflict unresolved.

Jayden began from kinematics equations and successfully modeled the falling body situation
without accounting for air resistance. He justified his choice, asserting that air resistance would
be negligible “when there is either no air or no fluid to fall through, or you were infinitely close
to the ground.” The interviewer challenged Jayden to take air resistance into consideration. In
response, he constructed a first order, linear, homogeneous equation to model the falling body.

He wrote %Et) + BQ = 0, where Q represented the position of the body and % represented its

velocity. He then wrote the generic solution Q(t) = Ce ¢, Jayden wrote Q(t) = Ce™*t with the
intention of figuring out “what A has to equal”. Jayden modeled the situation with the initial
condition for position as Q(0) = 0. Later, Jayden indicated that he was not sure if the model he
constructed was correct. Jayden stated, “I’m not sure if that’s right, I’'m not sure if there should
be some sort of constant increase as you get faster”. He drew two graphs showing an increasing
relationship between velocity and the air resistance (figure 1). However, he was unsure which

representation best matched the situation. He indicated that the linear relationship or the
exponential relationship will determine if di—it) + [ Q would equal zero or would equal a forcing

term, respectively.
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Figure 1: Students’ representation of the relationships between drag force and velocity

He continued to solve the differential equation assuming the initial positions and initial
. . : . d
velocity to be zero. He substituted the general solution Q(t) = Ce At in %t) + BQ = 0 and

obtained the expression ACe® + BCe® = 0 which resulted inA = —B (figure 2). He then engaged
in validating the model he presented by commenting on the reasonableness of it by stating the
following:

it doesn’t really tell me a whole lot because I don’t know what the graph should look like. I
feel like it probably equal some sort of forcing term...because I don’t think that the solution
would end up being...as he increases in position, I don’t think it’s going to be Ce At ... 1
don’t think that this correctly models it.
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Figure 2: First order linear differential equation with initial conditions



Jayden engaged in model validation when he commented on the reasonableness of the model.
Here, the model under construction is the mathematical expression based on the assumption that
the velocity and force change linearly and the anticipated model is the mathematical expression
based on his assumption that “as the velocity gets larger, the force might get greater and greater
and greater” . Jayden was experiencing a conflict between the model he constructed and the
model he idealized, hence anticipated.

Jayden was able to resolve the conflict when he realized that “the wind is always just an
opposing force [so] it could be treated like the force of friction.” He then rejected his
mathematical model by attempting a different solution that used Newton’s laws of motion
because they incorporated the surface area of the body and air resistance. In this episode, Jayden
attended to the model under construction by modifying the assumptions that the model was based
on in order to accommodate the anticipated model. We inferred, based on his sketches, that his
anticipated model was his idealization (based on his real-world knowledge) that as the velocity
increases the force due to air resistance should increase nonlinearly.

Next is an example where Jayden left the conflict unresolved. Assuming the presence of air
resistance, Jayden modelled the falling body using Newton’s laws of motion, taking into the
consideration the surface area of the falling body and a coefficient to capture the influence of air
resistance. He introduced the downward force that the body would experience as F = ma, the air
resistance as F,,- = U,, - S,, and the net force the body would experience as the addition of the
two forces. Here p,, is was the coefficient of air resistance and s, was the surface area (Figure
2). However, he mentioned that the velocity should be somewhere in these equations as well.
This was evidenced by the following statement he made:

I just kind of thought of something. His velocity should be somewhere in here also. Because
the faster you go the more the force will be...but I have no clue how to put that in.
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Figure 3: Student’s model of the falling body including air resistance and surface area.

In order to incorporate velocity in his model Jayden performed a dimensional analysis to
kg-m
s2

balance both sides of the equation in terms of units. He equated 1N = , to the units of u,,, -

Sq. While performing the dimensional analysis, he decided that the surface area should not be
there. He scratched out the symbol for surface area and instead added the “change in velocity for
a time” of the body to the expression (Figure 3). He equated the mass of the body times the
coefficient of air resistance times the “change in velocity for a time” of the body to net the force



that the body would experience due to air resistance. After arriving at the aforementioned model,
Jayden explained:

Intuitively I don’t think I trust that...I mean that’s the answer that I reached, but I really think
that has something to do with the surface area. Because this pencil will drop faster [drops his
pencil from his hands] than a big piece of paper weighing the same amount...so [ don’t
know.

In this instance, Jayden validated the model by commenting on the reasonableness of it,
appealing to his lived experiences. Jayden’s statement that the model was not trustworthy
indicates that he experienced a cognitive conflict. In this case the model under construction was
the mathematical expression he produced (without surface area) and the anticipated model was
his idealized view of the world, where an object’s surface areas affects its velocity through air
resistance. Jayden indicated that he did not know how to rectify the dispute and therefore

presented this as the final expression for wind resistance. He then discussed how he would set

Q()

the force equal to ——= + [Q, obtained from earlier work, in order to find the falling man’s

impact speed. In thls scenario, Jayden accepted his model. However, the conflict was left
unresolved.

While analyzing cognitive conflicts during model validation was a useful way to look at
what happened during model validation that led to the acceptance, rejection, and revisions of the
model, there were limitations to it. First, taking this perspective assumes that learning during
mathematical modeling only occurs during the rejection or/and revision of the model. This is not
necessarily true. Learning could also happen when one is satisfied with the model and accepts it
because accepting the model may also have transformed the modelers way of knowing and
acting about the model. This perspective ignores this case. Second, not all validating instances
coincide with instances of cognitive conflict. Therefore, it is necessary to explain such instances
where model validation is present, but conflict is not. The second lens of looking at validating
was drawn upon to address some of these limitations.

Lens 2 — Validation as a Ref*AER
The following is an example of model validation which could not be explained through the
first lens, can now be explained by viewing validating as a Ref* AER. Recall the scenario where

Jayden modelled the falling body with air resistance with the expression %ﬁt) + fQ = 0and

initial values Q(0) = 0. While considering the initial conditions to solve the differential
equation, Jayden stated:

I’m just trying to think what initial conditions I need to use. I guess I’1l have to just say...
Q(0) = 0 because his position is 0. But I guess it will be better if I said that this was [pause]
let’s see [long pause] ... I guess this is fine [pointing at Q(0) = 0].

Jayden validated his model through evaluating the reasonableness of the initial condition
Q(0) = 0. However, he was not experiencing a conflict because there was no evidence for a
discrepancy between the model under construction and the anticipated model. When Jayden
stated “I’m just trying to think what initial conditions I need to use” we take that as an indication
of him recalling the activities that would lead him to the desired effect and filtering the ones that
would not. Here the goal is to solve the differential equation (G), the activity is drawing on the
appropriate initial condition (A), and the effect is what comes out of solving the differential
equation using the selected initial condition (E). Jayden first considered the initial condition
Q(0) = 0, and next he considered whether they would advance him toward his desired goal. This



is evident when he said, “But I guess it will be better if I said that this was...” Through
reflecting, Jayden ultimately conformed to his initial choice Q(0) = 0, and therefore accepted
his model. In this instance, Jayden was continuously monitoring and reflecting on the effect of
selecting Q(0) = 0 as the initial condition would have towards reaching his ultimate goal.

The following is an example where Jayden rejected his model, which can also be explained
using the Ref*AER lens. Jayden’s initial approach was to draw from the equations of motion
from mechanics. To find the impact speed of the falling body, Jayden wrote the equation s =

ut + %at2 , where s is the distance the body travelled, u is the initial velocity, a is the

acceleration due to gravity, and t is the time it took to travel a distance s. As soon as he realized
that the equation contains the time of fall t, Jayden scratched out the expression and resorted to
v? —u? = 2as . The reason being the first expression required the time of fall, which was not
given in the task. This was an instance of validation because he scratched out the first expression
and attempted a different solution. However, there was no evidence of conflict. In this instance,
the goal for Jayden was to find the impact speed without using the time of fall (G). He stated, “I
could find the time of fall, but it’s not necessary”. His activity (A) was selecting v? — u? =

2as overs = ut + %at2 through cataloguing existing equations and reflecting on the effect they

had in reaching the desired outcome (E). As a result of validating, he rejected his initial
expression and selected another one to meet his desired effect.

Discussion & Conclusions

This study investigated the mechanisms of model validation through two lenses: (i) looking
at cognitive conflicts that arise due to the discrepancy between the model under construction and
the anticipated model, and (ii) viewing model validation as a reflection on activity-effect
relationship. Our analysis offers insight into potential mechanisms for model construction and
suggests a strong link between model construction and Piagetian explanations of knowledge
construction. Studying the nature of cognitive conflicts students experience while engaging in
mathematical modeling and viewing model validation as Ref* AER may be an avenue towards
elaborating how learning occurs through mathematical modeling because it may inform us about
how students make decisions about the viability of their models..

Given the preceding analysis, we close with two considerations: limitations and future
directions. This study only informs us how learning may be enabled through mathematical
modeling and is not capable to inform us on what was learned. At the same time, the paper does
not discuss the explicit treatment of the two lenses and how they can be leveraged to analyze the
mechanism of model construction, yet. Future analysis will investigate this. In order to
understand what was learned through modeling, instances of validating will be analyzed closely,
using the lenses presented in this paper, to see the following: why do modelers chose to accept,
revise, and reject the models? how do they do so? and in what ways? However, this theoretical
paper outlines the extent to which these learning theories are applicable to mathematical
modeling. This we believe is a significant contribution as it sets us open to understanding what is
it that is being learned through mathematical modeling. These mechanisms can then be leveraged
to develop instructional theory that fosters mathematical conceptual learning through
mathematical modeling.
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