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Abstract—Matrix CUR decomposition aims at representing
a large matrix A with the product C - U - R, where C (resp.
R) consists of a small collection of the original columns (resp.
rows), and U is a small intermediate matrix connecting C' and
R. While modern randomized CUR algorithms have provided
many efficient methods of choosing representative columns and
rows, there hasn’t been a method to find the optimal U matrix.
In this paper, we present a sublinear-time randomized method to
find good choices of the U matrix. Our proposed algorithm treats
the task of finding U as a double-sided least squares problem
minz ||[A — CZR)||r, and is able to guarantee a close-to-optimal
solution by solving a down-sampled problem of much smaller
size. We provide worst-case analysis on its approximation error
relative to theoretical optimal low-rank approximation error, and
we demonstrate empirically how this method can improve the
approximation of several large-scale real data matrices with a
small number of additional computations.

Index Terms—Matrix Decomposition, Sublinear Algorithm,
Stochastic Algorithm, CUR Decomposition.

I. INTRODUCTION

Compressing a large matrix is a common task in statistical
learning, fueled by the explosive growth in the size of modern
datasets. A common practice is to approximate the original
matrix using a low-rank matrix, represented as a product of
several matrices of comparatively much smaller size. While
the truncated Singular Value Decomposition (SVD) is capable
of producing such a rank-%k approximation with minimal norm
on the approximation error, the complexity of deterministic
SVD algorithms is super-linear in the size of the data, and the
factorization obtained from it consists of linear combinations
of many rows or columns, which often bear little concrete
meaning and are impossible to interpret.

Matrix CUR decomposition aims to find low-rank matrix
approximation with original matrix rows and columns. More
precisely, such a factorization of an m x m matrix A is
represented as C' - U - R, where C' consists of dy columns of A,
and R consists of dy rows of A, where dy,ds < min(m,n).
To effectively approximate A, the product CUR is required to
have approximation error close to the minimal error, and the al-
gorithm that computes the approximation must be significantly
faster than the SVD method, preferably using linear time in
input sparsity. Both goals have been asymptotically achieved
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by sampling-based randomized CUR algorithms [1], [3], [9]
with controllable failure probabilities. A common pattern of
these algorithms is to first construct C' as a small subset of
columns sampled with a probability distribution reflecting the
“importance” of each column, then sample rows to obtain R, and
lastly construct an appropriate middle factor U connecting C
and R. Up to constant factors, the error norm and computational
complexity are optimal in the number of columns and rows
being sampled. This approach has been shown to be highly
effective in the principle component analysis of large datasets
(1].

This paper develops a method that can be used to further
improve existing sampling-based CUR algorithms by providing
a near-optimal choice of the middle block U. Given factor C
and R, we treat the task of finding U as double-sided least
squares problem miny |A — CZR||r. The optimal solution
is Zopt = CTAR™T, where M represents the Moore-Penrose
matrix pseudo inverse. Ideally one would use U = Z,,; to
form a CUR approximation, but its cost is unbearable when
the size of A is much greater than the size of Z. We instead
develop a randomized algorithm that solves a down-sampled
problem

(Aij — C;ZRI)?

min
pij| S|

ZeRd1 xd2

6]

>

(i,4)€S

Here the index set S is a small subset of matrix indicies
sampled with replacement according to probability distribution
{pij }1<i<m,1<j<n. Problem (1) is much easier to solve than
the double-sided least squares problem. We show that if the
sampling probabilities are carefully chosen, its solution can
well approximate Z,,;, and thus providing a better overall
CUR approximation to the matrix A.

We run numerical tests on several large-scale matrices
representing real-world datasets, some of which contain over
one billion values. Combined with a sampling strategy that uses
leverage-scores on general matrices [3] or uniform-sampling on
partially observed low-coherence matrices [11], our algorithm
can produce CUR approximations with approximation error
constantly closer to the optimal error comparing to existing
CUR algorithms.
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II. RELATED WORK

The study of CUR matrix approximation problem can be
traced back to pseudo-skeleton decomposition [4], [5], [7],
where algorithms have been developed in conjunction with
the study of finding maximal volume matrix sub-blocks. This
problem has been widely investigated in both Theoretical
Computer Science community and Numerical Linear Algebra
community. Drineas, Kannan, and Mahoney [2] propose a
randomized CUR algorithm with additive error and O(m + n)
space and time. Drineas, Mahoney, and Muthukrishnan [3]
propose a sampling CUR algorithm that achieves relative error
using O(k log(k)e=?2) rows and columns. Wang and Zhang [9]
develop an adaptive sampling method that achieves relative-
error CUR approximation with complexity linear in input size.
Boutsidis and Woodruff [1] present an input-sparsity-time CUR
algorithm using O(k/e) rows and columns. We refer readers
to Boutsidis and Woodruff [1] and Woodruff [10] for more
complete review of the literature.

Xu, Jin, and Zhou [11] study CUR matrix approximation
of low-coherence matrices that can only be observed partially,
and they propose an additive-error algorithm using uniform
sampling for rows/columns, as well as uniform sampling for
solving the resulting double-sided least squares problem. This
work differentiates from [11] in that our proposed algorithm
uses sampling probabilities derived from the input matrices,
and thus it is applicable to arbitrary inputs. Moreover, we show
that our algorithm can achieve small relative error, which is
often more desirable in practice.

III. NOTATIONS

In this paper, we use A, A’, A;, and A;; to represent
matrix, matrix column, matrix row, and matrix entry, re-
spectively. ||A||F is the Frobenius norm, and ® denotes the
matrix kronecker product. The singular value decomposition
of A € R™*™ factors the matrix as a product

A=UxvT )
T

where (assuming m > n) U € R™*™ and V € R™*" consist
of orthonormal columns, and ¥ is a diagonal matrix formed
by singular values o7 > 02 > --- > 0, > 0. The optimal
rank-k approximation Ay is formed by truncating the SVD
of A, namely A, = Uk.Zka.T, where Uy (V)) consist of the
first & columns of U(V), and Xy = diag(0;)ic(x), where [k] =
{1,...,k}. A is the “best” rank-k approximation in the sense
that the following equality holds:

A~ Axllr =

n

E 2 — i A—-X 4
. i ranllg%l)?):k {H HF} ( )
i=k+1

IV. THEORETICAL RESULTS

In this section, we describe the proposed algorithm for
double-sided least squares problem, and we present theoretical
bound on its relative error as well as the probability of success.

A. Randomized Algorithm for Double-Sided Least Squares
Problem

Algorithm 1 takes as input matrices A € R™*", C' € R™* %,
R € R%*" assuming dy,dy < min(m,n), and a positive
constant e. The algorithm returns a matrix Z € R%*% such
that CZR ~ A, which can be interpreted as a reconstruction
of A using C' and R. The optimal solution to

min [|A ~ CZR||r 5)

is Zopt = CTART, which requires to access the entire matrix
A. However, a near-optimal solution can be obtained by using
very few elements in A sampled from a non-uniform probability
distribution constructed with C' and R.

Specifically, Algorithm 1 first computes the top left-singular
vectors U of C, V of RT, and probability distribution

VAT AT AT R .

i = || ||FH J||F fOI"LE[m],]E[n}. (6)
dids

Then, we sample independently ¢ = ©(d?d3¢~?) index

pairs {(i¢, )|t € [c]} from the probability distribution (6).
According to the sampled index pairs, construct vector ¥ € R¢
and matrix W € R¢¥9192 | such that for all ¢ € [(]

Ci, ®Rj. (7)

Cpi{::jt

Finally, Z is computed, reshaped into a d; X ds matrix

Z =argmin||Y — WX]||p. (8)

With probability of success greater or equal to 0.7 (this
probability can be improved by increasing the number of the
sampled index pairs), Algorithm 1 computes a near-optimal
solution Z with ||[A—CZR||% < (1+¢€)|A—CZ,p R||% using
no more than O(d?d2¢=?2) elements from A, and at essentially
sublinear computational cost.

Algorithm 1: Sublinear-time algorithm for approximate
solution of miny |4 — CZR|| g

Input: A € R™*" C € R™*% R ¢ R%*" given
dy,dy < min(m,n), and 0 < € < 1;
Output: 7 € Ré1xdz2;
Compute probabilities p; ; implicitly for i € [m]
and j € [n] using Eqn. (6).
¢ + 3200d3d%e2
Initialize Y € R¢ and W € Re*%d2,
fort=1,2,...,cdo
pick index pair (i, j;) with probability p;, ;,.

Set th = \/CP%WA“L‘ .
Set Wt = \/Tﬁc,, (29 R]t
end for

Solve the least squares problem
Z =argminy ||Y — WX]||p
return Reshaped Z € R4 *d2,
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B. Guarantee for Algorithm 1

Before we present our analysis of Algorithm 1 in Theorem
2, we first introduce a powerful supporting theorem regarding
the quality of approximation for column/row sampling.

Theorem 1. (Adapted from Thm. 5, Alg. Exactly(c) in [3] ) Let
B € R™*™ be a matrix of rank less or equal to k, A € R™*P,
0<e<1,and let Zopy = argminy ||A — BX||r = BT A
Let U be the top k left singular vectors of B and define any
probability distribution

&)

for some 0 < 8 < 1. Let ¢ = 3200k%e¢ 2571, Y € RexP
and W € R*™ be two random matrices with independent

rows, such that for all t € [c],i € [m), the Y; and Wy equal to
\/%Ai and \/%Bi respectively with probability p;. Then, with
probability no less than 0.7, for Z = argminy ||Y — WX||p,

we have

112
i > % Sor all i € [m]

14 = BZ||r <(1+ )| A~ BZupl s

=(1+ ) mjn [|4 - B[ 10)

Expected(c) sampling scheme from [3] provides a better
asymptotic bound O(klog ke~2) on the number of required
samples to achieve inequality (10). However, the constant factor
of the bound is less obvious. Now we present the theoretical
guarantee for Algorithm 1.

Theorem 2. Assuming dyi,ds < min(m,n), and let A €
R™*" C e R™*% R e R%2X" be three matrices, and € < 1
be any positive constant. Let Z be the output of Algorithm 1
with the above inputs, then with probability no less than 0.7,
we have

|A=CZR|lr < (1 +e)min||lA = CXRllp. (1)

Proof. If C(or R) is not a full rank matrix, we can locate and
discard the extra columns(or rows) by performing algorithms
such as rank-reveling QR factorization, and this can be done
without losing precision in reconstructing A. Therefore, without
loss of generality, assume that C' and R be full rank matrices,
and admit SVD decomposition C' = UCECVCT =UcSc, and
R = UrXRVE = SrVE. For simplicity, we name Uc and
Vr as U and V, respectively. Therefore,

|A=UZV"||p =||A~ CZR]|F,
where Z = ScZSg.
The element on the i-th row and j-th column of UXV7 is
di da

Z Z Ui,aXabVips

a=1b=1

12)

13)

]

(vxvT)

and is equivalent to the inner product of U; ® V; and X. Here
M denotes the vectorization of a matrix M € R™*" such that

M = [My 1, My ,..., M, ,]T. Therefore
1A= UXVT|[p = [|[A-UXVT|

=[|[A- (U V)X]|.

(14)
as)
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Define f : [m] X [n] — [mn] to be a bijection between the
indices of a matrix and the indices of its vectorization, such that
fli,5) = (i—1)n+j for all i € [m], and j € [n]. Since both
U and V are orthogonal matrices, U ® V' is also orthogonal,
and that

di  da

U@ V)aplle =D > UZVE,

a=1b=1

16)

Draw independently with replacement ¢ = 3200d2d3¢ 2 ran-
dom index pairs, { (i, ji)|t € [c]}, from probability distribution

pi; = Prob{i, =i,j; = j} (7
_ N0 V) sl

dids '
Then construct sample vector ¥ € R¢ and matrix W €
Re*d1dz guch that for all ¢ € [c],

18)

1
YVi=—4;,, 19)
V CPis .
and 1
Wy = ——=U;,, ®V},. (20)
' vV Pie g "
Solve the following regression problem
21

Z = argmin ||Y — WX,
X

By applying Theorem 1 with the A, B replaced with AUV
respectively, and setting 8 = 1, it can be easily shown that
the Z computed above satisfies the following inequality with
probability no less than 0.7,

[ A—(Ue@W)Z|| < (1+emn||d- (U V)X|. (22)
X

Finally, reshape Z to Z € R%*% and let Z = S;'ZS5",
then we have

|A—CZR||p = ||[A-UZVT||p (23)
o T2
=||A-UzVT (24)
=|[A-UeV)Z|| (25)
<(l+emin||[d-UeV)X|| (26)
X
= (1+¢)min[[A - CXR||r (27)
O

C. Relative Error Bound on ||A — CZR||r

In this subsection, we provide a near-optimal error bound
analysis on the CUR decomposition Algorithm 1 produces,
assuming sufficiently many columns and rows are sampled
according to appropriate probability distributions.

Then we show that Algorithm 1, under conditions specified in
Corollary 3.1, decomposes low-coherence input matrices near-
optimally without accessing all entries and recovers unobserved
entries in the process.

Before presenting the theorems, we first introduce the
notations we use throughout this subsection. Given matrix
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A € R™*" and an integer k, k < min(m,n), and let U and
V be the top k left and right singular vectors of A. We let

s; = ||U;||3 for all i € [m] 28)

denote the rank k row leverage scores of A, and similarly let

tj = ||V;|[3 for all j € [n] (29)

denote the rank k column leverage scores of A. It is obvious
that >0 | s; = ZJ ; = k. Therefore, {s;} and {¢;} naturally
form two probability distributions p; = s;/k,i € [m] and
4 = t3/k.j € [n].

We adopt the definition in [11] and let p,.(A)
max;{ms;/k}, pc(A) max;{nt;/k}, and p(A)
max (- (A), pe(A)) denote the rank k row coherence, the
rank k column coherence, and the rank k coherence, respec-
tively. Notice that r/m < max;{s;} < 1, and similarly
r/n < max;{t;} < 1. Therefore, 1 < p(A) < max(m,n).
We call A a low coherence matrix if p(A) is a small constant,
and p(A) < min(m/r,n/r).

Theorem 3. Given A € R™*", let k < min(m,n) be an
integer;, € € (0,1], and cy = 3% - 3200 be constants. Assume
that dy > cok®c=? columns are sampled with replacement
according to probability distribution constructed with the
column leverage scores of A, and construct C € R™*% gych
that C' consists of the sampled columns. Further assume that
dy > cod?e? rows are sampled with replacement according
to probability distribution constructed with the row leverage
scores, and construct R € R%2*" such that R consists of the
sampled rows. Let Z be the output of Algorithm 1 with inputs
A, C, R, and €/8, then with positive probabiliry,

I[A=CZR[|r < (1+€)||A— Axl|p.

Proof.
14~ CZRllr < (1+ Q)IIA~ COTAR™R|l»  (0)
<+ QI+ llA-cotAle (D
SO+ YA+ PIA-Allr G2
(1+€ I|A - Ak||F (33)

The first inequality is true due to Theorem 2, and the second
and third inequalities are true due to Theorem 4 and Theorem
3 from [3] with ¢/3. All three inequalities have probability of
success no less than 0.7, therefore taking union bound of the
failure probability, inequality (33) holds with probability no
less than 0.1. Notice that we can reduce the failure probability
to ¢ by increasing the number of sampled columns, rows, and
elements by O(log1/J) times. O

Remark 1. We can also achieve relative error CUR de-
composition applying Algorithm 1 with C' and R sampled
using Expected(c) from [3] or the sampling scheme provided
in [1]. The aforementioned two sampling schemes provide
superior asymptotic bounds on the required number of sampled
columns/rows(d; = O(klogke™2),ds = O(dy logdie2) and

312

di,ds = O(ke™1), respectively). However, the constant factors
on their bounds are less obvious.

Corollary 3.1. Given A € R™*" et k < min(m,n) be an
integer, and let ¢ € (0,1] and co = 3% - 3200 be constants.
Assume that the rank k coherence of A, u(A) = B, and
that di > cok®Be2 columns are sampled with replacement
uniformly, and construct C' € R™*N  sych that C consists
of the sampled columns. Further assume that dy > cod3e >
rows are sampled with replacement according to probability
distribution constructed with the row leverage scores, and
construct R € R%2*", such that R consists of the sampled
rows. Let Z be the output of Algorithm 1 with inputs A, C, R,
and €/8, then with positive probability,

14~ CZRI|p < (1+ O)l|A ~ Al

Remark 2. If i(A) = S is a small constant, then by setting the
column sampling probability distribution to uniform we have
loss of accuracy by at most 1/, i.e, p; = 1/n > ||V;||%/kB
for all j € [n], and this can be compensated by sampling 3
times more columns. In the case where the columns and rows
are sampled independently, and given O(k?Be~2) columns and
rows are sampled uniformly with replacement, the error bound
deteriorate to (2 + €)||A — Ag||F-

D. Algorithm Complexity

In this section, we confirm that given m,n >> di,ds,
Algorithm 1 achieves sublinear complexity.

In the sampling stage, the sampling probability distribution
Di,; should be computed implicitly, otherwise storing p; ; would
already require mn space, exceeding the claimed sublinear
complexity. Fortunately,

(U@ V) sunlF

Prob{i; =i,je = j} = dids (34
_ Ul IV;llE
=4 4 (35)
= Prob{zt = Z}Prob{jt = j} 36)

In other words, in the sampling stage, we can simply sample
the row(column) index first, and then independently sample the
other. Therefore, the dominating computational cost, O(md% +
nd2), will be the cost for computing top singular vectors, which
can be achieved through QR(or SVD) factorization of the input
matrices C' and R.

Let ¢ = O(d?d3¢~2) denote the number of samples required.
The computational cost for constructing the down sampled
problem minx ||Y — WX]|| is O(edyds), and this problem can
be solved in closed form as WY, whose cost is dominated
by the cost, O(cd3d3), of computing the pseudo-inverse of
W. In conclusion, the complexity of Algorithm 1 is O(md? +
nd2 + djdie2).

V. NUMERICAL EXPERIMENTS

To demonstrate the empirical applicability of the proposed
algorithm, we evaluate it on six large-scale real-world data
matrices, some of which can contain over one billion values.

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.



We implement the proposed CUR algorithm as well as the
state-of-the-art CUR algorithms [3], [11] for comparisons. All
tests are programmed using Python with libraries NumPy [8]
and SciPy [6]. SciPy sparse matrix modules are used to handle
those sparse input matrices. All the experiments are run on
a PC with Intel 17 3.5GHz CPU, 16GB RAM, and Windows
operating system.

A. CUR Matrix Approximation on Low-Coherence Matrices

In this subsection, we present the experimental results of
the proposed algorithm on four benchmark data matrices for
CUR matrix decomposition, which are widely used in previous
work [9], [11].

The Enron Emails (39,861 x 28,102), Dexter (20,000 x
2,600), and Farm Ads (54, 877 x 4, 143) are textual data where
in their matrix form, each row associates with one document,
and each column associates with one word, i.e., the element on
the i-th row j-th column is the number of occurrence of word
j in document . Gisette (13,500 x 5,000) data consists of
hand-written digits. In its matrix form, each row corresponds to
one written digit, and each column corresponds to one feature.

For each input data A € R™*", we sample d; columns
and do rows uniformly. Let C € R™*% be the matrix that
consists of the sampled columns, and let R € R%*"_ Then we
compute Z € R% %% ag the return value of Algorithm 1 with
inputs A, C, R, and ¢ (i.e., number of samples). We compute
the relative error of Z as

. |A—CZR|Fr
relative error = ————— 37
[A— CupRIlr Gn
where,
Zopt = argminx||A — CXR|r = CTARY, (38)

for performance evaluation.
For comparison, we also include the relative error of Z,,
where

Z+ = a,I‘ngiIl Z (AZJ - C7XRJ)2,
(i,5)€5+

(39)

and S, is a subset of ¢ matrix entries sampled uniformly
without replacement. This is essentially the output of the
CUR+ algorithm [11] applied with the same C, R, and c.
The key difference between CUR+ algorithm and Algorithm
1 is that in Algorithm 1, Z is computed with equation (1),
where the summands are scaled, and S is a list of {2 matrix
indices sampled independently with replacement according to
a carefully constructed probability distribution.

In order to have comparable results, we follow the same
experiment setting described in [11] by letting dy = ar, dy =
ady, and ¢ = mnr?/nnz(A), where nnz(A) represents the
number of nonzero elements in A. We let r = 10, and a =
1,2,3,4,5. We run each test 10 times and report the mean
relative error of Z and Z,.

In this experiment, the relative errors produced by Algorithm
1 equal to approximately 1.0 consistently, indicating the output
Z accurately approximates C+ AR™ using only a small fraction
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of the entries in A. We notice that relative errors for both
algorithms spike in tests on the Gisette Data with @ = 2. This
is most likely caused by ¢ ~ d;dy, which may lead to a close
to square down sampled regression problem that has a larger
condition number. As a increases from 1 to 5, the relative
error increases for both outputs. This is because the number
of rows and columns sampled increases substantially, but the
number of sampled elements stays fixed, making it harder to
recover CT ART . However we observe that the relative error
of Algorithm 1 behaves rather stable and only deteriorates
slightly.

B. CUR with Leverage Score Sampling

In this section, we confirm that Algorithm 1 can improve the
approximation level of the randomized CUR algorithm using
leverage score sampling. We perform experiments on the Jester
and RCV1-v2 matrices used in [3]:

For both data matrices, we compute their rank 5 CUR
approximation using the leverage score sampling for factor
C and R, and Algorithm 1 for computing factor U. For
comparison, we also compute the factor U as the pseudo-inverse
of W, where W is the sub-block obtained by intersecting C'
and R.

Figure 2 displays the leading singular spectrum of both test
matrices as well as the relative approximation errors for both
Algorithm 1 and the CUR algorithm in [3] with number of
sampled columns c ranged from 5 to 25. The corresponding
number of sampled rows is set to be 2¢, and the number of
sampled entries is set to be 4 times the size of U. The test
runs 3 times for each value of c.

The Jester matrix is a dense matrix of size 14,116 x 100
with entry values representing user ratings between +10.0. Its
best rank-5 approximation Ay is capable of capturing 81% of
the matrix Frobenius norm. Using 5 columns and 10 rows, the
algorithm developed in [3] produces CUR approximation with
relative error about 1.5, and the error steadily decreases to
about 1.3 as the number of columns and rows are increased to
25 and 50. In comparison, Algorithm 1 that uses the exactly
same set of columns and rows constantly produces better CUR
approximations, with relative error decreased to about 1.1 in
the end.

The RCV1v2 matrix is a sparse 47,236 x 23,149 matrix
with 0.16% of its entries being nonzero. The rank-5 relative
approximation errors are quite close to 1 even for ¢ = r =5,
and increasing ¢ and r does not seem to further improve
the approximation accuracy. Compared to the baseline CUR
algorithm, Algorithm 1 has more stable performance and
constantly produces lower relative error.

VI. CONCLUSION

In this paper, we propose a novel randomized sublinear-time
algorithm that provides approximately optimal solution to the
double-sided least squares problem with high probability. We
present theoretical results that guarantee the solution of our
method will be close to the optimal low-rank approximation
with high probability of success.
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Fig. 1: Relative error produced by Algorithm 1 (this work) and the CUR+ algorithm in [11] on the Enron Email (39, 861 x 28, 102),
Dexter (20,000 x 2,600), FarmAds (54,877 x 4,143), and Gisette (13,500 x 5,000) matrices, with a = 1,2, ..., 5.
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Fig. 2: Top left: All singular values of the 14,116 x 100 Jester matrix. Top right: Top 25 singular values of the 47,236 x 23, 149
RCV1v2 matrix. Bottom: Relative error of CUR approximations produced by the CUR algorithm in [3] and Algorithm 1 using
exact leverage score as sampling probability.
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