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A B S T R A C T

Cold atmospheric plasmas (CAPs) are increasingly used for treatment of complex surfaces in biomedical
and biomaterials processing applications. However, the multivariable, distributed-parameter, and nonlinear
nature of CAP dynamics and plasma–surface interactions, coupled with the sensitivity of plasmas to exogenous
disturbances, make their safe, reproducible and effective operation challenging. This paper adopts a data-driven
linear parameter-varying (LPV) modeling framework to learn a control-oriented model for predictive control
of a kHz-excited atmospheric pressure plasma jet in Helium. A hierarchical model-based control strategy is
proposed based on a supervisory LPV-based model predictive controller (LPV–MPC) to regulate the nonlinear
thermal effects of plasma on a surface. Real-time control experiments demonstrate the effectiveness of the
proposed LPV–MPC strategy for the multivariable control of surface temperature and plasma optical intensity,
as well as for controlling the spatial delivery of the cumulative thermal effects of the plasma jet on a surface.
1. Introduction

Atmospheric pressure plasma jets (APPJs) are a class of cold at-
ospheric plasma devices that are capable of locally producing and
elivering physical and chemical effects, including heat, electric fields,
V and visible range photons, ions, and short-lived reactive chemical
pecies (Laroussi, Kong, Morfill, & Stolz, 2012), to complex surfaces.
APPJs are increasingly used for surface processing and biomedical
applications (Laroussi et al., 2012; Mani et al., 2015; Metelmann et al.,
018; Morent, 2013; von Woedtke, Metelmann, & Weltmann, 2014).
owever, reproducible and effective operation of APPJs suffers from
hallenges such as run-to-run variations (Shin & Raja, 2007), long
ime-scale drifts (Gerber et al., 2017), sharp spatial gradients in temper-
tures and reactive species concentrations (Arjunan, Obrusník, Jones,
ajíčková, & Ptasinska, 2016; Dünnbier, Schmidt-Bleker, Winter, Wol-
ram, Hippler, Weltmann, et al., 2013), and sensitivity to exogenous
isturbances (e.g., changes in jet tip-to-surface separation distance,
ime-varying surface characteristics, ambient temperature, and humid-
ty) (Breden & Raja, 2014; Gerling, Nastuta, Bussiahn, Kindel, & Welt-
ann, 2012; Norberg, Johnsen, & Kushner, 2015; Schmidt-Bleker, Win-
er, Bösel, Reuter, & Weltmann, 2016). Model-based control strategies
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have recently been shown to be indispensable to effective and repro-
ducible operation of APPJs, particularly in safety-critical applications
such as plasma medicine (Gidon, Curtis, Paulson, Graves, & Mesbah,
2018; Gidon, Graves, & Mesbah, 2017, 2019a; Keidar, Yan, & Sherman,
2019).

A major challenge in model-based control of APPJs arises from the
multivariable and nonlinear nature of the plasma dynamics, as well as
the poorly understood plasma interactions with complex surfaces (Mes-
bah & Graves, 2019). Much effort has been invested in the high-fidelity
modeling and simulation of the behavior of cold atmospheric plasmas,
mainly to better understand the complex behavior of the plasma and
plasma–surface interactions (Lee et al., 2011; Van Dijk, Kroesen, &
Bogaerts, 2009). However, high-fidelity plasma models are generally
computationally expensive and therefore are not amenable to repeated
simulations. The computational complexity of plasma simulations can
further increase when incorporating surface effects of the plasma that
may occur across multiple length- and time-scales (Bhoj & Kushner,
2006). Thus, high-fidelity plasma models are not suited for model-based
controller design, particularly for optimization-based control strategies
such as model predictive control (MPC) (Rawlings & Mayne, 2009) that
rely on repeated model solution and optimization in real-time.
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In Gidon et al. (2017), a lumped-parameter, physics-based model
was used for control-oriented modeling and MPC of a radio-frequency
APPJ in Argon. However, such simplified physics-based models typi-
cally depend on several assumptions that can be difficult to validate.
In addition, it is often impractical to describe the complex inter-
play between chemical, physical and electrical effects of the plasma
delivered to a surface using simplified physics-based models. Alter-
natively, purely data-driven modeling approaches such as subspace
identification (Van Overschee & De Moor, 2012) have been shown to
yield adequate descriptions of APPJs for multivariable control using
MPC (Gidon et al., 2018). However, the main limitation of the resulting
linear time-invariant (LTI) models stems from their inability to cap-
ture the inherently nonlinear dynamics of plasma and plasma–surface
interactions. Thus, MPC strategies designed using LTI models can be
effectively deployed only within a limited operating range of APPJs.

In this work, we adopt a purely data-driven approach in linear
parameter-varying (LPV) framework (Mohammadpour & Scherer, 2012;
Rugh & Shamma, 2000) for modeling and predictive control of a kHz-
excited APPJ in Helium. LPV representations enable describing nonlin-
ear and time-varying dynamics of complex systems in a (parametrized)
linear setting. LPV models can be identified in state–space or input–
output forms, the main feature of the latter being its capability to
identify computationally efficient and yet highly accurate models by
solving a low-complexity estimation problem using extensions of LTI-
based approaches (Laurain, Gilson, Tóth, & Garnier, 2010). As such,
LPV models are represented in terms of parametrized linear dynamics
in which the model coefficients or state–space matrices depend on
measurable parameters, called scheduling variables (Rugh & Shamma,
2000; Tóth, 2010). Thus, LPV models allow for the use of prevalent
linear control synthesis tools for the design of model-based controllers
for systems with nonlinear and time-varying behavior; see Moham-
madpour and Scherer (2012) and references therein. Several successful
applications have demonstrated the promise of LPV control in practice,
see, e.g., Abbas, Ali, Hashemi, and Werner (2014), Bachnas, Tóth,
Ludlage, and Mesbah (2014) and Mohammadpour and Scherer (2012).
MPC strategies based on LPV model descriptions (LPV–MPC) have also
developed into a popular approach for controlling nonlinear and time-
varying systems (Abbas, Hanema, Tóth, Mohammadpour, & Meskin,
2018; Casavola, Famularo, & Franzé, 0000). However, designing LPV–
MPC controllers critically hinge on identifying accurate LPV models.
Hence, there has recently been increasing interest in data-driven LPV
model identification approaches (Rizvi, Velni, Abbasi, Tóth, & Meskin,
2018; Tóth, 2010).

The main contribution of this paper lies in the identification of a
data-driven LPV model for a kHz-excited APPJ in Helium and using
the model for the design of a hierarchical model-based control strategy
based on a supervisory LPV–MPC controller. The performance of this
LPV–MPC strategy is demonstrated in real-time control experiments
for two cases: (i) the multivariable control of surface temperature and
plasma optical intensity in the presence of setpoint changes and dis-
turbances in jet tip-to-surface separation distance; and (ii) the control
of spatial delivery of the nonlinear thermal effects of a stationary
APPJ, where a soft sensor is used for online estimation of the delivered
thermal effects to the surface. The real-time control experiments reveal
that the LPV–MPC strategy allows reproducible and effective operation
of the APPJ over a relatively broad operating range of the APPJ, which
is particularly useful for biomaterials processing applications.

This paper is organized as follows. Section 2 describes the ex-
erimental setup of the kHz-excited APPJ in Helium, as well as the
lasma treatment objectives. Section 3 describes the proposed hierar-
hical model-based control strategy based on a supervisory LPV–MPC
ontroller. Section 4 introduces the basic concepts and formulations of
PV modeling in input–output form and the LPV–MPC design. The per-
ormance of the proposed control strategy is demonstrated in real-time

ontrol experiments in Section 5. d

2

. Atmospheric pressure plasma treatment of complex surfaces

This section describes the APPJ setup that is used to collect data for
PV model identification and to conduct real-time control experiments.
n addition, the control objectives for the two case studies considered
n this work are described later in this section.

.1. APPJ setup

The kHz-excited APPJ in Helium (He) shown in Fig. 1 is used for
odel identification and real-time control experiments. The details
f this experimental setup are given in Gidon, Graves, and Mesbah
2019b) and briefly reviewed here. The APPJ consists of a copper
ing electrode wrapped around a quartz tube, which serves both as
dielectric barrier and as the gas flow channel. A high alternating
urrent (AC) voltage at a frequency of 20 kHz is applied to the electrode
o achieve plasma ignition. The amplitude of the applied voltage is
ctuated via a custom-made function generator (XR-2206CP) interfaced
ith a micro-controller (Arduino UNO). The He flow rate is actuated
ia a mass flow controller (UFC-1200A), which is also interfaced with
he micro-controller. A stepper motor attached to the quartz tube allows
ctuation along the vertical axis, thus enabling the manipulation of the
et tip-to-surface separation distance.
A fiber optic directed at the plasma–surface incident point collects

he plasma optical emission intensity. A radiometric infrared thermal
amera (Lepton FLIR 3) pointed at the surface is used to obtain spatially
esolved measurements of surface temperature. AC-to-RMS converters
AD536A) allow embedded measurements of the plasma voltage and
he current leaving the ground plate. These two measurements are used
o compute applied power as 𝑃avg = 𝑉rms𝐼rms. The applied voltage is
anipulated by an embedded proportional integral (PI) controller to
aintain the applied power at a desired setpoint. Data acquisition and
ontrol are managed by a single board computer (Raspberry Pi 3) in
ython. Data processing is performed in MATLAB using a conventional
aptop, while the MPC algorithm is run in Python using the same laptop.
he measurement and actuation signals between the laptop and the
etup are exchanged over WiFi using TCP/IP communication protocol.
In summary, the APPJ setup can be thought of a system with two

nputs and two outputs. The inputs are the He flow rate 𝑞 and the power
etpoint to the PI controller 𝑃 set, while the outputs are the spatially
esolved surface temperature 𝑇 (𝑥, 𝑦) and the plasma optical intensity
. Note that, depending on the control objective, one can extract the
aximum surface temperature 𝑇max instead of using the entire vector
f the spatially resolved surface temperature.

.2. Plasma treatment objectives

Safe and effective operation of APPJs requires control of instan-
aneous and cumulative effects of the plasma on the treated surface.
hese effects are often coupled and distributed across multiple time-
nd length-scales. The maximum surface temperature (𝑇max) is a key
ariable characterizing the thermal energy deposited on the surface
y the plasma. On the other hand, plasma optical intensity (𝐼) at
he surface incident point is a proxy for the non-thermal effects of
he plasma treatment, such as chemical effects. It is often desirable
o maintain different combinations of maximum surface temperature
nd plasma optical intensity during the treatment via multivariable
ontrol (Gidon et al., 2018). However, these output variables are tightly
oupled and exhibit nonlinear dynamics.
Furthermore, delivery of spatially distributed and cumulative ef-

ects of the plasma to the surface, i.e., ‘‘plasma dose’’, is often one
f the key objectives in the plasma treatment of complex surfaces.
enerally speaking, plasma dose is intended to describe the nonlinear
nd non-decreasing nature of energy and/or species deposition on a
urface (Gidon et al., 2017). Here, we focus on the delivery of spatially

istributed thermal dose. We quantify the thermal dose using the metric
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Fig. 1. Diagram of the experimental setup of the kHz-excited APPJ in He. The dashed arrows represent the flow of information, including the signals corresponding to the inputs
(blue), embedded measurements (green), and slower time-scale measurements (brown). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
T
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of cumulative equivalent minutes (CEMT), widely applied for dosing
hyperthermia treatments (Dewhirst, Viglianti, Lora-Michiels, Hanson,
& Hoopes, 2003), defined as

CEMT = ∫

𝑡

0
𝐾 (43−𝑇 (𝜏)) d𝜏, (1)

here 𝐾 is chosen to represent the thermal stress–response of the
reated surface. In this work, 𝐾 is given by

=

⎧

⎪

⎨

⎪

⎩

0 𝑇 ≤ 39 ◦C,
0.25 39 ◦C < 𝑇 < 43 ◦C,
0.5 𝑇 ≥ 43 ◦C,

(2)

hich describes the temperature response of Chinese hamster ovary
ells (Dewhirst et al., 2003).
A key observation in the thermal dose delivery using APPJs is that

he spatial distribution of the surface temperature is radially symmet-
ic (Gidon et al., 2019a, 2019b). Hence, a Gaussian parameterization
an be used to approximate the surface temperature distribution as

(𝑟) = (𝑇max − 𝑇inf) exp
(

𝑟2

𝜎2(𝑡)

)

+ 𝑇inf, (3)

here 𝑇inf is the ambient temperature, 𝑟 is the radial distance from
he centerline of the jet, and 𝜎 is the standard deviation of the dis-
ribution, which may change with time. The objective of the thermal
ose delivery problem is then to maintain the width of the dose
istribution (related to parameter 𝜎) at the desired value while ensur-
ng that the desired maximum dose (related to the maximum surface
emperature at the jet centerline, 𝑇max) is delivered at the end of the
reatment time (Gidon et al., 2019b). Moreover, constraints associated
ith practical operation considerations (e.g., patient safety and comfort
uring plasma treatment) should be respected. The control objectives
onsidered in this paper are discussed in the next section.

. Hierarchical control strategy based on LPV-MPC

We investigate two control problems for the kHz-excited APPJ in
e. In Case I, we aim to achieve setpoint tracking for maximum
urface temperature and plasma optical intensity in the presence of
isturbances in jet tip-to-surface separation distance. To this end, a
ierarchical control strategy is proposed (see Fig. 2), where an LPV–
PC controller is used in a supervisory capacity to compute the optimal
ower setpoint 𝑃 set and the He flow rate 𝑞 that are applied to the
 i

3

Fig. 2. Block diagram of the hierarchical control strategy for Case I. The control
objective is to track setpoints for maximum surface temperature 𝑇 setmax and plasma optical
intensity 𝐼 set. The LPV–MPC controller computes optimal setpoint for the embedded
power controller 𝑃 set and the optimal He flow rate 𝑞.

APPJ using a basic PI control layer. The He flow rate setpoint is sent
to the mass flow controller, whereas the power setpoint is sent to
an embedded PI controller that adjusts the power delivered to the
APPJ. In Fig. 2, the inner loop, depicted by the dashed lines, shows
the embedded PI controller used to maintain the plasma power at its
setpoint by manipulating the applied voltage 𝑉app. The formulation of
the LPV–MPC problem is discussed in Section 4.

In Case II, we aim to control spatial thermal dose delivery to a
surface using a stationary APPJ. The block diagram of the hierarchical
control strategy is shown in Fig. 3. The key difference between Case
I and Case II is the use of a soft sensor, which allows converting
the cumulative dose reference CEMref

T to an instantaneous temperature
setpoint 𝑇 setmax. The soft sensing strategy relies on inferring the desired
rate (i.e., derivative) of dose delivery. With dose delivery rate defined,
it is possible to invert the dose metric at every sampling instant
to algebraically obtain the corresponding maximum temperature set-
point (Arora, Skliar, & Roemer, 2005). Given the dose accumulated in
time instant 𝑘, CEMT,𝑘, the linear rate of the dose delivery to achieve
a desired final dose CEMref

T at the end of operation 𝑡𝑓 is computed as

𝛼𝑘 =
CEMref

T − CEMT,𝑘
𝑡𝑓 − 𝑡𝑘

. (4)

he reference thermal dose for the next time point given the linear dose
elivery rate can then be computed from

EMref
T,𝑘 = CEMT,𝑘 + 𝛼𝑘[𝑡𝑘+1 − 𝑡𝑘]. (5)

he maximum temperature setpoint 𝑇 setmax,𝑘 corresponding to the desired
ncrease in dose can be computed by inverting the dose metric (1),
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Fig. 3. Block diagram of the hierarchical control strategy for Case II. The control
objective is to track setpoints for the standard deviation of surface temperature
distribution 𝜎set and maximum surface temperature 𝑇 setmax computed by the soft sensor.
he LPV–MPC controller computes the optimal setpoint for the embedded power
ontroller 𝑃 set and the optimal He flow rate 𝑞.

esulting in

set
max,𝑘 =

⎧

⎪

⎨

⎪

⎩

(CEMref
T,𝑘 − CEMT,𝑘) 𝛼𝑘 ≥ 0

30◦C otherwise,
(6)

here the function (⋅) denotes the inverse of the dose metric func-
ion. Since the inverse of the dose metric is not real-valued when 𝛼𝑘 is
egative (i.e., the delivered dose exceeds the reference), 𝑇 setmax,𝑘 is set to
ts lower bound.

. LPV-based model identification and predictive control design

This section discusses the data-driven LPV model identification in
nput–output form, followed by conversion of the input–output model
o a state–space LPV model, which is then used to formulate the
PV–MPC problem.

.1. LPV model identification in input–output form

An LPV input–output (IO) representation can be described in differ-
nce equation form by

(𝑘) = −
𝑛a
∑

𝑖=1
𝑎𝑖(𝑝(𝑘))𝑦(𝑘 − 𝑖) +

𝑛b
∑

𝑗=0
𝑏𝑗 (𝑝(𝑘))𝑢(𝑘 − 𝑗) +𝑤(𝑘), (7)

where 𝑢(𝑘) ∶ Z → R𝑛u , 𝑦(𝑘) ∶ Z → R𝑛y and 𝑝(𝑘) ∶ Z → P ⊂ R𝑛p

are, respectively, the input, output and scheduling variable vectors at a
discrete-time instant 𝑘, 𝑤(𝑘) represents an additive disturbance vector,
𝑎𝑖, 𝑏𝑗 are matrix functions of 𝑝 with appropriate dimensions that are
bounded within the parameter set P

P ∶= {𝑝 ∈ R𝑛p
| 𝑝𝑖,min ≤ 𝑝𝑖 ≤ 𝑝𝑖,max, 𝑖 = 1, 2,… , 𝑛p}.

The parameter set is assumed to be convex. 𝑛a in (7) denotes the system
order such that 𝑛a ≥ 𝑛b ≥ 0.

The LPV representation in (7) enables identification of low-
complexity and yet reasonably accurate LPV descriptions of nonlin-
ear and time-varying systems under practical assumptions on the
disturbances and measurement noise (e.g., Laurain et al., 2010). An
important step in parametric-based LPV model identification is the
parameterization of the coefficients 𝑎𝑖 and 𝑏𝑗 (Tóth, 2010). Assuming
that 𝑝 is scalar, one simple approach is to consider polynomial functions
as follows

𝑐(𝑝) = 𝑐0 + 𝑐1𝑝 + 𝑐2𝑝
2 +⋯ , (8)

where {𝑐0, 𝑐1,…} are constants with appropriate dimension according
to 𝑎𝑖, 𝑏𝑗 and the number of the scheduling variables (note that 𝑐 is used
here as a proxy for model coefficients 𝑎 and 𝑏 in (7)). The constants in
(8) constitute the parameters that should be estimated in LPV model
identification. Note that, instead of polynomials, other basis functions
can also be considered for the parameterization of the coefficients 𝑎
𝑖

4

and 𝑏𝑗 , with potentially nonlinear dependence on the parameters 𝑝
(see Tóth, 2010).

In order to use linear regression for estimation of the constants
in (8), an autoregressive with exogenous input (ARX) model struc-
ture (Ljung, 1999) is commonly used, which implies that the distur-
bance 𝑤(𝑘) in (7) is assumed to be a zero-mean, discrete-time white
noise process with a normal distribution. Accordingly, the LPV model
identification problem can be formulated as a least-squares estimation
problem, which can be solved efficiently. For multi-input multi-output
(MIMO) LPV models, one model is typically identified for each output
to simplify the identification problem. Thus, the MIMO LPV model is
effectively described by a collection of multi-input single-output (MISO)
models. For each MISO model, 𝑎𝑖 is a scalar and 𝑏𝑗 is a (row) vector
corresponding to the number of inputs 𝑛u in (7).

Based on the ARX model structure considered in this work, the
predictor of (7) is formulated for the MISO case in the linear regression
orm as

𝑦̂(𝑘) = 𝜙(𝑘)⊤𝜃, 𝜙(𝑘) = 𝜑(𝑘)⊗ 𝜂(𝑘), (9)

here 𝜃 =
[

𝑐⊤0 , 𝑐
⊤
1 ,…

]⊤ for both 𝑎𝑖 and 𝑏𝑗 , ⊗ denotes the Kronecker
roduct, 𝜑(𝑘) is the regressor vector given by

(𝑘) = [−𝑦(𝑘−1) −𝑦(𝑘−2) ⋯ −𝑦(𝑘−𝑛a) 𝑢(𝑘−1)⊤ 𝑢(𝑘−2)⊤ ⋯ 𝑢(𝑘−𝑛b)⊤]⊤,

(10)

nd

(𝑘) = [1 𝑓1(𝑝(𝑘)) 𝑓2(𝑝(𝑘)) ⋯]⊤, (11)

ith 𝑓𝑖(⋅) ∶ R𝑛p → R being continuous basis functions that can capture
onlinear dependence on 𝑝. Note that dependence on shifted versions
f 𝑝 in time, i.e., {⋯ , 𝑝(𝑘−1), 𝑝(𝑘), 𝑝(𝑘+1),…}, (referred to as dynamic
ependence Tóth, Abbas, & Werner, 2012) can also be considered
in 𝜂(𝑘), which is the most general form of scheduling functions. The
representation in (9) allows using the prediction error system identifi-
cation method (Ljung, 1999), which employs least-squares estimation
to obtain 𝜃 as follows

𝜃 = (𝛷⊤𝛷)−1𝛷⊤𝑌 , (12)

where

𝑌 = [𝑦(1) 𝑦(2) ⋯ 𝑦(𝑁d)]⊤

and

𝛷 = [𝜙(1)⊤ 𝜙(2)⊤ ⋯ 𝜙(𝑁d)⊤]⊤,

with 𝑁d denoting the number of data samples.
The MISO LPV models can be represented in a state–space form for

the control design purposes, as discussed next.

4.2. Conversion of input–output LPV model to state–space LPV form

In order to design LPV–MPC controllers for the APPJ system, the
identified LPV-IO models are transformed into an LPV state–space (SS)
form. In general, transforming LPV-IO models to LPV-SS form, or vice
versa, results in the so-called dynamic dependence since the trans-
formed model would depend on time-shifted versions of the scheduling
variable(s) (Tóth et al., 2012). The presence of dynamic dependence
leads to difficulties in terms of controller design and implementation,
as it could lead to dependence on future samples of the scheduling
variables. To this end, we employ the augmented state–space form for
converting the identified LPV-IO models by considering the dependence
on 𝑝(𝑘−2) in (7). This allows deriving an augmented equivalent LPV-SS
representation in a straightforward manner as follows.

We rewrite the identified LPV-IO model as

𝑦̂(𝑘) = −𝑎1(𝑝𝑘−2)𝑦̂(𝑘 − 1) − 𝑎2(𝑝𝑘−2)𝑦̂(𝑘 − 2) −⋯ − 𝑎𝑛a (𝑝𝑘−2)𝑦̂(𝑘 − 𝑛a)

+𝑏 (𝑝 )𝑢(𝑘 − 1) + 𝑏 (𝑝 )𝑢(𝑘 − 2) +⋯
1 𝑘−2 2 𝑘−2
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+𝑏𝑛b (𝑝𝑘−2)𝑢(𝑘 − 𝑛b). (13)

MIMO LPV-IO models are constructed with coefficients 𝑎𝑖 being diago-
nal matrices. Therefore, we can convert the MIMO models of the special
form (13) of dynamic dependence by first multiplying both sides of (13)
by the forward time shift operator, which yields

𝑦̂(𝑘 + 1) = −𝑎1(𝑝𝑘−1)𝑦̂(𝑘) − 𝑎2(𝑝𝑘−1)𝑦̂(𝑘 − 1) −⋯ − 𝑎𝑛a (𝑝𝑘−1)𝑦̂(𝑘 − 𝑛a + 1)

+𝑏1(𝑝𝑘−1)𝑢(𝑘) + 𝑏2(𝑝𝑘−1)𝑢(𝑘 − 1) +⋯

+𝑏𝑛b (𝑝𝑘−1)𝑢(𝑘 − 𝑛b + 1). (14)

Note that in (14) the dependence is on 𝑝𝑘−1 instead of 𝑝𝑘−2. To achieve
offset-free control, we define 𝛥𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1). Substituting this
into the above equation gives

̂(𝑘 + 1) = −𝑎1(𝑝𝑘−1)𝑦̂(𝑘) − 𝑎2(𝑝𝑘−1)𝑦̂(𝑘 − 1) −⋯ − 𝑎𝑛a (𝑝𝑘−1)𝑦̂(𝑘 − 𝑛a + 1)

+𝑏1(𝑝𝑘−1)𝛥𝑢(𝑘) +
(

𝑏1(𝑝𝑘−1) + 𝑏2(𝑝𝑘−1)
)

𝑢(𝑘 − 1) +⋯

+𝑏𝑛b (𝑝𝑘−1)𝑢(𝑘 − 𝑛b + 1).

Next, we introduce the augmented state vector

𝑥(𝑘)

=
[

𝑦̂⊤(𝑘) 𝑦̂⊤(𝑘 − 1) ⋯ 𝑦̂⊤(𝑘 − 𝑛a + 1) 𝑢⊤(𝑘 − 1) ⋯ 𝑢⊤(𝑘 − 𝑛b + 1)
]⊤

,

(15)

where 𝑥 ∈ R𝑛x with 𝑛x = 𝑛y𝑛a + 𝑛u(𝑛b − 1). This leads to an augmented
LPV-SS model in the form of

𝑥(𝑘 + 1) = 𝐴(𝑝𝑘−1)𝑥(𝑘) + 𝐵(𝑝𝑘−1)𝛥𝑢(𝑘) (16a)

𝑦̂(𝑘) = 𝐶𝑥(𝑘), (16b)

where

𝐴(𝑝𝑘−1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑎1 ⋯ −𝑎𝑛a−1 −𝑎𝑛a
(

𝑏1 + 𝑏2
)

⋯ 𝑏𝑛b−1 𝑏𝑛b
𝐼𝑛y 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 𝐼𝑛y 0 0 0 ⋯ 0

0 ⋯ 0 0 𝐼𝑛u 0 ⋯ 0

0 ⋯ 0 0 𝐼𝑛u 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ ⋯ ⋯ ⋯ 0 𝐼𝑛u 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐵(𝑝𝑘−1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏1
0

⋮

0

𝐼𝑛u
0

⋮

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and 𝐶 =
[

𝐼𝑛y 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0
]

.

Note that the representation of the matrices 𝐴(𝑝𝑘−1) and 𝐵(𝑝𝑘−1) is
simplified by dropping the dependence of 𝑎𝑖, 𝑏𝑗 on 𝑝𝑘−1.

Remark 1. In this work, the system inputs are also the scheduling vari-
ables. Since the system inputs are computed by the control algorithm at
every time instant 𝑘, they introduce a nonlinear interdependence that
can make the control problem very slow, or even intractable. Therefore,
we use the inputs at time 𝑘 to schedule the control system at the next
time instant 𝑘 + 1. The interdependence is thus circumvented because
of the chosen dynamic dependence, which resulted in the dependence
of the LPV-SS model (16) on 𝑝(𝑘 − 1).

The predictions of the LPV-SS model (16) over a prediction horizon

𝑁 as a function of the measured state 𝑥(𝑘) and incremental inputs 𝛥𝑈 (𝑘)
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can be compactly written as

𝑋(𝑘) = (𝑘)𝑥(𝑘) + (𝑘)𝛥𝑈 (𝑘) (17a)

𝑌 (𝑘) = (𝑘)𝑋(𝑘), (17b)

where

𝑋(𝑘) =
[

𝑥(𝑘)⊤ 𝑥(𝑘 + 1)⊤ 𝑥(𝑘 + 2)⊤ ⋯ 𝑥(𝑘 +𝑁)⊤
]⊤ ,

𝑌 (𝑘) =
[

𝑦̂(𝑘)⊤ 𝑦̂(𝑘 + 1)⊤ 𝑦̂(𝑘 + 2)⊤ ⋯ 𝑦̂(𝑘 +𝑁)⊤
]⊤ ,

𝑈 (𝑘) =
[

𝛥𝑢(𝑘)⊤ 𝛥𝑢(𝑘 + 1)⊤ ⋯ 𝛥𝑢(𝑘 +𝑁 − 1)⊤
]⊤ ,

(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐼

𝐴

𝐴2

⋮

𝐴𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0

𝐵 0 ⋯ 0

𝐴𝐵 𝐵 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 ⋯ 𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(𝑘) = diag([𝐶,… , 𝐶]).

ote that the system matrices 𝐴, 𝐵 and 𝐶 are dependent on the schedul-
ng variables and thus must be updated at every sampling time 𝑘 once
he scheduling variable 𝑝(𝑘− 1) becomes available. Here, it is assumed
hat the scheduling variable is fixed over the prediction horizon. The
ontrol inputs 𝑈 (𝑘) =

[

𝑢(𝑘)⊤ 𝑢(𝑘 + 1)⊤ ⋯ 𝑢(𝑘 +𝑁 − 1)⊤
]⊤ can be

pdated at each sampling time 𝑘 by

(𝑘) = 𝛶𝑢(𝑘 − 1) +𝛱𝛥𝑈 (𝑘), (18)

here

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐼𝑛u
𝐼𝑛u
⋮

𝐼𝑛u

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝛱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑛u 0 ⋯ 0
𝐼𝑛u 𝐼𝑛u ⋯ 0
⋮ ⋮ ⋱ ⋮
𝐼𝑛u 𝐼𝑛u ⋯ 𝐼𝑛u

⎤

⎥

⎥

⎥

⎥

⎦

.

4.3. LPV-MPC problem formulation

The compact representation of the LPV-SS model over the prediction
horizon 𝑁 , i.e., (17), can now be used to formulate the LPV–MPC prob-
lem. At every sampling time 𝑘, the LPV–MPC entails online solution of
the following optimal control problem

min
𝛥𝑈 (𝑘)

‖𝑌set(𝑘) − 𝑌 (𝑘)‖2 + ‖𝛥𝑈 (𝑘)‖2 (19a)

s.t. 𝑋(𝑘) = (𝑘)𝑥(𝑘) + (𝑘)𝛥𝑈 (𝑘), (19b)

𝑌 (𝑘) = (𝑘)𝑋(𝑘), (19c)

𝛥𝑈min ≤ 𝛥𝑈 (𝑘) ≤ 𝛥𝑈max, (19d)

𝑌min ≤ 𝑌 (𝑘) ≤ 𝑌max, (19e)

𝑢min ≤ 𝑈 (𝑘) ≤ 𝑢max, (19f)
𝑥(𝑘) =

[

𝑦⊤(𝑘), 𝑦⊤(𝑘 − 1), ⋯ , 𝑦⊤(𝑘 − 𝑛a + 1),

𝑢⊤(𝑘 − 1), ⋯ , 𝑢⊤(𝑘 − 𝑛b + 1),
]⊤ , (19g)

where 𝛥𝑈 (𝑘) constitutes the decision variables of the optimization
(the prediction horizon 𝑁 is assumed to be equal to the control hori-
zon for notational convenience); 𝑌set(𝑘) =

[

𝑦set(𝑘 + 1)⊤𝑦set(𝑘 + 2)⊤ ⋯
𝑦set(𝑘 +𝑁)⊤

]

denotes the output setpoints over the prediction hori-
on; (𝑘) = diag([Q,… ,Q]) and (𝑘) = diag([R,… ,R]), with Q ⪰
0, R ≻ 0 being weight matrices with appropriate dimensions; and
the subscripts min and max denote the lower and upper bounds of
the input and output constraints with appropriate dimensions. The
optimal control problem (19) is implemented in a receding-horizon
fashion, whereby the optimization problem is solved at each sampling
time 𝑘 to obtain an optimal sequence of control inputs 𝛥𝑈∗(𝑘) =
[

𝛥𝑢∗(𝑘)⊤𝛥𝑢∗(𝑘 + 1)⊤ ⋯𝛥𝑢∗(𝑘 +𝑁 − 1)⊤
]

. Then, the first optimal value of
he sequence, i.e., 𝛥𝑢∗(𝑘), is applied to the system as 𝑢∗(𝑘) = 𝛥𝑢∗(𝑘) +
∗(𝑘 − 1).
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Remark 2. Model predictions in the LPV–MPC depend on the future
values of the scheduling parameters, which are usually not available
in advance. A practical approach is to assume a constant value for the
scheduling parameters over the prediction horizon. This way, the online
optimization problem can be cast as a quadratic programming problem,
as shown in the Appendix.

5. Experimental results

In this section, we first describe the data-driven LPV model iden-
tification for the kHz-excited APPJ in He, which is shown in Fig. 1.
We then discuss real-time control implementations of the LPV–MPC
hierarchical control strategies presented in Section 3.

5.1. LPV model identification and validation

Based on the control objectives specified in Section 3, we identify
two MIMO LPV models using the inputs/outputs data collected from
the APPJ. The controlled outputs of the first model are the maxi-
mum surface temperature 𝑇max and plasma optical intensity 𝐼 (Case I),
whereas the controlled outputs of the second model are 𝑇max and the
standard deviation of the surface temperature distribution 𝜎 (Case II).
The manipulated input variables of both models include the gas flow
rate 𝑞 and the embedded power set 𝑃set (see Section 2). We identify
a separate model for each controlled output as a multiple-input single-
output (MISO) system, where 𝑎𝑖 is a scalar and 𝑏𝑗 is a 1 × 2 vector, since
𝑛u = 2 and 𝑛y = 1 in (7). This enables straightforward conversion of the
MIMO LPV model to the state–space form, as discussed in Section 4.2.

The two manipulated variables are chosen as the scheduling vari-
ables of the LPV-IO models due to their direct effect on the system
outputs and thus the operating region. We consider two cases for the
LPV model identification: using a single scheduling parameter 𝑃set and
using two scheduling variables 𝑃set and 𝑞. Furthermore, the coefficients
𝑎𝑖 and 𝑏𝑗 are considered to be dependent on 𝑝(𝑘 − 2) in (7), instead
of 𝑝(𝑘), to avoid dependence of future outputs on future values of 𝑝
when the identified LPV-IO models are converted into the state–space
form for the MPC design. In addition, the coefficients 𝑎𝑖 and 𝑏𝑗 are
parametrized with polynomial basis functions, as in (8), whose order
ranges from third to fifth order.

To obtain low complexity models that are amenable to real-time
computations while at the same time can adequately fit the given input–
output data, we chose the order in (7) as 𝑛a = 𝑛b = 2 for modeling
max and 𝐼 ; and 𝑛a = 𝑛b = 3 for modeling 𝜎. It was observed that
ncreasing the order did not result in significant improvement in the
uality of models. Furthermore, for the MISO LPV-IO models of 𝑇max
nd 𝐼 , we considered one sample delay in both input channels, which
mplies 𝑏0 = 0 in (7). For the MISO LPV-IO model of 𝜎, we considered
wo sample delays in 𝑞, i.e., 𝑏0 = 𝑏1 = 0, and one sample delay in 𝑃set .
Based on the ARX structure considered in this work, we formulated

he predictor (7) for each MISO model in the linear regression form (9),
with the regressor vector (10) and 𝜂(𝑘) given by (11), where 𝑝(𝑘 − 2)
is replaced by 𝑝(𝑘). This allows for using the scheduling parameters as
the control inputs in the LPV–MPC problem. The design of sufficiently
rich input signals is crucial for a proper excitation of the important
modes of the system for model identification. The excitation signals
used here are shown in Fig. 4. These signals are chosen to cover various
input combinations of interest, whose order is subsequently shuffled.
Since the APPJ system is stable, the excitation experiments and the data
collection were conducted in open loop.

To examine the quality of the identified LPV-IO models, the best fit
rate (BFR) criterion, a.k.a. fit score, is used (Ljung, 1999)

BFR = 100%max
(

1 −
‖𝑦(𝑘) − 𝑦̂(𝑘)‖2
‖𝑦(𝑘) − 𝑦m‖2

, 0
)

,

where 𝑦m is the mean of 𝑦 and ‖ ⋅ ‖2 denotes the 𝓁2 norm. We assessed
the quality of the identified models using an independent dataset. The
 w

6

Fig. 4. Input signals used for exciting the kHz-excited APPJ in He to generate data
for input–output LPV model identification.

Table 1
Structure of the input–output LPV models with two scheduling variables.
Output 𝑛a , 𝑛b Delay in samples Polynomial order

𝑇max 2, 2 1 3
𝐼 2, 2 1 3
𝜎 3, 3 2 in 𝑞, 5

1 in 𝑃set

model predictions for the outputs 𝑇max and 𝐼 are superimposed with
the validation data and are shown in Fig. 5. It is apparent that the
predictions of the LPV model with two scheduling variables (Fig. 5(b))
outperform the predictions of the LPV model with a single scheduling
variable (Fig. 5(a)). For the LPV models with two scheduling variables,
the BFRs of 𝑇max and 𝐼 are 79.74% and 70.27%, respectively. For
the LPV models with a single scheduling variable, on the other hand,
the BFRs of 𝑇max and 𝐼 are 75.58% and 67.83%, respectively. For the
rediction of 𝜎, we only considered an LPV model with two scheduling
ariables. The predictions of 𝜎 along with the validation data are shown
n Fig. 6. The BFR of 𝜎 is 57.27%, which indicates lower prediction
ccuracy compared to the other outputs. However, such prediction
apability is adequate for the purpose of LPV controller design, as
hown in the next section. Specifically, we accept the relatively low
alue of BFR for 𝜎 because 𝜎 is only used for controlling the width of
he distribution of the delivered thermal dose; the surface temperature
hat has a BFR of 79.74% is the most important variable to control (see
ig. 9). Table 1 summarizes the structures of the LPV-IO models that
re used for the design of the LPV–MPC controllers. For more clarity,
he structure of the matrices 𝑎𝑖(.) and 𝑏𝑗 (.) in (7) for the identified
-input/3-output model are

1 =

⎡

⎢

⎢

⎢

⎣

𝑎̄111 0 0

0 𝑎̄221 0

0 0 𝑎̄331

⎤

⎥

⎥

⎥

⎦

, 𝑎2 =

⎡

⎢

⎢

⎢

⎣

𝑎̄112 0 0

0 𝑎̄222 0

0 0 𝑎̄332

⎤

⎥

⎥

⎥

⎦

, 𝑎3 =

⎡

⎢

⎢

⎢

⎣

0 0 0

0 0 0

0 0 𝑎̄331

⎤

⎥

⎥

⎥

⎦

,

𝑏1 =

⎡

⎢

⎢

⎢

⎣

𝑏̄111 𝑏̄121
𝑏̄211 𝑏̄221
0 𝑏̄321

⎤

⎥

⎥

⎥

⎦

, 𝑏2 =

⎡

⎢

⎢

⎢

⎣

𝑏̄112 𝑏̄122
𝑏̄212 𝑏̄222
𝑏̄312 𝑏̄322

⎤

⎥

⎥

⎥

⎦

, 𝑏3 =

⎡

⎢

⎢

⎢

⎣

0 0

0 0

𝑏̄313 𝑏̄323

⎤

⎥

⎥

⎥

⎦

,

here the coefficients 𝑎̄111 , 𝑎̄112 , 𝑏̄111 , 𝑏̄121 , 𝑏̄112 , 𝑏̄122 , 𝑎̄221 , 𝑎̄222 , 𝑏̄211 , 𝑏̄221 , 𝑏̄212 , 𝑏̄222
re 3rd-order polynomials of 𝑝(𝑘−2) and 𝑎̄331 , 𝑎̄332 , 𝑎̄333 , 𝑏̄

32
1 , 𝑏̄312 , 𝑏̄322 , 𝑏̄323 , 𝑏̄323

re 5th-order polynomials of 𝑝(𝑘 − 2), see (8). In the case of the LPV
odel with two scheduling variables, these coefficients are bivariate
olynomials without the interaction terms. Therefore, the total number
f the identified constant parameters are 96 and 172 for the LPV model
ith one- and two-scheduling variables, respectively.
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Fig. 5. Predictions of the input–output LPV models with: (a) a single scheduling variable , and (b) two scheduling variables compared to an independent validation dataset. The
outputs are the maximum temperature 𝑇max and plasma optical intensity 𝐼 .
T
S
c

Fig. 6. Predictions of the input–output LPV model with two scheduling variables
compared to an independent validation dataset. The output is the standard deviation
of the surface temperature distribution 𝜎.

.2. Real-time control experiments

Once the LPV-IO models are identified, they are converted to the
tate–space form (17), as described in Section 4.2, and used to for-
ulate the LPV–MPC problem (19). Two case studies are considered
or the real-time control experiments: Case I — setpoint tracking in
he presence of exogenous disturbances; and Case II — thermal dose
elivery to a surface when the APPJ is stationary; see Section 3. The
etpoints and constraints, as well as the tuning parameters, of the
PV–MPC problem for each case are summarized in Table 2.

ase I: Setpoint tracking for plasma optical intensity and maximum surface
emperature
The control objective is to track time-varying setpoints for the max-

mum surface temperature 𝑇max and plasma optical intensity 𝐼 . Two
PV–MPC controllers are designed based on two LPV models that use
single and two scheduling variables, as described in Section 5.1. The
PV–MPC controllers are implemented on the APPJ via the hierarchical
ontrol strategy depicted in Fig. 2.
Fig. 7 shows the closed-loop performance of the control strategy for

oth LPV–MPC controllers. The real-time control experiments suggest
hat the increased complexity of the LPV model (i.e., including more
cheduling variables) allows capturing the APPJ behavior more accu-
ately, which results in an improved setpoint tracking performance.
he LPV–MPC controller based on the LPV model with a single sched-
led variable, i.e., setpoint to the embedded power controller 𝑃set,
eads to high-frequency oscillatory behavior in the inputs and outputs
Fig. 7(a)). In particular, it is difficult to adequately control the plasma
ptical intensity 𝐼 with this controller. In contrast, the LPV–MPC con-
roller based on two scheduling variables, i.e., 𝑃 and He mass flow
set

7

able 2
pecifications and tuning parameters of the LPV–MPC problem (19) for the real-time
ontrol experiments in Case I and Case II.

Case I Case II

𝑁 5 5
Q diag([5, 1]) diag([0.5, 1])
R diag([0.1, 0.025]) diag([0.3, 3])
𝑇max (◦C) (0, 45]a (0, 45]
𝐼 (a.u.) [10,∞) [10,∞)
𝑞 (slm) [0.8, 5] [0.8, 5]
𝑃set (W) [1, 5] [1, 5]

a𝑇max is constrained by (0, 43] in the disturbance rejection case shown in Fig. 8.

rate 𝑞, demonstrates an improved closed-loop tracking performance
(Fig. 7(b)). In this case, the oscillatory behavior of the APPJ inputs
is largely mitigated and the setpoint for the plasma optical intensity
is tracked more effectively. Thus, the outputs under the LPV–MPC with
two scheduling variables exhibit a smaller overshoot of their respective
setpoints (less than 1 ◦C), while having a shorter settling time (c.f., time
= 0 − 100 s in the temperature trajectories in Fig. 7) compared to the
outputs under the LPV–MPC with one scheduling variable. Moreover,
the setpoints have been attained very fast with maximum rise time
of 9 and 2 samples for the temperature and the plasma intensity,
respectively, with almost no steady-state errors. Furthermore, although
both controllers generate control inputs that are within the desired
input bounds (shown by the gray lines in Fig. 7), the LPV–MPC with
a single scheduling variable leads to much more aggressive control
actions. In practice, this can lead to actuator damage, which can be
both dangerous and costly. Besides the more-aggressive nature of the
control actions resulting from LPV–MPC with one scheduling variable,
the manipulated inputs can also be seen to saturate frequently, which
is a further indication of poor control performance.

The hierarchical control strategy based on LPV–MPC provides a
significant advantage over the MPC strategy based on an LTI subspace
identification model reported in Gidon et al. (2018). This is because
the LPV–MPC controller allows exploiting a broader APPJ operating
range by tracking a broader range of setpoint combinations for the
tightly coupled outputs 𝑇max and 𝐼 . Similarly, the LPV–MPC controller
can be expected to reject a broader range of disturbances acting on
the APPJ. To test this, we investigate the ability of the controller in
rejecting a disturbance in the jet tip-to-surface separation distance,
which may routinely occur in the hand-held application of APPJs
(e.g., for medical applications) or in treatment of surfaces with non-
uniform topology. Variations in jet tip-to-surface separation distance
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Fig. 7. Closed-loop performance of the hierarchical control strategy in Case I using LPV–MPC controllers scheduled based on: (a) one single scheduling variable, and (b) two
scheduling variables. Controlled variables include maximum surface temperature 𝑇max and plasma optical intensity 𝐼 . Control inputs are the He flow rate 𝑞 and setpoint to the
embedded power controller 𝑃set.
can drastically affect APPJ characteristics and their impacts on surfaces,
including electric fields, delivered chemical species concentrations,
and surface temperature (Breden & Raja, 2014; Gerling et al., 2012;
u, Wand, Huang, Lu, & Pan, 2011). Thus, maintaining the APPJ
haracteristics in the presence of variations in jet tip-to-surface is key
or reliable operation. Fig. 8 shows the closed-loop performance of
he LPV–MPC controller scheduled with two variables in the presence
f a step disturbance in APPJ tip-to-surface separation distance. The
eparation distance is increased from its nominal value of 4 mm up to
mm at 𝑡 = 80 s and is returned to its original value of 4 mm at 𝑡 = 160

s. The proposed control strategy demonstrates excellent performance
in rejecting this disturbance, since it is able to track the setpoints in
𝑇max and 𝐼 with minimal deviation. This is in contrast to previous
PI and MPC controllers tested on the same APPJ testbed, whereby
both the surface temperature and plasma intensity deviate significantly
from their setpoints, leading to constraint violations that are critical for
the safe plasma treatment in medical applications (e.g., see Figure 7
in Gidon et al., 2018).

Case II: Thermal dose delivery with stationary APPJ
The control objective in this case is to deliver a thermal dose of

CEMref
T = 5 min during a plasma treatment time of less than 5 min

(see (1)). The thermal dose delivery problem is recast as a setpoint
tracking problem in two steps: (i) the reference thermal dose CEMref

T
is converted to a setpoint tracking problem in terms of maximum
surface temperature 𝑇max using the soft sensor (4)–(5), and (ii) the
spatial variation of dose delivery is regulated by tracking a setpoint
for the standard deviation 𝜎 of the spatial distribution of the surface
temperature. An LPV–MPC controller with two scheduling variables is
designed, which is implemented on the APPJ using the hierarchical
control strategy depicted in Fig. 3.

Fig. 9 shows the closed-loop performance of the proposed control
strategy for regulating the thermal dose delivery. It is apparent that
the setpoint for 𝑇max is not tracked particularly well (see Fig. 9(a)). This
is mainly a result of the weights assigned to 𝑇max and 𝜎 in the control
objective of the LPV–MPC problem (19); as listed in Table 2. Due to the
tight coupling between 𝜎 and 𝑇max, multivariable control of these two
variables is particularly challenging. However, the temperature set-
point need not be tracked closely for the thermal dose delivery control
8

Fig. 8. Closed-loop performance of the hierarchical control strategy in Case I using
the LPV–MPC controller scheduled based on two variables. The APPJ tip-to-surface
separation distance (i.e., disturbance) is increased from 4 mm to 8 mm at 𝑡 = 80 s and
returned back to 4 mm at 𝑡 = 160 s. Controlled variables include maximum surface
temperature 𝑇max and plasma optical intensity 𝐼 . Control inputs are the He flow rate
𝑞 and setpoint to the embedded power controller 𝑃set.

objective. This is because the temperature setpoint is updated at each
sampling time. Therefore, an offset at any particular time instant can
be counteracted by choosing the setpoint appropriately in the next time
instant(s). Here, we opted for a lower weight on 𝑇max, as the soft sensor
allows the 𝑇max setpoint to be updated dynamically. Fig. 9(b) shows
the temporal evolution and the final spatial distribution of the thermal
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Fig. 9. Closed-loop performance of the hierarchical control strategy in Case II using the LPV–MPC controller scheduled based on two variables. (a) Controlled variables are
aximum surface temperature 𝑇max and standard deviation of the spatial distribution of the surface temperature 𝜎, whereas control inputs are the He flow rate 𝑞 and setpoint to

the embedded power controller 𝑃set. (b) Temporal evolution of the thermal dose CEMT during the plasma treatment and the spatial dose distribution of CEMT at the end of the
treatment.
a

r

𝑀

w

𝑀

dose delivered to the surface. It can be seen that the reference thermal
dose of CEMref

T = 5 min is achieved within the plasma treatment
time. Despite the shortcomings in the setpoint tracking performance
for 𝑇max, the hierarchical control strategy allows 𝑇max to be retained
below its constraint, which can represent a critical safety consideration,
for example, in medical applications of the APPJ (see Fig. 9(a)). This
performance is comparable to the results reported in Gidon et al. (2017)
(Figure 7), where a nonlinear lumped-parameter, physics-based model
was used to model the thermal effects of the plasma on the surface.
However, in Gidon et al. (2017) the nonlinear MPC is implemented in
simulation only, and the underlying physics-based model suffered from
restrictive assumptions. Therefore, this work provides experimental
evidence for the effectiveness of MPC for thermal dose delivery using
a nonlinear data-driven model.

Overall, the hierarchical control strategy based on the LPV–MPC
controller is capable of delivering the target spatial distribution of the
thermal dose CEMT within the desired time of less than five minutes,
as shown in Fig. 9(b). At the same time, the manipulated inputs to the
APPJ, i.e., 𝑞 and 𝑃set, are not very oscillatory, thus circumventing the
issues surrounding potential actuator damage discussed in the previous
section. In addition, the He flow rate 𝑞 does not reach its bounds,
indicating that there is a lot of ‘‘margin" for flow rate actuation.
However, the applied power 𝑃set often saturates at its maximum value,
ndicating that for the intended application, a larger operating window
or power may be needed. In practice, this may lead to plasma arcing,
hich is why a larger range for power was not examined in this study.

. Conclusions

We presented a hierarchical control strategy based on a lower-level
mbedded power controller and a higher-level LPV–MPC controller for
kHz-excited APPJ in He. The adopted LPV modeling approach pre-
ented a convenient data-driven methodology, which allowed capturing
he highly nonlinear behavior of the APPJ over a relatively broad oper-
ting range. The performance of the hierarchical control strategy based
n the LPV–MPC was demonstrated in two cases: (i) setpoint tracking
n the presence of disturbances; and (ii) thermal dose delivery when
he APPJ is stationary. The real-time control experiments indicated
9

the promise of data-driven modeling approaches in conjunction with
MPC strategies for reproducible and effective operation of APPJs. The
LPV–MPC with two scheduling variables yielded deviations from the
temperature setpoint that are less than 1 ◦C (less than 0.5 ◦C in the case
of disturbance rejection), while the desired thermal dose is delivered in
4 min. This is especially important in the context of plasma medicine,
where treatment times are desired to be as short as possible to improve
patient comfort. Future work will focus on investigating advanced
learning approaches for data-driven LPV modeling and control of cold
atmospheric plasmas.
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Appendix. Reformulation of optimal control problem as a
quadratic programming problem

The optimal control problem (19) is recast as a quadratic program-
ming problem as follows. The cost function can be rewritten as

𝐽 (𝑘) = 1
2
𝛥𝑈 (𝑘)⊤𝐻𝛥𝑈 (𝑘) + 𝛥𝑈 (𝑘)⊤𝑓 (𝑘) + 𝑔(𝑘), (A.1)

where

𝐻(𝑘) = 2( + (𝑘)⊤⊤(𝑘)),

𝑓 (𝑘) = 2((𝑘)⊤⊤(𝑘)𝑥(𝑘) − (𝑘)⊤⊤𝑌set (𝑘)),

nd 𝑔(𝑘) is a known scalar that can be omitted; the matrices , , ,
,  and 𝑌set are given in Section 4. The set of constraints are now
eformulated as

(𝑘)𝛥𝑈 (𝑘) ≤ 𝑏 + 𝐿u𝑢(𝑘 − 1) + 𝐿x(𝑘)𝑥(𝑘), (A.2)

here

(𝑘) =  + 𝛱 + (𝑘), 𝐿u = −𝛶 , 𝐿x(𝑘) = −(𝑘),

𝑏 =
[

−𝛥𝑢⊤min 𝛥𝑢⊤max −𝑢⊤min 𝑢⊤max −𝑥⊤min 𝑥⊤max
]⊤ ,
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⋮
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⎤

⎥

⎥

⎥

⎥

⎦

.

nlike conventional MPC for LTI systems, the cost function parameters
, 𝑓 , 𝑔 and the inequality constraint parameters𝑀,𝐿x are time-varying
n the LPV–MPC problem. Hence, they must be updated at every
ampling time instant 𝑘.
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