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Abstract

Objective: To delineate the activities of decorin and biglycan in the progression of post-traumatic
osteoarthritis (PTOA).

Design: Three-month-old inducible biglycan (Bgn™ ) and decorin/biglycan compound (Dcn/Bgn'™ )
knockout mice were subjected to the destabilization of the medial meniscus (DMM) surgery to induce
PTOA. The OA phenotype was evaluated by assessing joint structure and sulfated glycosaminoglycan
(sGAG) staining via histology, surface collagen fibril nanostructure and calcium content via scanning
electron microscopy, tissue modulus via atomic force microscopy-nanoindentation, as well as
subchondral bone structure and meniscus ossification via micro-computed tomography. Outcomes were

compared with previous findings in the inducible decorin (Den’®?) knockout mice.

Results: In the DMM model, BgniKO mice developed similar degree of OA as the control (0.44 [-0.18
1.05] difference in modified Mankin score), different from the more severe OA phenotype observed in
Den™© mice (1.38 [0.91 1.85] difference). Den/Bgn™® mice exhibited similar histological OA phenotype
as Den™© mice (1.51 [0.97 2.04] difference versus control), including aggravated loss of sGAGs, salient
surface fibrillation and formation of osteophyte. Meanwhile, Dcn/Bgn™? mice showed further cartilage
thinning than Dcn'™? mice, resulting in the exposure of underlying calcified tissues and aberrantly high
surface modulus. Bgn™? and Den/Bgn™© mice developed altered subchondral trabecular bone structure
in both Sham and DMM groups, while Den’®? and control mice did not.

Conclusion: In PTOA, decorin plays a more crucial role than biglycan in regulating cartilage
degeneration, while biglycan is more important in regulating subchondral bone structure. The two have
distinct activities and modest synergy in the pathogenesis of PTOA.

Keywords: post-traumatic osteoarthritis, decorin, biglycan, proteoglycan, extracellular matrix, murine
models
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INTRODUCTION

Decorin and biglycan are the two most abundant small proteoglycans present in the extracellular
matrix (ECM) of articular cartilage'. Classified as class I small leucine-rich proteoglycan (SLRP),
decorin and biglycan have highly similar structure, with = 57% homology along their leucine-rich,
horseshoe-shaped protein cores®. Decorin has one chondroitin sulfate/dermatan sulfate
glycosaminoglycan (CS/DS-GAG) chain attached to its N-terminus, while biglycan has two®. Given
their similarities, the two SLRPs share many activities in their interactions with other matrix molecules,
growth factors and cell surface receptors’. In fibrous tissues such as tendon and cornea, both decorin and
biglycan regulate the matrix collagen fibril assembly” and cell signaling’, where their activities can be
compensatory and synergistic™’. In cartilage, decorin is present in both the pericellular matrix (PCM)
and further-removed territorial/interterritorial extracellular matrix (T/IT-ECM)°®, while biglycan is
localized in the PCM’. Such differentiated distributions indicate that they may have distinct activities in
cartilage. To this day, although the importance of the two SLRPs in cartilage function and pathology has
been well recognized'’, it is unclear how decorin and biglycan individually or synergistically regulate
the initiation and progression of osteoarthritis (OA)"', the most prevalent musculoskeletal disease
characterized by the irreversible breakdown of cartilage.

In human cartilage, both decorin and biglycan are significantly up-regulated in OA'*"*. This up-
regulation is hypothesized to be chondrocytes’ compensatory attempt to attenuate cartilage
degeneration''. This hypothesis is supported by our recent finding that decorin functions as a “physical
linker” to increase the molecular adhesion of aggrecan, thereby increasing the integrity of aggrecan
networks in normal cartilage ECM®, and slowing the loss of fragmented aggrecan from degenerative
cartilage'®. This role is supported by the more severe OA phenotype developed in decorin-null (Dcn'/ D)
mice'® relative to the wild-type (WT) when subjected to the destabilization of the medial meniscus
(DMM) surgery"”. It also explains why, despite its up-regulation in OA cartilage, decorin is not released

to the synovial fluid at an increasing level, contrary to the case of biglycan'’. To this day, it is unclear if
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biglycan also plays an active role in the progression of OA, and if the two SLRPs have synergistic
activities.

This study sought to delineate the individual roles of decorin and biglycan in the progression of
post-traumatic osteoarthritis (PTOA), and to elucidate if they have synergistic and/or additive activities.
We focus on their activities in PTOA, because it is the most prevalent form of OA in young adults, and
leads to long term detrimental influence on the quality of life'®. Following our recent study on the
inducible decorin knockout mice®'”, we applied the DMM surgery to the inducible biglycan knockout
and decorin/biglycan compound knockout murine models'. In these mice, we allowed for normal joint
growth to maturity, and induced the knockout of each or both SLRPs at the time of DMM. The resulted
phenotype thus represented the impact of loss of SLRPs during DMM-induced cartilage remodeling,
with pre-deposited developmental defects of cartilage being minimized. In these models, we studied the
progression of OA by assessing the morphology, sulfated GAG (sGAG) staining, modulus, fibrillar
structure and surface calcium content of cartilage, as well as the structure of subchondral bone and
meniscal ossicles.

METHODS

Animal models.

Decorin, biglycan and decorin/biglycan-compound inducible knockout mice
(Der™™/Rosa26Cre™, Bgn™/Rosa26Cre™ and Den™ " /Bgn™°/Rosa26Cre"®, or Den™, Bgn™®
and Dcn/Bgn™®) in the C57BL/6 strain were generated as previously described'’, and were housed in the
Calhoun animal facility at Drexel University. To induce the knockout of SLRP genes, three consecutive
daily intraperitoneal (i.p.) injections of tamoxifen were applied at a dosage of 3 mg/40 g body weight in
the form of 20 mg/ml suspended in sesame oil (S3547, Sigma) with 1% volume/volume benzyl alcohol
(305197, Sigma) at 3 months of age (first injection started at one week before DMM). Quantitative
polymerase chain reaction (QPCR) was performed on femoral head cartilage at day 5 to confirm the

tamoxifen-induced gene excision of Dcn and/or Bgn, and to detect any compensatory up-regulation
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between the two genes (Primers: Dcn, forward: 5°-TGAGCTTCAACAGCATCACC-3’, reverse: 5°-
AAGTCATTTTGCCCAACTGC-3’; Bgn, forward: 5’>-CTACGCCCTGGTCTTGGTAA-3’, reverse: 5°-
ACTTTGCGGATACGGTTGTC-3"). Control mice include those with normal expressions of decorin
and biglycan, including the inducible knockout mice of decorin, or biglycan, or compound injected with
vehicle (the same amount of sesame oil and benzyl alcohol but without tamoxifen), and WT mice
injected with tamoxifen at the same dose and frequency. All the mice used here were genotyped,
following standard procedures'®. Animal work was approved by the Institutional Animal Care and Use
Committee at Drexel University.

The DMM surgery was performed on the right hind knees of skeletally mature, 3-month-old
male mice, following the established procedure®. Briefly, after anesthesia, the joint capsule was opened
and medial meniscotibial ligament was cut to destabilize the medial meniscus. Sham surgery was
performed on the contralateral left knee by opening the joint capsule in the same fashion to expose the
ligament, but without further damage. Mice were euthanized at 8 weeks after surgery for further
analyses (n = 11, except n = 19 for the control). In our recent study, Dcn™™ and control mice were
subjected to the same DMM model, and analyzed following the same paradigm by the same researchers
(BH, QL, CW) as the current study'”. These results were thus analyzed together with Bgn™©,
Decn/Bgn™© and additional control mice.

Histology and immunofluorescence imaging.

Whole hind knee joints (rn = 6, except n = 10 for the control) were harvested and fixed in 4%
paraformaldehyde, first used for pCT analysis, and then, decalcified in 10% EDTA for 4 weeks, and
embedded in paraffin. Serial 6-pm-thick sagittal sections were prepared, and two sections with every
consecutive six sections of the medial side of the Sham and DMM knees were stained with Safranin-
O/Fast Green, following the established procedure'’. For each joint, approximately 15 sections were
obtained and scored by two blinded observers (QL and CW) using the modified Mankin method*'. Each

section was assigned a score based on the sum of cartilage structure (0-5), chondrocytes (0-3), Safranin-
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O staining (0-5) and tidemark (0-1). The score of each knee was taken as the maximum of all scored
sections®”. Thicknesses of uncalcified and total cartilage were determined by averaging six values evenly
distributed across the entire cartilage in the load bearing medial region.

To validate the reduction of decorin and biglycan by tamoxifen injection at the protein level,
immunofluorescence (IF) imaging was performed. Additional paraffin sections were treated with 0.1%
pepsin (P7000, Sigma) for antigen retrieval, and blocked with 5% BSA in PBS for 1 hour at room
temperature. Sections were first incubated with primary antibody (decorin, LF-114, biglycan, LF-159,
Kerafast, 1:100 dilution) overnight at 4°C, and then, with secondary antibody (AlexaFluor 594,
ThermoFisher, 1:500) for 2 hours at room temperature (7 = 4). Sections were washed with PBS, counter-
stained, mounted with DAPI (Fluoromount-G, 0100-20, SouthernBiotech), and imaged with a Carl Zeiss
Axio Observer Microscope.

AFM-based nanoindentation

AFM-based nanoindentation as applied to freshly dissected femoral condyle cartilage (n = 5,
except n =9 for the control), using custom-made polystyrene microspherical colloidal tips (R = 5 pum,
nominal £~ 8.9 N/m, HQ:NSC35/Tipless/Cr-Au, cantilever A, NanoAndMore) and a Dimension Icon
AFM (BrukerNano) at 10 um/s indentation rate up to a maximum load of = 1 uN in 1x PBS with
protease inhibitors (Pierce 88266, ThermoFisher). Following the established procedure®, at least 10-15
locations were tested on each joint to account for spatial heterogeneity. The indentation modulus, Ejyg, of
each location was calculated by fitting the entire loading portion of each force-indentation depth (F-D)
curve with the Hertz model, and the average value from each joint was taken as one biological repeat.
Scanning electron microscopy

Scanning electron microscopy (SEM) was applied to quantify the fibril diameter and alignment
on the load-bearing region of medial condyle cartilage surfaces (n = 4), following the established
procedure**. Immediately after AFM-nanoindentation, condyle cartilage joints were processed for

proteoglycan removal, fixed, dehydrated, air dried overnight, coated with =~ 6 nm thick platinum-
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palladium mixture, and then, imaged via a Supra 50 VP SEM (Carl Zeiss). Collagen fibril diameter d_,
and alignment angle, 8, were measured using ImageJ. Values of 8 were fitted with von Mises probability
density function to calculate the von Mises concentration parameter, x, a quantitative measure of fibril
alignment®, following the established procedure®. In addition, since one major distinction between the
calcified versus uncalcified cartilage layers is the presence of higher calcium content, we applied SEM
with the Energy Dispersive X-ray Spectroscopy (SEM/EDS) to assess the weight percentage of calcium
on cartilage surface, which is an indicator of the exposure of underlying calcified layer.
Micro-computed tomography

Micro-computed tomography (uCT) scanning was performed to assess concurrent changes of
subchondral bone and meniscus ossification after DMM. For mice purposed for histology, prior to
demineralization, knee joints (n = 5) were scanned ex vivo using MicroCT 35 (Scanco Medical AG) at 6
um isotropic voxel size and smoothed by a Gaussian filter (sigma = 1.2, support = 2.0). Following the

established procedure®”**

, we estimated the thickness of subchondral bone plate (SBP.Th), the bone
volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of subchondral
trabecular bone (STB) on the central load-bearing region of medial tibial plateau, as well as meniscal
ossicle volume and osteophyte formation on the medial side.
Statistical analysis

Linear mixed effect model was applied to test quantitative outcomes including Mankin score,
cartilage thickness, Ejng, dcol, calcium content and pCT outcomes using the R package Ime4 (version 1.1-
19)*. In all the tests, genotype, surgery type, and position (anterior versus posterior for meniscal ossicle
volume) were treated as fixed effect factors when applicable, with interaction terms between genotype
and surgery, or between genotype and position. Individual animal effect was treated as a randomized
factor, and surgery type and position were considered as within-subject factors. Prior to the test,

Shapiro-Wilk test was applied to residuals to confirm that these outcomes did not deviate significantly

from normal distribution, and likelihood ratio test was applied to determine the choice of two covariance
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structures, unstructured versus compound symmetry. For all comparisons, p-values were adjusted for
family-wise type I errors via Tukey-Kramer test between genotypes for each surgery type, and via
Holm-Bonferroni correction for multi-contrasts between surgeries or between positions across multiple
genotypes. For fibril orientation data, Mardia and Jupp test of concentration equality” was applied to
compare the von Mises concentration x between genotypes and surgery types, followed by the Holm-
Bonferroni correction. All quantitative and statistical outcomes were summarized in Tables S1-S4.
RESULTS

Reduction of decorin and biglycan expressions in the induced knockout models.

In all inducible knockout models, daily injection of tamoxifen for 3 days substantially reduced
the expressions of each or both SLRPs by day 5. In single knockout mice, we did not notice the up-
regulation of biglycan in response to the loss of decorin, and vice versa, illustrating limited
compensatory effects (Fig. 1a). In alignment with gene expression results, IF imaging also showed
marked reduction in the staining of decorin in Den’®? and Den/Bgn™© cartilage (Fig. 1b), and biglycan
in Bgn™ and Den/Bgn™© groups (Fig. 1c¢), in both Sham and DMM knees following the tamoxifen
injection. In control mice, we detected increased staining of decorin, but not biglycan, after DMM (Fig.
1b.c), consistent with our previous observations on WT mice'>~’. In comparison to the control, Dcn™
and Bgn™° mice showed similar staining patterns of biglycan and decorin, respectively. Also, in Den'™
mice, biglycan remained to be localized in the PCM after DMM. These results supported limited

compensatory effects, corroborating the qPCR results. Thus, we validated these murine models for

studying the impact of the loss of individual or both SLRPs on DMM-induced PTOA.
Impacts of decorin and biglycan on the degradation of cartilage in DMM-induced OA.

By 8 weeks after DMM, all four genotypes exhibited salient histological signs of OA, including
reduced sGAG staining, surface fissures, increased chondrocyte hypertrophy and cartilage thinning

(reduced tyncalcified and #otar), contributing to increased modified Mankin scores (Fig. 2). Amongst the
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genotypes, Bgn™? (6.22 [5.68 6.76] Mankin score, mean [95% CI]) did not show appreciable differences
relative to the control post-DMM (5.78 [5.35 6.21], 0.44 [-0.18 1.05] difference, p = 0.273) (Fig. 2a,b).
This was distinct from the more severe OA observed in Dern™*® mice (7.17 [6.89 7.44], 1.38 [0.91 1.85]
difference versus control). Thus, loss of biglycan had a lesser impact on DMM-induced cartilage

degeneration than the loss of decorin.

In Den/Bgn™© mice, the Mankin score (7.29 [6.87 7.71]) was higher than that of control (1.51
[0.97 2.04] difference) and Bgn™® (1.07 [0.47 1.67] difference) mice, but similar to that of Den™® mice
(0.13 [-0.32 0.57] difference, Fig. 2b). On the other hand, Dcn/Bgn’KO mice developed lower uncalcified
cartilage thickness, funcalcifica (16.4 [14.0 18.9] pm), compared to Den'®? mice (24.4[21.6 27.2] pm, 8.0
[4.7 11.2] pm difference, Fig. 2¢). This further reduction, however, did not lead to higher Mankin scores,
as cartilage erosion has not extended into the calcified cartilage layer in both genotypes, yielding similar
scores on cartilage structure. Thus, upon the loss of decorin, the concomitant loss of biglycan did not
markedly aggravate the progression of OA based on histological analysis. In the Sham group, unlike the
single knockout mice, Dcn/Bgn'KO mice showed mild Mankin scores (2.17 [1.62 2.71]) and reduced
cartilage thickness (Fig. 2b-d), indicating a modest impact of concomitant loss of decorin and biglycan

on cartilage post-natal maintenance.
Impacts of decorin and biglycan on cartilage surface fibrillar structure and modulus after DMM.

In healthy joints, cartilage surface is characterized by transversely random mesh of collagen
fibrils®, as present in all Sham groups and the DMM groups of control and Bgn™® mice (Fig. 3a). In
contrast, both Den'™? and Den/Bgn™© cartilage surfaces developed highly aligned collagen fibrils along
the mediolateral orientation, that is, the direction subjected to extensive shearing by the destabilized
medial meniscus. These changes were signified by the higher von Mises concentration, «, indicating
salient surface fibrillation (Fig. 4a). Meanwhile, we did not notice significant changes in average surface

fibril diameter, d.,1, amongst the four genotypes, or between Sham and DMM groups (Fig. 4b).


lh535
Highlight


230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

The EDS analysis did not detect appreciable calcium content in all Sham groups (data not
shown). In DMM groups, low calcium content was detected on control, Den’®® and Bgn'®? cartilage
surfaces (< 0.5% wt.), as expected for uncalcified cartilage. The surface of Den/Bgn™© cartilage,
however, showed significantly higher calcium amount (1.08 [0.59 1.56]% wt., n = 6, Fig. 5a). This
concentration was much lower than the calcium content in bone (= 26.6% wt. based on 67% dry weight
of hydroxyapatite in bone®"), affirming the histological finding that cartilage has not undergone full
erosion by 8 weeks. This observation suggested that the underlying calcified cartilage has started to be

partially exposed, which was not yet detectable by histology, but apparent at the nanoscale.

In Den™©, Bgn™© and control mice, the DMM group showed significantly lower modulus, Eiyg,
than the Sham group (Fig. 5b), illustrating impaired cartilage load-bearing function in OA. In
Den/Bgn™° mice, however, we observed much higher modulus than other genotypes after DMM. This
finding can be explained by the partial exposure of the stiffer calcified layer, as evidenced by the higher
calcium content (Fig. 5a). This aberrantly high modulus does not represent the restoration of cartilage
biomechanical function, but rather, is an indicator of salient cartilage erosion, and thus, represents more
severe cartilage damage™. Taken together, despite not having higher Mankin scores than Dcrn™*® mice
after DMM (Fig. 2b), Dcn/Bgn'™ ? mice exhibited more severe cartilage damage, as signified by lower

tuncaleified (Fig. 2¢), higher calcium content (Fig. 5a) and aberrantly high surface modulus (Fig. 5b).
Altered subchondral bone structure with the loss of biglycan.

For the control mice, by 8 weeks after DMM, we did not detect significant changes in
subchondral bone plate (SBP) or subchondral trabecular bone (STB) structure, except for a mild increase
in STB Tb.N (Fig. 6a-¢). This is in agreement with literature showing that in the DMM model,
subchondral bone changes only occur after full erosion of cartilage in late OA*>. Comparing the four
genotypes, we did not notice significant differences between the control and Den'™ © mice for both

surgery groups (Fig. 6a-¢). Bgn'? and Den/Bgn™ © mice, however, developed significantly altered STB
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structure relative to the control and Den'®© mice, marked by decreased BV/TV, Tb.N and Tb.Th, for
both surgery groups. In contrast, we detected the formation of osteophytes, another sign of more
advanced OA*®, in Den™© and Den/Bgn™© joints, but not in control or Bgn'™™? joints (Fig. 6a). At both
the anterior and posterior horns of the meniscus, all four genotypes showed increased ossification after
DMM, and this increased ossification was similar amongst all genotypes (Fig. 6b,c). Collectively,
findings from pCT suggested that biglycan has a more direct impact on subchondral bone remodeling,

while decorin has a more important role in OA.

DISCUSSION

Differentiated activities of decorin and biglycan in DMM-induced PTOA.

This study highlights the differentiated activities of decorin and biglycan in the progression of
DMM-induced PTOA. In degenerative cartilage, decorin functions as a “physical linker” to increase the
retention of fragmented aggrecan, thereby slowing aggrecan loss'. In the DMM model, loss of decorin
leads to accelerated sGAG depletion, cartilage fibrillation, and thus, more severe OA", while loss of
biglycan does not have a marked impact on cartilage degradation or OA progression (Fig. 2). Such
contrast can be attributed to differences in their distribution, binding activities, as well as response to
DMM and inflammation. In healthy cartilage, biglycan shows much higher binding affinity than decorin

to PCM-specific molecules, such as collagen VI and matrilins***”

, which may contribute to its
localization in the PCM. Thus, unlike decorin, biglycan possibly primarily regulates to the integrity of
PCM, not the ECM as a whole. Also, different from decorin, biglycan does not undergo salient changes
in its concentration or distribution after DMM (Fig. 1b)*’. This corroborates observations in bovine®®
and murine' cartilage explant models, in which, stimulation by inflammatory cytokine IL-1f increases

the expression of decorin, but not biglycan. Thus, although biglycan may be crucial to the integrity of

cartilage PCM, and may mediate the canonical Wnt signaling of chondrocytes®’, its activities are not
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markedly altered or stimulated by DMM, indicating that biglycan may not be an essential player in OA
pathogenesis in the DMM PTOA model.

In both Sham and DMM groups, loss of biglycan alters the structure of subchondral trabecular
bone, while loss of decorin does not (Fig. 6). This is consistent with literature showing that biglycan

plays a more crucial role than decorin in regulating bone homeostasis and remodeling**™*!

. Despite these
changes in subchondral bone, Bgrn™®® mice do not show altered cartilage degradation (Figs. 2, 3),
suggesting limited cross-talk between subchondral bone remodeling and cartilage degradation in DMM-
induced OA. Furthermore, the observation that the Sham and DMM knees of Bgn™*® mice have similar
subchondral bone structure (Fig. 6) suggests that the regulation of subchondral bone by biglycan does
not directly influence the pathogenesis of DMM-induced OA, and vice versa.

Our results do not rule out a potential critical role of biglycan in more advanced PTOA or other
forms of OA. In late stage human OA, biglycan is up-regulated, undergoes substantial fragmentation and
has an increased presence in the TAT-ECM !4, Also, in late OA, unlike the case of decorin, an
increasing amount of soluble, fragmented biglycan is released to the synovial fluid, which may
accelerate sSGAG loss through elevating NF-kB activities'’. This potential adverse effect of biglycan is
not observed here, as by 8 weeks after DMM, the PCM has not yet lost its distinction to the bulk ECM™,
and biglycan remains to be sequestered within the PCM (Fig. 1b). It is possible that, at a more advanced
stage, when biglycan fragments are released from the damaged PCM, biglycan could become an
important player in OA pathogenesis. In addition, both decorin and biglycan could have different
activities in other forms of OA. For example, Den”” mice demonstrated higher resistance to forced
running-induced OA**, which can be attributed to different OA etiology in the over-exercised OA
model®". Also, Bgn'/ " mice develop accelerated OA during aging™, illustrating a potential role of

biglycan in overall cartilage health and spontaneous OA.

Modest synergy between decorin and biglycan in DMM-induced PTOA.
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In the DMM model, Den/Bgn™© mice develop similar Mankin score (Fig. 2b), surface fibrillation
(Figs. 3b and 4a) and osteophyte formation (Fig. 7a) as Den™© mice, but show accelerated cartilage
thinning (Fig. 2¢), higher surface calcium content (Fig. 5a) and aberrantly higher surface modulus (Fig.

5b). These results illustrate a moderately higher degree of cartilage damage in Dcn/Bgn'™®

mice. This
modest synergy between the two SLRPs could be due to their coordinated impacts on the PCM integrity.
In cartilage, the PCM plays a crucial role in modulating cell-ECM interactions and chondrocyte
mechanotransduction*!. Degradation of the PCM, and associated alteration of chondrocyte
mechanotransduction are one of the earliest events that precede the initiation of PTOA™. Loss of decorin
is expected to aggravate the degradation of PCM by accelerating the depletion of fragmented aggrecan',
which may accelerate the disruption of chondrocyte mechanotransduction®. Concomitant loss of
biglycan, a crucial PCM constituent, could further accelerate the PCM disruption, and thus, impair
chondrocyte mechanotransduction and exacerbate cartilage degradation. Meanwhile, Dcn/Bgn™® mice
develop similar subchondral bone changes as Bgn™° mice (Fig. 6b-¢), illustrating limited synergy of the
two SLRPs in subchondral bone remodeling. Our future studies will thus focus on the activities of the
two SLRPs in advanced OA, in which, they may show stronger synergy in regulating chondrocyte
mechanobiology and cartilage degradation.

On the technical front, our study highlights the importance of assessing cartilage degradation
beyond the scope of standard histological analysis. By 8 weeks after DMM, mice develop moderate OA,
and the four genotypes only exhibit modest differences in Mankin scores (Fig. 2a). However, results
from SEM, AFM and pCT analyses show clear signs of more advanced OA in Den™® and Den/Bgn™®
mice, including surface fibrillation, exposure of calcified cartilage and formation of osteophytes.
Therefore, integrating histology with more focused structural and biomechanical tools can provide a

more sensitive and in-depth assessment of OA etiology and cartilage damage.

Comparison of decorin and biglycan activities in other connective tissues.
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The limited compensation and synergy of decorin and biglycan in cartilage is in stark contrast to
their activities in fibrous tissues such as tendon and cornea, in which, they share similar roles of
regulating the assembly of collagen fibrils*. In cornea, biglycan is up-regulated in the deficiency of
decorin, but not vice versa, whereas their compound loss leads to more severe defects in collagen fibril
nanostructure in Den”/Bgn”” mice’. A similar compensatory pattern is observed in the flexor digitorum
longus (FDL) tendon of juvenile Den”” mice at 1 month of age’, but not in the patellar tendon of old
Den™© mice at 16 months of age™®. In aged tendon, the compound induced knockout of decorin and
biglycan also does not result in more severe biomechanical changes than single knockouts.*®

In the knee joint, biglycan has shown synergistic activities with other SLRPs, including
fibromodulin, a class Il SLRP, and epiphycan, a class III SLRP. Both Bgn”/Fmod’™*" and Bgn”/Epn”™*
mice develop more severe spontaneous OA than the respective single knockouts. Given that biglycan
has the highest structural homology with decorin®, our ongoing work aims to query the potential synergy
of the two in more advanced PTOA and aging-associated spontaneous OA. In particular, aging of
cartilage is associated with reduced chondrocyte autophagy*®. Decorin and biglycan can both evoke

49,50

autophagy in other cell types™ ", we will study their roles in regulating the autophagy of chondrocytes.

CONCLUSIONS

In summary, decorin and biglycan have differentiated activities in the progression of early-to-
intermediate PTOA. Unlike decorin, biglycan does not play a major role in regulating cartilage
degradation in DMM-induced PTOA, and the compound loss of both SLRPs shows modest synergistic
impacts. While decorin is more crucial in regulating cartilage integrity, biglycan has a stronger impact
on subchondral bone structure. These observations are distinct from the highly coordinated activities of
the two SLRPs in fibrous tissues. Therefore, decorin, rather than biglycan, could serve as a potential

target for developing effective intervention strategies for attenuating the progression of PTOA.
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FIGURE CAPTIONS

Figure 1. a) Confirmation of the induced knockout of Dcn and/or Bgn gene in Den'*?, Bgn™© and
Dcn/Bgn™© mice. In 3-month-old mice, intraperitoneal (i.p.) injection of 3 mg tamoxifen (TM)/40 g
body weight for 3 consecutive days reduces the expression of decorin (Dcn) and/or biglycan (Bgn) to the
baseline level by day 5, as measured from femoral head cartilage (mean + 95% CI, n = 6 biological
repeats, different letters indicate significant differences between genotypes, p < 0.001). Injection of
vehicle does not alter the level of Dcn or Bgn expression relative to the wild-type (WT). In single
inducible knockout mice, loss of Dcn does not alter the expression of Bgn, and vice versa. b,c)
Immunofluorescence (IF) images show the reduction of b) decorin and ¢) biglycan protein content
following their respective induced knockout at 8 weeks after DMM and Sham surgeries (inset: negative
control, blue: DAPI, n = 4).

Figure 2. a) Representative histological images of Safranin O-Fast Green-stained cartilage specimens
from control, Den™*, Bgn™© and Den/Bgn™® mice at 8 weeks after Sham and DMM surgeries, with
more severe cartilage damage observed in the Den™™® and Den/Bgn™© mice. b) Modified Mankin score
and, c) thickness of uncalcified cartilage, fyncalcified, and d) thickness of total cartilage, #a1, in the medial
femur at 8 weeks after Sham and DMM surgeries (mean = 95% CI, n = 6, except n = 10 for the control).
Each data point represents the value from one animal, different letters indicate significant differences
between genotypes for each surgery type, : p < 0.05 between Sham and DMM surgeries for each
genotype. Data for Dcn' 9 mice are adapted from Ref. '> with permission.

Figure 3. a) Representative scanning electron microscopy (SEM) images showing the nanostructure of
collagen fibrils on condyle cartilage surfaces at 8 weeks after Sham and DMM surgeries. Red arrows
denote the mediolateral orientation. b) Comparison of the fibril orientation distributions for all four
genotypes after Sham and DMM surgeries. Results are from > 300 fibrils pooled from » = 4 animals per
group following setting the average angle to 0° for each joint.

Figure 4. a) Degree of fibril alignment, as denoted by the von Mises concentration parameter x, and b)
Distribution of collagen fibril diameter, d.,, for all four genotypes at 8 weeks after Sham and DMM
surgeries. Results are from > 300 fibrils pooled from n = 4 animals per group. Different letters indicate
significant differences between genotypes for each surgery type, ' p < 0.05 between Sham and DMM
surgeries for each genotype. Data for control and Den'®” mice in panel a) are adapted from Ref. '° with
permission.

Figure 5. a) Weight percentage of calcium on the surfaces of condyle cartilage subjected to the DMM
surgery, as measured by SEM Energy Dispersive X-ray Spectroscopy (EDS) analysis (n = 6, except n =
5 for Bgn'®® mice). Each data point represents the averaged value measured from one animal. b)
Effective indentation modulus, Eji,g, of medial condyle cartilage surface, as measured by AFM-
nanoindentation (n = 5, except n =9 for the control). Each data point represents the average value of >
10 locations measured from one joint. Panels b-d: mean + 95% CI, different letters indicate significant
differences between genotypes for each surgery type, *: p < 0.05 between Sham and DMM surgeries for
each genotype. Data for Dcn'®® mice in panel b) are adapted from Ref. '° with permission.

Figure 6. a) Representative 2D pCT frontal plane images of the knee joint at 8 weeks after Sham and
DMM surgeries (L: lateral, M: medial). b) Subchondral bone plate thickness (SBP.Th) and c-¢)
Subchondral trabecular bone structural parameters, including ¢) BV/TV: bone volume fraction, d) Tb.N:
trabecular number, and e) Tb.Th: trabecular thickness, as measured from the pCT images of medial tibia.
Panels b-e: mean + 95% CI, n =5, each data point represents the averaged value measured from one
animal. Different letters indicate significant differences between genotypes for each surgery type, # p<
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0.05 between Sham and DMM surgeries for each genotype. Data for control and Den'®” mice are
adapted from Ref. * with permission.

Figure 7. a) Representative reconstructed 3D pCT images showing the presence of osteophyte in both
Den™© and Dcn/BgniKO joints at 8 weeks after DMM (white arrowheads), but not in other groups. b)
Representative reconstructed 3D uCT images (top view) of meniscal ossicles showing increased
ossification after DMM for all genotypes. c) Meniscal ossicle volume at both anterior and posterior ends
at 8 weeks after Sham and DMM surgeries. Panel ¢: mean + 95% CI, n =5, each data point represents
the averaged value measured from one animal. Different letters indicate significant differences between
genotypes for each surgery type, *: p < 0.05 between Sham and DMM surgeries for each genotype. Data
for Den'™© mice are adapted from Ref. '° with permission.
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