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Abstract—Smart manufacturing based on artificial intelligence
and information communication technology will become the main
contributor to the digital economy of the upcoming decades. In
order to execute flexible production, smart manufacturing must
holistically integrate wireless networking, computing, and auto-
matic control technologies. This paper discusses the challenges
of this complex system engineering, from a wireless networking
perspective. Starting from enabling flexible re-configuration of
a smart factory, we discuss existing wireless technology and the
trends of wireless networking evolution to facilitate multi-robot
smart factories. Furthermore, the special sequential decision-
making of a multi-robot manufacturing system is examined.
Social learning can be used to extend the resilience of precision
operation in a multi-robot system by taking network topology
into consideration, which also introduces a new vision for the
cybersecurity of smart factories. A summary of highlights of
technological opportunities for holistic facilitation of wireless
networked multi-robot smart factories rounds off this paper.

Index Terms—Industry 4.0, smart manufacturing, smart fac-
tory, wireless networks, multi-agent system, multi-robot systems,
cyber-physical system, Internet of Things, wireless communica-
tions, AI, machine learning, 5G, uRLLC, 6G, cybersecurity

I. INTRODUCTION

SMART manufacturing technology beyond basic factory
automation, also known as Industry 4.0, provides more ef-

ficient and flexible production by combining control, robotics,
wireless networking, cloud computing, big data analytics, and
artificial intelligence (AI) computing, potentially revolutioniz-
ing production engineering. Smart factories serve as a critical
part of the smart manufacturing process and rely on holistic
system integration of computing, control, and networking
technologies. A key component in the integration of such
diverse technologies, information communication technology
(ICT), and more precisely the cutting edge wireless networking
technology will be integral to connecting the computing and
control components in a flexible and reconfigurable way.
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Fig. 1. A Wireless Networked Smart Factory (in the Green Dot Box)
Dynamically Adjusted in the Cloud Based Smart Manufacturing

A. Smart Factory: From Industry 3.0 to Industry 4.0

Industry 3.0 takes advantage of computing technology to fa-
cilitate factory automation, particularly automated production
lines consisting of robot arms with existing wireless or wired
networks [1]–[3]. Migrating to Industry 4.0 involves a wider
range of technology, namely, AI robotics, industrial Internet
of Things (IIoT) and effective connectivity, intelligent sensors,
augmented reality, cloud computing, big data analytics, edge
computing, digital fabrication such as 3-D printing, cyberse-
curity and cyber-physical security, etc. [4].

The next step, with the aid of artificial intelligence (AI), is
the creation of a smart factory also known as Industry 4.0. In-
stead of an automated assembly line factory for the production
of a specific product in state-of-the-art manufacturing, smart
manufacturing expects to rapidly respond the demand from
the market by flexibly arranging production flows for multiple
products [5], [6]. Several stages are required to facilitate smart
manufacturing:

1) Plan the portfolio of products and corresponding quan-
tities to manufacture, based on the market (online)
analysis of supply-demand data that might be from the
Internet or an online mechanism. Big data analysis,
possibly aided by Machine Learning algorithms, can be
gainfully used in this context.

2) Acquire components and materials, and then execute
shipping logistics to the smart factory, through the online
methodology.

3) Define the production goals and execute flexible and
efficient multi-robot operations, given information from
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the above two stages. This involves arranging the tasks
to robots, determining energy-efficient production flows
including moving the unfinished products among robots,
and taking appropriate actions for each collaborative
robot based on computations by the robots with possible
assistance from edge computing or fog computing [7].

Fig. 1 conceptually illustrates the entire process of smart
manufacturing. Customers’ demands are fed into the cloud
and market analytics. Based on the logistics information from
the supply chain, the production plan can be developed. For
Industry 3.0 of factory automation technology, the production
plan is rather fixed, and flexibility is restricted to adjusting the
number of (automated) production lines, while each produc-
tion line is dedicated to one product or production purpose.
For smart manufacturing, with the aid of AI data analytics,
robotics, sensors, and wireless networking technology [8], [9],
ideally, production can be dynamically adjusted to different
products at any time. The implementation of advanced ICT is
a key to achieve such a goal.

The campus-wide edge network in a smart factory consists
of an anchor node (AN) governing a number of access
points (APs) to form the extremely high-bandwidth fronthaul
networking infrastructure. APs serve wireless communications
and networking with sensors and robots in a smart factory.
Some edge servers connected by the edge network form
edge cloud computing or fog computing resources, which
host data analytics and other AI/management functionalities.
There are two possible classes of robots, production robots
executing manufacturing tasks and autonomous mobile robots
enabling production flows. Consequently, a smart factory
can be realized with advantageous characteristics: flexibility,
rapid decision process assisted by AI and big data analysis,
efficiency in the optimization of production flow and energy
consumption, reliability, and quality in factory operation. In
this paper, we focus on the scope of a smart factory at
Stage 3), with a perspective from wireless communications
and networking.

B. Re-configurable Multi-Robot Task Assignment in a Smart
Factory

A generic technique to translate the goal of production into
actions of multiple robots in a smart factory is known as
multi-robot task assignment (MRTA). Classic MRTA has been
well studied in the literature [10], [11]. Since the production
process in a factory typically requires following a certain
flow, MRTA in factory automation using fixed production
lines is therefore constrained in its optimization. However,
wireless networking enables flexible configuration of robots
to collaborate in the production process that is adjusted in
accordance with time-varying market demand and production
plan. Fig. 2 illustrates a flexible configuration of a multi-
robot system in a smart factory, where both production robots
and transportation robots are required to form the multi-robot
system in a smart factory. In Fig. 2, transportation robots are
autonomous mobile robots (also known as automated guided
vehicles (AGVs) in production research). This introduces
another critical concern, energy efficiency for both classes of

Fig. 2. Fixed configuration of factory automation (left) to flexible configura-
tion of smart factory (right) in accordance with the time-varying production
plan.

robots, for smart factories under time-changing configurations
of multi-robot systems. It can be seen from the right-hand
side of Fig. 2 that flexible and efficient production requires
AGVs to move over longer distances. It therefore gives rise
to many related new research subjects, such as scheduling,
efficient optimization, etc., in energy-efficient transportation
in a factory, such as [12]–[14]. Furthermore, this scenario
suggests a new multi-objective MRTA problem, namely ac-
commodating both production robots and transportation robots
toward computationally effective solutions. In other words, a
traditional MRTA considers a relatively static operation for
production robots only, with the goal to maximize the through-
put of an automated production line or flow. The multi-robot
system enabled by wireless networking in a smart factory shall
deal with both production robots and transportation robots (i.e.
AGVs). Thus an MRTA for production robots must react in
a dynamic manner toward time-varying market demands, to
optimize the throughput of production, under the constraint of
the cost induced by the changes of robots’ functions such as
the order of operation. Furthermore, the energy consumption
in each automated production line of Industry 3.0 is rather
fixed. However, the MRTA in a smart factory shall consider
the energy to dynamically deploy production robots and the
energy for the operation of AGVs. Since this paper focuses
on the wireless perspective of multi-robot systems (MRS) in
a smart factory, MRTA of a smart factory will be detailed as
a research opportunity in Section V-C.

C. Requirements of Wireless Networking for Multi-Robot
Smart Manufacturing

Industrial IoT (IIoT) has been brought into the factory
automation with various implementations of ICTs. Open plat-
form communication of time-sensitive industrial networking
protocol stack has been developed [3], and the Internet En-
gineering Task Force (IETF) also develops the IPv6 protocol
stack and time-hopping in IEEE 802.15.4 to networking in-
dustrial sensors [15]. Reliable and fault-tolerant factory au-
tomation with video capability has been well developed based
on industrial networking, particularly Ethernet [16]. However,
from the above illustration of MRTA in a smart factory,
production robots and transportation robots may require 100
intelligent control instructions per second, particularly for
high-precision production and AGV delivery, implying 1-2
msec latency to transport a wireless communication mes-
sage/command. Furthermore, wireless networks supporting
spatial reconfiguration and ultra-reliability (such as 99.999%
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end-to-end reliability) is actually desired, which creates a
new dimension of challenge for wireless communication and
networking technology.

D. Organization and Contribution of the Paper

This paper provides an overview of smart factories from the
perspective of wireless networking by first demonstrating the
role of smart factories in the smart manufacturing ecosystem
and then facilitating the smart factory as a multi-robot systems.
Taking advantage of social learning, the resilient decision pro-
cess for robots in the production flow can be further uniquely
investigated. With thorough overview of wireless networking
technology, distributed learning for sensor fusion, and holistic
summary of research opportunities, this paper is organized
as follows. State-of-the-art wireless networking technologies
for factory automation and industrial IoT are summarized in
Section II. Some essential wireless networking technologies
to facilitate a multi-robot smart factory by properly incorpo-
rating computing aspect are expounded in Section III. Due to
the special nature of sequential decision processes in multi-
robot manufacturing, the resilience of precision operation in a
multi-robot system is investigated in Section IV. Finally, the
arising technological opportunities are stated in Section V and
conclusions are drawn in Section IV. Consequently, wireless
networking serves as a pillar technology toward smart factories
to enable flexible, resilient and efficient integration of the AI
computing and control components and provide a thorough
vision of multi-robot smart factories.

II. STATE-OF-THE-ART WIRELESS NETWORKING
TECHNOLOGIES FOR INDUSTRIAL AUTOMATION

In this section, we summarize existing wireless networking
technologies and evolution under development, which are use-
ful for factory automation and potentially for smart factories.

A. 4G, MTC, 5G and 6G

Migrating from 4G-LTE technology, the fifth generation
mobile communications, widely known as 5G, has three pillar
technologies: enhanced mobile broadband (eMBB), massive
machine-type communication (mMTC), and ultra-reliable and
low-latency communication (uRLLC). Traditional human-to-
human (H2H) communication requires high-bandwidth multi-
media services for speech communication, video streaming,
and online social media. The eMBB technology has been
enabled by the advances in massive MIMO [17], cloud radio
access network (C-RAN) and heterogeneous networks [18],
[19], polar codes [20], etc. and is expected to deliver impres-
sive user experience [21].

In addition to H2H communication, one of the purposes
for 5G is to network all kinds of “things” such as devices,
sensors, actuators, and machines. This is precisely the wireless
networking technology to connect the Internet of Things. The
first feature of IoT is the number of connected devices, which
is far larger than the number of handsets - a fact that has
been noted since the late stage of 4G LTE. An innovative
technology, machine-type communication (MTC), has been

developed in 3GPP [22]. The immediate technical challenge is
both to deal with the massive number of MTC devices [23] and
the extension of coverage of MTC devices as the sensors and
devices may be located in a large geographical range [24]. The
physical layer and medium access control technology evolving
to mMTC in 5G is reported in [25]. In [26], a simple model
to comprehend how MTC can be applied to smart factories is
introduced, which indicates a base station can support up to
1,400 MTC devices given access delay less than 70 msec and
probability of success in access 0.9 by using RACH channel
and 1K bits per packet. Although the results appear encour-
aging for mMTC applications in general, they are insufficient
to satisfy requirements for reliable information and privacy in
most scenarios of smart factories. Thus, reliable and resilient
ways to collect information from operating environments still
require further investigations.

IoT involves diverse application scenarios and may consist
of several networks that have different design objectives. A
new radio access technology, narrowband IoT (NB-IoT), has
been developed by reusing the 4G LTE design including nu-
merologies, downlink OFDMA, uplink SC-FDMA, etc. [27].
The spectrum of NB-IoT may be deployed as a standalone
carrier or as a part of LTE spectrum, which is particularly
compelling for factory wireless networks. Furthermore, the
resource mapping of NB-IoT is designed to best co-exist with
LTE signals, in any mode of deployment (i.e. in-band, guard-
band, standalone). The random access of NB-IoT exploits both
time-domain and frequency-domain, with an asynchronous and
adaptive hybrid ARQ to support flexible scheduling.

Evolution of the network architecture plays an important
role for smart factories. ECHO [28] pursues a reliable dis-
tributed cellular core network architecture for hyper-scale
public cloud platforms. A significant step beyond the notion
of RAN sharing involves sharing of radio resources among
tenants (e.g., multiple virtual network operators) via a physical
mobile network operator, such as FlexRAN [29]. Orion [30]
further enables the dynamic on-the-fly virtualization of base
stations and the flexible customization of slices to meet their
service needs, which can be used in an end-to-end network
slicing setting. Our prior work of SoftAir architecture [31]–
[33] enables a holistic software-defined 5G-and-beyond archi-
tecture that provides a scalable, flexible and resilient network
architecture, along with network management/orchestration
tools and traffic engineering solutions. As AI is expected to
be an important technological component into 6G [34], [35],
AI-integrated campus networks for smart factories and smart
communities shall emerge as a critical application scenario
described later in Section III of this paper.

B. Device-to-Device Communication and Mobile Edge Com-
puting

Instead of the communication going through the infrastruc-
ture network, an alternative way is to allow direct commu-
nication between devices, known as device-to-device (D2D)
communication [36], [37]. D2D communication shall be man-
aged by the RAN both to limit the interference (either when
operated as underlay, or in a separate band), and to pro-
vide good energy-efficiency, to result in more reliable and
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efficient wireless networking [38], [39]. D2D communication
appears to be an attractive solution for many IoT application
scenarios [40], while the scalability of large-scale operation
may need further investigations. A further important topic that
has gathered recent attention is to offload computing tasks to
the edge computing or storage, which is known as mobile
edge computing (MEC) [41], [42]. Consequently, an integrated
system design of wireless communication and MEC including
storage can be developed [43] and further applications to the
scheduling of smart manufacturing through deep Q-network
learning [44].

C. Tactile Internet and Networked Control

Tactile Internet intends to enable real-time communication
services for delivering control, touch, sensing and actuation
information, such that humans and machines to interact with
their environments in real time [45], [46]. Among diverse
application scenarios of Tactile Internet, industrial automation
and control for high precision and remote operation is one
major focus. As indicated in [47], high performance communi-
cation such as 5G-NR is required toward the success of Tactile
Internet and time-sensitive industrial networks [46], [48]. End-
to-end networking latency will play a more important role
than other quality-of-service characteristics in traditional 4G
cellular communication networks.

Such technologies elevate not only the technological level of
production robots but also that of transportation robots. For ex-
ample, the framework from [49] can be applied to Cooperative
Adaptive Cruise Control (CACC)-enabled platooning, which is
a common scenario for autonomous mobile robots and AGVs
in smart factories. The study does not deal with mobile cellular
networks or their shared medium characteristics. Assumptions
based on 802.11p systems have been done, with only a round-
robin scheme for scheduling, but without concerning packet
drop effects.
• Event-triggered computing and self-driven control dif-

fers from classical control in that transmission between
control components or among agents is not periodic
with fixed time-interval duration. A control action may
be triggered, and hence transmitted through a network,
when the state of a system has a considerable change
in magnitude. The authors in [50] have applied this
concept to platooning and by following a similar ap-
proach as [49], the minimum inter-event time bounds
are derived. No specific scheduling or channel access
protocol is discussed. The evaluation considers not 5G but
802.11p-based technologies. In [51] a deterministic state-
dependent prioritized contention resolution protocol for
random channel access for stable network control systems
is presented.

• Model-based control was introduced by Montestruque et
al [52]. The model is used to generate a control input
for the actuator allowing the system to run in open loop
for a finite interval of time without the need of feedback.
In [53], a framework is proposed for the design of state
estimators through observable variables, i.e., observers,
taking into account different communication protocols

Fig. 3. (Upper) Edge computing as infrastructure instructs production robots
and transportation robots through wireless networking. (Lower) A model-aided
cooperative adaptive automated network control for a platoon of autonomous
transportation robots/AGVs.

and bounds are established for the maximum allowable
transmission interval. [54] proposes an algorithm to de-
sign an observer in a networked control system. The
design of a digital observer for CACC to increase the
system robustness to packet loss is presented in [55].
Although there has been substantial advancements in the
past years on the different fronts of networked control
systems, the recasting application of the generic models
to specific collaborative automated vehicular use cases
is still in its infancy. Few studies have considered the
stochastic effects of wireless communication [56].

Consequently, wireless networked control has recently
emerged as an important technology in smart factories. At
this early stage, some features of wireless networking have
been taken into consideration, such as delay and packet loss in
networked control [57], robust control of industrial networked
systems over imperfect communication [58], and joint cross-
layer optimization in real-time networked control systems [59].

D. SDN/NFV

As MRS consisting of intelligent mobile machines require
greater system reliability and safety, uRLLC emerges as a
must in wireless networking. To support such a low-latency
system demand, software-defined networking (SDN) together
with network function virtualization (NFV) in architectural
designs, primarily introduced for data center networks and
the next-generation Internet, has drawn great attention recently
with campus-/enterprise-wide applications [60]. For example,
funded by the NSF PAWR program in 2018, COSMOS [61]
located in New York City aims at providing a city-scale
advanced wireless testbed for real-world experimentation on
next-generation wireless technologies. By realizing software-
defined mobile networking, the COSMOS platform focuses
on enabling ultra-high-bandwidth and low-latency wireless
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communications, with tightly coupled edge computing tech-
niques. In [62], mobility management for low-latency layer-
2 handover is proposed in SDN-based enterprise networks,
without any modification on mobile devices. Targeting at ultra-
low latency 5G services, an SDN-based framework is also
introduced in [63] for managing reliable live migrations of
virtual resources across different IaaS, while ensuring high
QoS and a very low downtime without human intervention.

Several studies [64]–[70] have jointly considered low-
latency SDN architectures with near-data computing tech-
niques for IoT or WLAN cases. Particularly, while scalable
IoT data analytics is given in [64], a fiber-wireless edge
computing node is designed and implemented in [65] to
enable edge computations for IoT applications. A fog-enabled
WLANs is also proposed in [66] for indoor positioning,
and a delay-aware task assignment is introduced in [67] for
wireless SDN-based edge cloudlets. Moreover, in [68], a
literature survey is given on low-latency 5G by considering
RAN, core network, and caching solutions. Concerning IEEE
802.11 networks, an SDN-based slice orchestration and MAC
management are studied in [71] to ensure end-to-end QoS
delivery. In [69], 5G-slicing-enabled SDN is adopted for ultra-
low latency autonomous driving service, while the latency
is modeled by a GI/M/1 queuing system. Also, a time-
efficient access point assignment is presented in [70] for SDN-
controlled wireless networks, which takes fast decisions based
exclusively on the history of user behavior. However, most of
the above designs treat operational and information systems
independently and have little concern about the signaling or
bulky protocol issues in any of the two systems.

In [72], the SDN architecture is considered for wireless
industrial networks, where age-of-information aware channel
allocation is designed with regard to the network states and
wireless spectrum usage. A secure software-defined access
network, namely SESAM [73], is further developed for flexible
industry 4.0 manufacturing with robust horizontal handover
and low-latency vertical handover. Focusing on an industrial
multi-radio access environment, an SDN-based architecture
with millimeter-wave links is implemented in [74] to support
high-rate stream transmissions with wireless mobility. An SDN
framework that integrates mobility management in industrial
wireless sensor networks is also analyzed and assessed exper-
imentally in [75]. Nevertheless, a complete software-defined
wireless platform in regard to networking latency as the
design metric and distributed computation capability in smart
manufacturing is still desirable in the literature.

III. WIRELESS NETWORKING FOR A MULTI-ROBOT
SMART FACTORY

As indicated in Fig. 1, successful operation of a smart
factory involves sophisticated and holistic system design of
wireless networking, computing, and control. Applying ma-
chine learning and AI to enhance wireless communications and
networking is a widely known technological opportunity (see,
e.g., [76], [77]). However, for the purpose of achieving multi-
robot smart factory, what is the desired wireless networking
remains an interesting technological challenge that is detailed
in this section.

A. Wireless Robotic Communications and Adaptive Comput-
ing

By realizing the control functionality as a kind of com-
putational goal, a new aspect of smart factory technology
is integrated with the design of AI computing and wireless
networking.

1) Networking for Artificial Intelligence: Although the way
for communication to influence multi-robot systems is not
well understood yet, some toy examples can be employed
to explore how wireless networking impacts the multi-robot
systems, and subsequently to understand what is the de-
sired wireless networking for multi-robot systems. In [78],
a resource-sharing multi-agent system has been studied by
assuming each autonomous agent governed by the finite-
horizon reinforcement learns to navigate through Manhattan
streets while following the rule of stop sign in the intersections.
Wireless networking among these agents (or autonomous
mobile robots, autonomous vehicles) is surely expected to
improve the average delay of the trips. However, some more
interesting observations are found:
• Wireless networking is indeed useful but errors from

communication links and multiple access mechanism can
significantly degrade the gain from wireless networking.

• The policy and the reward map (rewards mapping onto
the street map or a reference coordinate system) of
another robot going to interact at the intersection is
the desired content of such communication. The age of
information is critical as data delayed beyond the horizon
are completely useless even when correctly received.

• Consequently, end-to-end networking latency plays the
most important role in wireless networking for robots or
AI agents, which leads to later discussion in ultra-low
latency and ultra-reliability of wireless networking.

• To avoid the potential scalability issue of direct robot-to-
robot communication (i.e. ad hoc networking), robot-to-
infrastructure-to-robot communication (i.e., two hops of
wireless networking) obviously performs better at least
in this particular example, while it confines the potential
end-to-end networking latency if any ultra-low latency
mobile networking exists [79]. This leads to the desirable
edge network in a smart factory as in Fig. 1.

A further exploration on collaborative robots was presented
in [80], which brought more complicated robot planning into
consideration. The above observations remain valid with some
extra observations.
• Private reference that each robot generates based on its

own exploration of the environment is useful information
to exchange with another collaborative robot.

• Real-time ALOHA is proposed as multiple access proto-
col, which is the modified version of slotted ALOHA by
removing re-transmission due to the concern of age of
information. The concept of p-persistent multiple access
can be incorporated.

• The performance improvement by collaboration through
wireless networking can be significant.

More realistic MRS shall be explored to understand wireless
robotic communication further.
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2) A Generic Model of Multi-robot Interactive Systems: By
introducing wireless robotic communication and edge network,
edge computing and agent computing can be facilitated in an
integral manner. As the smart factory portion in Fig. 1, we
consider a set of interacting robots M = {1, 2, · · · ,M}, which
are possibly connected directly to each other, as well as to a
set of J APs in the proximity. These APs are in turn connected
to the edge network, which can either be modeled as an edge
“cloud”, available from all APs, or as a set of N edge servers
(ESs). Each robot and each ES have their own computation
capability, Dm̃ (where m̃ can refer to any type of node,
m, j, n. In principle, fusion center (FC) nodes of different
sensor networks are also located in the edge network. A robot
(or known as an agent in the multi-agent system) computes its
actions based on its own on-board observation, and possibly
other agents, and such information must propagate through the
edge network. For the mth agent (i.e. robot) in M, we define
the following variables (all in a particular time t): smt denotes
the state of agent m; amt denotes the action by agent m at time
t; bmt,l denotes the agent l’s belief of state of agent m at time
t; ft−1 denotes the sensor fusion/inference based on sensor
data Ft−1 collected at time t− 1; f̂t denotes the prediction of
sensor data for time t based on sensor data collected at time
t− 1; omt denotes the on-board sensor information at time t;
U(·) represents the utility function based on the application
scenarios and related to (i) reward from the environment in
ML (ii) risk or loss in operation (iii) energy consumption and
other considerations.

The cyber action for a robot is denoted as amt (θt) at time
t based on sensor information and other agents’ actions, and
represented as

amt = arg maxU(smt | s1
t−1, · · · , sMt−1,

or bmt,l 6=m, ft−1 or f̂t, omt ) (1)

subject to different constraints, by incorporating a physical
operating parameter(s), θt, to form the action process in a
cyber-physical interactive network [81]. Wireless networking
is used to exchange state information and θt with previous
robots in the same production flow or interacting robots.

3) Adaptive Computing in Multi-Robot Smart Factory: The
scenario of multi-robot interactive systems suggests wireless
distributed computing [82], [83], emerging a technological
frontier of interest in a smart factory. To optimize distributed
computations for sensor fusion and control, we may assume
a time-slotted and synchronous structure provided that there
exists precise network synchronization. On the other hand,
the peculiarity of a (smart) factory is that the actions of
multiple robots must be in a certain sequential order. Without
an universal clock available to all robots and sensors, the entire
operation becomes event-triggered or event-driven [84]–[86].

Generalizing the setup of robots and edge-servers in Fig. 1
and (1), we assume each robot generates R computing tasks
over time, and each task r ∈ R = {1, 2, · · · , R} is indicated
by Xm(r) = [αm(r), εmαm(r)], where αm(r) denotes the
data size of task r and εm denotes the required computing
power. The set Am(r) denotes the set of edge servers available
for task r, cm,n(r) denotes the channel capacity (assumed to

be constant within a duration of execution time) between the
robot m ∈ M and the ES n ∈ N during the processing of
task r. Due to the nature of time-changing configuration in a
smart factory, this forms a new wireless distributed computing
problem. Let ψm,n(r) represent the computing processing
capability allocated by ES n to handle the computing requests
for the task r generated on the robot m, where ψm,n(r) are
i.i.d. and adaptive among tasks [87]. Define further the model
of event-triggered computing as follows.
• Semi-Markov states: sm(r) = [n′m(r), nm(r)] is the

current state including machine association n′m(r) and
previous machine association nm(r). We assume that the
task state transitions follow a continuous-time Markov
chain. A new semi-Markovian model and its correspond-
ing state transition probability can be derived.

• Random events: wm(r) =
[αm(r), cm,n(r), ψm,n(r), ∀n ∈ Am(r)] is defined
as a random event vector, which collects all variables
related to task execution. Each of its components is
assumed i.i.d. over different tasks with an unknown
probability distribution.

The above definitions imply that the event-triggering network
association decision depends on the completion time of com-
putation task, i.e., dm(r) is proportional to task size. We
formulate an optimization problem P that minimizes average
task delay subject to the time average energy consumption
constraint by designing association policies a(r) = {am(r) ∈
Am(r)} as follows:

P : min
{a(r)}

∑
m∈M

1

R

∑
0≤r≤R−1

E [di(r)]. (2)

The above optimization problem P is extremely challenging
due to the existence of random event wm(r) and semi-
Markov state sm(r), while traditional MDP and model-based
reinforcement learning is not applicable due to the unknown
state transition probability, the curse of dimensionality, and the
coupling introduced by semi-Markov states. Furthermore, from
the perspective of event-triggered computing, semi-Markov
state sm(r) and association decision am(r) are operated over
the task frame with variable time lengths for different robots,
and the association decision time is not synchronized across
different robots. To make P mathematically tractable, a two-
stage online proactive association decision algorithm can be
developed [88] as follows.

1) Optimal parameter estimation and optimal association:
define S = L × M as the state space, where L is
the discretized location set, and each state element
indicates the admissible server(s) to which the robots can
connect. A semi-Markovian process can be developed to
describe the behavior of the task r in robot m since the
state sm(r) satisfies the Markov property and operates
in the continuous time Tm(r). By inferring the state
transition matrix based on the SNR (or CSI in general) of
the wireless connections, and the anticipatory mobility-
aware delay function, the proactive network association
problem is to minimize the task delay for single robot
m.
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2) Online Association Decision: To resolve the challenges
caused by the semi-Markov states and random events,
we first treat the semi-Markov state sm(r) as the deci-
sion variables and the selection of semi-Markov state
is independent of random events wm(r). Since the
task state should be determined before the observa-
tion of random events, the optimization evolves into a
constrained Markov decision process or reinforcement
learning problem, which can be solved via a stationary
randomized policy [89], [90]. Therefore, we can form
the second stage of robot’s association decision as an
online algorithm. After obtaining the parameters for
optimization, observing the current semi-Markov state
sm(r) and random event wm(r) at task frame r, the
new equivalent optimization is obtained.

A more effective adaptive computing mechanism for event-
triggered multi-robot system in a smart factory remains an
open problem in wireless distributed computing.

B. Wireless Network Architecture for Edge Computing and
Interactive Agents

When each agent in multi-robot systems is running rein-
forcement learning algorithms, vital information (e.g., policies,
values, and references of agents) needs to be exchanged
over manufacturing systems. These information exchanges are
vulnerable to errors and end-to-end networking latency under
the heterogeneous (cloud, edge, and on-board) computing
environment. In this section, we aim to develop the wireless
network architecture that can satisfy the low-latency need
in multi-robot smart manufacturing systems. Particularly, by
leveraging edge computing and SDN technologies, we intro-
duce a decentralized software-defined computing architecture
to enable ultra-low latency networking. As in Fig. 4, the
proposed architecture consists of three types of devices: (i) the
AN(s), which hosts and manages virtual clusters, i.e., virtual
machines running software-implemented baseband processing
functions as the PHY/MAC protocols, (ii) APs equipped with
possibly multiple antennas and controlled by virtual clusters
to serve agents’ transmissions, and (iii) low-latency high-
bandwidth optical fibers, which connect the APs to the AN
and support accurate, high-resolution synchronization among
APs. The architecture refers to IEEE 802.11 wireless local
area networks [91] and uRLLC of 5G and beyond [79], [92] in
the air interface. Together with the bandwidth reservation and
downlink migration from IEEE 802.11ax [93], the proposed
architecture extends dedicated short-range radio communica-
tion (DSRC) and enables next-generation vehicular services.
We detail the data and control planes of the architecture in the
following.

1) Wireless Virtualization-Enabled Data Plane: The data
plane is an open, programmable, and virtualizable network
forwarding infrastructure for endpoint traffic through last-mile
open-loop transmissions. It consists of hardware-based APs
with limited PHY functionality, i.e., OFDMA, and software-
implemented virtual clusters (networks) in ANs, which are
connected via fronthaul links using standardized interfaces,
such as common public radio interface (CPRI). The ANs

Fig. 4. Decentralized software-defined computing architectures for smart
factory with mobile robot platoon.

endowed with edge computing and storage capacity, can serve
as a substitute of cloud servers. To achieve ultra-low latency,
our previous work [79], [94] suggests to treat an agent as
the center (and the only) node of a virtual cluster in which
multiple APs serve this agent through cooperative communi-
cations [95], to distinguish from traditional concept of cell
using one base station to serve multiple mobile nodes. Open-
loop wireless communication discarding acknowledgement
and re-transmission ensures the minimum possible latency, but
requires proactive network association initiated by the virtual
cluster (i.e., agent) [96]. The concept of virtual clusters can be
straightforwardly realized by radio slicing of virtual networks,
where physical radio resources can be mapped into virtual
resources and services are delivered by customized virtual
slices. Accordingly, a proactive radio resource allocation is
• Network and Radio Slicing: If the agent as a mobile

node has ultra-low latency traffic, it forms a virtual
cluster to directly access APs in the communication range
of good signal quality, by proactively selecting radio
slice(s) communicating with each of the involved APs.

• Proactive Radio Resource Allocation: The radio re-
sources are divided into multiple M resource blocks
containing N subcarriers and L symbols in each time slot
and the serving time is T1 slots. The virtual cluster selects
κ APs of good signal quality and randomly selects a radio
slice (portion of radio resource) to communicate with
each AP via open-loop communication. Equivalently, the
virtual cluster selects an AP in range but κ radio slices.

• Relay Forwarding Scheme: Each AP, i.e., network slice,
serves like a relay node in cooperative communications to
forward the message from AP to AN. We initially adopt
amplify-and-forward such that AN combines message
signals from κ APs to finally decode the message in the
open-loop wireless communication. More complicated
modes of decode-and-forward and path-time coded-and-
forward remain interesting research subjects.

Although the agent can proactively select whatever to complete
open-loop wireless communication inside a virtual cluster
without other mobile agents, there might be multiple virtual
clusters physically co-locating in the neighborhood, which
results in physical multi-access interference. This issue will be
resolved by the proposed cluster orchestration in Section III-C.

2) Edge Computing-Enabled Scalable Control Plane: The
control plane is handled by ANs and connecting to core
network and cloud servers via backhaul. As the ANs govern
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the functionalities of APs, the proposed control plane em-
ploys this distributed transmit point architecture, which offers
excellent cooperative gain and evolvability by aggregating
massive technology evolving APs at the ANs. Through the
north-bound APIs, both management tools, e.g., as virtual
cluster orchestration for traffic monitoring and real-time con-
trol/management of vehicular operation, and SDN applications
for service providers, like security and privacy solutions,
can be developed upon distributed SDN controllers. These
components can be designed, deployed and updated to fit
the specific and ever-changing needs. Due to the distributed
decisions by agents, open-loop proactive access inherits high
collision probability and cannot provide useful transmissions
without further sophisticated designs. To address this issue via
edge computing capability at ANs, we introduce a capacity
optimization framework, which employs stochastic geome-
try [97] to analyze the complex stochastic, time-varying MAI
and provides a reference of performance-guaranteed through-
put. Based on this optimization, SDN controllers in ANs
can develop desirable online control policies, i.e., network
association, resource allocation, and communication protocols,
to ensure maximum system capacity for multiple access.

We are developing an experimental platform of SDN-
based edge network and computing, which contains three data
sources with computation workloads, i.e., Odroid-C2, as multi-
agents, five commercial wireless routers, i.e., TL-WDR4300,
as APs, and high-performance integrated storage devices,
i.e., Intel NUC7i5BNK, as intelligent ANs and the cloud
server. With 128 MB data chuck and Hadoop application, our
preliminary study shows the computing testbed can provide
53% reduction in average read/write time.

C. Ultra-reliable and Ultra-low Latency Wireless Networking

In traditional wireless networks, networking functions be-
tween mobile robots and the network infrastructure are cen-
trally controlled by a single base station, while complicated
protocol stacks incur considerable networking latency and
limit the coordination between base stations. We aim to
propose multi-agent cluster optimization (i.e., dynamic AP
clustering) upon the multi-robot system using open-loop PHY
and edge computing capacity at ANs. The performance of this
virtual cluster optimization depends crucially on the choice of
AP cooperation cluster for each agent.

Several related works are working on queue-aware resource
allocation using Lyapunov optimization with myopic queue-
length. Some of them [98], [99] focus on average queuing
delay and form the optimization problem to ensure that ve-
hicles’ data queues are stable. The study in [98] addresses
an in-network caching issue by minimizing the time-averaged
number of connected base stations while stabilizing the queue-
length (and thus latency) of each vehicle. Considering vehicle-
to-vehicle networks underlaid vehicle-to-infrastructure net-
works, the work in [99] maximizes user fairness about
vehicles’ service rates simultaneously satisfying the constraints
of data queue stability, resource re-allocation, and network
switching. In [100]–[103], fine-grained performance metrics
(e.g., delay distribution and probabilistic bounds) are examined

Fig. 5. Virtual cluster formation with agents in the centers of the clusters.

in vehicle-to-anything networks. Accordingly, transmit-power
minimization problems are investigated concerning queuing la-
tency and reliability. Concerning dynamic traffic environments,
recent studies have incorporated wireless resource manage-
ment with reinforcement learning [104]–[106], dueling neural
networks [107], LSTM-based learning [108], and imitation
learning [109], [110]. However, most of these works are lack
of full consideration of latency and reliability requirements
from industrial applications.

In general, there are two types of clustering: network-
centric and agent-centric schemes. In network-centric cluster-
ing schemes, the entire network infrastructure is divided into
non-overlapping clusters, and the APs in each cluster jointly
serve all the agents within the coverage area. Although re-
searchers have shown that such disjoint clustering schemes are
effective in mitigating the inter-AP interference, agents at the
cluster edge still suffer from severe inter-cluster interference.
Therefore, an agent-centric clustering is designed to achieve
optimal “delay-reliability performance” in MRS.

1) Multi-Agent-Centric Clustering: Consider a smart fac-
tory with multiple connected agents that follow a sequential
operation, for example, a platoon in Fig. 3. Fig. 5 shows a re-
alization of our proposed virtual cluster formation for wireless
networking in such a smart factory. Each agent is served by an
individually selected subset of neighbouring APs, and different
AP clusters for different agents may overlap. Particularly, each
agent is treated as the center of a virtual cluster, while multiple
APs cooperatively serve this agent using coordinated multi-
point (CoMP) transmissions. The agent-centric clustering is
limited since these clusters are chosen dynamically and may
overlap, but it is preferred when dealing with mobile wireless
agents. The design objective with this is to simultaneously
minimize the networking latency and maximize end-to-end
reliability by jointly optimizing virtual cluster association and
radio resource slicing. Precisely, in software-defined edge
architectures with wireless network virtualization, AN(s) can
collectively slice APs’ radio resources (e.g., via OFDMA in
downlink or SC-FDMA in uplink in NB-IoT) for each agent’s
virtual cluster. Accordingly, each AP can simultaneously serve
multiple virtual clusters, that is for multi-agent operations in
equation (1), with allocated radio slices by leveraging multi-
core computing and parallel programming.

The main challenge for such clustering frameworks is the
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uncertainty and instability of dynamic IIoT channels due to
mobile agents and flexible access of open-loop transmissions
for ultra-low latency requirements. To cope, wireless system
reliability is often based on the percentage of successfully
delivered data within a specific deadline, equivalent to the
packet loss rate. For example, the reliability requirement of
5G NR uRLLC use cases [111], [112] is 10−5 (or 99.999%)
success probability for 32 bytes within 1 ms user plane
delay, which indicates the steady-state channel availability.
However, this reliability definition cannot fully reflect the time
dependence of time-varying channels. Instead, our framework
resorts to “real-time reliability” (i.e., the probability that AN
successfully receives a message via APs with end-to-end
latency less than a required value) and predicted CSI for
realistic IIoT channels, based on grant-free PHY and agent
mobility. In the following, we detail the proposed methods that
deal with such uncertainty and instability while maximizing
system reliability and minimizing acceptable latency.

Considering the worst-case scenario of AP deployment
and agent dynamics, we assume that these devices are dis-
tributed by following two homogeneous Poisson Point Pro-
cesses (PPPs) in R with intensities λm and λj measured in
agents and APs per unit length. We denote the agent and
AP sets as Φm = {mk, k = 0, 1, 2, ...} and Φj = {js, s =
0, 1, 2, ...}, respectively. We can formulate a delay-reliability-
optimal clustering framework as

Find: lmj(t) ∈ {0, 1}, Pmj (t) ∈ [0, Pmaxj ],

∀m ∈M ⊆ Φm, j ∈ J ⊆ Φj

Minimize max
m∈M

E [Dm(t)|Φj ,Φm]

Maximize ‖MA‖+ min
m∈M

ζm

Subject to C1: 1 ≤
∑
j∈J

lmh(t) ≤ Vmax, ∀m ∈M;

C2:
∑
m∈M

Pmj (t) ≤ Pmaxj , ∀j ∈ J ;

C3:
∑
m∈M

lmj(t)Rm (γm(t)) ≤ Cj , ∀j ∈ J ;

C4: γm
({

P(t), Ĥ(t), l(t)
})
≥ γminm , ∀m ∈MA ⊆M; (3)

C5: P {Dm(t) ≥ Dmax
m | Φj ,Φm} ≤ 1− ζm, ∀m ∈M;

C6: lim sup
T→∞

1

T

T−1∑
t=0

∑
m∈M

E [Qm(t)|Φj ,Φm] ≤ ∞.

Given each realization of agents’ and APs’ locations, this
framework aims to find optimal network association between
agents and APs {lmj(t)} and APs’ power allocations {Pmj (t)}
such that the maximum average user plane delay is mini-
mized and, at the same time, the minimum acceptable re-
liability guarantee is maximized. In particular, Dm(t) and
ζm are obtained as the end-to-end latency and degree of
real-time reliability in C5 for agent m’s traffic, respectively,
and MA ⊆ M denotes the “available” agent set where the
corresponding agents’ SINR constraints in C4 can be satisfied
via the framework. Constraints C1-C3 presents architectural
concerns: C1 ensures agent-AP association, where each agent
will be served by at least one AP and the size of virtual

clusters will be limited by the complexity of successive in-
terference cancellation (SIC) decoding (e.g., [113]) for CoMP
transmissions; C2 provides APs’ transmit power requirements
while realizing power resource slicing; C3 ensures total data
rates transmitted to APs should be no larger than fronthaul
capacities {Cj} APs and AN(s) [32], [114]. Given minimum
SINR requirements {γminm }, constraint C4 indicates that actual
SINR values depend on power allocation, SIC technique,
network association, and CSI prediction Ĥ(t) due to time-
varying IIoT channel models. As mentioned, constraint C5
provides the real-time reliability for uRLLC applications,
which statistically guarantees the request delay bound {Dmax

m }
with {ζm} degrees [115], [116]. Constraint C6 provides a
strongly-stable system [117], [118], which ensures all agents
have finite queue-lengths.

The essential advantage of such user-centric clustering
schemes is that there exists no explicit cluster edge which
used to incur worst performance due to weakest received
power and severe interference. It has been validated by our
5G&B SoftAir [114], where 500 Mbps high data-rate can
always be supported at each mobile user with millimeter-wave
transmissions. Moreover, we extend with eco-vehicular edge
networks for connected transportation [119], which use dis-
tributed multi-agent reinforcement learning to combat power-
hungry edges while assuring system reliability and data rates.
The results show that our solution outperforms conventional
schemes in energy efficiency and system reliability and cov-
erage with 3GPP cellular-based V2X services [120]. Similar
in essence to our work [119], edge Q learners at ANs are
expected to solve the cluster optimization in Equation (3) and
derive parameters to yield optimal system performance. For
example, Lagrange Multipliers analysis can be conducted to
convert clustering and scheduling decisions into a Lagrange
dual function [121]. Accordingly, a variant of backpressure-
based distributed algorithms [122], [123] can be designed, with
the aid of Lyapunov stability theory [124]. Time-series deep
recurrent learning (e.g., GRU [125]) can be further applied
to achieve fast convergence toward optimal solutions while
reflecting time-dynamics.

Furthermore, the following techniques can extend diverse
and stringent uRLLC services. First, we can extend the clus-
tering framework with our newly defined metric, “mission
reliability [126]”, to characterize different execution periods
in applications. The average time to the first failure upon
software-defined edge architectures will be investigated re-
garding multi-connected paths between agents and ANs and
wireless Rayleigh fading. We will examine the tradeoff be-
tween mission duration, mission reliability, and the number
of available end-to-end paths to further improve the overall
reliability for realizing various uRLLC applications. Moreover,
we will study error control mechanisms with these networking
paths to ensure physical error-rate performance. Inspired by
our prior work [127], path-time codes will be developed as the
error control coding over open-loop, multi-path transmissions.
That is path-time coded-and-forward schemes in multi-agent
systems. Forward error-correcting codes (e.g., [128]) can still
be applied here; our preliminary study shows that low-density
parity-check codes (LDPC) well serve this IIoT purpose with
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Fig. 6. ANs can cache/offload the data and services between local edge
computing and cloud computing.

small-length packets (i.e., 128 or 256 bits packet payload).
2) Data-Driven Edge Computing at Anchor Nodes: Open-

loop communication and virtual cells form the core technology
of multi-agent smart manufacturing systems to accomplish
ultra-low latency with high reliability. Based on these accom-
plishments, in this section, we introduce novel intelligent edge
computing that leverages the synergy of big industrial data and
edge computing at the ANs. Big industrial data provides un-
precedented opportunities for system architects to understand
the requirements and behaviors of mobile sensors and various
network elements. This in turn allows for intelligent real-time
decision making in a wide range of applications, which greatly
improves the network operation efficiency. With its advances,
big data-driven optimization allows architects to make optimal
decisions with deep insights, such as instantaneous and historic
data. Useful information, e.g., the correlation between factory
events and data traffic, can be extracted to make decisions
based on long-term strategies and to optimize (i) data/resource
allocation and caching, (ii) factory event prediction, and (iii)
industrial system and data security so that the deployment and
operational costs can be significantly reduced.

In the proposed architecture, edge computing at ANs can
push the frontier of computing applications, data and services
away from centralized cloud computing infrastructures to
the logical edge of an industrial network, thereby enabling
analytics and knowledge generation to occur closer to the data
source. As shown in Fig. 6, the ANs endowed with cloud-like
computing and storage capacity, can serve mobile sensors’ data
as a substitute of the cloud. Extra tasks exceeding the AN’s
computing capacity are further offloaded to the cloud, resulting
in a hierarchical offloading structure among mobile sensors
(and APs), ANs, and the cloud. In general, there are two
successive phases of edge computing operations with respect
to content and services: (i) caching and (ii) offloading. The
caching operation refers to caching application services and
their related databases/libraries in the edge AN, thus enabling
sensor data to be processed locally. Due to limited computing
and storage resources of ANs, which services are cached on
the AN determines which tasks can be offloaded, thereby

significantly affecting the edge computing performance. On
the other hand, the computation offloading operation concerns
what/when/how to offload sensors’ workload from their local
AN to the cloud. The offloading scheme should consider
the service availability in edge ANs (i.e., what types of
computation tasks/applications) due to the limited resource
of ANs. Also, because of wireless mobile sensor networks,
the optimization offloading decisions are more complex and
coupled both spatially and temporally.

D. Distributed Learning with Sensor Fusion

To facilitate operations in a smart factory with a stringent
latency demand, a considerable number of IIoT sensing de-
vices, as illustrated in Figs. 4 and 5, need to be well deployed
to collect a massive amount of data for edge computing to help
the factory controller make timely decisions to optimize the
manufacturing performances of the smart factory [129]. To
reduce the latency induced by data communication between
the IIoT devices and their ES, distributed learning over a
wireless edge network in a smart factory increasingly becomes
an important means because it does not require raw data
transmission that incurs latency and privacy issues. Recent
works in [130]–[133], for example, showed that distributed
(deep) learning at the wireless edge can effectively optimize
the performances of IIoT systems for various mission-critical
applications. Thus, a distributed learning technique can cer-
tainly help mobile robots optimize their working trajectories
so as to maximize their working accuracy and efficiency by
just learning based on their local on-board data and the data of
the fusion center in the wireless edge network. Although such
a learning technique is similar to the idea of federated learning
[134], [135] that aims to preserve the privacy of the data sets
across different distributed devices, its main goal is to reduce
communication latency in addition to preserving the data pri-
vacy [136]–[142]. The previous works on distributed/federated
learning across different data sets in wireless networks are
still minimal, including federated learning through digital and
analog signal combining techniques [143]–[145] and perform-
ing computation offloading [146], [147]. How the distributed
learning performance is impacted by the imperfect wireless
transmissions while adaptive sensing and computing happen
between an edge network and mobile robots remains open.
More importantly, how event-triggered computing and data
processing affect the performance of distributed learning has
not been well understood yet.

To clearly and simply address the distributed learning prob-
lem over a wireless edge network in a smart factory scenario,
consider an AP in a wireless edge network which is connected
to an ES associated with M robots in a smart factory. Suppose
the M robots have their own on-board sensing data set and no
robot is able to access the data set of any other robots because
of communication and/or privacy issues. Extending from (1),
these M robots aim to achieve a global learning goal by
using their own data and sensor fusion data from the wireless
edge network when they are triggered by some event. Let
Fm , {Fmi ∈ Rd × R : Fmi = (xmi , y

m
i ),xmi ∈ Rd, ymi ∈ R}

denote the sensing data set collected and stored at robot m
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in which xmi is an input data vector with d feature elements
and ymi is the labeled (scalar) output of xmi . For a data point
Fmi ∈ Fm, the distributed learning task of interest is to find the
global model vector ϑ ∈ Rd that characterizes the output ym

with the loss function Lm(ϑ, Fmi ) of robot m for all m ∈M.
Let `m(ϑ) be the (convex) loss function of robot m given by

`m(ϑ) ,
1

|Fm|
∑

Fmi ∈Fm
Lm(ϑ, Fmi ), (4)

where |Fm| denotes the number of the data points in set Fm.
Suppose the AP broadcasts the value ϑt of ϑ at time t for the
actions of these M robots and the robot m then adopts the
following recursive algorithm to update its ϑm at time t+ 1:

ϑmt+1 = ϑmt + ρmt

[
ϕmt ∇ϑ`m(ϑt) + (1− ϕmt )∇ϑ`m(ϑ̂mt )

]
,

(5)

where ϑm,t+1 denotes the value of ϑ evaluated by robot m
at time t+ 1, ρmt ∈ (0, 1) is called the learning rate of robot
m at time t, ϕmt ∈ {0, 1} is a Bernoulli random process that
is unity if the transmission from the ES to robot m is not in
outage at time t and zero otherwise, ∇ϑ`m(ϑt) denotes the
gradient of `m(ϑ) with respect to ϑ evaluated at ϑ = ϑt, and
ϑ̂mt denotes the prediction (estimate) of ϑt at robot m obtained
by (online) deep learning once ϑt is not received by robot m
due to transmission outage. Note that the transmission outage
from the ES to robot m could be delay outage and/or wireless
link outage. After the robots update their local model vector
at time t+ 1, they send it back to the ES that calculates ϑt+1

by using the following averaging algorithm:

ϑt+1 =

(
ϑESt+1 +

∑M
m=1

[
φmt+1ϑ

m
t+1 + (1− φmt+1)ϑ̂mt+1

])
M + 1

,

(6)

where ϑESt+1 denotes the global model vector ϑ evaluated at
the ES by incorporating the fusion sensor data, ϑ̂mt+1 is the
estimate of ϑmt+1 found by deep learning at the ES once
ϑmt+1 is not received by the AP, φmt+1 ∈ {0, 1} denotes a
Bernoulli random process that is unity if the transmission from
robot m to the ES is not in outage at time t + 1 and zero
otherwise. Similarly, the transmission outage from robot m to
the ES could be delay outage and/or wireless link outage. The
whole learning process will terminate whenever |ϑt+1−ϑt| is
smaller than some predesignated positive small value. Fig. 7
demonstrates the above distributed learning algorithm over a
wireless edge network.

There are two main features of the distributed learning
algorithm associated with eqs. (4)-(6) that cannot be seen in
previous works on distributed learning: One is to model the
transmission outage between the ES and its mobile robots by
using two Bernoulli random processes ψmt and φmt and the
other is to compensate the transmission outage between the
ES and its robots by using (online) deep learning in order
to make the algorithm possess some robustness against the
transmission outage. Apparently, the randomness of ψmt and
φmt and the accuracy of the estimates of ϑm in the uplink and
downlink significantly impact the convergence performance of
the distributed learning algorithm and they are also affected by

Fig. 7. Distributed learning over a wireless edge network.

wireless channel impairments and co-channel interferences. To
clearly demonstrate this point, let us define the total learning
error of a distributed learning algorithm over a wireless edge
network with M robots as

∑M
m=1 |ϑmt − ϑ|2; its simulation

results for the proposed distributed learning in eqs. (4)-(6) and
federated learning (without compensating the lost updates of
the global and local model vectors) are shown in Fig. 8 when
M robots are uniformly distributed in the network and the IIoT
channel model given in [148], [149] is adopted to simulate
the channel outages between an AP and M robots. As shown
in the figure, the proposed distributed learning in eqs. (4)-
(6) indeed outperforms federated learning because only its
total learning errors reduce to zero for the two values of M
within one millisecond. Also, the total learning error of the two
distributed learning algorithms increases as M increases. This
is because a larger M induces more uplink interference so that
the outage probability of the uplink channel from robot m to
the AP (i.e., the probability of φmt = 0), which depends on the
uplink interference, increases. As such, studying a fundamental
interplay between the distribution of ψmt and φmt and the
convergence performance of the distributed learning algorithm
certainly helps us find a connection between the performance
of distributed learning and the deployments of APs and SDs
in that the fundamental interplay is definitely related to the
outage probabilities of the wireless links between the ES and
its robots that can be characterized by the stochastic geometry
framework in the literature (such as [97], [150]–[155]).

E. Channel Modeling in Smart Factories
The pathloss, shadowing, and fading characteristics of the

propagation channel guide the deployment for a given cover-
age/reliability requirement, or conversely, allow evaluation of
coverage for a given deployment. Furthermore, the delay dis-
persion determines requirements for equalizer or OFDM cyclic
prefixes during system design, and angular dispersion relates
to the impact that multiple antenna elements have on diversity
order and spatial multiplexing. Thus, an understanding of the
overall propagation channel is a critical prerequisite in design
and analysis of wireless systems for industrial applications
[156].

Industrial channels are different from the typical indoor
(office) channels in a number of important physical effects.
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Fig. 8. Simulation results of the total learning errors of the proposed
distributed learning and federated learning for different numbers of robots
uniformly distributed in a wireless edge network.

Firstly, the dimensions of the halls are much larger than even
open-office structures for many people; this allows longer
runtimes and reverberations of multipath. The richness of
multipath is further enhanced because of the presence of
many metallic objects - both machinery, storage tanks, as well
as construction elements of the factory environment such as
metal grilles, pipes, etc. Finally, the motion of machinery and
moving robots enhances time variance. For all these reasons,
standard indoor channel models cannot be applied to industrial
scenarios.

1) Typical environments and frequency ranges: A large
number of measurement campaigns have been performed
in a variety of manufacturing locations, which range from
relatively small workshops and halls (about 10 m × 10 m)
to extremely large production halls that can reach 10,000 m2,
thus the range between transmitter (TX) and receiver (RX)
may be up to 150m, though most measurements only cover up
to ≈ 50 m distance. The height of the access point may either
be around 2m, or elevated at 5-10 m; the height of the user
device is usually restricted to ≈ 1.5m. Many investigations
distinguish between the following conditions:

• line-of-sight (LoS): optical line-of-sight, or first Fresnel
zone free of obstacles.

• obstructed LoS: some small objects block the LoS.
• non LoS (NLoS): heavy blockage.
• light clutter: often occurs in factory halls with sparsely

space machinery, intersected by ailes used for transport-
ing goods.

• heavy clutter: in some factories, heavy metallic machin-
ery is located close together. This gives rise to significant
multipath, and strong pathloss if the line-of-sight is
blocked.

The main frequency ranges of interest are 0.8, 2.45, and 5.4
GHz, corresponding to the ISM bands, in which Zigbee (IEEE
802.15.4) and WiFi (IEEE 802.11) are located. Some of the
work in the 1980/90s dealt with 1.3 GHz, and some recent
work discusses 3 GHz since it is of interest for 5G.

2) Pathloss and fading: The local (instantaneous) channel
gain can be modeled as the product of three factors: (i) the
distance-dependent path gain Gp(d), (ii) a random variable
representing shadowing S, and (iii) a random variable repre-
senting small-scale fading.

The distance-dependent average path gain is commonly
modeled on a dB scale as

Gp(d)dB = −10α log(d/d0)− β (7)

where d0 is some reference distance. The parameters α and β
(pathloss coefficient and offset respectively) are extracted from
measurements or ray tracing; obviously such a fitting model
is only valid for the distance range for which underlying data
exist. In a number of papers the above model is specialized to
the “fixed intercept” or “close-in” reference model, in which
the path gain is fixed to the value of the free-space path gain
at a reference distance dref,CI, A few papers also consider
a generalization in which the path gain is characterized by a
slope n1 up to a distance dbreak, and by a slope n2 at distances
beyond that (breakpoint model).

The pathloss coefficient, defined as α in (7) (either for
the α − β of the fixed intercept model) for LoS, is in the
range 1.4 − 1.9 in a large number of measurements, e.g.,
[157]–[160], though some coefficients around 2.2 have been
measured as well. For LoS, pathloss coefficients are 1.8− 2.5
[157], [161], while for NLoS, they can range from 2 to 6,
heavily dependent on the environment [159] (in some heavily
scattering environments, the α − β model provides a strong
offset β, but a small α indicating little distance dependence
of the attenuation [162]–[164]). Other papers provide an
aggregate for a mixture of LoS and NLoS, e.g., [165], [166].

Small-scale fading, i.e., variations around Gp(d)dB are
generally described by the amplitude probability function of
these variations, which will typically follow a Rayleigh or
Rice distribution. The Rice factor is often described as the
ratio of the power in the LoS path to the power of all other
components; mean Rice factors on the order of 4− 8 dB have
been found [160], [166] though extremes up to 20 dB have
been identified.

Another impact on the fading arises when the transmitter
and receiver are fixed, but scatterers are moving. In a factory
environment, such movement can arise not only due to moving
people and autonomous vehicles (robots), but also spinning
machinery and robot arms making repetitive motions, e.g., to
place ICs on a circuit board. The resulting fading is often
also Rician in nature, but the Rice factor now becomes the
ratio of the power in the time-invariant to those of the time-
variant components. This temporal Rice factor (in dB) has
been measured to be 12 dB (with 5 dB standard deviation)
[161]; to be in the interval 5 − 25 dB [167], and around 10
dB [168].

3) Delay and angular dispersion: Delay dispersion is tra-
ditionally characterized by the power delay profile (PDP),
the expectation (over the small-scale fading) of the squared
magnitude of the channel impulse response, E{|h(τ)|2}. From
this, further condensed parameters can be derived, in particular
the rms delay spread, which is the second central moment of
the PDP, and the maximum excess delay, which is the delay
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Fig. 9. The Saleh-Valenzuela model.

between the first and the last significant arriving multipath
component (MPC), though the latter is very sensitive to the
definition of what we mean by ”significant”.

A wide range of delay spread values has been found in the
measurements in the literature. A (typically linear) dependence
of delay spread on the distance between TX and RX has
been found: e.g., in an NLoS scenario in a manufacturing
shop, the delay spread increased from 55 to 80ns as the
distance increased from 7 to 33m [159]. Another factor in
the delay spread is the size of the factory hall as well as the
amount of clutter: for example, the largest delay spreads in the
measurement campaign of [165] were found in a large factory
hall with light clutter (so that the MPCs could reach reflecting
walls). Generally, the delay spreads are in the order of 5-50
(for LoS) and 10-150 (for NLoS), with some outliers, up to
about 300-400 ns have been observed [165], [169].

A widely used model for the PDP in the industrial channel is
the Saleh-Valenzuela model as Figure 9 [170], which describes
the PDP as a sum of clusters, each of which consists of a
number of MPCs:

E{|h(τ)|2} =
L∑
l=0

K∑
k=0

ak,l(τ)δ(τ − Tl − τk,l) (8)

where ak,l are the multipath gain coefficients, whose power
decreases with delay E{|ak,l|2} ∝ exp(−τk,l/γ), where γ
is the MPC decay constant, and the power of the clusters
decreases exponentially with a different constant Γ. Both the
inter-arrival times of rays, and the interarrival times of clusters,
are exponentially distributed, with average values 1/λ and
1/Λ, respectively.

While delay spreads have been measured in several dozen
measurement campaigns, angular spreads have been given
less attention. Recent work of [160], [171] indicates angular
spreads on the order of 50 degree.

4) Frequency dependence and mm-wave systems: Ultraw-
ideband measurements for the 3-10 GHz range were done
in [164], [172], [172], [173]. Several interesting phenomena
were found: the PDP does not always follow an SV model,
but can have a soft onset, so that the PDP rises up to
a maximum before decaying; the path gain is proportional
to f−2κ, where κ > 1, A number of measurements, e.g.,

[161], [174] measure in multiple bands (but a relatively small
bandwidth within each band); yet the statistical fluctuations
make general statements about frequency dependence difficult
beyond a typically increased pathloss when the antenna gains
in the different bands are similar.

In mm-wave systems, [175] measured small pathloss coef-
ficients of 1.3 (LoS), 2.2 (OLoS) and 2.7 (NLoS); this paper
also investigated delay spread and angular spread, which are
consistent with values observed at lower frequencies. [176]
performed narrowband measurements in a factory hall and
measured pathloss coefficients of 4.1. Overall, the results
indicate initial deviations from the better-explored cm-wave
band, and more investigations are needed to enable wireless
communications in smart factories.

IV. CYBER-PHYSICAL NETWORK ANALYSIS OF
MULTI-ROBOT SMART FACTORY

Taking advantage of the state-of-the-art wireless networking
that enables massive on-demand link formation, flexible con-
figuration of collaborative missions in multi-robot smart fac-
tories can be implemented through multi-level abstraction of
cyber-physical networks, as shown in Fig. 10. AI-empowered
robots in manufacturing processes are connected as cyber net-
work to collect information and make decisions to attain var-
ious production objectives. Unlike a physical network, which
is constrained by wireless communications, the cyber network
consisting of autonomous decision-making agents is organized
in accordance with task allocation which is determined by a
corresponding portfolio of products [177]–[181]. Analysis of
smart factories from a cyber-physical system perspective poses
novel challenges to comprehend the co-evolution of cyber-
physical networks [182]. In addition to the transformation of
AI computing from rule-based expert systems to data-driven
learning systems [7], recent explorations to implement multi-
agent learning in a variety of application scenarios demonstrate
the importance of communication to facilitate satisfactory
collaborative performance [77], [78], [80]. Indicated in Sec-
tion II-C, though a great body of literature has investigated
networked control of linear dynamical systems [183]–[187],
there are many active researches as new generation of learning
agents are nonlinear and it remains an open problem to
understand distributed optimization, communication [188]–
[190] and network topologies of multi-agent learning behavior
[191]–[196].

One of the special aspects of a smart factory is to take
advantage of wireless networking to control the robots of AI
computing to flexibly meet the requirement from market needs
under the constraint of logistics. To elaborate the integral de-
sign of AI computing and wireless networking, in this section,
we uniquely look into the role of wireless communication and
networking from the view of cyber-physical systems (CPS)
by treating robots in a smart factory operating in sequential
computing order to illustrate this new concept.

A. Social Learning of Multi-Robot Systems

To manufacture a designated product in the smart factory
requires a finite number of agents indexed by 1, 2, 3, ...,M
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Fig. 10. Smart factory as cyber-physical networks. The physical network
is limited by wireless communication, and the cyber network depends on
task allocation. Each physical machine has a corresponding intelligent agent
handling the cyber decision. Note that the cyber and physical network
topologies are not necessarily identical.

corresponding to the indexed robots (or machines) denoted
as R1, R2, ..., RM . The agent network is characterized by
a graph G(V,E), where V = {1, 2, 3, ...,M} and E =
{(i, j)|i, j connected}. The neighbor of agent i is denoted
as Mi = {j|(i, j) ∈ E}. The manufacturing steps t proceed
sequentially according to agent index i = 1, 2, 3, ...,M , which
means that the physical network is a single production line
processing from R1 to RM sequentially. Let S denote the state
space, and a state s ∈ S indicates the status of an input object
in the manufacturing processes. Let A denote the action space
of agents. For step t = i, the agent t takes an action at ∈ A,
resulting in a new state st+1 = h(st, at), where h : S×A→ S

is a function characterizing the physical state dynamics. Given
a pair of state and action (s, a), there is a utility function
Up : S×A→ R, which associates the pair with a real number
to characterize quality of decision.

When no complete knowledge of h or Up is available, which
is the case described by most data-driven machine learning
problems, agent i is trained on a dataset such as

Di = {(x(k)
i , a

(k)
i , u

(k)
i )}dk=1, (9)

where each (xi, ai, ui) ∈ S × A × R. Different forms of D

lead to distinct types of learning problems. For instance, if
the knowledge of Up is available, the agent can establish the
distribution µ(x), and optimize its decision by

arg max
a

Eµ[Up(x, a)]. (10)

This results in the utility-maximizing decision, and µ is called
the belief of the agent. With a new set of information I, the
Bayesian learning updates the belief by:

µ(x|I) =
P(I|x)µ(x)∫
P(I|x)dµ(x)

. (11)

It is important to clarify that the decision is one-shot in a
single production line. Although it is possible for an individual
agent to formulate reinforcement learning and approximate the
system dynamics h in repeated or multiple production line, the
agents need to learn from neighbors through the cyber network
to approximate h in one round of sequential manufacturing.
The process can be written down as the nested functions:

s2 = h(s1, a1)

s3 = h(s2, a2) = h(h(s1, a1), a2)

s4 = h(s3, a3) = h(h(h(s1, a1), a2), a3)

...
sn = h(sM−1, aM−1) = h(...h(h(s1, a1), a2), ..., aM−1)

(12)
We note that (12) addresses the problem of sequential

social learning. Namely, agents have to take into account the
decisions made by other agents so that they can make better
decisions based on more accurate estimation of state dynamics.
For each agent i = 1, 2, 3, ...,M , the agent updates belief with
the decisions collected from cyber network I = {aj |j ∈Mi}.
The belief update aggregates neighbor’s decisions to facilitate
distributed coordination [197]–[201].

The use of social learning in multi-robot smart factories
is to deal with the lack of global information about the
state dynamics for each agent in the manufacturing processes
with flexible production lines. Hence, agents rely on the
coordination in the cyber network to infer the state from
neighbor’s decisions, and the network topology plays a critical
role in multi-agent learning behavior [202]–[204].

Now we specify the details of the model of a simple
sequential manufacturing process in one production line. The
status of the input object is described by a discrete set
Θ = {−Mθ−1

2 , ...,−2,−1, 0, 1, 2, ..., Mθ−1
2 }, |Θ| = Mθ, so

the state space is set as S = Θ. The action space is set as
A = {−Ka−1

2 , ...,−2,−1, 0, 1, 2, ..., Ka−1
2 }, |A| = Ka. The

state evolution is captured by the simple dynamics h(s, a) =
s − a, and the utility for each agent is the zero-one function
Up(s, a) = I(s = a). Each agent i holds a flat prior initial
belief µi(θ) = 1

Mθ
. Each state is associated with a noisy

observation which is normally distributed with variance σ2,
that is,

Xi|θi ∼ Gaussian(θi, σ), (13)

where σ is a fixed parameter to represent noise level. Each
agent i has the social observation set Yi = {aj |j ∈ Mi},
which contains the previous decisions that can be observed
by the agent. Each agent i sequentially makes a decision by
optimizing its own posterior expected utility,

ai = arg max
a

Eµ[Up(θi, a)|xi,Yi] (14)

= arg max
a

∑
θ∈Θ

Up(θ, a)
P(xi|θ)P(Yi|θ)µ(θ)

Z(xi,Yi)
, (15)

where Z(xi,Yi) =
∑
θ∈Θ P(xi|θ)P(Yi|θ)µ(θ) is a normaliz-

ing constant.
Upon observing the measurment Xi = xi and previous

decisions made by neighboring agents Yi, the beliefs are
updated to be

∀θ ∈ Θ, µi(θ) = µi(θ|xi,Yi). (16)

The belief is updated by the Bayes formula

µi(θ|xi,Yi) =
fXi(xi|θ)P(Yi|θ)µi(θ)∑
θ fXi(xi|θ)P(Yi|θ)µi(θ)

. (17)
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With Naive Bayes updating, the observations are treated as
coming from the same distribution and conditionally indepen-
dent in the calculation of the Bayes formula

P(y|θi) = fXi(y|θi) =
1√

2πσ2
e−

(y−θi)
2

2σ2 , y ∈ Yi. (18)

Please note that the formulation of the agent’s decision
making mechanism and the physical manufacturing processes
is simplified to illustrate the concept and the potential impact
on production performance and system behavior under flexible
setting of network topology. In the real-world scenarios, it
is necessary to characterize the detailed physical model as
dynamical systems which correspond to the machine parame-
ters and production status in the manufacturing processes, and
to have further investigations to completely characterize the
cyber-physical interactions.

Regardless of the possible variability of complex production
flows that can be expected in the operation of a smart factory,
the main objective of manufacturing systems is to process
chunks of raw material coming from the production flow and
turn them into the products demanded, satisfying to a certain
degree quality constraints, as efficiently as possible. Therefore,
production performance is always the main concern and should
be clearly defined in every scenario of smart factory operation.

Although there are many factors that are related to pro-
duction performance, most of the performance measures put
emphasis on different dimensions of efficiency. The three main
dimensions of performance measure include throughput, time,
and energy efficiency. In analyzing the simple model of a smart
factory, we focus on the average yield performance that one
production line can generate in terms of products within a
specified quality constraint.

With a predetermined target state θ = 0 indicating perfect
precision, the overall multi-agent objective is to make the
output state θout = sm+1 satisfying a given constraint ∆,
which indicates the maximal tolerance of error executed in
the production process and ∆ is typically much smaller than
the entire possible operating range for the purpose of precise
production. The objective is therefore

|sm+1| < ∆. (19)

In the numerical experiments, we measure the average
yield performance of a single production line under various
configuration of parameters such as the size of production line
M , the size of state space |Θ|, the size of action space |A|,
and the fully connected network and random network with
connection probability pc are used to understand the effect
of random links. The average yield performance measure is
defined as

yield =
number of |θout| < ∆

total number of processes
. (20)

Since ∆ is much smaller than the operating range of a robot
or a production process. The maximum tolerable deviation (or
accumulated error) in a production process might be up to sev-
eral times of ∆. Consequently, the probability to achieve the
yield indicates the reliability of precision production. Above
abstract formulation can therefore characterize a sequential

Fig. 11. A heuristic design of network topology.

manufacturing process where the input object suffers from
certain random defects and the robots in the production line
sequentially reduce the accumulated error as much as possible.

B. Communication Topology of Networked Robots

Communication links are not always perfect, and multi-
robot smart factories can leverage the cyber network to en-
hance decision making under the presence of communication
noise. Particularly, teams of wireless robots can improve
performance in collaboration to exchange state and action
information [80]. It has been shown that different network
topologies have their characteristic effect on the production
performance due to social learning agents. In sequential man-
ufacturing, a complete network serves as an ideal baseline
which describe the situation when agents can synchronize
with all other agents, resulting in a stable state dynamics.
Furthermore, random networks such as Erdös-Rényi networks,
small-world networks, and scale-free networks provide design
heuristics in constructing effective network topologies that
facilitate good performance of social learning with noisy mea-
surements. Those design heuristics shed light on connectivity
and error accumulation, effect of random links and rewiring
on stability, bottlenecks caused by high-degree hubs, and the
collaboration of local clusters [81].

Agents in the sequential processes are subject to information
asymmetry [205]. Later agents always have more information
in comparison to preceding agents. For the collaborative multi-
agent system, a good strategy is expected to establish informa-
tion pooling by restricting the network topology of preceding
agents. Based on the heuristics, it can be used to construct an
effective network topology facilitating social learning:
• connectedness: To gain from social learning, the agents

have to maintain a large enough set of social observations
such that useful information can be aggregated for better
decision making.

• sampling: Since agents are likely to follow social de-
cisions, the social observations have to include good
decisions and drop misleading decisions by means of
sampling.

As shown in Fig. 11, referencing the concept of small-
world network that is well-known efficient in information flow
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[206], given parameters (n, β, pc, `), the topology of heuristic
network is generated by the steps:
• cutoff: Arrange the production line according to the index

1, 2, 3, ...,M . Decompose the multi-robot system into two
sets of agents/robots, initial agents {1, 2, 3, ..., β} and
core agents {β + 1, ...,M}, respectively. This setup is
inspired by the social learning and information cascade
[202] to maintain robot’s operation in the satisfactory
range by analog to the formation of desirable information
cascade. Please note that fully connected topology might
not necessarily deliver desirable collective performance
due to potential inconsistent observations [182].

• nearest neighboring: For agent i ∈ {β + 1, ...,M}, build
one link from each agent j ∈ {i− `, i− `+ 1, ..., i− 1}
to agent i. Observations from nearest neighboring robots
are always critical and useful.

• sampling: For each pair (i, j) where i ∈ {β + 1, ...,M}
and j ∈ {1, 2, 3, ..., β}, there is probability pc to form a
link from j to i. Sampling is similar to the random wiring
in small-world networks [206].

The simulation shown in Fig. 13 illustrates the yield perfor-
mance against noise level of the constructed network topology
according to the heuristic approach. We generated a network
with parameter (M,β, pc, `) = (300, 60, 0.5, 10). The size
of state space is |Θ| = 51, and the size of action space is
|A| = 21. The yield performance is averaged over 1000 itera-
tions of sequential manufacturing processes with the operating
accumulated deviation/error ∆ = 5. The result demonstrates
the idiosyncratic behavior of social learning in the presence
of noise. Social learning demonstrates more resilience against
noise, but its performance suffers when measurement signals
are very accurate since social belief may signify the rare
errors. The trade-offs can be used to enhance cyber resilience
against adversarial attacks in multi-robot smart factories by
implementing switching decision modes [196]. Please note that
fully-connected network topology, in addition to consuming
more radio resources, results in non-favorable small operating
range for the collective performance of sequential decision
processes.

C. Impacts of Wireless Links on the Decision Process of a
Multi-Robot System

Figure 10 illustrates the operational concept of a smart
factory in interacting cyber- and physical-networks. In light
of the sequential decision process of multi-robot systems in
a smart factory, we demonstrate how the communication net-
work topology influences the sequential decision process and
its robustness. It is of further interest to explore how practical
wireless networking impacts the sequential decision process in
a multi-robot manufacturing system. Under this circumstance,
the uncertainty comes only from individual agent’s noisy
observations about the evolving system state. Information
endowed in individual agents’ decisions is aggregated through
cyber-level networking so that agents can improve decision
making by social learning from neighboring agents in case
of physical network outages. Practical wireless networking
introduces packet/message errors due to channel effects or

Fig. 12. Social learning better against the noise and extends the operating
range of the smart factory given the target average deviation in operation.
However, social learning causes further degradation in yield performance
when the noise level is very low. Leveraging social learning to innovate
adaptive operation strategy in a multi-robot smart factory is desirable.

(multi-user) interference, and the ensuing re-transmissions
result in latency of the decision process of a sequential multi-
robot system, which involves two fundamental aspects:
• Inconsistency, which can be possibly caused by imper-

fect wireless communications, between the links that
bridge cyber-level and physical network, that is, losing
one-to-one correspondence between cyber- and physical-
domains: Consequently, wireless networking incurs la-
tency and reliability constraints on the information ex-
change between cyber- and physical-networks.

• Lack of precise information caused by unreliable data
transmission between two cyber-level nodes under short
decision cycle in the multi-robot system of a smart fac-
tory: For example, due to the evolving state dynamics, the
decisions collected from physical network and aggregated
in the cyber-level network could be useless in decision
making even if the message has been correctly received
but beyond the required latency to support two consec-
utive decisions. More complicated channels (Section III-
E) and multi-user communications can further complicate
such mechanisms.

In order to reveal the effects of imperfect wireless links in
realistic operations, we consider the following aspects:

1) the loss of end-to-end decision information between
physical network and cyber network: Imperfect wireless
links incur the loss of action a to be performed on
the current physical state θnow in the state dynamics
θnext = θnow+a. Therefore, the dynamics with random
error becomes

θnext = θnow + aξ, (21)

where ξ ∼ Bernoulli(1 − δ) represents that the action
has probability of loss δ.

2) the loss of end-to-end decisions between agents: Imper-
fect wireless links cause the loss of information in a
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Fig. 13. Social learning improves yield performance against the noise and
extends the operating range of the smart factory given the target average
deviation in operation. The effect of imperfect wireless links with probability
of loss δ = 0.5 is shown in the figure as dotted lines in comparison with the
ideal cases which assume no transmission errors.

social observation set Y with probability δ. Namely, for
agent i, each action y ∈ Yi is possible to be lost due to
imperfect information transmission. So, it results in the
lossy social observation set

Y′i = {y′j = yjξj |∀yj ∈ Yi, ξj ∼ Bernoulli(1− δ)}
(22)

The probability of loss δ in the above formulation serves to
include the overall effect of imperfect wireless links such as
path loss, packet loss, and errors due to latency, etc.

Due to the idiosyncratic behavior of social learning in the
presence of noise, social learning is more resilient against
noise, but its performance suffers when measurement signals
are very accurate since social belief may signify the rare
errors. The trade-offs can be used to enhance cyber resilience
against adversarial attacks in multi-robot smart factories by
implementing switching decision modes [196]. As the naive
social learning is subject to the synchronization problem when
the noise level is low, we implement a threshold mechanism
such that the agents measure the noise level and decide
whether to perform social learning or not. The threshold
mechanism can be set as

decision mode =

{
social learning if σ̃ > τ

individual decision, otherwise
, (23)

where σ̃ is the agent’s measured noise level from the environ-
ment, and τ is the threshold value to determine the decision
mode.

The simulation shown in Fig. 13 illustrates the yield perfor-
mance against noise level of the constructed network topology
according to the heuristic approach. We generated a network
with parameter (M,β, pc, `) = (300, 60, 0.5, 10). The size
of the state space is |Θ| = 51, and the size of the action
space is |A| = 21. The yield performance is averaged over
1000 iterations of sequential manufacturing processes with
the operating accumulated deviation/error ∆ = 5. In addition,

belief updating by naive Bayesian is deployed with switching
decision mode where the threshold mechanism is set to τ = 2.
We set the probability of loss δ = 0.5 to characterize the
effect of imperfect wireless links on social learning, where
the imperfections may be resulting from noise, interference
from factory operations, multi-user interference, radio resource
utilization, etc.

From Fig. 13, we observe that imperfect wireless links
decrease the operation range for the smart factory that adopts
social learning. Nevertheless, imperfect wireless links have
no significant influence on the performance of individual
robot’s decision, given high probability of loss. The rationale
is straightforward. Since social learning not only relies on
the correctness of previous decisions collected in the social
observation but also requires at least a number of decisions
to trigger effective information pooling for good decisions,
the imperfect wireless links cause the loss of decisions and
therefore degrade the effect of information aggregation. In the
worst scenario, losing track of current state transition does not
influence the independent measurement of the next agent, it
can be viewed that each robot/agent in the production flow
considers itself to be the first (and the only) agent to complete
the job at the time instance, which leads to no contribution
from other robots.

Please note that the results also signify the resilience of
heuristic network design for effective social learning in se-
quential smart manufacturing. Even though the system oper-
ates under a rather high probability of loss, it only shows a
mild degradation in operating range of average yield perfor-
mance, which points out a great potential of network topology
design and associated MRTA for multi-robot smart factory. Of
course, the optimal and resilient network topology control is
subject to further investigations and innovations.

D. Cybersecurity and Resilience of Multi-Robot Smart Fac-
tory

The partition of cyber functionality and physical dynamics
for cyber-physical networks not only brings the flexibility of
system operation but also introduces potential threats of cyber-
physical attacks. Beyond conventional cybersecurity issues,
attacks on cyber-physical networks exhibit the possibility of
cross-domain effects since a compromised agent node in
cyber layer can give rise to realistic damage through its
capability to operate machine tools that influence physical
system dynamics. Moreover, stealthy attacks targeting machine
tools or the interlinks between cyber-physical network can
also result in misinformation gathering for the agent nodes
in cyber layer, leading to unexpected collective behavior such
as cascading failures. The interdependency of cyber-physical
networks poses new challenges to investigate the cross-layer
effect of attacks. A potential cyber-physical attack can possibly
cause the misalignment between the agent node and the
machine, which may result in unknown random errors or
undesirable behavior [207]–[209].

As agent nodes in the cyber layer are connected to Internet-
based wired or wireless networks, a cyber attack can com-
promise a number of agent nodes in the cyber layer. Under
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the adversarial command, the malicious nodes can disseminate
false or even tiny-tilted information through the cyber network
and it is possible to trigger cascading failures due to the
accumulation of misleading information. It is worth noting that
such insider attacks are usually stealthy and hard to detect as
the malicious nodes can operate with benign behavior within
the tolerance of the intrusion detection mechanism [210].

Similarly, the machine tools or robots equipped with some
sensing capability can be compromised by physical attacks.
The attack does not necessarily damage the machine tools
directly. Instead, by forging fake tasks in the manufacturing
process or manipulating the physical state to be sensed, the
attack induces the machine tools or robots to gather misleading
information and propagate the misleading information to the
cyber layer to cause systematic cascading. Such attacks are
hard to identify since the small disturbances added by the
attacker can be easily ignored or disguised as measurement
noise, and the disturbance may rapidly accumulate through the
cyber-physical networks to cause damage or loss of precision
in a multi-robot system. Hence, to deal with such novel attacks,
it is essential to construct resilience into the cyber-physical
networks as a fundamental property through topology control
or other means [211]–[217].

In addition to novel social learning to enhance the re-
silience of MRS in earlier subsections, distributed control
has been investigated toward the resilience of cooperative
MRS. Resilience of collaborative MRS can be simplified
as the synchronization or consensus problem [218], while
a simplified but insightful consensus (or synchronization)
problem in distributed computing or MRS is the Byzantine
Generals Problem (BGP) to allow agents/robots conducting
aligned actions. Distributed consensus algorithms have been
developed in time-varying connectivity [219]. Practical issues
from communication links and sensor data collection have
been recently taken into account for the resilience of cyber-
physical MAS or against cyber attacks [220]–[222]. In addition
to social learning, game theory and/or intelligence through
automata provides another approach to deal with the imperfect
connectivity [78], [223]. However, to the best of authors’
knowledge, consensus and subsequent synchronization algo-
rithms of collaborative cyber-physical MRS remains as an
active research area toward practical engineering solutions.

V. TECHNOLOGICAL OPPORTUNITIES

Wireless communications and networking technology, par-
ticularly holistic integration with computing and control, has
just emerged and required a lot of innovations. We compile
some opportunities to develop new systems and solutions in
this section.

A. Wireless Networking in Smart Factories

A set of new wireless networking and communication
technologies can be identified from Section II and particularly
Section III. For example in Section III-B,
• Timely interference control via control plane design and

virtual clustering: As ultra-low latency traffic typically
requires ultra-reliability, a computing-enabled control

plane should be employed to provide the optimal multiple
access schemes for the uRLLC-based data plane. More-
over, to further ensure the reliability of physical open-
loop communications, path-time codes and forward error
codes can be applied in the network-level.

• Edge computing-enhanced downlink access: When uplink
random access is completed, the downlink is expected
to follow IEEE 802.11ax [91], [224] using the trigger
frame and reservation. However, different from traditional
wireless LANs where that downlink happens in the same
AP, the edge-computing located with AN shall determine
the information from a specific agent to be forwarded to
appropriate AP(s) toward other agents that require such
information. The forwarding mechanism and network-
ing protocols should be developed to serve the open-
loop downlink access, given reliability and end-to-end
networking latency [225]. An efficient AP deployment
should be considered as well.

• Accurate information exchanges among agents’ reinforce-
ment learning: As a good number of agents are involved,
it is required to have the strategy for each agent’s learning
in the collaborative MRS, based on appropriate timing
to obtain information from other smart/connected agents.
Such a strategy for an agent involves (i) on-policy to
exploit optimal navigation based on ultra-low latency
networking and (ii) off-policy to explore any better al-
ternative, in actor-critic Q-learning. Hence, a Bayesian-
adaptive Q-learning [226] can be extended to meet the
need. The network protocol will then be fine-tuned to
ensure efficient networking for collaborative multi-robot
system operation.

From Section III-C, there are still important addenda to
facilitate the practical aspects of virtual cluster formation and
near-data computations.

• The cooperation mode of cluster optimization for net-
work massive MIMO: Based on the proposed dynamic
AP clustering, multiuser multiplexing gains of network
multiuser-MIMO can be leveraged to further improve
global reliability and/or networking latency, by forming
virtual directional antennas via the offered very large
antenna array. Through the cooperation among APs via
the AN, the inter-cluster interference can be eliminated.
This means in the asymptotic regime, the interference
free systems can be realized from some simple pre-coding
schemes as the number of cooperating APs, i.e., the size
of antenna array, goes to infinity.

• Virtual cluster switching/merging: By considering the
agent mobility and/or APs failures, the switching decision
and resource reallocation should be performed to always
ensure ultra-low latency and high reliability upon open-
loop communications. Also, according to the geograph-
ical distribution of virtual clusters, the virtual cluster
merging can occur for the overlapped APs regarding
latency, reliability and interference.

• Dynamic multi-dimensional resource slicing with adap-
tiveness: To achieve truly wireless virtualization, i.e.,
enable multiple virtual clusters sharing the same phys-
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ical network and radio resources, a comprehensive set
of multi-dimensional resources, e.g., antenna elements,
APs, APs to ANs connections, wireless spectrum, and
transmission power, and the slicing mechanism should
be investigated with regard to time-varying factors, e.g.,
agent mobility, channel fading.

• Content caching and function offloading: To investigate
the extremely compelling edge-computing problems in
smart manufacturing, an efficient solution that jointly
optimizes service caching and task offloading should be
developed with respect to industrial data and applications.
In particular, upon open-loop PHY and virtual cells, the
objective here is to minimize the computation latency
under a long-term energy consumption constraint.

• Wireless networking for smart machines and MRS: The
communication between robots in any smart environ-
ment fundamentally differs from conventional human-to-
human (H2H) communication. Many open issues exist,
namely, what is the proper information and data to
exchange? what are the performance requirements? what
is the effective design and spectrum utilization? what is
robust and resilient networking and thus networked cyber-
physical MRS?

B. Computing and Data Fusion in Smart Factories

Enabled by wireless networking, AI computing and edge
computing assisted by the sensor fusion suggest another di-
mension of technological opportunities.

Regarding privacy-preserving, if not secure, sensor fusion,
it is interesting to
• study how to allocate the radio resources to the robots

based on the importance of the data sets of the robots if
some data sets of the robots may dominate the learning
results. For the robots with more important data sets, they
should be allocated better and more resources in order to
deliver their learning results more reliably.

• analytically comprehend how the sizes of the distributed
data sets impact the distributed learning performance. If
the sizes of the distributed data sets of the robots are
fairly different, the robots with a larger data set will
consume more power and suffer from longer computing
latency owing to heavier computation load. Accordingly,
the convergence performance of the distributed learning
algorithm eventually will be dominated by the robot
with the largest data set. Hence, how to avoid uneven
computing loads among the robots while performing
distributed learning would be an important problem that
needs to be tackled.

• Effective wireless access to collect sensor data of privacy
remains a technology to develop.

In addition, regarding the integral design of wireless net-
working and distributed computing in multi-robot systems,
including security, there are many subjects that require further
comprehension toward the efficient and resilient design of a
smart factory.
• New channel modeling to accommodate highly time-

varying channels with potential impulsive interference

suggests required innovations in communication systems,
while ultra-low latency and ultra-reliability arise as the
priority concerns. In particular, proactive communica-
tion [79], [227], [228] for the purpose of ultra-low la-
tency and learning-based communication and networking
[76], [229]–[231], would be promising toward campus-
operation 6G technology.

• For industrial informatics, wireless networked multi-robot
systems suggest new research topics, namely, throughput-
efficient and energy-efficient flexible MRTA, learning-
based and predictive scheduling, resilient network topol-
ogy design/control of precision multi-robot production
process, etc. given control or computing commends from
wireless networks.

• Adaptive computing between edge computing and agent
computing by robots remains in its infancy. Issues such
as (i) the strategy for a robot to decide a task to execute
by itself or send to the edge; (ii) the method to select
appropriate edge servers under dynamic configuration of
a smart factory; (iii) how to jointly design the wireless
access and adaptive computing; (iv) networked control by
AI; remain open.

• Wireless networked multi-robot and human-machine col-
laboration involves thorough technology development of
AI computing, recognition, and wireless communication.

• Smart factory enabled by wireless networking also intro-
duces a new dimension in cybersecurity. The traditional
concept of IoT cybersecurity attacks aims to disable
certain cyber functions or create physical damages, which
suffers from its high potential to be identified at least
the sources to launch attacks. Cybersecurity attacks on
smart factories can be quite different from this end, aim-
ing at deteriorating the collective performance of multi-
robot systems rather than any visible malfunction. Social
network analysis of cyber-physical multi-robot systems
suggests this new direction of research.

C. Multi-Robot Task Assignment in a Smart Factory

Wireless networking and edge AI enables dynamic MRTA
for a smart factory to instantaneously instruct both production
robots and mobile transportation robots, which attracts recent
attention to investigate such as [232], [233]. As indicated in
Section I-B and Fig. 2, the MRTA in a smart factory involves
the integral optimization of throughout for production robots
and the optimization of energy consumption (or energy effi-
ciency) for transportation robots (i.e. AGVs), which suggests
a dual-objective optimization problem [234].

The first technological challenge is to develop a model for
time-dynamic work flow for production robots, while consid-
ering the energy consumption of AGVs. A reasonable model
shall consider both temporal and spatial behavior. Suppose
there are M types of production robots for M different jobs
and each dedicates to one specific job. There are Nm type-m
robots, m = 1, 2, · · · ,M , which are denoted as Rm,n, n =
1, 2, · · · , Nm. Without loss of generality, they are arranged
as shown in Fig. 14. Based on the geometric arrangement,
the transportation energy consumption by the AGVs can be
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Fig. 14. Temporal-Spatial Model of the MRS in a Smart Factory: Any
production is executed from type 1 robot(s) to type M robot(s). The index
(m,n) in Rm,n corresponds to the spatial index. The directed arrows indicate
possible temporal flows in the MRTA. Production schedule in the MRS of a
smart factory can be represented as a path in this temporal-spatial model.

determined. wm denotes the multiplexing capability of a type-
m production robot.

Based on this temporal-spatial model, the following techno-
logical challenges arise for real-time MRTA in a smart factory:
• How to find the optimal solution of this dual optimization

problem and/or computationally efficient algorithms?
• Fig. 14 is based on the fixed locations of production

robots and mobile AGVs. Can production robots also
change locations?

• What are the impacts of wireless networking to the
MRS based on MRTA? How to consequently develop a
robust and time-dynamic MRTA algorithm given practical
operating environments (e.g. channels and bandwidth)?

• If the MRTA algorithm suggests significant changes in
production flow and/or transportation flow from time to
time, what is the computationally effective algorithm?

Real-time MRTA enabled by wireless networking is one
of the crucial technologies in smart factories, which requires
holistic consideration on computing, wireless networking, and
control.

VI. CONCLUSIONS

Successful realization of a wireless networked multi-robot
smart factory involves diverse technologies from AI com-
puting, wireless networking, control and robotic engineering,
and the domain knowledge of production and logistics. This
paper presents an initiation from wireless networking toward
holistic system design to facilitate flexible, productive, energy-
efficient, and resilient smart factories, for the benefits of human
beings.
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