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En este artículo, describimos el diseño y la validación de dos instrumentos – uno que mide la 
autoeficacia y otro que mide las competencias del proceso de la modelización matemática. La 
investigación consiste en la evaluación de ambas para establecer la validez y la confiabilidad 
utilizando técnicas de teoría clásica de validación.  
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A pesar de que una de las metas de la educación postsecundaria ha sido el aumentar el 
número de los graduados universitarios en las carreras de ciencia, tecnología e ingeniería, estos 
números no se han incrementado suficientemente. Para adquirir conocimiento útil, es necesario 
que el aprendizaje se fundamente en la combinación de la práctica y teoría de diseño, indagación 
científica, y en el pensamiento matemático (Kelley & Knowles, 2016). A través de la 
modelización matemática, se pueden lograr estas metas. Las habilidades de modelización 
matemática son de suma importancia al cursar carreras universitarias que requieren técnicas 
aplicadas a las matemáticas. También son importantes para resolver problemas sociales cuyas 
soluciones conllevan consecuencias mundiales y tangibles. La posibilidad de resolver los 
problemas sociales llama la atención de los estudiantes (Eccles & Wang, 2016; Su, Rounds, & 
Armstrong, 2009). Además, las investigaciones empíricas sugieren que aprender matemáticas a 
través de la modelización es beneficiosa para obtener una autoeficacia y un conocimiento 
matemático más robusto (Czocher, 2017; Lesh, Hoover, Hole, Kelly, & Post, 2000; Rasmussen 
& Kwon, 2007; Sokolowski, 2015). La modelización matemática, guiada por las innovaciones 
educativas, aumenta el interés, la competencia, y la autoeficacia de los estudiantes hacia las 
matemáticas (Czocher, Melhuish, & Kandasamy, 2019). Conjuntamente, esos factores también 
están asociados positivamente con la perseverancia en los campos disciplinarios que requieren 
las matemáticas. Para evaluar atentamente las intervenciones educativas y mostrar su eficacia, es 
necesario medir el aprendizaje. Esto ayuda a refinar programas que se enfoquen en las 
habilidades de la modelización matemática. A pesar de su necesidad tangible no existen 
instrumentos válidos ni confiables para evaluar las habilidades de modelización de los 
estudiantes universitarios. Aquí, compartimos dos instrumentos de medición y sus propiedades 
psicométricas: uno de competencias de modelización y otro de autoeficacia en realizarla. 

Marco de Referencia 
En este trabajo de investigación, se plantea el supuesto de que la modelización matemática es 

un proceso iterativo y cíclico que puede ser conceptualizado como un conjunto de actividades 
matemáticas y procesos cognitivos (e.g., Kaiser, 2017). El proceso comienza con un problema de 
la vida real – como los que son comunes en los estudios de ciencia, ingeniería o en la vida 



cotidiana – y desemboca en un problema matemático. El problema matemático se puede expresar 
como una ecuación, un gráfico, o una tabla de valores.  El modelador resuelve el problema 
matemático y desde la solución matemática él interpreta el significado de los resultados al 
problema original planteado. El modelador valida y verifica cada etapa del proceso para evaluar 
si el modelo representa correctamente la situación real y si la solución tiene sentido (Czocher, 
2018). La Tabla 1 presenta el marco de referencia que se denomina “ciclo de modelización 
matemática” (CMM) (Blum & Leiss, 2007; Czocher, 2016; Maaß, 2006) y define las 
competencias que constituyen el proceso de modelización matemática. 

Tabla 1 Competencias de modelización. 
Competencia Descripción 
Comprender  Formación de una idea de lo que debe ser el problema o identificación de un fenómeno de la 

vida real que merece investigación  
Establecer 
estructura 

Identificar los factores y cantidades reales relevantes y la información que se puede ignorar; 
imponer restricciones o supuestos para simplificar el problema 

Matematizar Expresar las relaciones entre las cantidades en una representación matemática 
Analizar Resolver el problema matemático, usando técnicas aprendidas en la clase de matemáticas 
Interpretar Observar y entender los resultados matemáticos desde el contexto del problema real 
Validar Examinar si el modelo representa la situación; verificar el análisis; establecer limitaciones  
 

Definimos la autoeficacia de realizar una tarea como la confianza de una persona en sí misma 
y en su capacidad para lograr resolver la tarea exitosamente (Bandura, 2006; Betz & Hackett, 
1983; Hackett & Betz, 1989). En esta investigación, la autoeficacia siempre es evaluada con 
referencia al objetivo de la tarea.  Definimos el constructo autoeficacia de modelización 
matemática como la confianza de una persona en sí misma y en su capacidad de realizar las 
actividades interrelacionadas que constituyen el proceso de modelización. De esta manera 
podríamos medir la autoeficacia de un estudiante para identificar las variables más importantes 
involucrados en estimar la propagación de hogares inteligentes en el siglo 21.  Los marcos de 
referencia, el CMM y la autoeficacia son compatibles, y los utilizamos en conjunto para guiar el 
diseño de los ítems.   

Metodología  
La investigación es de naturaleza cuantitativa y se enmarca dentro de un estudio de desarrollo 

para establecer evidencia en apoyo de la validez y la confiabilidad de los instrumentos. La 
población bajo estudio consistió en estudiantes universitarios que estudian carreras en ciencias, 
tecnología, ingeniería, y matemáticas.  A continuación, se documenta el diseño de los ítems. 

La evaluación del instrumento de autoeficacia se realizó en cuatro rondas de pruebas. En 
cada prueba empírica, usamos una muestra de estudiantes universitarios inscritos en un concurso 
internacional de modelización basado en lo que se llama SCUDEM (por sus siglas en inglés). El 
concurso se lleva a cabo cada año y es parte de una organización de capacitación que apoya a los 
profesores de matemáticas a quienes les gustaría enseñar los conceptos de ecuaciones 
diferenciales desde una perspectiva de aplicaciones y modelización matemática. En la primera 
ronda, eran 6 ítems relacionados con la autoeficacia de modelización. En la segunda, creamos un 
ítem para establecer límites (una competencia de validar; Tabla 2, ítem 6) y modificamos los 
ítems anteriores para mejorar su claridad. En la segunda ronda, también medimos el cambio de 
autoeficacia antes y después de participar en el concurso y constatamos una ganancia de efecto 
moderato, 𝑑𝑑 = 0.545 (𝑡𝑡(92) = −6.663,𝑝𝑝 < 0.001).  En la tercera, creamos un item nuevo de 
análisis matemático (Tabla 2, Ítem 4).  Previamente fue excluido porque el enfoque eran las 
actividades complementarias de modelización.   En la tercera ronda el instrumento midió el 



cambio positivo de autoeficacia (𝑡𝑡 = 4.202 ,𝑑𝑑𝑑𝑑 = 51,𝑝𝑝 < 0.001) de los participantes que 
contestaron las preguntas antes y después de participar en el concurso. En cada ronda de 
validación, realizamos un análisis de los componentes principales (Abdi & Williams, 2010), 
calculamos el Chronbach’s 𝛼𝛼 para estimar la consistencia interna, y medimos el cambio de 
autoeficacia antes y después de participar en el concurso. La Tabla 3 resume los resultados. Este 
análisis, en conjunto con su construcción basado en la teoría de modelización matemática, indica 
que el instrumento de autoeficacia es unidimensional con coherencia interna alta y tiene validez 
de diseño y de constructo. 

Tabla 2 El instrumento final de autoeficacia.  
Indica tu nivel de confiabilidad en cada uno de los escenarios siguientes, elegiendo un 
numero de 0 a 100 usando la siguiente escala: 

Competencias  

0       10        20        30        40       50      60       70        80        90       100 
No puedo hacer. Tengo dudas… Con certeza elevada. 
1. Crear un modelo de ecuaciones diferenciales para estimar la propagación de hogares 

inteligentes en el siglo 21. 
Matematizar 

2. En (1), identificar las cantidades importantes que aseguran una predicción razonablemente 
precisa.  

Establecer 
estructura 

3. En (1), establecer los supuestos que reducen la cantidad de factores importantes. Establecer 
estructura. 

4. En (1), elegir un método apropiado de tipo numérico, gráfico ó analítico para resolver la 
ecuación diferencial que resulta de (1). 

Analizar  

5. En (1) consultar a los recursos apropiados para verificar si el modelo matemático es razonable.  Validar 
6. En (1) enumerar las limitaciones del modelo matemático, incluyendo restricciones de la vida 

real y restricciones matemáticas. 
Validar 

7. En (1), crear una presentación breve para persuadir un fabricante de aparatos inteligentes que 
podrían depender en tu modelo matemático para fomentar un plan de negocios.   

Comunicar 

8. Proporcionando una ecuación diferencial que modela la tasa de formación del material A,  
𝐴𝐴′(𝑡𝑡) =  𝛼𝛼𝐴𝐴(𝑡𝑡)𝛽𝛽 

y los datos de observaciones en tiempo 𝑡𝑡, la cantidad de material A por cada punto de tiempo 𝑡𝑡, 
podría estimar los parámetros 𝛼𝛼 y 𝛽𝛽. 

Establecer 
estructura 

 
Tabla 3 El resumen del análisis del instrumento de autoeficacia de modelización  

Ronda N Varianza (ACP) 𝛼𝛼 Ronda N Varianza (ACP) 𝛼𝛼 
1 38 62.5% 0.822 3 198 61.5% 0.908 
2 276 67.1% 0.917 4 226 69.0% 0.935 

 
La evaluación del instrumento de competencias de modelización se realizó en tres rondas de 
pruebas con muestras distintas de una universidad de más de 40,000 estudiantes en los EEUU: 
viabilidad, dificultad, y discriminación. Para diseñar el instrumento tomamos en cuenta cuatro 
restricciones: (1) los ítems parten de contextos auténticos y relevantes (por ejemplo, la 
desintegración radioactiva o un programa de reciclaje). (2) Los ítems evocan conocimientos de 
matemática, ciencia, ingeniería, y sentido común. (3) Los ítems abordan aspectos de las 
competencias. Por ejemplo, un ítem aborda la competencia de establecer la estructura que se 
requiere al utilizar la habilidad de identificar cantidades importantes. (4) Los distractores son 
basados en las decisiones y justificaciones comunes al pensamiento de estudiantes actuales. 
Elaboramos 118 ítems de tipo selección múltiple (ISM) que pertenecen a 9 situaciones de la vida 
real elegido de materiales de cursos de matemáticas, física, biología, química e ingeniería. El 
contenido matemático incluye aritmética, álgebra, cálculo diferencial e integral y ecuaciones 
diferenciales. Por cada ítem, elaboramos una respuesta correcta y cuatro distractores que 



parecieran razonables a los estudiantes pero que no ayudaran a modelizar la situación. Para 
establecer la validez de contenido y la validez de los constructos, invitamos a revisar los ítems a 
dos investigadores matemáticos que se enfocan en la investigación de ecuaciones diferenciales y 
tres profesores universitarios de matemáticas que se especializan en realizar investigaciones 
sobre el aprender y enseñar la modelización. Aplicamos los cambios que sugirieron los expertos 
y eliminamos los ítems que resultaron no válidos. En la primera ronda, 14 estudiantes nos dieron 
su razonamiento para justificar sus elecciones. En el caso de que un estudiante eligiera un 
distractor y su razonamiento tuviera sentido, el ISM fue ajustado. Eliminamos los que no tenían 
sentido para los estudiantes. En la segunda ronda, 78 estudiantes contestaron 63 ISM en 2 
versiones, equilibrando ítems de acuerdo a las distintas competencias de modelización. Por cada 
ISM, calculamos la dificultad media. La mayoría (76%) de los ISM tenían dificultad moderada 
(0.20<p<0.70). Eliminamos los ítems que eran demasiado fáciles (p>0.7) y restructuramos los 
ítems que fueron demasiado difíciles (p<0.20). Para analizar la eficacia de los distractores, 
calculamos la proporción de los estudiantes que eligieron cada opción. De los 253 distractores 
(62 ítems contaban con 4 distractores y 1 contaba con 5), El 5% de los participantes eligieron la 
mayoría de estos distractores. En 17 de los ítems, los distractores fueron elegidos más 
frecuentemente que las respuestas correctas. Estos fueron identificados de acuerdo con su 
potencial de discriminar entre estudiantes de distintas habilidades o como ítems que necesitaban 
ser reestructurados.   Después de reestructurar los ISM según el análisis de distractores, elegimos 
30 ítems (2 versiones de 15 ítems). Las dos versiones se administraron a una muestra de 𝑛𝑛 =
314 voluntarios que participaron en el concurso SCUDEM, incluyendo 𝑛𝑛 = 135 que contestaron 
a la versión 1 y 𝑛𝑛 = 139 que contestaron a la versión 2. Por cada ISM, calculamos la dificultad 
media. La versión 1 obtuvo dificultad media de 0.359 (𝑆𝑆𝑆𝑆 = 0.126), con 0.177 < 𝑝𝑝 < .0595. 
La versión 2 obtuvo dificultad media de 0.369 (𝑆𝑆𝑆𝑆 = 0.129), con 0.147 < 𝑝𝑝 < 0.580. Cuatro 
ítems eran demasiado difíciles. Se realizó un análisis de detractores y concluimos que los 
distractores funcionaban adecuadamente. Para realizar el análisis de discriminación, usamos la 
correlación point-biserial (rPBIS por sus siglas en ingles). Un solo ítem de la versión 1 tenía 
rPBIS negativo. El resto tenían rPBIS > 0.20. Reportamos la estadística Revelle’s Omega Total 
(𝜔𝜔𝑇𝑇 ) para estimar la consistencia interna. La selección fué apropiada en casos donde el 
instrumento era multidimensional y cuando múltiples dimensiones contribuían a predecir el 
constructo bajo investigación (Revelle & Zinbarg, 2009). Usando el paquete de software 
‘userfriendlyscience‘ del programa 𝑅𝑅, obtenemos 𝜔𝜔𝑇𝑇 = 0.59 y  𝜔𝜔𝑇𝑇 =  0.63 para la versión 1 y la 
versión 2, respectivamente. Las escalas se acercan al estimado tradicional 0.7. 

Discusión  
En este artículo, presentamos dos instrumentos de medición, uno de autoeficacia de 

modelización y uno de competencia de modelización. Así mismo, documentamos los procesos de 
construcción y diseño y las propiedades de ambos. Los instrumentos se alinean con las teorías de 
modelización y han pasado múltiples rondas de pruebas. Se planea emplear la Teoría de 
Repuesta al Ítems para componer versiones que sean paralelas para medir los cambios positivos 
de las competencias de modelización de los estudiantes con el propósito de evaluar programas 
educativos que se enfoquen en ensenar la modelización. Con esta información, departamentos, 
investigadores y docentes pueden mejorar las experiencias de modelización o proporcionar 
evidencia de su éxito. Estamos cautas pero optimistas que los instrumentos alcancen este 
objetivo ya que la evidencia expuesta aquí sugiere que los instrumentos son confiables y válidos 
para su propósito. 
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In this article, we share the design and validation processes of two instruments measuring 
aspects of the mathematical modeling process – one that measures competency and one that 
measures students’ self-efficacy to do modeling. The study evaluates both instruments to 
establish their validity and reliability, using classical test theory.  

Keywords: measurement and evaluation, post-secondary education, advanced mathematical 
thinking 

Despite calls over recent decades to increase the number of graduates in STEM fields, these 
numbers have not grown sufficiently. Learning to apply knowledge in these majors implies 
integration of experiences leveraging design theories, scientific inquiry, technological literacy, 
and mathematical thinking (Kelley & Knowles, 2016). These goals can be realized through 
mathematical modeling. Modeling is of utmost importance for students pursuing STEM majors 
because modeling skills are of critical import to solving society’s problems – whose solutions 
have global consequences. Today’s students also take great interest in solving them (Eccles & 
Wang, 2016; Su, Rounds, & Armstrong, 2009). Further, research suggests that learning 
mathematics through modeling, as a pedagogical approach, has potential to increase student 
interest, proficiency in mathematics, robustness of mathematical knowledge, and self-efficacy 
for doing mathematics (Czocher, 2017; Czocher, Melhuish, & Kandasamy, 2019; Lesh, Hoover, 
Hole, Kelly, & Post, 2000; Rasmussen & Kwon, 2007; Sokolowski, 2015). Taken together, these 
factors are positively associated with persistence in mathematics and therefore in majors with 
high mathematics requirements. One aspect of incorporating more modeling in undergraduate 
mathematics classrooms is being able to demonstrate the efficacy of instructional interventions 
by measuring gains in students’ modeling skills. This information would help refine 
programmatic innovations that focus on augmenting students’ modeling experiences. Despite the 
need, there are presently no validated, reliable instruments to measure students’ modeling skills 
available for undergraduates. In this article, we share two such instruments and their 
psychometric properties: one for modeling competencies and one for self-efficacy to carry out 
those competencies. 

Conceptual Framework 
For this project, we adopt a view of mathematical modeling as a cognitive process of 

rendering a non-mathematical problem about a real-world phenomenon of interest, such as those 
common to STEM fields, as a well-posed mathematical problem to be solved. It is a cyclic 
process realized as a suite of mathematical activities and cognitive processes (e.g., Kaiser, 2017). 
The mathematical problem can be expressed as an equation, a graph, a table, etc. The modeler 



solves the mathematical problem and interprets its solution in terms of the real-world context. 
The modeler validates and verifies each step of the process, evaluating whether the model 
correctly represents the situation and whether the solution makes sense (Czocher, 2018). Table 1 
summarizes the conceptual framework, called a mathematical modeling cycle (MMC) (Blum & 
Leiss, 2007; Czocher, 2016; Maaß, 2006), and also defines the competencies that constitute the 
modeling process. 

Table 1 Modeling competencies 
Competency Description 
Understanding  Forming an idea of the real World problema or identifying a real world phenomenon worth 

investigating 
Structuring Identifying (ir)relevant quantities and variables; making assumptions to simplify the problem  
Mathematizing Expressing relations among the variables using a mathematical representation 
Working 
mathematically 

Solving the mathematical problema, using techniques learned in mathematics classes 

Interpreting Interpreting the mathematical results with reference to the context of the real world problem 
Validating Evaluating whether the model represents the situation; verifying the analysis; establishing 

limitatinos 
 

We operationalize self-efficacy about a task as an individual’s self-assessed capacity to 
successfully carry it out (Bandura, 2006; Betz & Hackett, 1983; Hackett & Betz, 1989). In this 
study, self-efficacy is always evaluated with reference to a specified task. We operationalize the 
construct self-efficacy for mathematical modeling as an individual’s self-assessed capacity to 
successfully carry out the interrelated competencies of the mathematical modeling process. In 
this way, we can, for example, consider a student’s self-efficacy to identify the most important 
variables involved in estimating the spread of smart homes in the 21st century. The conceptual 
frameworks are compatible and we used them together to guide the design of the modeling self-
efficacy and modeling competency scale items. 

Methods 
This study has a quantitative nature and is situated within the development of the two 

instruments, with the purpose of establishing evidence in support of their validity and reliability. 
The population under study was university STEM majors in the United States. The modeling self 
efficacy (MSE) instrument went through four rounds of design and testing. In each field test, we 
used a sample of STEM majors who participated in an international modeling competition called 
SCUDEM1, which focuses on modeling with differential equations. In the first round of field 
testing, there were 6 related items for students to report their self-efficacy for the modeling 
competencies. In the second round, we created an additional item asking about establishing 
limits (a competency of validating, see Table 2, item 6) and we clarified previous items. We used 
pre- and post- forms of the MSE to measure change in students’ self-efficacy from before to after 
competing. We found gains of moderate effect size 𝑑𝑑 = 0.545 (𝑡𝑡(92) = −6.663,𝑝𝑝 < 0.001).   
In the third round, we created a new item targeting working mathematically (Table 2, Item 4). 
Previously, this competency was excluded because it is traditionally the focus of mathematics 
instruction, and is complementary to modeling. In the third round, we measured statistically 
significant positive gains in self-efficacy for those participants who answered both the pre- and 

 
1 The annual SCUDEM challenge is hosted by SIMIODE, https://www.simiode.org/scudem. SIMIODE is a 
professional organization of educators who advocate teaching differential equations from a modeling 
perspective. 

https://www.simiode.org/scudem


post-survey  (𝑡𝑡 = 4.202 ,𝑑𝑑𝑑𝑑 = 51,𝑝𝑝 < 0.001). The final round was carried out concurrently 
with field testing of the Modeling Competency Questionnaire (MCQ), detailed be low. In each 
round, we carried out a principal component analysis (Abdi & Williams, 2010) to estimate 
variance and calculated Cronbach’s α as a measure of internal consistency. Summary statistics 
are in Table 3. Our analyses, together with the instrument’s construction based in theories of 
mathematical modeling, suggest that the MSE is unidimensional with high internal consistency, 
fase, content, and construct validity. 

Table 2 Final MSE instrument.  
Rate your level of confidence by recording a number from 0 to 100 using the scale given 
below 

Competencies  

0       10        20        30        40       50      60       70        80        90       100 
Cannot do at all Moderately can do Highly certain can do. 
9. Create a differential equation model for the spread of smart home appliances in the United 

States during the twenty-first century. 
Mathematize 

10. In (1) identify the important variables leading to a reasonably accurate prediction. Identify variables 
11. In (1) make simplifying assumptions to reduce the number of important variables. Make 

assumptions 
12. In (1) select an appropriate numerical, graphical, or analytic technique to solve the resulting 

differential equation 
Work 
mathematically  

13. In (1) consult appropriate resources to check whether your model was reasonable. Validate 
14. In (1) list the real-life and mathematical limitations of your model. List limitations 
15. In (1) create a short presentation to convince a smart appliance manufacturer that they could 

rely on your model to develop their business plan. 
Communicate 
findings 

16. Given a differential equation which describes the rate of formation of material A,  
𝐴𝐴′(𝑡𝑡) =  𝛼𝛼𝐴𝐴(𝑡𝑡)𝛽𝛽 
and a data set of observations for time, t, amount of material A at each time t, you could 
estimate the parameters 𝛼𝛼 and 𝛽𝛽. 

Estimate 
parameters  

 
Tabla 3 Summary of analysis of MSE  

Round N Varience (ACP) 𝛼𝛼 Round N Variance (ACP) 𝛼𝛼 
1 38 62.5% 0.822 3 198 61.5% 0.908 
2 276 67.1% 0.917 4 226 69.0% 0.935 

 
Design and testing for the MCQ was carried out in three rounds (feasibility, difficulty, and 

discrimination) with distinct samples drawn from a large, southwestern university in the United 
States. We imposed four restrictions on the design: (1) items should be drawn from authentic and 
relevant contexts (e.g., radioactive decay or analysis of a recycling program), (2) items should 
draw on knowledge from STEM content or everyday knowledge, (3) items should target the 
aspects of the modeling competencies, and (4) distractor choices should capture decisions and 
justifications common to students’ reasoning. We created 118 multiple choice items belonging to 
9 real-world situations, selected from instructional and research materials from STEM education. 
Mathematics content included arithmetic, algebra, calculus, and differential equations. For each 
item, we created one correct answer and four distractors that would appear reasonable to the 
students but would not help to model the situation. To establish content and construct validity, 
we invited two mathematicians who teach differential equations to STEM students and three 
mathematics education researchers who specialize in teaching and learning of mathematical 
modeling to evaluate the items for appropriateness, correctness, and aptness to the MMC. In the 
first round, 14 students answered the MCQs and gave us reasoning to justify their choices. We 
eliminated items that did not make sense to the student. In cases where a student selected a 



distractor but had sensible reasoning, we modified the item. In the second round, 78 students 
answered 63 items, distributed among two forms that balanced contexts and competencies. For 
each item, we calculated the mean difficulty. The majority (76%) of the items had moderate 
difficulty (0.20<p<0.70). We eliminated items outside this range as either too difficult or too 
easy, restructuring some of the too-difficult items. To analyze distractor efficiency, we calculated 
the proportion of students that selected each option. At least 5% of the students selected each of 
the 253 distractors (one item had 5 distractors). For 17 items, a distractor was selected more 
frequently than the correct answer. These items were flagged as potentially strong discriminators 
among students with varying levels of modeling competencies. After restructuring problematic 
items, we chose 30 items (15 items for each of 2 forms). The two forms were administered to a 
sample of 𝑛𝑛 = 314 volunteers who participated in the SCUDEM competition, 𝑛𝑛 = 135 
responded to Form 1 and 𝑛𝑛 = 139 responded to Form 2. For each item, we calculated the mean 
difficulty. Form 1 had mean difficulty 0.359 (𝑆𝑆𝑆𝑆 = 0.126), with 0.177 < 𝑝𝑝 < .0595. Form 2 
had mean difficulty 0.369 (𝑆𝑆𝑆𝑆 = 0.129), with 0.147 < 𝑝𝑝 < 0.580. Four items were too 
difficult. We conducted another analysis of distractors and concluded that they were functioning 
adequately. We used point-biserial correlations (rPBIS) to conduct discrimination analysis. Only 
one item from Form 1 had a negative rPBIS; the remaining items had rPBIs > 0.20. We report 
the statistics Revelle’s Omega Total (𝜔𝜔𝑇𝑇) as an estimate of internal consistency. This selection is 
appropriate in cases, like the MCQ, where the instrument is multidimensional and when those 
multiple dimensions contribute to the construct under investigation (Revelle & Zinbarg, 2009). 
Using the software package ‘userfriendlyscience’ in 𝑅𝑅, we obtained  𝜔𝜔𝑇𝑇 = 0.59 y  
𝜔𝜔𝑇𝑇 =  0.63, respectively, for Forms 1 and 2. The scales are approaching traditional estimates of 
0.7. 

Discussion 
In this article, we have shared two instruments measuring mathematical modeling 

competencies and modeling self-efficacy. We also documented their design processes and their 
psychometric properties. The instruments are aligned with theories of mathematical modeling 
and have gone through several rounds of field testing. Future research will move into Item 
Response Theory as a means for constructing and calibrating parallel versions of the modeling 
competence questionnaire for use as pre/post or group comparison measures. In this way, the 
instruments can help to evaluate innovative educational interventions aimed at augmenting 
students’ modeling skills. With such information, instructors, researchers, and academic units 
can improve modeling experiences for students and provide evidence of their efficacy. We are 
cautious but optimistic that the instruments can meet this goal as the evidence presented here 
suggests that both are reliable and valid for that purpose. 
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