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Shear stress dependence of force networks in 3D
dense suspensions†

Lance E. Edens,a Enrique G. Alvarado,a Abhinendra Singh, b Jeffrey F. Morris, c

Gregory K. Schenter, d Jaehun Chun e and Aurora E. Clark *f

The geometric organization and force networks of 3D dense suspensions that exhibit both shear

thinning and thickening have been examined as a function of varying strength of interparticle attractive

interactions using lubrication flow discrete element simulations. Significant rearrangement of the

geometric topology does not occur at either the local or global scale as these systems transition across

the shear thinning and shear thickening regimes. In contrast, massive rearrangements in the balance of

attractive, lubrication, and contact forces are observed with interesting behavior of network growth and

competition. In agreement with prior work, in shear thinning regions the attractive force is dominant,

however as the shear thickening region is approached there is growth of lubrication forces. Lubrication

forces oppose the attraction forces, but as viscosity continues to increase under increasing shear stress,

the lubrication forces are dominated by contact forces that also resist attraction. Contact forces are the

dominant interactions during shear thickening and are an order of magnitude higher than their values in

the shear-thinning regime. At high attractive interaction strength, contact networks can form even under

shear thinning conditions, however high shear stress is still required before contact networks become

the driving mechanism of shear thickening. Analysis of the contact force network during shear

thickening generally indicates a uniformly spreading network that rapidly forms across empty domains;

however the growth patterns exhibit structure that is significantly dependent upon the strength of

interparticle interactions, indicating subtle variations in the mechanism of shear thickening.

1 Introduction

Dense suspensions that contain a high volume fraction of particles

immersed in a liquid can exhibit a wide array of non-Newtonian

rheology. This non-equilibrium behavior is influenced by a

range of particle interactions, including the physicochemical

characteristics of both the particles and the suspending medium.

Suspended particles may generally be subject to hydrodynamic,

van der Waals, electrostatic, Brownian, and frictional forces, each

of which may predominate depending on the conditions.1,2 Under

an applied shear, different rheological behaviors, such as shear

thinning and shear thickening, may be observed depending on the

interplay of these forces and the system characteristics. Yielding

and shear thinning under low applied stress can transition into

shear thickening and shear-induced jamming at larger applied

stress.3

Shear thinning is a nonlinear effect where increasing the

applied shear stress to a suspension decreases the viscosity.

This phenomenon is observed in applications of cement paste,

ceramic precursors, or food products, and is not necessarily

deleterious. Theories for the mechanism behind shear thinning

focus on different physical aspects such as the breakdown of

particle clustering, elastohydrodynamic interactions where particles

overcome the lubrication forces opposing frictional contact, or upon

possible non-Newtonian properties of the solvent.3,4 Conversely,

suspensions exhibiting shear thickening can flow relatively easily

at low stress but become highly viscous as the applied shear stress

increases. The impacts of shear thickening are often undesirable

when handling dense suspensions in similar industrial settings.

The shear thickening response can be continuous shear thickening

(CST), where the viscosity increase with shear stress is gradual,

or it can be discontinuous shear thickening (DST), where the

aDepartment of Chemistry, Washington State University, USA
b Levich Institute, CUNY City College of New York and Pritzker School of Molecular

Engineering and James Franck Institute, The University of Chicago, USA
c Levich Institute and Department of Chemical Engineering,

CUNY City College of New York, USA
d Pacific Northwest National Laboratory and Department of Chemistry,

Washington State University, USA
e Pacific Northwest National Laboratory and Levich Institute/Department of

Chemical Engineering, CUNY City College of New York, USA
fDepartment of Chemistry, Voiland School of Chemical Engineering and

Bioengineering, Washington State University, and Pacific Northwest

National Laboratory, USA. E-mail: auclark@wsu.edu

† Electronic supplementary information (ESI) available: Pictorial representations

of analysis methods, expanded radial distribution functions and force network

distributions under different attractive forces. See DOI: 10.1039/d1sm00184a

Received 3rd February 2021,

Accepted 8th July 2021

DOI: 10.1039/d1sm00184a

rsc.li/soft-matter-journal

Soft Matter

PAPER

P
u
b
li

sh
ed

 o
n
 1

5
 J

u
ly

 2
0
2
1
. 
D

o
w

n
lo

ad
ed

 b
y
 C

it
y
 C

o
ll

eg
e 

o
f 

N
ew

 Y
o
rk

 o
n
 8

/5
/2

0
2
1
 1

:5
6
:5

9
 A

M
. 

View Article Online

View Journal



Soft Matter This journal is © The Royal Society of Chemistry 2021

viscosity rises abruptly (often by orders of magnitude) at a

critical shear rate. In the shear-jammed state, the suspension

does not flow and behaves like a solid, but is fragile because the

mixture can flow if the imposed stress is reduced or its direction

is changed.5 There is significant interest in understanding the

mechanism behind the onset of shear thickening and the further

transition into a jammed state.6,7 Theories for the mechanism

behind shear thickening involve the formation and growth of

frictional force contacts between suspended particles.8

Insight into the balance of shear stress, volume fraction, and

the underlying forces that influence cohesion has begun to be

achieved through simulation techniques, including lubrication

flow discrete element modeling (LF-DEM) which has recently

enabled the simulation of flows of very dense particle suspensions

by combining a short-range lubricating flow description for

hydrodynamic interactions with a contact force model commonly

employed in discrete element modeling of granular materials.

This method has successfully reproduced key aspects of rheolo-

gical behavior of dense suspensions such as a transition from

CST to DST with increasing shear stress,8,9 and inclusion of both

attractive and Brownian forces has been demonstrated.10,11

Including attractive forces (cohesion) has resulted in suspensions

that exhibit both yielding and shear thinning at low stress and

shear thickening and jamming at high stress.12,13 Predicted flow-

state diagrams for dense frictional suspensions that include

attractive interactions contain an intermediate region of stress

between the unyielded region and jammed states that is flow-

able, with shear thinning followed by shear thickening as stress

increases.

Fundamental insight has begun to emerge regarding the role

of contact friction force networks in rheological transitions, and on

the relationships between clustering, network phenomena, and

cohesive forces. A contact force network (CFN) is formed by

considering the connections made between particle pairs that

share a frictional force as the edges of a graph (network), with

the particles being vertices. In this scenario, it is hypothesized

that rupture of lubrication films between particles, as shear

forces overwhelm a repulsive colloidal force, leads to shear

thickening.8,14,15 The central concept is that a CFN forms as

particles are progressively driven into contact with one another,

in this case by increasing imposed stress, and through the

resulting connected structures the suspension resists flow more

efficiently. Prior work2,9,11,13,16,17 has shown that CFNs play a

critical role in the rheological response of suspensions, both

through their shear-induced rupture for yielding and their

shear-induced formation in shear thickening. For example,

the onset of shear thickening has been linked with the appear-

ance and rapid growth of frictional contacts,9 with this behavior

being influenced by the presence of interparticle cohesive

forces.11 However, correlation of the various particle forces as

a function of shear stress have not been extensively studied.

These insights have primarily been obtained through traditional

analyses of the macroscopic response. However, network-based

analyses and associated descriptors of network topology are

beginning to contribute new insights into the mechanisms of

rheological transitions.2,18,19 Within a 2D suspension, Edens et al.2

demonstrated that these network techniques could track the bulk

rheological response of discontinuous shear thickening while also

connecting that response to the global features of the force network.

Topological descriptors that included the geodesic index and the

void parameter were introduced to track the CFN response during

shear thickening. These metrics reflected complementary aspects of

the CFN, with the geodesic index tracking the connectedness of the

contact network and the void parameter following the spatial areas

devoid of particle contacts. Within the 2D system, the geodesic

index revealed that the onset of DST was characterized by a

rapid rise in the interconnectivity of the contact network, and

was later complemented by topological data analysis,20 which

found that loops (network components of Betti number 1) were

the most correlated with the rise in apparent viscosity. The void

analysis provided insight into the homogeneous distribution of

empty spaces, showing that the number and area of the voids

were minimized uniformly during the increase in network

connections. The implication is that within the 2D systems,

the contact network grows homogeneously at large scales but

with many local regions devoid of contacts.

Significant opportunities exist for applying network analyses to

flowing suspensions. For example, characterizing the load-bearing

networks as a function of shear stress in complex-rheology

suspensions may provide fundamental insight into stress

transmission and may guide the design of rheological modifiers

within industrial applications, along with rigorous correlations

to physicochemical particle forces. Here we expand upon our

earlier work2 by applying topological metrics introduced above

to a 3D system.13 The single volume fraction (f) studied in this

work can display both shear thinning and thickening behavior9,21,22

and in the presence of attractive interactions (at sufficiently large f)

a suspension can even display yielding at low shear stress and

thickening to a fully jammed state at high stress.13,23 We compare

and contrast the information content from various descriptors of

geometric organization and network topology. Pair distribution

functions, geodesic index analysis, and void analysis are employed

along with a full breakdown of the forces networks involved, to

elucidate the connection of particle microstructure and CFN

evolution to both shear thinning and thickening processes.

Analyzing the three-dimensional, non-Brownian cases from

Singh et al.13 allows us to further explore the particle dynamics

that occur under different rheological conditions and the role

played by the attractive interparticle forces.

2 Computational methods

LF-DEM is used to simulate simple-shear flows of dense

suspensions.8,9 We consider particle suspensions with different

magnitudes of attractive interaction, which cause variation in

both yield stress and the nature of shear thickening, e.g., a large

yield stress is found to obscure the shear thickening, as observed in

silica particle suspensions with polymer-based depletion attractive

forces24 – a feature reproduced by the simulation method employed

here.11 Our goal is to elucidate the correlating relationships

between geometric organization, viscosity, and the network of
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forces (lubrication, contact and both attractive and repulsive

conservative forces) between suspended particles. We first employ

spatial correlation functions to quantify structural organization of

the suspension in its transition from shear thinning to shear

thickening. Next, the individual networks of lubrication, contact,

and attractive forces are examined, both in the context of the

distribution of forces in each network, and their interconnectivities

and density.

2.1 Simulation protocol

Non-Brownian spherical particles interacting by lubrication

hydrodynamics in a Newtonian fluid are simulated; conservative

and frictional contact forces are included. 3D Lees–Edwards

periodic boundary conditions25 are employed with imposed

stress so that the suspension flows at a time-dependent shear

rate _g(t). We simulated about 500 total particles of equal volume

fractions of bidisperse particles with radii a and 1.4a to prevent

ordering. The unit cell for a simulation is shown with the two

sizes shaded differently in Fig. 1 to provide an indication of the

material packing density.

The particles experience short-ranged hydrodynamic (lubrication)

forces FH, a conservative force Fcons = FA + FR (where A and R denote

the attractive and repulsive parts of the interaction, respectively), and

contact forces FC; in a compact notation, these quantities are actually

the force and torque. We considered the motion to be inertialess

(thus, zero Stokes and Reynolds numbers) so that the equation of

motion is the force and torque balance on each particle,

0 = FH(R, U) + FC(R) + FA(R) + FR(R), (1)

where R and U are many-body position and velocity vectors; the

velocity includes translation and rotation.

The conservative forces FR and FA are determined based on

the positions of the particles, modeling the influence of physico-

chemical parameters.

A detailed explanation of these forces is provided in previous

work.9,11,13 Briefly, the hydrodynamic forces are of the form

FH = �RFU�(U � UN) + RFE :E
N (2)

with UN = _g(t)yêx being the flow due to imposed shear

and EN the associated rate-of-strain tensor described by

EN

� ( _g(t)/2)(êxêy + êyêx). The hydrodynamic resistance matrices

RFU and RFE contain leading order terms corresponding to

short-range lubrication forces.26

The occurrence of contacts between particles due, for example,

to surface roughness is mimicked by regularizing the divergence of

the resistance matrix at vanishing normalized interparticle surface

separation between particles i and j, hij = 2(dij � ai � aj)/(ai + aj)

with dij the pair center separation: the ‘‘squeeze’’ mode resistance

is proportional to 1/(hij + d), while the ‘‘shear’’ mode resistance is

proportional to log(1/(hij + d)).9 Here, we have used d = 10�3, such

that the lubrication force is upper limited, and slight particle

overlap (contact) is allowed.

The conservative forces used are shown in Fig. 2. A repulsive

electrostatic double layer and attractive Van der Waals interaction

between particles are modeled. The resulting force decays exponen-

tially with interparticle surface separation as |FR| = F0exp(�ĥij/l),

where l is the Debye length and ĥij = hij(ai + aj)/2 is a dimensional

interparticle separation. The attractive force between particles is

described by |FA(hij)| = Aā/12(ĥij
2 + H2), where A denotes the

Hamaker coefficient and ā denotes the harmonic mean radius

ā = 2a1a2/(a1 + a2).
27 The parameter H = 0.1ā is employed

to eliminate the divergence of FA at contact (hij = 0). The

strength of attraction, FA (=|FA|), is controlled by A, which

determines the value of the attractive force at contact, FA(0)

Fig. 1 Unit cell of the simulation, with 500 total particles of two radii a

(lighter grey shading) and 1.4a (darker red shading). Each size particle makes

up half of the particle volume fraction. This cell is replicated in all three

directions and shearing is imposed by Lees–Edwards boundary conditions.

Fig. 2 Conservative forces Fcons = FA + FR, plotted as function of the

scaled surface separation of a pair of particles, hij. The dash-dotted black

curve represents the repulsive force; positive forces are repulsive. The

dashed blue, purple, and red curves are the attractive force curves with

maximum magnitudes at surface contact of FA = 0.3, 0.75, and 0.9,

respectively, with the solid curves of the same color representing the

complete Fcons for the three values of attractive force.
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(referred to as FA in the rest of the article). To model the contact

interaction between particles, we employ the approach of

Cundall and Strack28 using linear springs. However, there is no

dashpot used here since the hydrodynamic resistance provides

the source of energy dissipation. The tangential force between

two particles satisfies |FtC|r m|FnC| (i.e., the Coulomb friction law)

for compressive normal forces, where m is the interparticle

friction coefficient. Upon making contact, friction is activated

and we fix the interparticle friction coefficient at m = 1.0. Sliding

and non-sliding contact forces are not differentiated in this case.

A finite softness is allowed at the contact. In this study, the spring

stiffness is tuned for each (f, s), using a stiffer spring at large s so

that neither the normal nor tangential spring deformation

exceeds 0.03a, i.e., they are maintained near the rigid limit;9,29

it has been shown that the behavior can be reproduced using the

maximum spring stiffness at all conditions, but with the cost of a

much smaller time step at small stress,15 apparently due to the

need for sufficient deformation to allow enduring contacts;

work without such deformation has shown that strong shear

thickening is not captured.30

Using this simulation scheme, we determine particle positions

(and thus conservative forces), normal and tangential contact

forces, and non-contact lubrication forces. The development of

the balance between contact and non-contact interactions with

increasing strength of attraction is responsible for significant

changes in the rheological response of the suspension. A detailed

description of the viscosity response of frictional non-Brownian

suspensions to increasing applied stress under various attractive

forces can be found in Singh et al.13 The apparent viscosity of the

suspension is defined Z = s/ _g(t), where s is the imposed shear

stress. The relative viscosity is Zr = Z/Z0, where Z0 is the pure

fluid viscosity. By increasing s, these systems show a transition

through two different shear response regimes. This response

is shown in Fig. 3, modified from Singh et al.,13 but here

we focus on only the data that will be further analyzed below

(i.e. 500 particle simulations with a volume fraction of f = 0.56).

Beginning at low s, all systems are in a soft solid state. With an

increase in the applied shear stress beyond the yield stress,

the suspension begins to flow and exhibits shear thinning,

as the viscosity decreases with increasing s. With further increase

of the shear stress, the viscosity reaches a minimum and then

increases in the shear thickening regime. The minimum viscosity

occurs at a transition s (in dimensionless form between 0.2 and

1.0, with scaling by F0/a
2 that depends on FA), and marks a shift

from shear thinning to shear thickening. At larger s, the viscosity

continues to increase until a plateau is reached as the contact

network growth, and thus the suspension viscosity, saturates.

Increasing the FA values results in a larger yield stress, and a shift

to a larger value of the transition s. The minimum viscosity values

reached by shear thinning also increase with larger FA, and for

FA = 0.9, it can be seen that the shear thickening is almost

completely obscured, as the viscosity shear thins almost directly

onto the high stress plateau. In short, increasing FA increases the

yield stress, leading to an increased rate of shear thinning as the

connectivity is ruptured, and reduces the extent of shear thickening.

2.2 Data analysis

2.2.1 Analysis of 3D particle configurations

Pair distribution functions. The pair distribution function

(PDF) G(d), was found by extensive sampling for the three pairs

of particle sizes: small–small, large–small, and large–large

based upon the interparticle distance d. Small and large

particle radii are a and 1.4a.

Void analysis in 3-dimensions. Given a collection of points in

space, Voronoi analysis is a commonly used method that associ-

ates portions of space to their closest point in the collection. In

the current work, the points are the particle centers, with the

regions being Voronoi polyhedra. The Zeo++31 open source soft-

ware was utilized, as it is designed to perform geometry-based

analysis of porous materials. The program utilizes three-

dimensional Voronoi calculations to obtain the diameter of the

largest free spheres, which provides the empty space void regions

among a network of points. In this work, Zeo++ was employed in

two ways. First, it was employed to study the changes in particle

packing as a function of shear stress, to complement the infor-

mation obtained from G(d). In a more unique application of

Zeo++, we subsequently analyzed the ‘‘voids’’ in the networks

formed from contact forces. By manually defining the size of the

input particles, Zeo++ can be utilized to find voids in 3D networks

(essentially treating a network as a porous material). The ‘‘acces-

sible volume’’, ‘‘pore size distribution’’, and ‘‘distance grids’’

functions were all utilized in this analysis. The accessible volume

function outputs the number of voids, defined as either pockets

(empty regions surrounded by particle network) or channels

(empty regions where contiguous probe spheres overlap, extend-

ing across the bounding box). Together the pockets and channels

define a pore, or overall void space. The LF-DEM output was

converted to CSSR file format‡ and the outputs from Zeo++ were

Fig. 3 Relative viscosity Zr plotted versus dimensionless applied stress s

(shown in log scale). The relative viscosity is Zr = Z/Z0, where Z0 is the pure

fluid viscosity. Each curve corresponds to a different global FA value. The

left and right dotted vertical lines separate flowing states from yield stress

region and saturated response (i.e. shear-thickened) states as determined

by Singh et al.13 The middle dashed vertical line delineates the shear

thinning to shear thickening transition. ‡ Information available at https://code.lbl.gov/.
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averaged across all the snapshots. In all cases the probe sphere

radius was set to the radius of the small particle to limit the probe

to accessible volumes.

2.2.2 Network analyses. Network analysis is one method to

characterize the topological organization of physical systems.

Considering the different particle interactions, force networks

can provide insight that is not apparent by observing solely

particle location. We have used this analysis to identify correlations

of particle force networks with the global structure, for example the

creation of long chains vs. isolated pockets of particle–particle

interactions, and with the bulk rheological response.

The adjacency matrix. A mathematical representation of a

network is the N � N adjacency matrix A. Two different

representations of the force networks were examined. In the

first, an unweighted network was analyzed; if the value of the

specific type of force was above a cutoff threshold, then an edge

value of 1 was given between a pair of particles and zero

otherwise. For an unweighted network A = (Aij) is defined as

Aij ¼

0

1; if aij is satisfied

( )

(3)

where N is the number of participating nodes and aij is the

criterion for establishing an edge between nodes i and j. The

unweighted formalism is useful to identify a variety of network

features, including the interconnectivity of the network and the

voids in the network. For contact forces FC, an unweighted

graph network is created by defining edges as the frictional

contacts between particles. Frictional contact occurs when the

center-to-center distance between particle pairs (d) is equal to

the sum of the particles’ radii ai + aj. In contrast to FC, the

hydrodynamic (lubrication) forces, FH, and conservative force,

Fcons = FA + FR, are ranged interactions without hard cutoffs. To

create an unweighted graph network for FH, a cutoff value was

applied to the force values. Here an edge between particle pairs

was established when the lubrication force value was above the

20th percentile of all lubrication force values for a given s.

In this work, the particle interaction forces are analyzed as

separate networks and correlations are examined between

those networks, as shown schematically in Fig. 4. Weighted

force networks can be constructed when, in eqn (3), the weight

of an edge between two particles is the actual value of the force

(contact, lubrication, attractive, etc.) between the particles. Both

weighted and unweighted networks were considered, and are

constructed using the ChemNetworks software program.32

Measuring network interconnectedness. To consider the global

topology of the network, we first consider pathways of interactions

that span multiple nodes and can have a variety of forms, e.g.

chains/strings or loops/cycles. The extent of interconnectivity

within the network can be measured by analyzing the number

of interaction pathways in which each node participates. It is

mathematically expedient to define a shortest pathway that

connects any pair of nodes, or a geodesic path. Here, the

Floyd–Warshall (FW) algorithm33,34 is used to convert A to the

geodesic distance matrix containing the shortest contiguous

interaction paths between individual nodes. The raw geodesic

distance matrix contains all sub-paths that connect a pair of nodes

(see Fig. S1, ESI†). These sub-paths are removed to create the so-

called isolated geodesic matrix, the entries of which are used in the

geodesic index, Igd.
19,35 This metric of the normalized average

number of pathways to which all nodes in the network contribute

and converges with system size. The value of Igd for a network with

N nodes sampled at M frames of a simulation is given by

Igd ¼ 100�

P

M

1

rgd

N �M

2

6

6

6

4

3

7

7

7

5

: (4)

where

rgd ¼
gd1 þ gd2 þ . . .þ gdN

N
: (5)

For i = 1,. . .,N, gdi is equal to the number of isolated geodesic

paths in which node i participates. Note that rgd can be larger

than N, as node i can be a linking node in many geodesics that

connect other pairs of vertices. The scaling factor of 100 is

introduced for convenience.

Network sparsity. An analysis of regions void of frictional

contacts was performed using the Zeo++31 software. The same

method that was utilized to find all particle voids was employed

here, but applied on just the contact force network; particles that are

not part of a contact pair (often called rattlers) were removed, i.e.

only particles with at least one contact force edge were considered.

3 Results and discussion
3.1 Analysis of Cartesian space

3.1.1 Local geometric structure of the system. The pair

distribution function (PDF) G(d) indicates the likelihood of

Fig. 4 A layered network, subdivided into the conservative, lubrication,

and contact frictional force subnetworks. a is the small particle radius while

FN and FT denote the force component normal and tangential to the

contact respectively.
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finding particles at a center-to-center distance d from the

reference particle. The PDF for FA = 0.3 between all particle

pairs is shown in Fig. 5. The three data sets shown in Fig. 5

correspond to pairs of different particles sizes (1 : 1, 1 : 1.4, and

1.4 : 1.4). The PDF plots for all FA datasets are included in the

ESI† (see Fig. S2), along with a PDF plot for FA = 0.3 where

surface-to-surface distances are utilized (see Fig. S3, ESI†).

When adjusted for particle sizes, the three size pairings have

similar G(d), each with a main peak corresponding to the

nearest-neighbor position. Integrating under the peaks from

the PDFs yields the coordination numbers (CN) for the particle

pairings (Fig. S4, ESI†). Overall, the distribution of CN for the

interactions of different size particles indicate that the small

particles are evenly dispersed between the larger ones. Besides

a minor shift in G(d) and CN values under higher FA, there is

little PDF variability across the three FA values. In the shear

thinning regime, all peak locations are at expected d values

representative of the particles’ respective sizes. Under shear

thickening conditions, the peak d values and CN numbers

indicate a slight tendency toward more tightly packed con-

figurations within the particles forming the contact network.

All FA show a similar shift, as this is the result of the increased

shear stress that forces the particles closer together.

3.1.2 Pore structure. The 3D spatial configurations of

particles were explored by plotting the volume of empty

domains (pores) as a function of s (see Fig. S5, ESI†). A pore

is defined as any space within the system that can contain a test

sphere of radius a (the size of the smaller simulation particle)

without the test sphere contacting any real particles. Tracking

the total volume of pores conveys information about the spatial

distribution of the system, highlighting any instances of large-

scale inhomogeneity that occur as a function of shear stress.

Regions of high density will produce many small pockets while

low density regions will have larger void volumes. In this

instance, pores show a relatively homogeneous distribution

across all shear stress values for all FA. However, the variability

in the pore volumes decreases with increasing s, showing that

the particle reorganization accesses a narrower range of conditions

in the shear thickening regime compared to the shear thinning

regime.

Taken together, the G(d) values, coordination numbers, and

pore volumes all indicate that slight, but not striking, rearrange-

ment of the geometric topology occurs as the systems transition

across the shear thinning and shear thickening regimes. Therefore,

the extreme changes observed in the viscosity are not a result of

large-scale particle rearrangements and must instead be due to

alteration of the balance of forces between particles, and reorganiza-

tion of the networks they form. Thus, classical structural correla-

tions give little insight, while we demonstrate below that the force

network analyses provide guidance about these processes.

3.2 Layers of forces and their network interactions

Here, we consider the distributions of the particle interaction

forces (conservative, lubrication, and frictional contact), paying

particular attention to the differences observed when comparing

the shear thinning and thickening regimes. All forces are scaled by

the repulsive force |FR| at contact, which is actually a piece of the

composite conservative force FA + FR. As the conservative forces

depend only on position, i.e. on pair separation in this discussion,

they will reflect and complement information gleaned from the

pair distribution function. The lubrication forces are viscous and

thus depend on particle relative motion.

3.2.1 Forces during shear thinning. In Fig. 6, the distributions

of conservative, hydrodynamic lubrication, and contact forces are

shown respectively in parts A–C, all for shear thinning conditions.

All forces are determined pair-wise, so the distribution is expressed

in the network theory term of an edge count, with a force

conceived as an edge between two vertices that are the particles

interacting through that force. In Fig. 6A, the conservative forces

are characterized by a continuous distribution of attractive forces

(FA + FR o 0), with distinct and sharp repulsive peaks evident for

maximum (at surface contact) values of FA = 0.75 and 0.9; the three

peaks for each of these FA values correspond to the three different

particle size pair interactions (1 : 1, 1 : 1.4, and 1.4 : 1.4). The

broad distribution is associated with sampling the full range of

separations as particles approach and recede from one another,

and is attractive as the attraction dominates except at close

separations. The lack of added peaks for the shear-thinning

conditions at contact value of FA = 0.3 is a result of the point of

zero force (PZF), i.e. where FA(r) + FR(r) = 0, being at a surface

separation of about 0.04 radii, so the integrated effect of the

weak repulsion and lubrication keeps the particles from making

frequent contact, and thus the count is spread over many radial

sampling points. For the higher attractions (maximum FA = 0.75

and 0.9), the PZF is at surface separation of 0.01 or smaller, and

the particles are pushed up to the maximum repulsive force for

many samplings instead of distributed, leading to sharp peaks.

Thus, even though the largest positive FA + FR is largest for the

case of a contact FA = 0.3, this condition is not sampled densely

Fig. 5 A pair distribution function (PDF) plot for FA = 0.3 where d is the

particle pair distance (in units of particle radius a). The particle pair

interactions for the bidisperse suspension have been separated by size,

where small particles (S) have a normalized radius of 1 and large particles

(L) have a radius of 1.4. Two shear stress values were plotted to highlight

the difference between shear thinning (at s = 0.055) and shear thickening

(at s = 5.0). Bin sizes were set to 0.001. The insert highlights secondary

peaks for each pair interaction. Here the data has been smoothed using

Bezier curves.
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at any one point, and essentially never at its maximum (surface

contact) value for this low shear stress. Note that the absence of

contact values of the extended-range conservative force is

reflected in an absence of surface contact forces in Fig. 6C.

The contact force network is relatively minor (with few edges) in

the shear thinning regime. As shown in Fig. 6C, the contact

forces begin to dominate over the conservative and lubrication

forces for the larger FA; interestingly, because force balance

must be achieved on each particle, the implication is that the

large contact forces are balanced by other contact forces and not

by forces of a conservative or lubrication type. This has inter-

esting rheological implications: while the yield stress increases

with increasing strength of attraction, Singh et al.13 reported

that the contribution of viscosity due to contacts at the onset of

flow increases with the strength of attraction. Our results

confirm this, and show that this is due to the bringing of

particles into proximity such that the flow occasionally induces

a contact network. While the contact forces have significant

strength, the values which are well above the scale of conservative

and lubrication forces are relatively few, indicating that the

contact force network is only occasionally dominant.

Fig. 6B shows the edge weight distribution within the

lubrication force network, from which we may deduce certain

dynamical features of the behavior. In the shear thinning

regime, the lubrication edge weights increase at larger strength

of attraction, as a result of particles being pulled close to

contact, where the lubrication resistance (scaling as the inverse

gap scale for normal motion) is largest. The lubrication forces

are comparable to the conservative forces, with scaled values of

O(0.1), except for occasional large values at FA = 0.9 where the

noted PZF near contact results in contact network formation.

When this network breaks, some particles have unbalanced

contact forces and these must be balanced by rapid change of

surface separation with neighbors, resulting in the large lubrica-

tion forces. Note that the edge count distributions of the elevated

lubrication and contact forces at FA = 0.9 are comparable, roughly

falling in the range of 0.01–10.

3.2.2 Forces during shear thickening. Following the format

of Fig. 6, the edge distribution within the conservative force

network in the high stress shear thickening regime for the three

FA is shown in Fig. 7A. Again, the broad sampling of the

attractive portion (negative force) is simply understood as a

result of the bulk motion moving particles to and away from

contact, thus sampling the longer-range attraction. We now see

the sharp peaks in the conservative force distribution for all of

the values of the attractive portion of the potential: these are the

contact peaks where pair accumulation is indicated at contact in

theG(d) plots of Fig. 3. The peaks at maximum repulsion (positive

FA + FR) for contact FA = 0.3 are well-defined, but are lower in total

edge count than the higher attraction forces. This is consistent

with FA = 0.3 having the least developed network organization.

Both FA = 0.75 and 0.9 show well-defined narrow peaks.

The edge weights of the lubrication forces for the shear

thickening regime are smoothly distributed in magnitude, as

seen in Fig. 7B. The lubrication forces, while generally more

distributed to larger values than in the shear thinning regime,

are dominated by the contact forces. Interestingly, the FA = 0.9

shows the lowest lubrication force values while FA = 0.3 has the

Fig. 6 Shear thinning condition force distribution. (A) Histogram of edge

weights for total conservative force.(B) Histogram of edge weights in the

lubrication force network. (C) log–Linear plot of the distribution of edge

weights within the contact force network. The number of edges in the

contact force network for FA = 0.3 are virtually non-existent and are

therefore not plotted. A lower cutoff value of 0.001 was utilized for edge

weights. For all plots, s values of 0.055, 0.21, and 0.3 were used for contact

values of FA = 0.3, 0.75, and 0.9, respectively.
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highest value, suggesting that the stronger attraction is effective

in generating correlated motion of sufficient solid-body char-

acter that larger lubrication forces are limited.

Contact forces are the dominant interactions during shear

thickening, and significant edge counts extend to dimensionless

force values of O(10) where the shear thinning reached only O(1).

The contact forces for all three FA are shown in Fig. 7C for s = 5.

The striking change in the contact force distribution between

the thinning and thickening regimes highlights the transition

from a lubricated to frictional rheology,14,15 with the attractive

forces playing a large role in the behavior at small stress. The

form of the contact force distribution, with a large pair count for

relatively small edge weights, a maximum corresponding to

roughly the mean contact force, and an exponential decay at larger

edge weights, is characteristic of the interparticle forces found in

granular materials.36 The relatively small differences in both

lubrication and contact forces in the shear-thickening regime

between different maximum FA values point to the essential

similarity of the material in this regime, with convergence to very

similar bulk properties at s 4 10, where the attractive forces are

small relative to the other forces.

3.2.3 Shear thinning vs. shear thickening regimes. Compared

to shear thinning (Fig. 6), the attractive force network during shear

thickening (Fig. 7) displays a slightly more organized structure,

with FA = 0.3 showing the most change. However, the overall

attractive force edge distributions between particle pairs does not

change significantly between the shear thinning and thickening

regimes. With respect to the lubrication force network, as the

suspension goes from shear thinning to shear thickening, the

lubrication edge distribution display two major changes. First,

the overall force magnitudes have greatly increased. Second, the

relationship between the lubrication force and FA reverses. Due

to opposing factors, sorting out the exact mechanism behind

these two changes in the lubrication response is difficult. While

globally the overall particle distances do not greatly change

between the shear thinning and shear thickening regimes,

local distances in the shear thickening regimes can decrease.

Lubrication requires relative motion between particles, and for a

given relative motion (normal or tangential, with much stronger

effects for normal motion), the force is stronger when the particle

pair gap is smaller. It is possible that under shear thinning

conditions, where contact forces are relatively insignificant,

higher attraction forces pull more particles closer together, but

not to contact. This increases pairwise lubrication forces and

therefore the overall force scales with FA. In the shear thickening

regime, where contact forces are dominant over the other forces,

larger s values provide the force needed to drive more particles to

contact.

Particles involved in frictional contributions have negligible

relative motions along the line of centers of each pair. This

leads to an appreciable reduction of lubrication forces at higher

FA, whereas the few particles that are not involved in such

contact networks experience increased lubrication forces. The

former contribution is dominant. Lower FA values with higher

lubrication forces thus aligns with the notion that structured

local clustering due to dominant frictional contact forces is

responsible for shear thickening.

Given the lack of a CFN in the shear thinning region, we

analyze the changes to the contact forces by examining the

growth of the network using two different metrics of network

behavior, the geodesic index (a measure of interconnectivity

and similar to betweenness centrality) and analysis of the void

Fig. 7 Shear thickening condition force distribution. (A) Histogram of

edge weights for total conservative force. (B) Histogram of edge weights

in the lubrication force network. (C) log–Linear plot of the distribution of

edge weights within the contact force network. A lower cutoff value of

0.001 was utilized for edge weights. For all plots, s values of 5.0 were used.
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regions in the network. The geodesic index, Igd, is a global

metric of the extent of interconnectivity in a network, as it

measures how many nodes participate in isolated geodesic

paths. We applied this measure to the frictional contact force

networks. The geodesic index for all three FA datasets is shown

in Fig. 8A as a function of applied shear stress. For FA = 0.3, the

contact network is not significant until s is large enough to be

within the shear thickening regime. Once the transition s value

is reached, contact networks form rapidly as a function of s, as

indicated by the rising Igd. At large s, the geodesic index

approaches its saturation value of particles participating in

the network. For FA = 0.75, Igd has a value of E40 at s = 0.1,

indicating that the higher attraction force generates frictional

contacts within the shear thinning regime, and continues to

grow with uniform slope through the transition s. For FA = 0.9,

Igd begins at E60 at s = 0.1 and shows a very rapid increase to

the saturation value while still in the shear thinning regime,

and in fact shows a slight overshoot, suggesting that the force

network is a combination of shear-driven and attraction-driven

contacts at the peak. Igd then remains at its saturation value for all

higher applied shear stress. This indicates that higher attractive

forces allow for contact networks to form under shear thinning

conditions. It is striking to note that Igd correlates closely with the

variation of the viscosity, explaining why shear thickening is

essentially obscured at FA = 0.9: the saturated network is essentially

fully developed in the thinning regime, whereas at lower FA,

saturation of the occurs at stresses above the transition value

and so the viscosity exhibits significant shear thickening.

Complementary to the connectivity measure of the geodesic

index is an understanding of the regions that remain unoccupied

by the contact networks as stress increases. We begin by describing

the pore data and continue by relating the results to the geodesic

index. Measuring volumes of the empty domains, or pores, con-

veys information on the patterns associated with the forming

networks. Here the edges of the contact network form the bound-

aries that segregate the void domains; therefore, a region of high

connection density will produce many small voids. Under increas-

ing s, a uniformly growing network will show a continuous, rapid

decrease in pore volume as network connections spread across the

empty domains. Conversely a network grown inhomogeneously

from several ‘‘seed’’ locations will initially display a slow decrease

in pore volume, switching to a rapid decrease when the various

networked domains connect with each another.

The pore volume (as a percentage of the total possible empty

volume) for all three FA is shown in Fig. 8B as a function of

applied shear stress. As expected from the above geodesic plot,

the FA = 0.3 dataset shows the most change in pore space while

FA = 0.9 only has very small pores resulting from a saturated

network. However, there is new information in the shape of

each curve. FA = 0.3 initially shows a very rapid decrease until

s = 1. This is indicative of a uniformly spreading network that

rapidly forms across the empty domains. Within the shear

thickening regime, between s = 1.0 and s = 10 the decrease

in pore volume slows. The slow growth appears to result from

contacts spreading from established zones, consistent with the

formation of a fully ramified CFN from more tenuous contact

force chains. At large s, the pore volume rapidly decreases again

as the local networks meet each other and form a saturated

global network. In contrast, FA = 0.75 does not exhibit a rapid

decrease of pore area, but instead shows a steady decrease in

pore volume until near global saturation. Interestingly, between

s = 1.0 and s = 10, both FA = 0.3 and FA = 0.75 have similar pore

volumes and show similar network growth. However, the lack of

an initial global homogeneous growth pattern for FA = 0.75 may

mean the contact networks present have many small zones of

high connectivity, which could explain why Igd for that network

remains greater than for FA = 0.3.

4 Conclusions

In-depth knowledge of the rheological response of dense suspen-

sions is critical to handle, predict, and tailor flows of the suspen-

sions in various natural (e.g., sediments, mud) and industrial (e.g.,

petroleum, ceramic, cement, and nuclear waste treatment) settings.

Utilizing detailed information on positions and forces associated

with the particles from the LF-DEM simulations, we have investi-

gated correlations between geometric organization of particles,

underlying forces, and rheological properties based on different

spatial analyses and topological metrics exhibiting global/local

particle organization and connectivity, combined with network

structure/topology and strength of particle forces. Specifically, we

implemented pair distribution functions, and geodesic index/

void analyses, combined with detailed force analysis, to explain

Fig. 8 (A) The geodesic index for contact networks (shown in log scale).

(B) The total pore volume (i.e. empty space) created by the contact networks

plotted as a percentage of maximum possible pore volume. For all plots,

each curve corresponds to a different FA value. The asterisks represent the

transition point between shear thinning and shear thickening.
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the particle microstructure and contact force network behavior

during both shear thinning and thickening processes.

These analyses demonstrate that changes to suspension

viscosity do not simply result from local/global-scale particle

rearrangements but are rather associated with the detailed balance

of forces between particles and resultant force networks, coupled

with the application of shear stress. For the force network analyses,

global metrics (e.g., geodesic index and pore volume) present

reasonable signatures of ensemble characteristics of rheology,

here shown as the relative viscosity, of suspensions, connecting

to the balances between particle forces. This can provide a con-

nection between parameters used in empirical viscosity models of

dense suspensions (e.g., Krieger–Dougherty equation) and struc-

tural information for attractive dense suspensions. The network

analyses indicate that significant rearrangements of the balance of

forces occur as a suspension transitions from shear thinning to

shear thickening with application of shear stress. The attractive,

lubrication, and contact force networks evolve in an interactive

fashion as the regime changes. Although the attractive force is

dominant under shear thinning, with increased s, lubrication

force networks grow that oppose attraction and both become

outweighed by the contact force network as shear thickening

occurs. As understood from prior study, contact forces dominate

during shear thickening – increasing by an order of magnitude

across the shear thinning to shear thickening transition. Interest-

ingly, the growth of the contact force network, and more specifically

the network topology, is rather sensitive to the magnitude of the

attractive interaction between particles within the simulation. For

example, at smaller attractive force, different rates of the network

topology growth rate can be observed once the shear thinning –

shear thickening transition is reached. In contrast, under sufficiently

large attractive force, these different growth rates are absent from the

network topology and contact networks saturate during the shear

thinning regime. In addition, the manner in which the contact force

network grows in these 3D suspensions is more nuanced than

previously observed in 2D suspensions analysed using a similar

methodology. This highlights a need for more quantitative

correlations between the interaction network and rheological

responses.
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