
Efficient CUR Matrix Decomposition via
Relative-Error Double-Sided Least Squares Solving

Qi Luan
Ph.D. Program in Mathematics

The City University of New York, Graduate Center

qluan@gradcenter.cuny.edu

Liang Zhao
Department of Computer Science

The City University of New York, Lehman College

Liang.Zhao1@lehman.cuny.edu

Abstract—Matrix CUR decomposition aims at representing
a large matrix A with the product C · U · R, where C (resp.
R) consists of a small collection of the original columns (resp.
rows), and U is a small intermediate matrix connecting C and
R. While modern randomized CUR algorithms have provided
many efficient methods of choosing representative columns and
rows, there hasn’t been a method to find the optimal U matrix.
In this paper, we present a sublinear-time randomized method to
find good choices of the U matrix. Our proposed algorithm treats
the task of finding U as a double-sided least squares problem
minZ ‖A− CZR‖F , and is able to guarantee a close-to-optimal
solution by solving a down-sampled problem of much smaller
size. We provide worst-case analysis on its approximation error
relative to theoretical optimal low-rank approximation error, and
we demonstrate empirically how this method can improve the
approximation of several large-scale real data matrices with a
small number of additional computations.

Index Terms—Matrix Decomposition, Sublinear Algorithm,
Stochastic Algorithm, CUR Decomposition.

I. INTRODUCTION

Compressing a large matrix is a common task in statistical

learning, fueled by the explosive growth in the size of modern

datasets. A common practice is to approximate the original

matrix using a low-rank matrix, represented as a product of

several matrices of comparatively much smaller size. While

the truncated Singular Value Decomposition (SVD) is capable

of producing such a rank-k approximation with minimal norm

on the approximation error, the complexity of deterministic

SVD algorithms is super-linear in the size of the data, and the

factorization obtained from it consists of linear combinations

of many rows or columns, which often bear little concrete

meaning and are impossible to interpret.

Matrix CUR decomposition aims to find low-rank matrix

approximation with original matrix rows and columns. More

precisely, such a factorization of an m × n matrix A is

represented as C ·U ·R, where C consists of d1 columns of A,

and R consists of d2 rows of A, where d1, d2 � min(m,n).
To effectively approximate A, the product CUR is required to

have approximation error close to the minimal error, and the al-

gorithm that computes the approximation must be significantly

faster than the SVD method, preferably using linear time in

input sparsity. Both goals have been asymptotically achieved

This work was supported by NSF Grants CCF–1733834 and PSC CUNY
Award 63749-00 51.

by sampling-based randomized CUR algorithms [1], [3], [9]

with controllable failure probabilities. A common pattern of

these algorithms is to first construct C as a small subset of

columns sampled with a probability distribution reflecting the

“importance” of each column, then sample rows to obtain R, and

lastly construct an appropriate middle factor U connecting C
and R. Up to constant factors, the error norm and computational

complexity are optimal in the number of columns and rows

being sampled. This approach has been shown to be highly

effective in the principle component analysis of large datasets

[1].

This paper develops a method that can be used to further

improve existing sampling-based CUR algorithms by providing

a near-optimal choice of the middle block U . Given factor C
and R, we treat the task of finding U as double-sided least
squares problem minZ ‖A − CZR‖F . The optimal solution

is Zopt = C+AR+, where M+ represents the Moore-Penrose

matrix pseudo inverse. Ideally one would use U = Zopt to

form a CUR approximation, but its cost is unbearable when

the size of A is much greater than the size of Z. We instead

develop a randomized algorithm that solves a down-sampled

problem

min
Z∈Rd1×d2

∑
(i,j)∈S

(Aij − CiZRj)2

pij |S| . (1)

Here the index set S is a small subset of matrix indicies

sampled with replacement according to probability distribution

{pij}1≤i≤m,1≤j≤n. Problem (1) is much easier to solve than

the double-sided least squares problem. We show that if the

sampling probabilities are carefully chosen, its solution can

well approximate Zopt, and thus providing a better overall

CUR approximation to the matrix A.

We run numerical tests on several large-scale matrices

representing real-world datasets, some of which contain over

one billion values. Combined with a sampling strategy that uses

leverage-scores on general matrices [3] or uniform-sampling on

partially observed low-coherence matrices [11], our algorithm

can produce CUR approximations with approximation error

constantly closer to the optimal error comparing to existing

CUR algorithms.

309

2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/20/$31.00 ©2020 IEEE
DOI 10.1109/ICTAI50040.2020.00056

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

The study of CUR matrix approximation problem can be

traced back to pseudo-skeleton decomposition [4], [5], [7],

where algorithms have been developed in conjunction with

the study of finding maximal volume matrix sub-blocks. This

problem has been widely investigated in both Theoretical

Computer Science community and Numerical Linear Algebra

community. Drineas, Kannan, and Mahoney [2] propose a

randomized CUR algorithm with additive error and O(m+ n)
space and time. Drineas, Mahoney, and Muthukrishnan [3]

propose a sampling CUR algorithm that achieves relative error

using O(k log(k)ε−2) rows and columns. Wang and Zhang [9]

develop an adaptive sampling method that achieves relative-

error CUR approximation with complexity linear in input size.

Boutsidis and Woodruff [1] present an input-sparsity-time CUR

algorithm using O(k/ε) rows and columns. We refer readers

to Boutsidis and Woodruff [1] and Woodruff [10] for more

complete review of the literature.

Xu, Jin, and Zhou [11] study CUR matrix approximation

of low-coherence matrices that can only be observed partially,

and they propose an additive-error algorithm using uniform

sampling for rows/columns, as well as uniform sampling for

solving the resulting double-sided least squares problem. This

work differentiates from [11] in that our proposed algorithm

uses sampling probabilities derived from the input matrices,

and thus it is applicable to arbitrary inputs. Moreover, we show

that our algorithm can achieve small relative error, which is

often more desirable in practice.

III. NOTATIONS

In this paper, we use A, Ai, Aj , and Ai,j to represent

matrix, matrix column, matrix row, and matrix entry, re-

spectively. ‖A‖F is the Frobenius norm, and ⊗ denotes the

matrix kronecker product. The singular value decomposition

of A ∈ R
m×n factors the matrix as a product

A = UΣV T (2)

=
[
Uk, U

⊥
k

] [Σk

Σk,⊥

] [
V T
k

V ⊥T
k

]
, (3)

where (assuming m ≥ n) U ∈ R
m×n and V ∈ R

n×n consist

of orthonormal columns, and Σ is a diagonal matrix formed

by singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The optimal

rank-k approximation Ak is formed by truncating the SVD

of A, namely Ak = UkΣkV
T
k , where Uk(Vk) consist of the

first k columns of U (V), and Σk = diag(σi)i∈[k], where [k] =
{1, ..., k}. Ak is the “best” rank-k approximation in the sense

that the following equality holds:

‖A−Ak‖F =

√√√√ n∑
i=k+1

σ2
i = min

rank(X)=k

{‖A−X‖F
}

(4)

IV. THEORETICAL RESULTS

In this section, we describe the proposed algorithm for

double-sided least squares problem, and we present theoretical

bound on its relative error as well as the probability of success.

A. Randomized Algorithm for Double-Sided Least Squares
Problem

Algorithm 1 takes as input matrices A ∈ R
m×n, C ∈ R

m×d1 ,

R ∈ R
d2×n assuming d1, d2 ≤ min(m,n), and a positive

constant ε. The algorithm returns a matrix Z ∈ R
d1×d2 such

that CZR ≈ A, which can be interpreted as a reconstruction

of A using C and R. The optimal solution to

min
Z
||A− CZR||F (5)

is Zopt = C+AR+, which requires to access the entire matrix

A. However, a near-optimal solution can be obtained by using

very few elements in A sampled from a non-uniform probability

distribution constructed with C and R.

Specifically, Algorithm 1 first computes the top left-singular

vectors U of C, V of RT , and probability distribution

pi,j =
||Ui||2F ||Vj ||2F

d1d2
for i ∈ [m], j ∈ [n]. (6)

Then, we sample independently c = Θ(d21d
2
2ε
−2) index

pairs
{
(it, jt)|t ∈ [c]

}
from the probability distribution (6).

According to the sampled index pairs, construct vector Y ∈ R
c

and matrix W ∈ R
c×d1d2 , such that for all t ∈ [c]

Yt =
1√

cpit,jt
Ait,jt and Wt =

1√
cpit,jt

Cit ⊗RT
jt . (7)

Finally, Z is computed, reshaped into a d1 × d2 matrix

Z = argmin
x

||Y −WX||F . (8)

With probability of success greater or equal to 0.7 (this

probability can be improved by increasing the number of the

sampled index pairs), Algorithm 1 computes a near-optimal

solution Z with ‖A−CZR‖2F ≤ (1+ε)‖A−CZoptR‖2F using

no more than Θ(d21d
2
2ε
−2) elements from A, and at essentially

sublinear computational cost.

Algorithm 1: Sublinear-time algorithm for approximate

solution of minZ ‖A− CZR‖F
Input: A ∈ R

m×n, C ∈ R
m×d1 , R ∈ R

d2×n given

d1, d2 ≤ min(m,n), and 0 < ε < 1;

Output: Z ∈ R
d1×d2 ;

Compute probabilities pi,j implicitly for i ∈ [m]
and j ∈ [n] using Eqn. (6).

c← 3200d21d
2
2ε
−2

Initialize Y ∈ R
c and W ∈ R

c×d1d2 .

for t = 1, 2, . . . , c do
pick index pair (it, jt) with probability pit,jt .

Set Yt =
1√

cpit,jt
Ait,jt

Set Wt =
1√

cpit,jt
Cit ⊗RT

jt

end for
Solve the least squares problem

Z = argminX ||Y −WX||F
return Reshaped Z ∈ R

d1×d2 .

310

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

B. Guarantee for Algorithm 1
Before we present our analysis of Algorithm 1 in Theorem

2, we first introduce a powerful supporting theorem regarding

the quality of approximation for column/row sampling.

Theorem 1. (Adapted from Thm. 5, Alg. Exactly(c) in [3]) Let
B ∈ R

m×n be a matrix of rank less or equal to k, A ∈ R
m×p,

0 < ε < 1, and let Zopt = argminX ||A − BX||F = B+A.
Let U be the top k left singular vectors of B and define any
probability distribution

pi ≥ β||Ui||2F
k

for all i ∈ [m] (9)

for some 0 < β ≤ 1. Let c = 3200k2ε−2β−1, Y ∈ R
c×p

and W ∈ R
c×n be two random matrices with independent

rows, such that for all t ∈ [c], i ∈ [m], the Yt and Wt equal to
1√
cpi

Ai and 1√
cpi

Bi respectively with probability pi. Then, with
probability no less than 0.7, for Z = argminX ||Y −WX||F ,
we have

||A−BZ||F ≤(1 + ε)||A−BZopt||F
=(1 + ε)min

X
||A−BX||F . (10)

Expected(c) sampling scheme from [3] provides a better

asymptotic bound O(k log kε−2) on the number of required

samples to achieve inequality (10). However, the constant factor

of the bound is less obvious. Now we present the theoretical

guarantee for Algorithm 1.

Theorem 2. Assuming d1, d2 ≤ min(m,n), and let A ∈
R

m×n, C ∈ R
m×d1 , R ∈ R

d2×n be three matrices, and ε < 1
be any positive constant. Let Z be the output of Algorithm 1
with the above inputs, then with probability no less than 0.7,
we have

||A− CZR||F ≤ (1 + ε)min
X
||A− CXR||F . (11)

Proof. If C(or R) is not a full rank matrix, we can locate and

discard the extra columns(or rows) by performing algorithms

such as rank-reveling QR factorization, and this can be done

without losing precision in reconstructing A. Therefore, without

loss of generality, assume that C and R be full rank matrices,

and admit SVD decomposition C = UCΣCV
T
C = UCSC , and

R = URΣRV
T
R = SRV

T
R . For simplicity, we name UC and

VR as U and V , respectively. Therefore,

||A− UẐV T ||F = ||A− CZR||F , (12)

where Ẑ = SCZSR.
The element on the i-th row and j-th column of UXV T is

(
UXV T

)
i,j

=

d1∑
a=1

d2∑
b=1

Ui,aXa,bVj,b, (13)

and is equivalent to the inner product of Ui ⊗ Vj and �X . Here
�M denotes the vectorization of a matrix M ∈ R

m×n such that
�M = [M1,1,M1,2, . . . ,Mm,n]

T . Therefore

||A− UXV T ||F = || �A−
−−−−→
UXV T || (14)

= || �A− (U ⊗ V) �X||. (15)

Define f : [m] × [n] → [mn] to be a bijection between the

indices of a matrix and the indices of its vectorization, such that

f(i, j) = (i− 1)n+ j for all i ∈ [m], and j ∈ [n]. Since both

U and V are orthogonal matrices, U ⊗ V is also orthogonal,

and that

||(U ⊗ V)f(i,j)||2F =

d1∑
a=1

d2∑
b=1

U2
i,aV

2
j,b (16)

Draw independently with replacement c = 3200d21d
2
2ε
−2 ran-

dom index pairs, {(it, jt)|t ∈ [c]}, from probability distribution

pi,j = Prob
{
it = i, jt = j

}
(17)

=
||(U ⊗ V)f(i,j)||2F

d1d2
. (18)

Then construct sample vector Y ∈ R
c and matrix W ∈

R
c×d1d2 , such that for all t ∈ [c],

Yt =
1√

cpit,jt
Ait,jt (19)

and

Wt =
1√

cpit,jt
Uit ⊗ Vjt . (20)

Solve the following regression problem

Z̄ = argmin
�X

||Y −W �X||, (21)

By applying Theorem 1 with the A, B replaced with �A, U⊗V
respectively, and setting β = 1, it can be easily shown that

the Z̄ computed above satisfies the following inequality with

probability no less than 0.7,

|| �A− (U ⊗ V)Z̄|| ≤ (1 + ε)min
�X
|| �A− (U ⊗ V) �X||. (22)

Finally, reshape Z̄ to Ẑ ∈ R
d1×d2 , and let Z = S−1

C ẐS−1
R ,

then we have

||A− CZR||F = ||A− UẐV T ||F (23)

= || �A−
−−−−→
UẐV T || (24)

= || �A− (U ⊗ V)Z̄|| (25)

≤ (1 + ε)min
�X
|| �A− (U ⊗ V) �X|| (26)

= (1 + ε)min
X
||A− CXR||F (27)

C. Relative Error Bound on ||A− CZR||F
In this subsection, we provide a near-optimal error bound

analysis on the CUR decomposition Algorithm 1 produces,

assuming sufficiently many columns and rows are sampled

according to appropriate probability distributions.

Then we show that Algorithm 1, under conditions specified in

Corollary 3.1, decomposes low-coherence input matrices near-

optimally without accessing all entries and recovers unobserved

entries in the process.

Before presenting the theorems, we first introduce the

notations we use throughout this subsection. Given matrix

311

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

A ∈ R
m×n, and an integer k, k ≤ min(m,n), and let U and

V be the top k left and right singular vectors of A. We let

si = ||Ui||2F for all i ∈ [m] (28)

denote the rank k row leverage scores of A, and similarly let

tj = ||Vj ||2F for all j ∈ [n] (29)

denote the rank k column leverage scores of A. It is obvious

that
∑m

i=1 si =
∑n

j=1 = k. Therefore, {si} and {tj} naturally

form two probability distributions pi = si/k, i ∈ [m] and

qj = tj/k, j ∈ [n].
We adopt the definition in [11] and let μr(A) =

maxi{msi/k}, μc(A) = maxj{ntj/k}, and μ(A) =
max

(
μr(A), μc(A)

)
denote the rank k row coherence, the

rank k column coherence, and the rank k coherence, respec-

tively. Notice that r/m ≤ maxi{si} ≤ 1, and similarly

r/n ≤ maxj{tj} ≤ 1. Therefore, 1 ≤ μ(A) ≤ max(m,n).
We call A a low coherence matrix if μ(A) is a small constant,

and μ(A)� min(m/r, n/r).

Theorem 3. Given A ∈ R
m×n, let k ≤ min(m,n) be an

integer, ε ∈ (0, 1], and c0 = 32 · 3200 be constants. Assume
that d1 ≥ c0k

2ε−2 columns are sampled with replacement
according to probability distribution constructed with the
column leverage scores of A, and construct C ∈ R

m×d1 such
that C consists of the sampled columns. Further assume that
d2 ≥ c0d

2
1ε
−2 rows are sampled with replacement according

to probability distribution constructed with the row leverage
scores, and construct R ∈ R

d2×n, such that R consists of the
sampled rows. Let Z be the output of Algorithm 1 with inputs
A, C, R, and ε/8, then with positive probability,

||A− CZR||F ≤ (1 + ε)||A−Ak||F .
Proof.

||A− CZR||F ≤ (1 +
ε

8
)||A− CC+AR+R||F (30)

≤ (1 +
ε

8
)(1 +

ε

3
)||A− CC+A||F (31)

≤ (1 +
ε

8
)(1 +

ε

3
)2||A−Ak||F (32)

≤ (1 + ε)||A−Ak||F (33)

The first inequality is true due to Theorem 2, and the second

and third inequalities are true due to Theorem 4 and Theorem

3 from [3] with ε/3. All three inequalities have probability of

success no less than 0.7, therefore taking union bound of the

failure probability, inequality (33) holds with probability no

less than 0.1. Notice that we can reduce the failure probability

to δ by increasing the number of sampled columns, rows, and

elements by O(log 1/δ) times.

Remark 1. We can also achieve relative error CUR de-
composition applying Algorithm 1 with C and R sampled
using Expected(c) from [3] or the sampling scheme provided
in [1]. The aforementioned two sampling schemes provide
superior asymptotic bounds on the required number of sampled
columns/rows(d1 = O(k log kε−2), d2 = O(d1 log d1ε

−2) and

d1, d2 = O(kε−1), respectively). However, the constant factors
on their bounds are less obvious.

Corollary 3.1. Given A ∈ R
m×n, let k ≤ min(m,n) be an

integer, and let ε ∈ (0, 1] and c0 = 32 · 3200 be constants.
Assume that the rank k coherence of A, μ(A) = β, and
that d1 ≥ c0k

2βε−2 columns are sampled with replacement
uniformly, and construct C ∈ R

m×d1 , such that C consists
of the sampled columns. Further assume that d2 ≥ c0d

2
1ε
−2

rows are sampled with replacement according to probability
distribution constructed with the row leverage scores, and
construct R ∈ R

d2×n, such that R consists of the sampled
rows. Let Z be the output of Algorithm 1 with inputs A, C, R,
and ε/8, then with positive probability,

||A− CZR||F ≤ (1 + ε)||A−Ak||F .
Remark 2. If μ(A) = β is a small constant, then by setting the
column sampling probability distribution to uniform we have
loss of accuracy by at most 1/β, i.e., pj = 1/n ≥ ||Vj ||2F /kβ
for all j ∈ [n], and this can be compensated by sampling β
times more columns. In the case where the columns and rows
are sampled independently, and given O(k2βε−2) columns and
rows are sampled uniformly with replacement, the error bound
deteriorate to (2 + ε)||A−Ak||F .
D. Algorithm Complexity

In this section, we confirm that given m,n >> d1, d2,

Algorithm 1 achieves sublinear complexity.

In the sampling stage, the sampling probability distribution

pi,j should be computed implicitly, otherwise storing pi,j would

already require mn space, exceeding the claimed sublinear

complexity. Fortunately,

Prob
{
it = i, jt = j

}
=
||(U ⊗ V)f(i,j)||2F

d1d2
(34)

=
||Ui||2F
d1

||Vj ||2F
d2

(35)

= Prob
{
it = i

}
Prob

{
jt = j

}
. (36)

In other words, in the sampling stage, we can simply sample

the row(column) index first, and then independently sample the

other. Therefore, the dominating computational cost, O(md21 +
nd22), will be the cost for computing top singular vectors, which

can be achieved through QR(or SVD) factorization of the input

matrices C and R.

Let c = O(d21d
2
2ε
−2) denote the number of samples required.

The computational cost for constructing the down sampled

problem minX ||Y −WX|| is O(cd1d2), and this problem can

be solved in closed form as W+Y , whose cost is dominated

by the cost, O(cd21d
2
2), of computing the pseudo-inverse of

W . In conclusion, the complexity of Algorithm 1 is O(md21 +
nd22 + d41d

4
2ε
−2).

V. NUMERICAL EXPERIMENTS

To demonstrate the empirical applicability of the proposed

algorithm, we evaluate it on six large-scale real-world data

matrices, some of which can contain over one billion values.

312

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

We implement the proposed CUR algorithm as well as the

state-of-the-art CUR algorithms [3], [11] for comparisons. All

tests are programmed using Python with libraries NumPy [8]

and SciPy [6]. SciPy sparse matrix modules are used to handle

those sparse input matrices. All the experiments are run on

a PC with Intel I7 3.5GHz CPU, 16GB RAM, and Windows

operating system.

A. CUR Matrix Approximation on Low-Coherence Matrices

In this subsection, we present the experimental results of

the proposed algorithm on four benchmark data matrices for

CUR matrix decomposition, which are widely used in previous

work [9], [11].

The Enron Emails (39, 861 × 28, 102), Dexter (20, 000 ×
2, 600), and Farm Ads (54, 877×4, 143) are textual data where

in their matrix form, each row associates with one document,

and each column associates with one word, i.e., the element on

the i-th row j-th column is the number of occurrence of word

j in document i. Gisette (13, 500 × 5, 000) data consists of

hand-written digits. In its matrix form, each row corresponds to

one written digit, and each column corresponds to one feature.

For each input data A ∈ R
m×n, we sample d1 columns

and d2 rows uniformly. Let C ∈ R
m×d1 be the matrix that

consists of the sampled columns, and let R ∈ R
d2×n. Then we

compute Z ∈ R
d1×d2 as the return value of Algorithm 1 with

inputs A, C, R, and c (i.e., number of samples). We compute

the relative error of Z as

relative error =
‖A− CZR‖F
‖A− CZoptR‖F (37)

where,

Zopt = argminX‖A− CXR‖F = C+AR+, (38)

for performance evaluation.

For comparison, we also include the relative error of Z+,

where

Z+ = argmin
X

∑
(i,j)∈S+

(Ai,j − CiXRj)2, (39)

and S+ is a subset of c matrix entries sampled uniformly

without replacement. This is essentially the output of the

CUR+ algorithm [11] applied with the same C, R, and c.
The key difference between CUR+ algorithm and Algorithm

1 is that in Algorithm 1, Z is computed with equation (1),

where the summands are scaled, and S is a list of Ω matrix

indices sampled independently with replacement according to

a carefully constructed probability distribution.

In order to have comparable results, we follow the same

experiment setting described in [11] by letting d1 = ar, d2 =
ad1, and c = mnr2/nnz(A), where nnz(A) represents the

number of nonzero elements in A. We let r = 10, and a =
1, 2, 3, 4, 5. We run each test 10 times and report the mean

relative error of Z and Z+.

In this experiment, the relative errors produced by Algorithm

1 equal to approximately 1.0 consistently, indicating the output

Z accurately approximates C+AR+ using only a small fraction

of the entries in A. We notice that relative errors for both

algorithms spike in tests on the Gisette Data with a = 2. This

is most likely caused by c ≈ d1d2, which may lead to a close

to square down sampled regression problem that has a larger

condition number. As a increases from 1 to 5, the relative

error increases for both outputs. This is because the number

of rows and columns sampled increases substantially, but the

number of sampled elements stays fixed, making it harder to

recover C+AR+ . However we observe that the relative error

of Algorithm 1 behaves rather stable and only deteriorates

slightly.

B. CUR with Leverage Score Sampling

In this section, we confirm that Algorithm 1 can improve the

approximation level of the randomized CUR algorithm using

leverage score sampling. We perform experiments on the Jester

and RCV1-v2 matrices used in [3]:

For both data matrices, we compute their rank 5 CUR

approximation using the leverage score sampling for factor

C and R, and Algorithm 1 for computing factor U . For

comparison, we also compute the factor U as the pseudo-inverse

of W , where W is the sub-block obtained by intersecting C
and R.

Figure 2 displays the leading singular spectrum of both test

matrices as well as the relative approximation errors for both

Algorithm 1 and the CUR algorithm in [3] with number of

sampled columns c ranged from 5 to 25. The corresponding

number of sampled rows is set to be 2c, and the number of

sampled entries is set to be 4 times the size of U . The test

runs 3 times for each value of c.

The Jester matrix is a dense matrix of size 14, 116 × 100
with entry values representing user ratings between ±10.0. Its

best rank-5 approximation A5 is capable of capturing 81% of

the matrix Frobenius norm. Using 5 columns and 10 rows, the

algorithm developed in [3] produces CUR approximation with

relative error about 1.5, and the error steadily decreases to

about 1.3 as the number of columns and rows are increased to

25 and 50. In comparison, Algorithm 1 that uses the exactly

same set of columns and rows constantly produces better CUR

approximations, with relative error decreased to about 1.1 in

the end.

The RCV1v2 matrix is a sparse 47, 236 × 23, 149 matrix

with 0.16% of its entries being nonzero. The rank-5 relative

approximation errors are quite close to 1 even for c = r = 5,

and increasing c and r does not seem to further improve

the approximation accuracy. Compared to the baseline CUR

algorithm, Algorithm 1 has more stable performance and

constantly produces lower relative error.

VI. CONCLUSION

In this paper, we propose a novel randomized sublinear-time

algorithm that provides approximately optimal solution to the

double-sided least squares problem with high probability. We

present theoretical results that guarantee the solution of our

method will be close to the optimal low-rank approximation

with high probability of success.

313

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Relative error produced by Algorithm 1 (this work) and the CUR+ algorithm in [11] on the Enron Email (39, 861×28, 102),

Dexter (20, 000× 2, 600), FarmAds (54, 877× 4, 143), and Gisette (13, 500× 5, 000) matrices, with a = 1, 2, ..., 5.

Fig. 2: Top left: All singular values of the 14, 116×100 Jester matrix. Top right: Top 25 singular values of the 47, 236×23, 149
RCV1v2 matrix. Bottom: Relative error of CUR approximations produced by the CUR algorithm in [3] and Algorithm 1 using

exact leverage score as sampling probability.

REFERENCES

[1] Christos Boutsidis and David P Woodruff. Optimal cur matrix decompo-
sitions. SIAM Journal on Computing, 46(2):543–589, 2017.

[2] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a compressed approximate
matrix decomposition. SIAM Journal on Computing, 36(1):184–206,
2006.

[3] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Relative-
error cur matrix decompositions. SIAM Journal on Matrix Analysis and
Applications, 30(2):844–881, 2008.

[4] Sergei A Goreinov, Eugene E Tyrtyshnikov, and Nickolai L Zamarashkin.
A theory of pseudoskeleton approximations. Linear algebra and its
applications, 261(1-3):1–21, 1997.

[5] Sergei A Goreinov, Nikolai Leonidovich Zamarashkin, and Evgenii Ev-
gen’evich Tyrtyshnikov. Pseudo-skeleton approximations by matrices of
maximal volume. Mathematical Notes, 62(4):515–519, 1997.

[6] Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: Open source
scientific tools for {Python}, 2014.

[7] Eugene Tyrtyshnikov. Incomplete cross approximation in the mosaic-
skeleton method. Computing, 64(4):367–380, 2000.

[8] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy
array: a structure for efficient numerical computation. Computing in
Science & Engineering, 13(2):22, 2011.

[9] Shusen Wang and Zhihua Zhang. Improving cur matrix decomposition
and the nyström approximation via adaptive sampling. The Journal of
Machine Learning Research, 14(1):2729–2769, 2013.

[10] David P Woodruff et al. Sketching as a tool for numerical linear algebra.
Foundations and Trends® in Theoretical Computer Science, 10(1–2):1–
157, 2014.

[11] Miao Xu, Rong Jin, and Zhi-Hua Zhou. Cur algorithm for partially
observed matrices. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning-Volume 37, pages
1412–1421. JMLR. org, 2015.

314

Authorized licensed use limited to: Rutgers University. Downloaded on August 05,2021 at 03:04:23 UTC from IEEE Xplore. Restrictions apply.

