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Abstract— Classical linear quadratic (LQ) control centers
around linear time-invariant (LTI) systems, where the control-
state pairs introduce a quadratic cost with time-invariant
parameters. Recent advancement in online optimization and
control has provided novel tools to study LQ problems that are
robust to time-varying cost parameters. Inspired by this line
of research, we study the distributed online LQ problem for
identical LTI systems. Consider a multi-agent network where
each agent is modeled as an LTI system. The LTI systems
are associated with decoupled, time-varying quadratic costs
that are revealed sequentially. The goal of the network is to
make the control sequence of all agents competitive to that
of the best centralized policy in hindsight, captured by the
notion of regret. We develop a distributed variant of the online
LQ algorithm, which runs distributed online gradient descent
with a projection to a semi-definite programming (SDP) to
generate controllers. We establish a regret bound scaling as
the square root of the finite time-horizon, implying that agents
reach consensus as time grows. We further provide numerical
experiments verifying our theoretical result.

I. INTRODUCTION

In recent years, there has been a significant interest on

problems arising at the interface of control and machine

learning. Modern statistical and optimization algorithms have

opened new avenues to rethink classical control problems,

where linear quadratic (LQ) control ( [1]–[3]) is a prominent

point in case. In its classical form, LQ control centers

around LTI systems, where the control-state pairs introduce

a quadratic cost with time-invariant parameters. For the

infinite-horizon problem, the optimal controller has a closed-

form solution, and it can be derived by solving the algebraic

Riccati equation.

Fueled by applications in practical control problems, on-

line LQ control has received a great deal of attention [4].

In this scenario, the environment is subject to unpredictable

dynamics, making the cost functions time-varying in an

arbitrary fashion. Examples include variable-supply elec-

tricity production and building climate control with time-

varying energy costs. Motivated by the online optimization

literature, online LQ casts the time-varying problem as a

regret minimization, where the performance of the online

algorithm is compared with that of the best fixed control

policy in hindsight.

In this paper, we address the distributed online LQ prob-

lem for a network of identical LTI systems. Each system is

modeled as an agent in a multi-agent network, associated

with a decoupled, time-varying quadratic cost. The cost
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sequence for each agent can be chosen in an adversarial

fashion and the agent observes the sequence on-the-fly. The

goal of the network is to make the control sequence of

all agents competitive to that of the best centralized policy

in hindsight, captured by the notion of regret. We develop

a distributed variant of the online LQ algorithm. At each

iteration, agents run distributed online gradient descent [5]

to maintain an ideal steady-state covariance matrix. To do

so, they need to perform a projection to an SDP and extract

a feasible policy to generate the controllers. We prove that

the individual regret can be bounded by O(
√
T ), where T

is the total number of iterations. This implies that the agents

reach consensus and collectively compete with the best fixed

controller in hindsight. We finally provide simulation results

verifying this theoretical property.

A. Related Work

Distributed LQ Control: Distributed linear quadratic regu-

lator (LQR) has been widely studied in the control literature.

Some works focus on multi-agent systems with known,

identical decoupled dynamics. In [6], a distributed control

design is proposed by solving a single LQR problem whose

size matches the maximum vertex degree of the underlying

graph plus one. The authors of [7] derive the necessary

condition for the optimal distributed controller, resulting in a

non-convex optimization problem. The work of [8] addresses

a multi-agent network, where the dynamics of each agent

is a single integrator. The authors of [8] show that the

computation of the optimal controller requires the knowledge

of the graph and the initial information of all agents. Given

the difficulty of precisely solving the optimal distributed

controller, Jiao et al. [9] provide the sufficient conditions

to obtain sub-optimal controllers. All of the aforementioned

works need global information such as network topology to

compute the controllers. On the other hand, Jiao et al. [10]

propose a decentralized way to compute the controllers and

show that the system will reach consensus. For the case of

unknown dynamics, Alemzadeh et al. [11] propose a dis-

tributed Q-learning algorithm for dynamically decoupled sys-

tems. There are other works focusing on distributed control

without assuming identical decoupled sub-systems. Fattahi et

al. [12] study distributed controllers for unknown and sparse

LTI systems. Furieri et al. [13] address model-free methods

for distributed LQ problems and provide sample-complexity

bounds for problems with local gradient dominance property

(e.g., quadratically-invariant problems). The work of [14]

investigates the convergence of distributed controllers to a

global minimum for quadratically invariant problems with

first-order methods.
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Classical LQ with Unknown Dynamics: There is a recent

line of research dealing with LQ control problems with

unknown dynamics. Several techniques are proposed using

(i) gradient estimation (see e.g., [15]–[18]) (ii) the estimation

of dynamics matrices and derivation of the controller by

considering the estimation uncertainty [19], and (iii) wave-

filtering [20], [21].

Online LQ Control: Recently, there has been a significant

interest in studying linear dynamical systems with time-

varying cost functions, where online learning techniques

are applied. This literature investigates two scenarios: 1)

Known Systems: As mentioned before, Cohen et al. [4]

study the SDP relaxation for online LQ control and establish

a regret bound of O(
√
T ) for known LTI systems with

time-varying quadratic costs. Agarwal et al. [22] propose

the disturbance-action policy parameterization and reduce

the online control problem to online convex optimization

with memory. They show that for adversarial disturbances

and arbitrary time-varying convex functions, the regret is

O(
√
T ). Agarwal et al. [23] consider the case of time-varying

strongly-convex functions and improve the regret bound to

O(poly(logT )). Simchowitz et al. [24] further extend the

O(poly(logT )) regret bound to partially observable systems

with semi-adversarial disturbances. 2) Unknown Systems:

For fully observable systems, Hazan et al. [25] derive the

regret of O(T 2/3) for time-varying convex functions with

adversarial noises. For partially observable systems, the

work of [24] addresses the cases of (i) convex functions

with adversarial noises and (ii) strongly-convex functions

with semi-adversarial noises, and provide regret bounds of

O(T 2/3) and O(
√
T ), respectively. Lale et al. [26] establish

an O(poly(logT )) regret bound for the case of stochastic

perturbations, time-varying strongly-convex functions, and

partially observed states.

Our work lies precisely at the interface of distributed LQR

and online LQ, addressing distributed online LQ.

II. PROBLEM FORMULATION

A. Notation

We use the following notation in this work:
[n] The set of {1, 2, . . . , n} for any integer n

Tr(·) The trace operator
‖·‖ Euclidean (spectral) norm of a vector (matrix)
E[·] The expectation operator
[A]ij The entry in the i-th row and j-th column of A

A •B Tr(A>
B)

A � B (A−B) is positive semi-definite

B. Distributed Online LQ Control

We consider a multi-agent network of m identical LTI

systems. The dynamics of agent i is given as,

xi,t+1 = Axi,t +Bui,t +wi,t, i ∈ [m]

where xi,t ∈ Rd and ui,t ∈ Rk represent agent i’s state and

control (or action) at time t, respectively. Furthermore, A ∈
Rd×d, B ∈ Rd×k, and wi,t is a Gaussian noise with zero

mean and covariance W � 0. The noise sequence {wi,t} is

independent over time and agents.

Departing from the classical LQ control, we consider the

online distributed LQ problem in this work. At round t, agent

i receives the state xi,t and applies the action ui,t. Then,

positive definite cost matrices Qi,t and Ri,t are revealed,

and the agent incurs the cost x>
i,tQi,txi,t + u>

i,tRi,tui,t.

Throughout this paper, we assume that Tr(Qi,t),Tr(Ri,t) ≤
C for all i, t and some C > 0. Agent i follows a policy

that selects the control ui,t based on the observed cost

matrices Qi,1, . . . ,Qi,t−1 and Ri,1, . . . ,Ri,t−1, as well as

the information received from the agents in its neighborhood.

Centralized Benchmark: In order to gauge the performance

of any distributed LQ algorithm, we require a centralized

benchmark. In this work, we focus on the finite-horizon

problem, where for a centralized policy π, the cost after T
steps is given as

JT (π) = E

[
T∑

t=1

xπ
t
>
Qtx

π
t + uπ

t
>
Rtu

π
t

]
, (1)

where Qt =
∑m

i=1 Qi,t and Rt =
∑m

i=1 Ri,t, and the

expectation is over the possible randomness of the policy

as well as the noise. The superscript π in uπ
t and xπ

t

alludes that the state-control pairs are chosen by the policy

π, given full access to cost matrices of all agents. Notice

that in the infinite-horizon version of the problem with

time-invariant cost matrices (Q,R), where the goal is to

minimize limT→∞ JT (π)/T , it is well-known that for a

controllable LTI system (A,B), the optimal policy is given

by the constant linear feedback, i.e., uπ
t = Kxπ

t for a matrix

K ∈ Rk×d.

Regret Definition: The goal of a distributed LQ algorithm A
is to mimic the performance of an ideal centralized algorithm

using only local information. More formally, each agent

j locally generates the control sequence {uj,t}Tt=1, that is

competitive to the best policy among a benchmark policy

class Π. This can be formulated as minimizing the individual

regret, which is defined as follows

Regret
j
T (A) = Jj

T (A)−min
π∈Π

JT (π), (2)

for agent j ∈ [m], where

Jj
T (A) = E

[
T∑

t=1

m∑

i=1

xA
j,t

>
Qi,tx

A
j,t + uA

j,t

>
Ri,tu

A
j,t

]

= E

[
T∑

t=1

xA
j,t

>
Qtx

A
j,t + uA

j,t

>
Rtu

A
j,t

]
.

A successful distributed algorithm is one that keeps the regret

sublinear with respect to T . Of course, this also depends

on the choice of the benchmark policy class Π, which is

assumed to be the set of strongly stable policies (to be

defined precisely in Section II-C).

Network Structure: The agents communicate locally to

minimize the cost. The network topology is defined by a

time-invariant doubly stochastic matrix P, where [P]ji > 0
if agent j communicates with agent i; otherwise [P]ji =
0. The network is assumed to be connected, and there

exists a geometric mixing bound for P [27], such that
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∑m
j=1

∣∣[Pk]ji − 1/m
∣∣ ≤ √

mβk, i ∈ [m], where β is the

second largest singular value of P.

C. Strong Stability and Sequential Strong Stability

We consider the set of strongly stable linear (i.e., u = Kx)

controllers as the benchmark policy class. Following [4], we

define the notion of strong stability as follows.

Definition 1: (Strong Stability) A linear policy K is

(κ, γ)-strongly stable (for κ > 0 and 0 < γ ≤ 1) for the

LTI system (A,B), if ‖K‖ ≤ κ, and there exist matrices L

and H such that A + BK = HLH−1, with ‖L‖ ≤ 1 − γ
and ‖H‖ ‖H−1‖ ≤ κ.

Intuitively, a strongly stable policy ensures fast mixing and

exponential convergence to a steady-state distribution. In

particular, for the LTI system xt+1 = Axt + But + wt,

if a (κ, γ)-strongly stable policy K is applied (ut = Kxt),

X̂t (the state covariance matrix of xt) converges to X (the

steady-state covariance matrix) with the following exponen-

tial rate ∥∥∥X̂t −X

∥∥∥ ≤ κ2e−2γt
∥∥∥X̂0 −X

∥∥∥ .

See Lemma 3.2 in [4] for details. The sequential nature of

online LQ control requires another notion of strong stability,

called sequential strong stability [4], defined as follows.

Definition 2: (Sequential Strong Stability) A sequence of

linear policies {Kt}Tt=1 is (κ, γ)-strongly stable if there

exist matrices {Ht}Tt=1 and {Lt}Tt=1 such that A+BKt =
HtLtH

−1
t for all t with the following properties:

1) ‖Lt‖ ≤ 1− γ and ‖Kt‖ ≤ κ.

2) ‖Ht‖ ≤ β′ and
∥∥H−1

t

∥∥ ≤ 1/α′ with κ = β′/α′.
3)
∥∥H−1

t+1Ht

∥∥ ≤ 1 + γ/2.

Sequential strong stability generalizes strong stability to

the time-varying scenario. On the technical level, it helps

with characterizing the convergence of the state covariance

matrices when a sequence of policies {Kt}Tt=1 is used

instead of a fixed policy K, which is the case in this work.

D. SDP Relaxation for LQ Control

For the following dynamical system

xt+1 = Axt +But +wt, wt ∼ N (0,W),

the infinite-horizon version of (1), i.e.,

minimize limT→∞ JT (π)/T, with fixed cost matrices

Q and R can be relaxed via a semi-definite programming

when the steady-state distribution exists. For ν > 0, the

SDP relaxation is formulated as [4]

minimize J(Σ) =

(
Q 0
0 R

)
• Σ

subject to Σxx = (AB)Σ(AB)> +W,

Σ � 0, Tr(Σ) ≤ ν,

(3)

where Σ =

(
Σxx Σxu

Σux Σuu

)
. Recall that in the online LQ

problem, we deal with time-varying cost matrices (Qt,Rt),
and for any t ∈ [T ], the above SDP yields different solutions.

In fact, for any feasible solution Σ of the above SDP, a

strongly stable controller K = Σ>
xu

Σ−1
xx

can be extracted.

The steady-state covariance matrix induced by this controller

is also feasible for the SDP and its cost is at most that of Σ
(see Theorem 4.2 in [4]).

Moreover, for any (slowly-varying) sequence of feasible

solutions to the above SDP, the induced controller sequence

is sequentially strongly-stable. This implies that the covari-

ance matrix of the state converges to the steady-state in a

rapid sense as the following.

Lemma 1: (Lemma 4.4 in [4]) Assume that W � σ2I and

let κ =
√
ν/σ. Let {Σt} be a sequence of feasible solutions

of the SDP, and suppose that ‖Σt+1 − Σt‖ ≤ η for all t
and for some η ≤ σ2/κ2. Then, the control matrix Kt =
(Σt)

>
xu

(Σt)
−1
xx

is (κ, 1
2κ2 )-strongly stable for all t.

Furthermore, it can be shown that given the sequence

Xt = (Σt)xx, if we follow the policy sequence πt(x) =
Ktx + vt where vt ∼ N

(
0, (Σt)uu −Kt(Σt)xxK

>
t

)
, the

following relationship holds:
∥∥∥X̂t+1 −Xt+1

∥∥∥ ≤ κ2e−( 1

2κ2
)t
∥∥∥X̂1 −X1

∥∥∥+ 4ηκ4,

where X̂t is the state covariance matrix on round t [4].

III. ALGORITHM AND THEORETICAL RESULTS

We now lay out the distributed online LQ algorithm and

provide its theoretical regret bound.

A. Algorithm

In the distributed online LQ, each agent i at time t
maintains an ideal steady-state covariance matrix Σi,t by

running a distributed online gradient descent on the SDP

(3). Then, a control matrix Ki,t is extracted from Σi,t and

is used to determine the action. In particular, the action ui,t

is sampled from a Gaussian distribution N (Ki,txi,t,Vi,t),
which entails E[ui,t|Ft] = Ki,txi,t, where Ft is the smallest

σ-field containing the information about all agents up to

time t. This stochastic policy ensures the fast convergence

of the covariance matrix of xi,t and ui,t to the iterate Σi,t

generated by the algorithm. The proposed method is outlined

in Algorithm 1.

B. Theoretical Result: Regret Bound

In this section, we present our main theoretical result. By

applying algorithm 1, we show that for a multi-agent network

of identical LTI systems (with a connected communication

graph), the individual regret of an arbitrary agent is upper-

bounded by O(
√
T ), which implies that the performance of

all agents would converge to that of the best fixed controller

in hindsight for large enough T .

Theorem 2: Assume that the network is connected,

Tr(W) ≤ λ2 and W � σ2I. Given κ > 1 and 0 ≤ γ < 1,

set ν = 2κ4λ2/γ and η = 1/
√
ρT , where

ρ =

[
4mC2

(
3 +

4
√
m

1− β

)
+mC(1 +

ν

σ2
)
16
√
2mCν2

(1− β)σ4

]
.

By running Algorithm 1, the expected individual regret of

agent j with respect to any (κ, γ)-strongly stable controller

Ks is bounded as follows

Regret
j
T (A) = Jj

T (A)− JT (K
s) = O

(
(1− β)−0.5

√
T
)
,

925
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Algorithm 1 Online Distributed LQ Control

1: Require: number of agents m, doubly stochastic matrix

P ∈ Rm×m, parameter ν, step size η, system matrices

(A,B).
2: Initialize: Σi,1 is identically initialized with a feasible

point and xi,1 is drawn from normal distribution with

mean zero for i ∈ [m].
3: for t = 1, 2, . . . , T do

4: for i = 1, 2, . . . ,m do

5: Receive xi,t

6: Compute Ki,t = (Σi,t)ux(Σi,t)
−1
xx

,Vi,t =
(Σi,t)uu −Ki,t(Σi,t)xxK

>
i,t

7: Predict ui,t ∼ N (Ki,txi,t,Vi,t) and Observe

Qi,t,Ri,t

8: Communicate Σi,t with agents in the neighborhood

and obtain their parameters

9: Σi,t+1 = ΠS

[
m∑
j=1

PjiΣj,t − η

(
Qi,t 0
0 Ri,t

)]
,

where

S =

{
Σ ∈ R(d+k)×(d+k)

∣∣∣∣
Σ � 0, Tr(Σ) ≤ ν,
Σxx = (AB)Σ(AB)> +W

}

10: end for

11: end for
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Fig. 1: This plot shows that the individual regret of agent 1 is of

O(
√
T ) when T is large enough.

for T ≥
(

4
√
2νC

σ4(1−β)ρ1/2

)2
.

The dependence of regret bound to the spectral gap 1−β
is perhaps not surprising, as it has been previously observed

in distributed online algorithms (see e.g., [28] Corollary 4).

IV. NUMERICAL EXPERIMENTS

Experiment Setup: We consider a distributed network of

five agents where d = k = 3. The network topology is a

cycle, where each agent has a self-weight of 0.6, and the rest

of the weight is evenly distributed between its neighborhood

as 0.2. The other hyper-parameters are set as follows: κ =
1.5, γ = 0.4, C = 30. We let matrices A = (1 − 2γ)I
and B = (γ/κ)I. We set the cost matrix Qi,t (respectively,

Ri,t) as a diagonal matrix with each diagonal entry sampled
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Fig. 2: The averaged regrets over time for all agents converge as
time grows.

from the uniform distribution over [0, C/d] (respectively,

[0, C/k]) to ensure that Tr(Qi,t),Tr(Ri,t) ≤ C. The noise

wi,t is sampled from a standard Gaussian distribution, and

thus λ2 = d = 3 and σ2 = 1.

Simulation: The total iteration number T is set as 30 times

of the theoretical lower bound in Theorem 2 in order to better

see the performance. We let Ks = (1e − 2)(−κ)I which is

(κ, γ)-strongly stable with A,B, and leads to a small enough

cumulative cost to be the benchmark. Noting that we apply

Dykstra’s projection algorithm for the projection step, the

matrix Vi,t for action-sampling may not be positive semi-

definite (PSD) due to floating-point computations, so we do

some tuning by adding to it a small term ((1e − 25)I) to

keep it PSD. The parameters Σi,1 are identically initialized

and the initial states of all agents are sampled from normal

distribution. The entire process is repeated for 30 Monte-

Carlo simulations.

Performance: To see the sub-linearity of individual regret

(Theorem 2), we plot the regret normalized by the root-

square of time in Fig. 1. We observe that for large enough

T , the slope of the curve is non-positive, which verifies that

the regret is upper-bounded by O(
√
T ). In Fig. 2, it can

also be seen that the time-averaged regrets for all agents are

decreasing over time.

V. CONCLUSION

In this paper, we considered the distributed online LQ

problem with known identical LTI systems and decoupled,

time-varying quadratic cost functions. We developed a fully

distributed algorithm to minimize the finite-horizon cost,

which can be recast as a regret minimization. We proved

that the individual regret, which is the performance of the

control sequence of any agent compared to the best (linear

and strongly stable) controller in hindsight, is upper bounded

by O(
√
T ). Possible future directions include extending

the setup to unknown dynamics or assuming coupled time-

varying cost functions.
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APPENDIX

Proof of Theorem 2: Recall the definition of regret (2).

For a fixed arbitrary (κ, γ)-strongly stable controller Ks and

agent j, the regret is expressed as the following:

Jj
T (A)− JT (K

s) = E

[
T∑

t=1

m∑

i=1

(x>
j,tQi,txj,t + u>

j,tRi,tuj,t)

]

−E

[
T∑

t=1

(xs>
t Qtx

s
t + us>

t Rtu
s
t )

]
,

(4)

where us
t = Ksxs

t for all t. Let us denote

Li,t =

(
Qi,t 0
0 Ri,t

)
and Lt =

(
Qt 0
0 Rt

)
,

where Lt =
∑m

i=1 Li,t. Also let,

Σ̂j,t = E
[
[x>

j,t u
>
j,t]

>[x>
j,t u

>
j,t]
]

Σ̂s
t = E

[
[xs>

t us>
t ]>[xs>

t us>
t ]
]
.

We can then write (4) as

T∑

t=1

m∑

i=1

Li,t • Σ̂j,t −
T∑

t=1

Lt • Σ̂s
t

=

T∑

t=1

m∑

i=1

Li,t • (Σ̂j,t − Σj,t)

+
T∑

t=1

m∑

i=1

Li,t • Σj,t −
T∑

t=1

Lt • Σs

+

T∑

t=1

Lt • (Σs − Σ̂s
t ),

(5)

where Σs is the steady-state covariance matrix induced by

Ks, and Σj,t is generated by Algorithm 1. Now, we show

how each term in (5) is bounded.

(I) For the term
∑T

t=1

∑m
i=1 Li,t • Σj,t −

∑T
t=1 Lt • Σs:

Based on Lemma 3.3 in [4], it can be shown that

Tr(Σs) = Tr(Σs
xx

) + Tr(Σs
uu

) ≤ 2κ4λ2/γ = ν. Then,

by Lemma 4.1 in [4], Σs is a feasible solution to the

SDP (3). Based on the definition of the feasible set S ,

the diameter supΣ,Σ′∈S ‖Σ− Σ′‖F ≤ 2 supΣ∈S ‖Σ‖F =

2 supΣ∈S
√

Tr(Σ2) ≤ 2 supΣ∈S
√

Tr(Σ)2 ≤ 2ν. And

the norm of the gradient of the linear loss function

S → Li,t • S is upper bounded by
√
2C since√

Tr(Q>
i,tQi,t) + Tr(R>

i,tRi,t) ≤
√
2C.

Let Σ∗ = argminΣ∈S
∑T

t=1 Lt • Σ. Based on the regret

bound of distributed online gradient descent [5], we have

T∑

t=1

m∑

i=1

Li,t • Σj,t −
T∑

t=1

Lt • Σs

≤
T∑

t=1

m∑

i=1

Li,t • Σj,t −
T∑

t=1

Lt • Σ∗

≤mν

η
+

(
3 +

4
√
m

1− β

)
4mC2ηT,

(6)

where β ∈ [0, 1) is the second largest singular value

of P. Also, based on Lemma 3 in [5], the variation

‖Σj,t+1 − Σj,t‖F is upper bounded as the following:

‖Σj,t+1 − Σj,t‖F ≤ 4
√
2mCη

1− β
. (7)

(II) For the term
∑T

t=1

∑m
i=1 Li,t • (Σ̂j,t − Σj,t):

Based on Algorithm 1, we have

Σj,t =

(
(Σj,t)xx (Σj,t)xu
(Σj,t)ux (Σj,t)uu

)

=

(
(Σj,t)xx (Σj,t)xxK

>
j,t

Kj,t(Σj,t)xx Kj,t(Σj,t)xxK
>
j,t

)
+

(
0 0
0 Vj,t

)

and

Σ̂j,t =

(
(Σ̂j,t)xx (Σ̂j,t)xxK

>
j,t

Kj,t(Σ̂j,t)xx Kj,t(Σ̂j,t)xxK
>
j,t

)
+

(
0 0
0 Vj,t

)
.

Therefore, we get

Li,t • (Σ̂j,t − Σj,t) = Qi,t •
(
(Σ̂j,t)xx − (Σj,t)xx

)

+Ri,t •Kj,t

(
(Σ̂j,t)xx − (Σj,t)xx

)
K>

j,t

=(Qi,t +K>
j,tRi,tKj,t) •

(
(Σ̂j,t)xx − (Σj,t)xx

)

≤Tr(Qi,t +K>
j,tRi,tKj,t)

∥∥∥(Σ̂j,t)xx − (Σj,t)xx

∥∥∥

≤
[
Tr(Qi,t) + Tr(Ri,t)

∥∥Kj,tK
>
j,t

∥∥]
∥∥∥(Σ̂j,t)xx − (Σj,t)xx

∥∥∥

≤C(1 +
ν

σ2
)
∥∥∥(Σ̂j,t)xx − (Σj,t)xx

∥∥∥ ,
(8)

where the third inequality holds since Tr(Qi,t),Tr(Ri,t) ≤ C

and Kj,t is (
√
ν
σ , σ2

2ν )-strongly stable based on Lemma 4.3 in

[4]. Choosing η such that 4
√
2mCη
1−β ≤ σ4

ν , based on (7) and

Lemma 1, we have
∥∥∥(Σ̂j,t)xx − (Σj,t)xx

∥∥∥

≤ ν

σ2
e−

σ2

2ν (t−1)
∥∥∥(Σ̂j,1)xx − (Σj,1)xx

∥∥∥+ 16
√
2mCην2

(1− β)σ4
.

(9)

Substituting (9) into (8) and summing over t ∈ [T ], we get

T∑

t=1

Li,t • (Σ̂j,t − Σj,t)

≤C(1 +
ν

σ2
)

(
ν

σ2

∥∥∥(Σ̂j,1)xx − (Σj,1)xx

∥∥∥
T∑

t=1

e
−

σ2

2ν
(t−1)

)

+C(1 +
ν

σ2
)

(
16

√
2mCην2

(1− β)σ4
T

)

≤C(1 +
ν

σ2
)(
2ν2

σ4
+

ν

σ2
)
∥∥∥(Σ̂j,1)xx − (Σj,1)xx

∥∥∥

+C(1 +
ν

σ2
)

(
16

√
2mCην2

(1− β)σ4
T

)
,

(10)

where the second inequality comes from the fact that∑T
t=1 e

−αt ≤
∫∞
0

e−αtdt = 1/α for α > 0. Summing (10)

over i, the result is obtained.
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(III) For the term
∑T

t=1 Lt • (Σs − Σ̂s
t ):

By denoting Σs =

(
Σs

xx
Σs

xx
Ks>

KsΣs
xx

KsΣs
xx

Ks>

)
and

Σ̂s
t =

(
(Σ̂s

t )xx (Σ̂s
t )xxK

s>

Ks(Σ̂s
t )xx Ks(Σ̂s

t )xxK
s>

)
, we have

Lt • (Σs − Σ̂s
t )

=
m∑

i=1

(Qi,t +KsRi,tK
s>) •

(
Σs

xx
− (Σ̂s

t )xx

)

≤
m∑

i=1

Tr(Qi,t +KsRi,tK
s>)

∥∥∥Σs
xx

− (Σ̂s
t )xx

∥∥∥

≤mC(1 + κ2)
∥∥∥Σs

xx
− (Σ̂s

t )xx

∥∥∥ ,

(11)

where the second inequality comes from the fact that

Tr(Qi,t),Tr(Ri,t) ≤ C and Ks is (κ, γ)-strongly stable.

Based on Lemma 3.2 in [4], we get
∥∥∥(Σ̂s

t )xx − Σs
xx

∥∥∥ ≤ κ2e−2γ(t−1)
∥∥∥(Σ̂s

1)xx − Σs
xx

∥∥∥ . (12)

Substituting (12) into (11) and summing over t, we have

T∑

t=1

Lt • (Σs − Σ̂s
t )

≤mC(1 + κ2)κ2
∥∥∥(Σ̂s

1)xx − Σs
xx

∥∥∥
T∑

t=1

e−2γ(t−1)

≤mC(κ2 + κ4)(1 + 2γ)

2γ

∥∥∥(Σ̂s
1)xx − Σs

xx

∥∥∥ .

(13)

Based on (6), (10) and (13), we have

Jj
T (A)− JT (K

s)

≤mν

η
+mC(1 +

ν

σ2
)(
2ν2

σ4
+

ν

σ2
)
∥∥∥(Σ̂j,1)xx − (Σj,1)xx

∥∥∥

+
mC(κ2 + κ4)(1 + 2γ)

2γ

∥∥∥(Σ̂s
1)xx − Σs

xx

∥∥∥+ ρηT,

(14)

where

ρ ,

[
4mC2

(
3 +

4
√
m

1− β

)
+mC(1 +

ν

σ2
)
16
√
2mCν2

(1− β)σ4

]
.

By setting η = 1/
√
ρT , the upper bound in (14) is

O(
√
ρT ). (Here it is assumed that T ≥

(
4
√
2mνC

σ4(1−β)ρ1/2

)2
to

make sure 4
√
2mCη
1−β ≤ σ4

ν and (9) holds.)
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