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Cold atmospheric plasmas (CAPs) are increasingly used for treatment of complex surfaces in biomedical
and biomaterials processing applications. However, the multivariable, distributed-parameter, and nonlinear
nature of CAP dynamics and plasma-surface interactions, coupled with the sensitivity of plasmas to exogenous
disturbances, make their safe, reproducible and effective operation challenging. This paper adopts a data-driven
linear parameter-varying (LPV) modeling framework to learn a control-oriented model for predictive control

of a kHz-excited atmospheric pressure plasma jet in Helium. A hierarchical model-based control strategy is
proposed based on a supervisory LPV-based model predictive controller (LPV-MPC) to regulate the nonlinear
thermal effects of plasma on a surface. Real-time control experiments demonstrate the effectiveness of the
proposed LPV-MPC strategy for the multivariable control of surface temperature and plasma optical intensity,
as well as for controlling the spatial delivery of the cumulative thermal effects of the plasma jet on a surface.

1. Introduction

Atmospheric pressure plasma jets (APPJs) are a class of cold at-
mospheric plasma devices that are capable of locally producing and
delivering physical and chemical effects, including heat, electric fields,
UV and visible range photons, ions, and short-lived reactive chemical
species (Laroussi, Kong, Morfill, & Stolz, 2012), to complex surfaces.
APPJs are increasingly used for surface processing and biomedical
applications (Laroussi et al., 2012; Mani et al., 2015; Metelmann et al.,
2018; Morent, 2013; von Woedtke, Metelmann, & Weltmann, 2014).
However, reproducible and effective operation of APPJs suffers from
challenges such as run-to-run variations (Shin & Raja, 2007), long
time-scale drifts (Gerber et al., 2017), sharp spatial gradients in temper-
atures and reactive species concentrations (Arjunan, Obrusnik, Jones,
Zajickova, & Ptasinska, 2016; Diinnbier, Schmidt-Bleker, Winter, Wol-
fram, Hippler, Weltmann, et al., 2013), and sensitivity to exogenous
disturbances (e.g., changes in jet tip-to-surface separation distance,
time-varying surface characteristics, ambient temperature, and humid-
ity) (Breden & Raja, 2014; Gerling, Nastuta, Bussiahn, Kindel, & Welt-
mann, 2012; Norberg, Johnsen, & Kushner, 2015; Schmidt-Bleker, Win-
ter, Bosel, Reuter, & Weltmann, 2016). Model-based control strategies

have recently been shown to be indispensable to effective and repro-
ducible operation of APPJs, particularly in safety-critical applications
such as plasma medicine (Gidon, Curtis, Paulson, Graves, & Mesbah,
2018; Gidon, Graves, & Mesbah, 2017, 2019a; Keidar, Yan, & Sherman,
2019).

A major challenge in model-based control of APPJs arises from the
multivariable and nonlinear nature of the plasma dynamics, as well as
the poorly understood plasma interactions with complex surfaces (Mes-
bah & Graves, 2019). Much effort has been invested in the high-fidelity
modeling and simulation of the behavior of cold atmospheric plasmas,
mainly to better understand the complex behavior of the plasma and
plasma-surface interactions (Lee et al., 2011; Van Dijk, Kroesen, &
Bogaerts, 2009). However, high-fidelity plasma models are generally
computationally expensive and therefore are not amenable to repeated
simulations. The computational complexity of plasma simulations can
further increase when incorporating surface effects of the plasma that
may occur across multiple length- and time-scales (Bhoj & Kushner,
2006). Thus, high-fidelity plasma models are not suited for model-based
controller design, particularly for optimization-based control strategies
such as model predictive control (MPC) (Rawlings & Mayne, 2009) that
rely on repeated model solution and optimization in real-time.
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In Gidon et al. (2017), a lumped-parameter, physics-based model
was used for control-oriented modeling and MPC of a radio-frequency
APPJ in Argon. However, such simplified physics-based models typi-
cally depend on several assumptions that can be difficult to validate.
In addition, it is often impractical to describe the complex inter-
play between chemical, physical and electrical effects of the plasma
delivered to a surface using simplified physics-based models. Alter-
natively, purely data-driven modeling approaches such as subspace
identification (Van Overschee & De Moor, 2012) have been shown to
yield adequate descriptions of APPJs for multivariable control using
MPC (Gidon et al., 2018). However, the main limitation of the resulting
linear time-invariant (LTI) models stems from their inability to cap-
ture the inherently nonlinear dynamics of plasma and plasma-surface
interactions. Thus, MPC strategies designed using LTI models can be
effectively deployed only within a limited operating range of APPJs.

In this work, we adopt a purely data-driven approach in linear
parameter-varying (LPV) framework (Mohammadpour & Scherer, 2012;
Rugh & Shamma, 2000) for modeling and predictive control of a kHz-
excited APPJ in Helium. LPV representations enable describing nonlin-
ear and time-varying dynamics of complex systems in a (parametrized)
linear setting. LPV models can be identified in state-space or input—
output forms, the main feature of the latter being its capability to
identify computationally efficient and yet highly accurate models by
solving a low-complexity estimation problem using extensions of LTI-
based approaches (Laurain, Gilson, Téoth, & Garnier, 2010). As such,
LPV models are represented in terms of parametrized linear dynamics
in which the model coefficients or state-space matrices depend on
measurable parameters, called scheduling variables (Rugh & Shamma,
2000; Téth, 2010). Thus, LPV models allow for the use of prevalent
linear control synthesis tools for the design of model-based controllers
for systems with nonlinear and time-varying behavior; see Moham-
madpour and Scherer (2012) and references therein. Several successful
applications have demonstrated the promise of LPV control in practice,
see, e.g., Abbas, Ali, Hashemi, and Werner (2014), Bachnas, Téth,
Ludlage, and Mesbah (2014) and Mohammadpour and Scherer (2012).
MPC strategies based on LPV model descriptions (LPV-MPC) have also
developed into a popular approach for controlling nonlinear and time-
varying systems (Abbas, Hanema, T6th, Mohammadpour, & Meskin,
2018; Casavola, Famularo, & Franzé, 0000). However, designing LPV-
MPC controllers critically hinge on identifying accurate LPV models.
Hence, there has recently been increasing interest in data-driven LPV
model identification approaches (Rizvi, Velni, Abbasi, T6th, & Meskin,
2018; Téth, 2010).

The main contribution of this paper lies in the identification of a
data-driven LPV model for a kHz-excited APPJ in Helium and using
the model for the design of a hierarchical model-based control strategy
based on a supervisory LPV-MPC controller. The performance of this
LPV-MPC strategy is demonstrated in real-time control experiments
for two cases: (i) the multivariable control of surface temperature and
plasma optical intensity in the presence of setpoint changes and dis-
turbances in jet tip-to-surface separation distance; and (ii) the control
of spatial delivery of the nonlinear thermal effects of a stationary
APPJ, where a soft sensor is used for online estimation of the delivered
thermal effects to the surface. The real-time control experiments reveal
that the LPV-MPC strategy allows reproducible and effective operation
of the APPJ over a relatively broad operating range of the APPJ, which
is particularly useful for biomaterials processing applications.

This paper is organized as follows. Section 2 describes the ex-
perimental setup of the kHz-excited APPJ in Helium, as well as the
plasma treatment objectives. Section 3 describes the proposed hierar-
chical model-based control strategy based on a supervisory LPV-MPC
controller. Section 4 introduces the basic concepts and formulations of
LPV modeling in input-output form and the LPV-MPC design. The per-
formance of the proposed control strategy is demonstrated in real-time
control experiments in Section 5.
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2. Atmospheric pressure plasma treatment of complex surfaces

This section describes the APPJ setup that is used to collect data for
LPV model identification and to conduct real-time control experiments.
In addition, the control objectives for the two case studies considered
in this work are described later in this section.

2.1. APPJ setup

The kHz-excited APPJ in Helium (He) shown in Fig. 1 is used for
model identification and real-time control experiments. The details
of this experimental setup are given in Gidon, Graves, and Mesbah
(2019b) and briefly reviewed here. The APPJ consists of a copper
ring electrode wrapped around a quartz tube, which serves both as
a dielectric barrier and as the gas flow channel. A high alternating
current (AC) voltage at a frequency of 20 kHz is applied to the electrode
to achieve plasma ignition. The amplitude of the applied voltage is
actuated via a custom-made function generator (XR-2206CP) interfaced
with a micro-controller (Arduino UNO). The He flow rate is actuated
via a mass flow controller (UFC-1200A), which is also interfaced with
the micro-controller. A stepper motor attached to the quartz tube allows
actuation along the vertical axis, thus enabling the manipulation of the
jet tip-to-surface separation distance.

A fiber optic directed at the plasma-surface incident point collects
the plasma optical emission intensity. A radiometric infrared thermal
camera (Lepton FLIR 3) pointed at the surface is used to obtain spatially
resolved measurements of surface temperature. AC-to-RMS converters
(AD536A) allow embedded measurements of the plasma voltage and
the current leaving the ground plate. These two measurements are used
to compute applied power as Py, = Viyslms- The applied voltage is
manipulated by an embedded proportional integral (PI) controller to
maintain the applied power at a desired setpoint. Data acquisition and
control are managed by a single board computer (Raspberry Pi 3) in
Python. Data processing is performed in MATLAB using a conventional
laptop, while the MPC algorithm is run in Python using the same laptop.
The measurement and actuation signals between the laptop and the
setup are exchanged over WiFi using TCP/IP communication protocol.

In summary, the APPJ setup can be thought of a system with two
inputs and two outputs. The inputs are the He flow rate g and the power
setpoint to the PI controller P, while the outputs are the spatially
resolved surface temperature 7T'(x,y) and the plasma optical intensity
1. Note that, depending on the control objective, one can extract the
maximum surface temperature T,,,, instead of using the entire vector
of the spatially resolved surface temperature.

2.2. Plasma treatment objectives

Safe and effective operation of APPJs requires control of instan-
taneous and cumulative effects of the plasma on the treated surface.
These effects are often coupled and distributed across multiple time-
and length-scales. The maximum surface temperature (7},,¢) is a key
variable characterizing the thermal energy deposited on the surface
by the plasma. On the other hand, plasma optical intensity (/) at
the surface incident point is a proxy for the non-thermal effects of
the plasma treatment, such as chemical effects. It is often desirable
to maintain different combinations of maximum surface temperature
and plasma optical intensity during the treatment via multivariable
control (Gidon et al., 2018). However, these output variables are tightly
coupled and exhibit nonlinear dynamics.

Furthermore, delivery of spatially distributed and cumulative ef-
fects of the plasma to the surface, i.e., “plasma dose”, is often one
of the key objectives in the plasma treatment of complex surfaces.
Generally speaking, plasma dose is intended to describe the nonlinear
and non-decreasing nature of energy and/or species deposition on a
surface (Gidon et al., 2017). Here, we focus on the delivery of spatially
distributed thermal dose. We quantify the thermal dose using the metric
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Fig. 1. Diagram of the experimental setup of the kHz-excited APPJ in He. The dashed arrows represent the flow of information, including the signals corresponding to the inputs

(blue), embedded measurements (green), and slower time-scale measurements (brown). (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

of cumulative equivalent minutes (CEMy), widely applied for dosing
hyperthermia treatments (Dewhirst, Viglianti, Lora-Michiels, Hanson,
& Hoopes, 2003), defined as

t
CEM; = / KT dqr, )
0

where K is chosen to represent the thermal stress-response of the
treated surface. In this work, K is given by

0 T <39 °C,
K={ 025 39°C<T <43°C, 2
0.5 T >43°C,

which describes the temperature response of Chinese hamster ovary
cells (Dewhirst et al., 2003).

A key observation in the thermal dose delivery using APPJs is that
the spatial distribution of the surface temperature is radially symmet-
ric (Gidon et al., 2019a, 2019b). Hence, a Gaussian parameterization
can be used to approximate the surface temperature distribution as

2
T(r) = (Tnax — Tinf) €Xp <6;_(t)> + Tings 3

where T is the ambient temperature, r is the radial distance from
the centerline of the jet, and o is the standard deviation of the dis-
tribution, which may change with time. The objective of the thermal
dose delivery problem is then to maintain the width of the dose
distribution (related to parameter o) at the desired value while ensur-
ing that the desired maximum dose (related to the maximum surface
temperature at the jet centerline, T},,,) is delivered at the end of the
treatment time (Gidon et al., 2019b). Moreover, constraints associated
with practical operation considerations (e.g., patient safety and comfort
during plasma treatment) should be respected. The control objectives
considered in this paper are discussed in the next section.

3. Hierarchical control strategy based on LPV-MPC

We investigate two control problems for the kHz-excited APPJ in
He. In Case I, we aim to achieve setpoint tracking for maximum
surface temperature and plasma optical intensity in the presence of
disturbances in jet tip-to-surface separation distance. To this end, a
hierarchical control strategy is proposed (see Fig. 2), where an LPV—
MPC controller is used in a supervisory capacity to compute the optimal
power setpoint P and the He flow rate g that are applied to the

set =
set  rset Pt Vapp
T I ——f v T [mbepfded — APP)

Tinax:

Fig. 2. Block diagram of the hierarchical control strategy for Case I. The control

objective is to track setpoints for maximum surface temperature 75¢ and plasma optical

intensity I¢t. The LPV-MPC controller computes optimal setpoint for the embedded
power controller P*' and the optimal He flow rate g.

APPJ using a basic PI control layer. The He flow rate setpoint is sent
to the mass flow controller, whereas the power setpoint is sent to
an embedded PI controller that adjusts the power delivered to the
APPJ. In Fig. 2, the inner loop, depicted by the dashed lines, shows
the embedded PI controller used to maintain the plasma power at its
setpoint by manipulating the applied voltage V,,,. The formulation of
the LPV-MPC problem is discussed in Section 4.

In Case II, we aim to control spatial thermal dose delivery to a
surface using a stationary APPJ. The block diagram of the hierarchical
control strategy is shown in Fig. 3. The key difference between Case
I and Case II is the use of a soft sensor, which allows converting
the cumulative dose reference CEMfref to an instantaneous temperature
setpoint TS . The soft sensing strategy relies on inferring the desired
rate (i.e., derivative) of dose delivery. With dose delivery rate defined,
it is possible to invert the dose metric at every sampling instant
to algebraically obtain the corresponding maximum temperature set-
point (Arora, Skliar, & Roemer, 2005). Given the dose accumulated in
time instant k, CEMry , the linear rate of the dose delivery to achieve
a desired final dose CEM,‘Fef at the end of operation ¢, is computed as

CEMESf — CEM
T Tk 4)

@
tr—1

The reference thermal dose for the next time point given the linear dose

delivery rate can then be computed from

CEM, = CEMy; + ayltyp; — 1. 5)

The maximum temperature setpoint 75 = corresponding to the desired
max.k

increase in dose can be computed by inverting the dose metric (1),
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Fig. 3. Block diagram of the hierarchical control strategy for Case II. The control
objective is to track setpoints for the standard deviation of surface temperature

distribution ¢*** and maximum surface temperature 73 computed by the soft sensor.

The LPV-MPC controller computes the optimal setpoint for the embedded power
controller P*¢* and the optimal He flow rate q.

resulting in

ot _ M(CEMFY -~ CEMz;) >0 ©
maxk 30°C otherwise,

where the function M(-) denotes the inverse of the dose metric func-
tion. Since the inverse of the dose metric is not real-valued when «;, is
negative (i.e., the delivered dose exceeds the reference), T;f;xv i is set to
its lower bound.

4. LPV-based model identification and predictive control design

This section discusses the data-driven LPV model identification in
input-output form, followed by conversion of the input-output model
to a state-space LPV model, which is then used to formulate the
LPV-MPC problem.

4.1. LPV model identification in input-output form

An LPV input-output (I0) representation can be described in differ-
ence equation form by
Ny Np
k) =— Z a;(p(k)y(k — i) + Z b;(p(k)u(k — j) + w(k), @)

i=1 Jj=0

where u(k) : Z - R™, yk) : Z - R" and pk) : Z - P c R
are, respectively, the input, output and scheduling variable vectors at a
discrete-time instant k, w(k) represents an additive disturbance vector,
a;,b; are matrix functions of p with appropriate dimensions that are
bounded within the parameter set P

P:={p€R™ | pjmin P < Dimax> i = L2,..,mp).

The parameter set is assumed to be convex. n, in (7) denotes the system
order such that n, > n, > 0.

The LPV representation in (7) enables identification of low-
complexity and yet reasonably accurate LPV descriptions of nonlin-
ear and time-varying systems under practical assumptions on the
disturbances and measurement noise (e.g., Laurain et al., 2010). An
important step in parametric-based LPV model identification is the
parameterization of the coefficients ¢; and b; (T6th, 2010). Assuming
that p is scalar, one simple approach is to consider polynomial functions
as follows

c(p)=co+c1p+czp2+ T 8)

where {¢j,c;,...} are constants with appropriate dimension according
to a;, b; and the number of the scheduling variables (note that ¢ is used
here as a proxy for model coefficients a and b in (7)). The constants in
(8) constitute the parameters that should be estimated in LPV model
identification. Note that, instead of polynomials, other basis functions

can also be considered for the parameterization of the coefficients q;
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and b;, with potentially nonlinear dependence on the parameters p
(see Té6th, 2010).

In order to use linear regression for estimation of the constants
in (8), an autoregressive with exogenous input (ARX) model struc-
ture (Ljung, 1999) is commonly used, which implies that the distur-
bance w(k) in (7) is assumed to be a zero-mean, discrete-time white
noise process with a normal distribution. Accordingly, the LPV model
identification problem can be formulated as a least-squares estimation
problem, which can be solved efficiently. For multi-input multi-output
(MIMO) LPV models, one model is typically identified for each output
to simplify the identification problem. Thus, the MIMO LPV model is
effectively described by a collection of multi-input single-output (MISO)
models. For each MISO model, q; is a scalar and b; is a (row) vector
corresponding to the number of inputs », in (7).

Based on the ARX model structure considered in this work, the
predictor of (7) is formulated for the MISO case in the linear regression
form as

k)= (k)0 plk) = p(k) ® n(k), ©

where 0 = [cg ’ClT’ ]T for both a; and b;, ® denotes the Kronecker

product, ¢(k) is the regressor vector given by

@(k) = [=y(k—=1) =y(k=2) - —y(k=n,) u(k=1)T u(k=2)T - u(k—ny)"1",
(10)

and

nk)y =1 f1(p(k)) fr(p(k)) 1T, 11

with f;(-) : R" — R being continuous basis functions that can capture
nonlinear dependence on p. Note that dependence on shifted versions
of p in time, i.e., {--, p(k — 1), p(k), p(k + 1), ...}, (referred to as dynamic
dependence Téth, Abbas, & Werner, 2012) can also be considered
in n(k), which is the most general form of scheduling functions. The
representation in (9) allows using the prediction error system identifi-
cation method (Ljung, 1999), which employs least-squares estimation
to obtain 6 as follows

o=@ @) oy, (12)
where

Y = [y(1) y2) -
and

@=[p) 2" - dNY'I",

with N, denoting the number of data samples.
The MISO LPV models can be represented in a state—space form for
the control design purposes, as discussed next.

YINIT

4.2. Conversion of input—output LPV model to state-space LPV form

In order to design LPV-MPC controllers for the APPJ system, the
identified LPV-IO models are transformed into an LPV state-space (SS)
form. In general, transforming LPV-IO models to LPV-SS form, or vice
versa, results in the so-called dynamic dependence since the trans-
formed model would depend on time-shifted versions of the scheduling
variable(s) (T6th et al., 2012). The presence of dynamic dependence
leads to difficulties in terms of controller design and implementation,
as it could lead to dependence on future samples of the scheduling
variables. To this end, we employ the augmented state-space form for
converting the identified LPV-IO models by considering the dependence
on p(k—2) in (7). This allows deriving an augmented equivalent LPV-SS
representation in a straightforward manner as follows.

We rewrite the identified LPV-IO model as

k) = —a1(pp_p)Pk = 1) = ay(py_2)P(k = 2) = -+ — @, (p_2)(k — n,)
+by(p_u(k — 1) + by(py_n)u(k = 2) + -+
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+b,,, (P o)u(k — ny). 13)

MIMO LPV-IO models are constructed with coefficients a; being diago-
nal matrices. Therefore, we can convert the MIMO models of the special
form (13) of dynamic dependence by first multiplying both sides of (13)
by the forward time shift operator, which yields

Yk +1) = —a;(pr_IK) — ax(pp_ Pk = 1) — - —a, (p_Ik —ny +1)
+b1(p_u(k) + by(pr_puk — 1) + -
+b,,b(pk_l)u(k —ny +1). a4

Note that in (14) the dependence is on p,_, instead of p,_,. To achieve

offset-free control, we define Au(k) = u(k) — u(k — 1). Substituting this

into the above equation gives

Y +1) = —ay(p_DIK) — ay(pr_ Pk = 1) — -+ —a, (pp_Ik —ny + 1)
+b1 (pr_)Au(k) + (b1 (_y) + bo(py_y)) ulk — 1) + -+
+by, (P u(k — ny + 1).

Next, we introduce the augmented state vector

x(k)

T
= [ﬁT(k) PT(k—1) Pk—n,+1) u'(k=1) uT(k—nb+1)] >

(15)

where x € R™ with n, = nyn, + n,(n, — 1). This leads to an augmented
LPV-SS model in the form of

x(k + 1) = A(py_1)x(k) + B(py_,)Au(k) (16a)
J(k) = Cx(k), (16b)
where
7_01 —ay-1 —a, (bl + bZ) bnb—l bnbi
I, 0 0
y
0 I, 0 0 0 - 0
A(Pk_l) = Y 5
0 0 0 I, 0 0
0 0 0 I, 0 0
| o 0 1, 0 |
_b]
0
0
B(p,_) = , and C=|L, 0 = = o 0
0
0

Note that the representation of the matrices A(p,_;) and B(p,_;) is
simplified by dropping the dependence of 4;,b; on p,_,.

Remark 1. In this work, the system inputs are also the scheduling vari-
ables. Since the system inputs are computed by the control algorithm at
every time instant k, they introduce a nonlinear interdependence that
can make the control problem very slow, or even intractable. Therefore,
we use the inputs at time & to schedule the control system at the next
time instant k + 1. The interdependence is thus circumvented because
of the chosen dynamic dependence, which resulted in the dependence
of the LPV-SS model (16) on p(k — 1).

The predictions of the LPV-SS model (16) over a prediction horizon
N as a function of the measured state x(k) and incremental inputs AU (k)
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can be compactly written as

X (k) = A(k)x(k) + B(k)AU (k) (17a)
Y (k) = C(k) X (k), (17b)
where
X =[x x(k+ DT x(k+2)7T x(k+N)T]T,
Y= [T pk+DT  Hk+2)7 Pk + N)T]T ,
AU(K) = [Au()T  Au(k +1)T duk+ N -DT]",
I 0 0 0
A B 0 0
A(ky=| A% |, B(k)=| AB B 0],
AN AN-1B  AN-2B B

C(k) = diag([C., ..., C)).

Note that the system matrices A, B and C are dependent on the schedul-
ing variables and thus must be updated at every sampling time k once
the scheduling variable p(k — 1) becomes available. Here, it is assumed
that the scheduling variable is fixed over the prediction horizon. The
control inputs U(k) = [u(k)T  u(k+ 1T u(k + N — 1)T]T can be
updated at each sampling time k by

Uk) = Yu(k — 1) + ITAU (k), (18)
where

I, L, 0 - 0
y = Inu 7= L, I, - 0

/ L, L, = I,

4.3. LPV-MPC problem formulation

The compact representation of the LPV-SS model over the prediction
horizon N, i.e., (17), can now be used to formulate the LPV-MPC prob-
lem. At every sampling time k, the LPV-MPC entails online solution of
the following optimal control problem

min Yoer (k) = Y (O)lig + 14U oI, (19a)
s.t. X(k) = A(k)x(k) + B(k)AU (k), (19b)
Y (k) = C(k)X (k). (19¢)
AU, < AU(K) < AUy, (19d)
Yinin S Y (k) < Yipaxo (19e)
Ui < U(K) <ty (190

x(k) = [y" (k) yT(k=1), =,y (k—n, + 1),
Wlhe=1), o, uT(k—nmy+1), ], (19g)

where AU (k) constitutes the decision variables of the optimization
(the prediction horizon N is assumed to be equal to the control hori-
zon for notational convenience); Yor(k) = [Vser(k + 17 yger(k +2)7 -
Yset(k + N)T| denotes the output setpoints over the prediction hori-
zon; Q(k) = diag([Q,...,Q]) and R(k) = diag([R,...,R]), with Q >
0, R > 0 being weight matrices with appropriate dimensions; and
the subscripts min and max denote the lower and upper bounds of
the input and output constraints with appropriate dimensions. The
optimal control problem (19) is implemented in a receding-horizon
fashion, whereby the optimization problem is solved at each sampling
time k to obtain an optimal sequence of control inputs AU*(k) =
[Au* (k)T Aw* (k + 1)T -+ Au*(k + N — 1)T]. Then, the first optimal value of
the sequence, i.e., 4u*(k), is applied to the system as u*(k) = Au*(k) +
u*(k —1).
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Remark 2. Model predictions in the LPV-MPC depend on the future
values of the scheduling parameters, which are usually not available
in advance. A practical approach is to assume a constant value for the
scheduling parameters over the prediction horizon. This way, the online
optimization problem can be cast as a quadratic programming problem,
as shown in the Appendix.

5. Experimental results

In this section, we first describe the data-driven LPV model iden-
tification for the kHz-excited APPJ in He, which is shown in Fig. 1.
We then discuss real-time control implementations of the LPV-MPC
hierarchical control strategies presented in Section 3.

5.1. LPV model identification and validation

Based on the control objectives specified in Section 3, we identify
two MIMO LPV models using the inputs/outputs data collected from
the APPJ. The controlled outputs of the first model are the maxi-
mum surface temperature 7,,,, and plasma optical intensity I (Case I),
whereas the controlled outputs of the second model are 7,,,, and the
standard deviation of the surface temperature distribution ¢ (Case II).
The manipulated input variables of both models include the gas flow
rate ¢ and the embedded power set P, (see Section 2). We identify
a separate model for each controlled output as a multiple-input single-
output (MISO) system, where g; is a scalar and b : is a1 x 2 vector, since
n, =2 and ny =1 in (7). This enables straightforward conversion of the
MIMO LPV model to the state-space form, as discussed in Section 4.2.

The two manipulated variables are chosen as the scheduling vari-
ables of the LPV-IO models due to their direct effect on the system
outputs and thus the operating region. We consider two cases for the
LPV model identification: using a single scheduling parameter P, and
using two scheduling variables P, and ¢. Furthermore, the coefficients
a; and b; are considered to be dependent on p(k — 2) in (7), instead
of p(k), to avoid dependence of future outputs on future values of p
when the identified LPV-IO models are converted into the state-space
form for the MPC design. In addition, the coefficients ¢; and b; are
parametrized with polynomial basis functions, as in (8), whose order
ranges from third to fifth order.

To obtain low complexity models that are amenable to real-time
computations while at the same time can adequately fit the given input—
output data, we chose the order in (7) as n, = n, = 2 for modeling
Tmax and I; and n, = n, = 3 for modeling o. It was observed that
increasing the order did not result in significant improvement in the
quality of models. Furthermore, for the MISO LPV-IO models of T,
and I, we considered one sample delay in both input channels, which
implies b, = 0 in (7). For the MISO LPV-IO model of ¢, we considered
two sample delays in g, i.e., by = b; =0, and one sample delay in P,,.

Based on the ARX structure considered in this work, we formulated
the predictor (7) for each MISO model in the linear regression form (9),
with the regressor vector (10) and #(k) given by (11), where p(k — 2)
is replaced by p(k). This allows for using the scheduling parameters as
the control inputs in the LPV-MPC problem. The design of sufficiently
rich input signals is crucial for a proper excitation of the important
modes of the system for model identification. The excitation signals
used here are shown in Fig. 4. These signals are chosen to cover various
input combinations of interest, whose order is subsequently shuffled.
Since the APPJ system is stable, the excitation experiments and the data
collection were conducted in open loop.

To examine the quality of the identified LPV-IO models, the best fit
rate (BFR) criterion, a.k.a. fit score, is used (Ljung, 1999)

@) = 50l 0)
(k) =yl /)7

where y,, is the mean of y and || - ||, denotes the #, norm. We assessed
the quality of the identified models using an independent dataset. The

BFR = 100% max <l
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Fig. 4. Input signals used for exciting the kHz-excited APPJ in He to generate data
for input-output LPV model identification.

Table 1
Structure of the input-output LPV models with two scheduling variables.

Output gy, My Delay in samples Polynomial order
Tinax 2,2 1 3
1 2,2 1 3
o 3,3 2 in g, 5
1in P,

set

model predictions for the outputs T, and I are superimposed with
the validation data and are shown in Fig. 5. It is apparent that the
predictions of the LPV model with two scheduling variables (Fig. 5(b))
outperform the predictions of the LPV model with a single scheduling
variable (Fig. 5(a)). For the LPV models with two scheduling variables,
the BFRs of T,,,, and I are 79.74% and 70.27%, respectively. For
the LPV models with a single scheduling variable, on the other hand,
the BFRs of T,,, and I are 75.58% and 67.83%, respectively. For the
prediction of ¢, we only considered an LPV model with two scheduling
variables. The predictions of ¢ along with the validation data are shown
in Fig. 6. The BFR of ¢ is 57.27%, which indicates lower prediction
accuracy compared to the other outputs. However, such prediction
capability is adequate for the purpose of LPV controller design, as
shown in the next section. Specifically, we accept the relatively low
value of BFR for ¢ because ¢ is only used for controlling the width of
the distribution of the delivered thermal dose; the surface temperature
that has a BFR of 79.74% is the most important variable to control (see
Fig. 9). Table 1 summarizes the structures of the LPV-IO models that
are used for the design of the LPV-MPC controllers. For more clarity,
the structure of the matrices 4;(.) and b;(.) in (7) for the identified
2-input/3-output model are

a0 0 a0 0 0 0
ap=|0 @ 0] a=|0 &> 0] a=|0 0 0]
0o o a’ 0o o &’ 0 o a?
b} B} b} B)? [0 0
by =|b7" B2, by=|b3" B3|, by=|0 0|
K G BB

where the coefficients 6%',&&1,5}1,7)%2, bl pl2, 22 22 521,13%2, 1321,1322
are 3rd-order polynomials of p(k—2) and ﬁ?z’, 623, ﬁf, 1331’2, I_rzl, Bgz, 1332, 532
are 5th-order polynomials of p(k — 2), see (8). In the case of the LPV
model with two scheduling variables, these coefficients are bivariate
polynomials without the interaction terms. Therefore, the total number
of the identified constant parameters are 96 and 172 for the LPV model
with one- and two-scheduling variables, respectively.
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(a) LPV model with one scheduling variable

Fig. 5. Predictions of the input-output LPV models with: (a) a single scheduling variable ,

outputs are the maximum temperature 7, and plasma optical intensity 1.
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Fig. 6. Predictions of the input-output LPV model with two scheduling variables
compared to an independent validation dataset. The output is the standard deviation
of the surface temperature distribution o.

5.2. Real-time control experiments

Once the LPV-IO models are identified, they are converted to the
state-space form (17), as described in Section 4.2, and used to for-
mulate the LPV-MPC problem (19). Two case studies are considered
for the real-time control experiments: Case I — setpoint tracking in
the presence of exogenous disturbances; and Case II — thermal dose
delivery to a surface when the APPJ is stationary; see Section 3. The
setpoints and constraints, as well as the tuning parameters, of the
LPV-MPC problem for each case are summarized in Table 2.

Case I: Setpoint tracking for plasma optical intensity and maximum surface
temperature

The control objective is to track time-varying setpoints for the max-
imum surface temperature T},,, and plasma optical intensity I. Two
LPV-MPC controllers are designed based on two LPV models that use
a single and two scheduling variables, as described in Section 5.1. The
LPV-MPC controllers are implemented on the APPJ via the hierarchical
control strategy depicted in Fig. 2.

Fig. 7 shows the closed-loop performance of the control strategy for
both LPV-MPC controllers. The real-time control experiments suggest
that the increased complexity of the LPV model (i.e., including more
scheduling variables) allows capturing the APPJ behavior more accu-
rately, which results in an improved setpoint tracking performance.
The LPV-MPC controller based on the LPV model with a single sched-
uled variable, i.e., setpoint to the embedded power controller P,
leads to high-frequency oscillatory behavior in the inputs and outputs
(Fig. 7(a)). In particular, it is difficult to adequately control the plasma
optical intensity I with this controller. In contrast, the LPV-MPC con-
troller based on two scheduling variables, i.e., P, and He mass flow

Control Engineering Practice 109 (2021) 104725

Data Model

50

40

1 ;‘llﬂ); (” (‘ )

30

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000
Time (s)

(b) LPV model with two scheduling variables
and (b) two scheduling variables compared to an independent validation dataset. The
Table 2

Specifications and tuning parameters of the LPV-MPC problem (19) for the real-time
control experiments in Case I and Case II.

Case I Case II
N 5 5
Q diag([5.11) diag([0.5,1])
R diag([0.1,0.025]) diag([0.3,3])
Thax CO) (0,45]* (0,45]
I (a.u.) [10, c0) [10, 00)
g (slm) [0.8,5] [0.8,5]
P (W) [1,5] [1,5]

3T ax is constrained by (0,43] in the disturbance rejection case shown in Fig. 8.

rate g, demonstrates an improved closed-loop tracking performance
(Fig. 7(b)). In this case, the oscillatory behavior of the APPJ inputs
is largely mitigated and the setpoint for the plasma optical intensity
is tracked more effectively. Thus, the outputs under the LPV-MPC with
two scheduling variables exhibit a smaller overshoot of their respective
setpoints (less than 1 °C), while having a shorter settling time (c.f., time
= 0-100 s in the temperature trajectories in Fig. 7) compared to the
outputs under the LPV-MPC with one scheduling variable. Moreover,
the setpoints have been attained very fast with maximum rise time
of 9 and 2 samples for the temperature and the plasma intensity,
respectively, with almost no steady-state errors. Furthermore, although
both controllers generate control inputs that are within the desired
input bounds (shown by the gray lines in Fig. 7), the LPV-MPC with
a single scheduling variable leads to much more aggressive control
actions. In practice, this can lead to actuator damage, which can be
both dangerous and costly. Besides the more-aggressive nature of the
control actions resulting from LPV-MPC with one scheduling variable,
the manipulated inputs can also be seen to saturate frequently, which
is a further indication of poor control performance.

The hierarchical control strategy based on LPV-MPC provides a
significant advantage over the MPC strategy based on an LTI subspace
identification model reported in Gidon et al. (2018). This is because
the LPV-MPC controller allows exploiting a broader APPJ operating
range by tracking a broader range of setpoint combinations for the
tightly coupled outputs T},,, and /. Similarly, the LPV-MPC controller
can be expected to reject a broader range of disturbances acting on
the APPJ. To test this, we investigate the ability of the controller in
rejecting a disturbance in the jet tip-to-surface separation distance,
which may routinely occur in the hand-held application of APPJs
(e.g., for medical applications) or in treatment of surfaces with non-
uniform topology. Variations in jet tip-to-surface separation distance
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Fig. 7. Closed-loop performance of the hierarchical control strategy in Case I using LPV-MPC controllers scheduled based on: (a) one single scheduling variable, and (b) two

scheduling variables. Controlled variables include maximum surface temperature T,
embedded power controller P,,.

can drastically affect APPJ characteristics and their impacts on surfaces,
including electric fields, delivered chemical species concentrations,
and surface temperature (Breden & Raja, 2014; Gerling et al., 2012;
Wu, Wand, Huang, Lu, & Pan, 2011). Thus, maintaining the APPJ
characteristics in the presence of variations in jet tip-to-surface is key
for reliable operation. Fig. 8 shows the closed-loop performance of
the LPV-MPC controller scheduled with two variables in the presence
of a step disturbance in APPJ tip-to-surface separation distance. The
separation distance is increased from its nominal value of 4 mm up to
8 mm at t = 80 s and is returned to its original value of 4 mm at 7 = 160
s. The proposed control strategy demonstrates excellent performance
in rejecting this disturbance, since it is able to track the setpoints in
Tmax and I with minimal deviation. This is in contrast to previous
PI and MPC controllers tested on the same APPJ testbed, whereby
both the surface temperature and plasma intensity deviate significantly
from their setpoints, leading to constraint violations that are critical for
the safe plasma treatment in medical applications (e.g., see Figure 7
in Gidon et al., 2018).

Case II: Thermal dose delivery with stationary APPJ

The control objective in this case is to deliver a thermal dose of
CEM;ef = 5 min during a plasma treatment time of less than 5 min
(see (1)). The thermal dose delivery problem is recast as a setpoint
tracking problem in two steps: (i) the reference thermal dose CEMrTef
is converted to a setpoint tracking problem in terms of maximum
surface temperature 7}, using the soft sensor (4)—(5), and (ii) the
spatial variation of dose delivery is regulated by tracking a setpoint
for the standard deviation o of the spatial distribution of the surface
temperature. An LPV-MPC controller with two scheduling variables is
designed, which is implemented on the APPJ using the hierarchical
control strategy depicted in Fig. 3.

Fig. 9 shows the closed-loop performance of the proposed control
strategy for regulating the thermal dose delivery. It is apparent that
the setpoint for T, is not tracked particularly well (see Fig. 9(a)). This
is mainly a result of the weights assigned to Tj,,, and ¢ in the control
objective of the LPV-MPC problem (19); as listed in Table 2. Due to the
tight coupling between ¢ and T},,,, multivariable control of these two
variables is particularly challenging. However, the temperature set-
point need not be tracked closely for the thermal dose delivery control

and plasma optical intensity I. Control inputs are the He flow rate ¢ and setpoint to the
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Fig. 8. Closed-loop performance of the hierarchical control strategy in Case I using
the LPV-MPC controller scheduled based on two variables. The APPJ tip-to-surface
separation distance (i.e., disturbance) is increased from 4 mm to 8 mm at + = 80 s and
returned back to 4 mm at r = 160 s. Controlled variables include maximum surface
temperature T, and plasma optical intensity /. Control inputs are the He flow rate

g and setpoint to the embedded power controller P,.

objective. This is because the temperature setpoint is updated at each
sampling time. Therefore, an offset at any particular time instant can
be counteracted by choosing the setpoint appropriately in the next time
instant(s). Here, we opted for a lower weight on T},,, as the soft sensor
allows the T,,,, setpoint to be updated dynamically. Fig. 9(b) shows
the temporal evolution and the final spatial distribution of the thermal
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Fig. 9. Closed-loop performance of the hierarchical control strategy in Case II using the LPV-MPC controller scheduled based on two variables. (a) Controlled variables are
maximum surface temperature 7T,,,, and standard deviation of the spatial distribution of the surface temperature o, whereas control inputs are the He flow rate ¢ and setpoint to
the embedded power controller P,. (b) Temporal evolution of the thermal dose CEM; during the plasma treatment and the spatial dose distribution of CEM; at the end of the

treatment.

dose delivered to the surface. It can be seen that the reference thermal
dose of CEMrTef = 5 min is achieved within the plasma treatment
time. Despite the shortcomings in the setpoint tracking performance
for T,,.x, the hierarchical control strategy allows Tj,,, to be retained
below its constraint, which can represent a critical safety consideration,
for example, in medical applications of the APPJ (see Fig. 9(a)). This
performance is comparable to the results reported in Gidon et al. (2017)
(Figure 7), where a nonlinear lumped-parameter, physics-based model
was used to model the thermal effects of the plasma on the surface.
However, in Gidon et al. (2017) the nonlinear MPC is implemented in
simulation only, and the underlying physics-based model suffered from
restrictive assumptions. Therefore, this work provides experimental
evidence for the effectiveness of MPC for thermal dose delivery using
a nonlinear data-driven model.

Overall, the hierarchical control strategy based on the LPV-MPC
controller is capable of delivering the target spatial distribution of the
thermal dose CEM within the desired time of less than five minutes,
as shown in Fig. 9(b). At the same time, the manipulated inputs to the
APPJ, i.e., ¢ and Py, are not very oscillatory, thus circumventing the
issues surrounding potential actuator damage discussed in the previous
section. In addition, the He flow rate g does not reach its bounds,
indicating that there is a lot of “margin" for flow rate actuation.
However, the applied power P, often saturates at its maximum value,
indicating that for the intended application, a larger operating window
for power may be needed. In practice, this may lead to plasma arcing,
which is why a larger range for power was not examined in this study.

6. Conclusions

We presented a hierarchical control strategy based on a lower-level
embedded power controller and a higher-level LPV-MPC controller for
a kHz-excited APPJ in He. The adopted LPV modeling approach pre-
sented a convenient data-driven methodology, which allowed capturing
the highly nonlinear behavior of the APPJ over a relatively broad oper-
ating range. The performance of the hierarchical control strategy based
on the LPV-MPC was demonstrated in two cases: (i) setpoint tracking
in the presence of disturbances; and (ii) thermal dose delivery when
the APPJ is stationary. The real-time control experiments indicated

the promise of data-driven modeling approaches in conjunction with
MPC strategies for reproducible and effective operation of APPJs. The
LPV-MPC with two scheduling variables yielded deviations from the
temperature setpoint that are less than 1 °C (less than 0.5 °C in the case
of disturbance rejection), while the desired thermal dose is delivered in
4 min. This is especially important in the context of plasma medicine,
where treatment times are desired to be as short as possible to improve
patient comfort. Future work will focus on investigating advanced
learning approaches for data-driven LPV modeling and control of cold
atmospheric plasmas.
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Appendix. Reformulation of optimal control problem as a
quadratic programming problem

The optimal control problem (19) is recast as a quadratic program-
ming problem as follows. The cost function can be rewritten as

J(k) = %AU(k)THAU(k) + AU f (k) + gk, (A1)
where

H(k) = 2R + Bk)' CTQCB(k)),
Fk) = 2Bk CTOCAMK)x(k) — Bk)TCT QY (K)),

and g(k) is a known scalar that can be omitted; the matrices A, B, C,

9O, R and Y, are given in Section 4. The set of constraints are now
reformulated as

M (k)AU (k) < b+ Lyu(k — 1) + L, (k)x(k), (A.2)
where

M(k)y=E+FII +GB(k), L,=-FY, L (k)=-GA(k),

— [T T T T T T 7
b_[ Aumin Aumax Umin ~ “max X min xmax] ’
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Unlike conventional MPC for LTI systems, the cost function parameters
H, f, g and the inequality constraint parameters M, L, are time-varying
in the LPV-MPC problem. Hence, they must be updated at every
sampling time instant k.
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