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Autonomous robots are increasingly placed in contexts that require them to interact with groups of people
rather than just a single individual. Interactions with groups of people introduce nuanced challenges for
robots, since robots’ actions influence both individual group members and complex group dynamics. We
review the unique roles robots can play in groups, finding that small changes in their nonverbal behavior and
personality impacts group behavior and, by extension, influences ongoing interpersonal interactions.
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1 INTRODUCTION
Catalyzed by the adoption of robots in manufacturing during the 1970s and 80s, questions quickly
followed regarding how robots might impact group practices, productivity, and even social dynamics.
Despite the rapid increase of robots in the workplace and a couple of early examinations [8, 9],
suggesting both advantages (reduced fatigue) and disadvantages for workers (increased human
downtime, reduced face-to-face time with coworkers), research exploring a robot’s impact on
people largely focused on dyadic interactions (i.e. one robot interaction with one human [54, 58,
65, 98, 147, 172]). It was not until decades later that research in human-robot interaction began
expanding from a primarily one-to-one, level to consider a robot’s influence at the group level (e.g.,
groups, teams, workplaces, organizations, families, classrooms [67]). Despite the recent growth
in research investigating the influence of robots within groups of people (see Figure 1 for some
descriptive examples), our overall understanding of what happens when robots are placed within
groups or teams of people is highly limited. Developing such understanding is essential for the
field of computer-supported collaborative work (CSCW) since almost all work involves groups
or teams to some degree [93], the performance of which is highly dependent on group dynamics
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Fig. 1. Descriptive examples of robots interacting with human groups: (a) a Furhat robot completing a sorting
task with two people in a museum [161], (b) two EMYS robots and two people playing a card game in a
lab setting [31], (c) a Robovie robot guiding people in a shopping mall [154], and (d) a Nao robot playing a
collaborative game with three people in a lab setting [164].

(e.g., [64, 80, 192]). Without a detailed understanding about how robots influence the dynamics,
development, and outcomes of groups, efforts to develop robots that effectively support groups and
teams are likely to plateau.

When we use the term groups, we refer to “two or more individuals who are connected by and
within social relationships” [47]. We explicitly include dyads (two people) when we refer to groups
[191], but acknowledge that there is disagreement about that categorization (e.g., [123]). We use
the terms team, work-group, and task-group interchangeably to refer to those groups that 1) share
one or more common goal(s), 2) are interdependent in their tasks, and 3) interact socially [27, 93].
It is also important to note that when we refer to groups and teams in the context of this paper, we
refer to groups and teams of people and do not necessarily assume the robot to be a constituent
member of the group. Our interest is primarily in understanding the impact robots have on groups
and teams of people.

Groups exhibit unique emergent properties that cannot be fully understood bymerely aggregating
the behavior and characteristics of individuals [47, 106, 159, 192]. For example, research has shown
that the collective intelligence of groups is independent of the intelligence of the individuals
that constitute the group and instead dependent on a group’s emergent social processes [192].
Some of these emergent social processes include interpersonal dynamics, organizational level
factors, and group processes for successful interaction (e.g., conflict management, establishment of
group norms, maintaince of shared mental models, development of transactive memory systems)
[19, 27, 105, 190, 194, 195]. Groups also exert influence over group members as they shape decision
making [10, 151] and form social identities [170]. Transitioning from dyadic interactions (one robot
one person) to interactions with groups (one or multiple robots with two or more people) constitutes
a fundamental change in complexity that is neither captured by current theory in human-robot
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interaction [60, 79], nor do existing technical approaches for human-robot interaction readily scale
to groups [25, 115, 116].

While research on computer-supported cooperative work (CSCW) originated out of an interest
in groups and teams [63] and offers a rich body of work examining the impact of technology on
groups and teams, CSCW theory does not readily capture how groups and teams are influenced by
robots. Research on CSCW has consistently highlighted time (e.g., synchronous vs asynchronous)
and place (e.g., face-to-face vs. electronic) as dimensions that are among the most relevant when
theorizing a technology’s impact [61, 75, 96], even as CSCW has moved to what Wallace and
colleagues [187] call the “Post-PC Era” and has broadened its scope to include technologies other
than PCs. Existing frameworks and theories work well when technology is theorized predominantly
as a tool or infrastructure to support teamwork [187], however, do not well extend to autonomous
robots that can take on roles within groups as teammates or constituent members [137]. People
have demonstrated a unique response to robots [34], as opposed to other non-physically embodied
agents, demonstrating increased compliance [12, 40], learning gains [107], and preference scores
[186] in human-robot interactions. The physical presence of robots and their ability to be perceived
as independent agents differentiate them from other technologies (e.g., virtual agents, mobile
phones, videoconferencing software), and thus require specific investigation as to their distinct
influence on groups and teams of people.
For these reasons, we believe it is both timely and necessary to provide a review of studies

focusing on robots interacting with groups of people to provide both an objective insight into
where the field stands to date and further push researchers toward areas of potential need and
interest. Our review seeks to answer three primary research questions: How does a robot’s behavior
shape group dynamics and people’s behavior within the group? What are appropriate roles for
robots to adopt in a variety of settings? And how does a robot’s behavior affect how people in the
group behave towards one another?

1.1 Differences between Robots Interacting with Groups and with Individuals
As researchers began exploring robot interactions with multiple people, it has become clear that
several aspects of the interaction change when a robot engages with multiple people as opposed
to a single person. Notably, groups of people 1) are more likely to interact with robots, 2) exhibit
intergroup bias in their interactions with robots, 3) pay less attention to robots, and 4) distinctly
externalize their mental states. In this section, we describe work that has exposed these distinct
aspects of human-robot group interactions and explore possible explanations for these observed
differences between how groups and individuals interact with robots.

When given the choice of whether or not to interact with a robot in their environment, groups of
people are more likely than individuals to engage with the robot. Groups, as opposed to individuals,
were significantly more likely to interact with a robot receptionist, that was positioned near an
entrance to an academic building [56, 120]. Additionally, unsuspecting university students were
three times more likely to allow a robot to both enter and exit their restricted access dormitory
building if they were in a group rather than if they were by themselves [18]. From these research
studies, it seems that people feel more comfortable engaging socially with robots from the safety of
a group as opposed to being alone.

Groups of people have also exhibited more competitive and aggressive behavior toward robots
than toward individuals. A likely explanation for this behavior is the introduction of intergroup bias
in groups composed of multiple people and one or more robots, where humans consider themselves
as an ingroup and the robot(s) as an outgroup. Members of groups with intergroup bias adopt an
“us versus them” mentality, characterized by favoring ingroup members and opposing outgroup
members [14, 169]. Intergroup bias applied to robots has demonstrated similar effects, where a robot
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ingroup member is perceived as more anthropomorphic and is evaluated more positively than a
robot outgroup member [71, 94]. Several HRI research studies support the idea that humans within
a human-robot group naturally adopt intergroup bias where they treat robots as outgroup members.
For example, in a research study where pairs rather than individuals played a game against a
robot, the pairs exhibited more competitive and less cooperative behavior towards the robot [24].
Similarly, groups of three humans exhibited more greed and competitive behaviors toward robots
than individuals [52]. Outside the context of competitive games, children and young adults have
shown a tendency to exhibit bullying behaviors toward robots in public spaces [17, 20, 143]. These
research studies strongly suggest that robot members of human-robot groups are often regarded as
having a distinct membership in the group, often resulting in the antagonistic treatment of robots.
Another difference between robot interactions with individuals and groups of people is the

presence of human-to-human interactions. Groups of people, as opposed to individuals, who
interacted with a robot receptionist spent more time engaging with the robot, however spent less
time interacting directly with the robot [56, 120]. The decreased focus on the robot due to the
presence of other humans in the group has also been shown to have adverse effects on the learning
outcomes of children. After listening to two robots playing out interactive narratives, learning
and recall scores for children in groups of three were shown to be worse than those of individual
children [100, 101]. A likely explanation for this result is that the children directed less attention to
the robots when they were in groups of three because they were also attending to one another, and
thus did not retain as much of the information the robots were trying to convey.
Additionally, the way that people express their internal states (e.g., emotions, attitudes) seems

markedly different when comparing a one-on-one human-robot interaction with a human-robot
group interaction involving multiple people. For example, the accuracy of machine learning classi-
fiers designed to recognize disengagement in children significantly decreased in group contexts
when the classifiers were trained on data with individuals [102]. However, classifiers trained on
videos of children within groups of three predicted engagement more accurately [102]. These
findings illustrate the differences in how children express disengagement when interacting alone
with robots as opposed to interacting alongside two peers with the same robots, as well as the need
for robots to develop the capabilities to sense human internal states distinctly in one-on-one and
group contexts.

In sum, this literature provides compelling evidence that people interact differently with robots
when they are alone than when they are with other people. This review seeks to highlight the
research unique to robots interacting with groups of people: the nonverbal and verbal behaviors
a robot can use, contexts in which human-robot group interaction has been explored, and the
influence of robot behavior on how people in the group interact with one another.
This review is organized as follows. In Section 2 we detail our selection method for the papers

that we included in this review. We then present the central themes and findings resulting from our
analysis of these papers in Section 3: descriptive characteristics of the robots and groups (Section
3.1), robot behavior studied in groups (Section 3.2), group interaction contexts (Section 3.3), and
robots’ influence on human-to-human interactions (Section 3.4). We summarize these findings in a
framework that we describe in Section 3.5. In Section 4, we discuss this body of work focused on
robots interacting with human groups and teams with a specific focus on implications for theory,
design, and research methods.

2 REVIEWMETHOD AND CORPUS
We conducted a systematic review of the experiment designs, methodologies, and analytic tech-
niques that form the foundation of research studies investigating robots interacting with groups
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and teams. Our review takes stock of existing work and highlights areas of opportunity for future
research. We included studies that satisfied the following criteria:
(1) The study must include at least one physically embodied robot.
(2) At least two locally present people must interact with the robot(s) simultaneously.
(3) The robot(s) must be autonomous or perceived to be autonomous interactant(s).
(4) The study must explore group-level phenomena and provide a direct contribution to our

understanding of how robots interact with and influence groups of people.
These criteria were chosen to focus this review on studies that investigate how physically present

autonomous robots shape interactions with multiple people simultaneously. We exclude studies
that focus on one person interacting with multiple robots [50, 51] because our focus in this review
is on how robots can influence groups of people and we do not assume that robots are constituent
members of the groups studied. We do not include studies pertaining to mobile robotic presence
systems, or telepresence robots [131, 132, 162, 171], because they are dependent upon a human in
the loop and lack the autonomy necessary to be considered agentic robots. Similarly, this excludes
numerous studies conducted using remote-controlled robotics such as rovers [165, 182], rescue
robots and drones [125], and surgical robots [15, 28, 36, 135], since these robots fulfill more the role
of robotic tools rather than autonomous agents. Excluded as well are technical papers wherein the
primary focus is on systems designed for multiple-human interaction, however, do not demonstrate
the influence of the robot’s actions on the group. For example, this applies to papers focused on
analyzing multi-person groups for approach strategies [5, 38, 175], localizing and parsing relevant
group member speech, and analyzing group cues for topic shift and engagement [115].

Using the inclusion criteria described above, we conducted an exhaustive search of papers within
top-tier HRI outlets including the ACM/IEEE International Conference on Human-Robot Interaction
(HRI), the IEEE International Conference on Robot and Human Interactive Communication (RO-
MAN), the International Journal of Social Robotics (IJSR), and ACMTransactions on Human-Robotic
Interaction (THRI). Additionally, we conducted a Google Scholar search using the terms “robots in
groups” and “robots in teams” as well as for the publications of all authors who participated in the
Robots in Groups Workshop event hosted at the 2017 ACM Conference on Computer-Supported
Cooperative Work and Social Computing (CSCW). We conducted further Google Scholar searches
of all authors attached to our existing literature collection as well as relevant author citations within
these sources. We set a cut-off date of publication for inclusion in this review at April, 2019. The
search for publications to include in the review was conducted by the first and second authors and
was modeled after the literature search described in a recent review on robots for education [16].
The first and second authors agreed together upon which papers satisfied the inclusion criteria.
The method we used to search for and include papers in the review is summarized in Figure 21.

In total, we collected a corpus of 103 peer-reviewed scholarly papers for our review, which
contain 101 distinct studies – human-subjects experiments with a defined experimental design.
There is a difference in the number of papers and research studies because some papers include
multiple studies and some papers refer to the same study.
In order to quantify the differentiating characteristics of this body of work, we categorized

features related to the robot, the human-robot group as a whole, and the experiment setup in each
of the studies included in this review. To capture differences in robots’ appearance and behavior,
for each study we annotated the type of robot(s) used, whether or not the robot(s) have a head and
eyes, the robot control methodology (Wizard-of-Oz or autonomous), the role of the robot (leader,
peer, or follower), and the main robot behavior(s) examined (locomotion, gaze, gestures, content
1The number of papers from the RO-MAN conference is approximate due to the lack of online access to the proceedings
from 1998 and the lack of distinction between short and full papers in some of the proceedings.
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All full papers published
at HRI (n = 522), 
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IJSR (n = 438), 

and THRI (n = 119)

Additional full papers
identified by their

citations in the already
selected papers and
through other means

Full papers published
by the attendees of the
CSCW 2017 Robots in
Groups Workshop and

other well known
researchers in the area

Full papers that
appear in the top 

Google Scholar search 
results using the terms

“robots in groups”
and “robots in teams”

Pool of papers considered for inclusion in this review 

Papers remaining after reading paper titles and abstracts and excluding any papers that 
did not meet the inclusion criteria

(n = 197 papers)

Papers included in the review after reading each paper and excluding those that did not meet
the inclusion criteria

(n = 103 papers, 101 research studies)

Fig. 2. In this diagram, we illustrate the method we used to select the research papers that are included in
this review.

delivery, personality, and/or emotion). In order to analyze characteristics of the group as a whole,
for each study we denoted the composition of the group (the number of people and the number of
robots) as well as the type of the group according to [109] (loose association, task group, or intimacy
group). To evaluate the variety of experimental setups, for each study we captured the country
where the study was conducted, the setting of the study, the study design type (experimental or
observation-based), the number of between subjects conditions, the number of groups, the number
of total participants, and the number of study sessions. The research studies included in this review
as well as their categorized features are listed in Table 1 in Appendix A).

A majority of research studies have come from the United States, Japan, and Europe, see Figure
3(a). Most of the studies had an experimental study design (82% of the studies). For each between-
subjects condition in these experimental studies, the number of groups in each condition ranges from
1 to 373 with a median of 12 groups as shown in Figure 3(b). A majority (79%) of the experimental
studies in this review relied on only one interaction session, Figure 3(c). Exceptions include a study
in which a QRIO robot was integrated into a preschool classroom and interacted with preschoolers
during 45 distinct sessions for on average 50 minutes per session over the course of 5 months [174].

3 FINDINGS
After carefully selecting the studies to include in this review, we next focus on the most significant
contributions of this body of work. We highlight the main descriptive characteristics of the robots
and groups, the robot behaviors studied within groups, the interaction contexts of these studies,
and results demonstrating robot influence on human-to-human interactions within groups. We
summarize these findings in a framework depicting how robots influence the behavior of human-
robot groups (Figure 7).
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USA
38%
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26%

Portugal
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Sweden
3%

Iran
3%

Canada
 3%

Other
13%

1
79%

2-5
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11-20
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6-10
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21-100
5%

(a) Country

(b) Number of Groups per Between-Subjects Experimental Condition
1-5
28%

6-15
36%

16-30
21%

31-50
9%

51-400
6%

(c) Number of Experimental Sessions

Fig. 3. In the studies we review, we highlight the (a) countries where the studies were run, (b) the number of
groups per between-subjects condition in the experimental studies, and (c) the number of interaction sessions
in the experimental studies.

3.1 Descriptive Characteristics of the Robots and Groups
The descriptive characteristics of robots and the groups with which they interact have a considerable
influence on the types of interactions that can occur and their outcomes. From the studies included
in this review, we focus on the group compositions, the types of robots used in the studies, and the
control methods used for the robots.

Of the studies in our corpus, a majority have examined groups consisting of a variable number
of people and one robot (e.g., a robot approaching and interacting with groups of varying sizes
in a shopping mall), two people and one robot, and three people and one robot, see Figure 4(a).
Few studies have explored groups consisting of more than one robot interacting with a group of
people or robots interacting with a defined group of more than 3 people. Future work is needed
to study the effects of more robots and more people within groups. For example, it is likely that
as the number of people within a group increases, the robot’s effect on the individuals within the
group will weaken. This has been demonstrated on a smaller scale in Leite’s work where children’s
learning and recall scores decreased when groups of three children, as opposed to a single child,
received educational instruction from two robots [100, 101].
A variety of robots have been studied interacting with groups of people: highly anthropomor-

phized or human-like robots (i.e., android robots, e.g., Android Repliee Q2), robots with a body
shape that resembles that of a human (i.e., humanoid robots, e.g., Robovie, Nao), robots that re-
semble animals (e.g., PARO), simple robots that can exhibit social behavior (e.g., Keepon), robots
that have a face and no body (e.g., EMYS), and robots that do not have a social appearance (e.g.,
Turtlebot, Roomba). For a comprehensive review of socially interactive robots and their defining
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Fig. 4. We display the (a) composition of human-robot groups studied in the literature as well as (b) the most
commonly used robots in these studies and the (c) control methods for these robots.

characteristics, please refer to [44]. Figure 4(b) displays the most commonly used robots in the
studies included in this review.
The appearance and capabilities of a robot greatly shape what the robot can physically do and

how the robot can communicate with the people in the group. Robots with more human-like
features (e.g., a face and eyes, the ability to physically move around, speech-to-text capabilities)
can communicate using a wider array of social signals that people can easily discern (e.g., gaze,
proxemics, gestures, human language). In fact, 83% of the studies in this review study a robot that
has a head and eyes. The inclusion of both a head and eyes in the majority of robots used in studies
with groups may speak to the importance of a robot’s ability to direct attention in a group and
leverage accessible and familiar social cues, establishing it as a social agent in the context of a
human-robot group. However, this could also be influenced by which robot platforms are available
for purchase (most have a face and eyes), so the importance of these features should be considered
keeping this in mind.
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Robots in these studies have either been controlled autonomously or by the Wizard of Oz (WoZ)
method. The majority of studies have used fully autonomous robots (67.8%) requiring no human
input to control, as shown in Figure 4(c). Autonomous robot control more closely simulates how
robots will interact with people in non-research contexts and has a low burden on researchers while
conducting studies. Other studies have used the WoZ method (32.2%) to simulate autonomy by
involving a human ‘wizard’ who controls aspects of the robot’s behavior (e.g., speech recognition
and generation). While the WoZ method does not resemble how most robots will be controlled
within non-research contexts in the future and WoZ requires a high burden on the ‘wizard’ during
the study, the WoZ method does enable the robot to have a wider range of more sophisticated
actions in its interactions with people. Although the two control methods have different strengths,
they have both been used to make significant contributions to the study of robots interacting with
human groups and teams.

3.2 Robot Behavior in Groups
Just like people, robots can influence group interactions through their nonverbal and verbal behav-
iors. A robot’s use of nonverbal behaviors (e.g., gaze, proxemics, gestures) can socially cue group
members to produce desired responses. Additionally, robots can express emotion and personality
verbally, which can shape the overall group dynamic.

3.2.1 Nonverbal Behavior: Gaze, Proxemics, and Gestures. A sizable portion of research on robots
in groups focuses on ways in which a robot can shape the interaction dynamics between people
using nonverbal cues and interventions. Collectively this work demonstrates a powerful influence
that robots can exert on groups using gaze, proxemics, and gestures.
Speaking specifically to robot gaze in groups, studies have found that groups of varying sizes

can easily recognize a robot’s gaze [72] and interpret a robot’s prioritized target from a robot’s gaze
cues [89]. Robots can also use gaze in tandem with other cues, such as smiles and speech pauses, to
influence turn-taking between human group members and signal upcoming conversational turns
for the robot [160, 161]. Beyond the ability to influence turn-taking, robots have also been shown
to shape people’s conversational roles using gaze in a group [128].

Proxemics, or the way in which a robot is physically positioned in groups, has also been shown
to influence human-robot group interactions. People in crowded spaces prefer robots that maintain
a comfortable distance [86]. People also prefer robots that approach their group when the robot
is in the line of sight of group members and when the robot aims to occupy a spatial opening in
the group [13]. A robot’s body orientation also influences its interactions with groups of people.
In a shopping mall, bystander groups have been observed to be larger and more engaged when
the robot walked backwards, facing the group, rather than alongside them [154]. Additionally, a
robot that leverages its body position and gaze toward groups in a brainstorming task was found
to facilitate feelings of inclusion and belonging to the group [179]. People also alter their own
proxemic distance to robots based on their context and the robot’s navigation strategy. For example,
people move closer to a stationary robot if the group contained both a child and an adult [129], and
people were observed to navigate with lower accelerations (indicating possible increased comfort)
around robots navigating autonomously with state-of-the-art navigation algorithms as compared
with teleoperated robots [118].

A robot’s physical gestures can enhance its interactions with groups of people. People perceive a
robot more positively if it considers the social appropriateness of its pointing gestures (e.g., it is
not always socially appropriate to point at people [110]). Robots that produce gestures that are
more organic and natural, allowing for interruptions in the production of gestures and featuring
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parameterization of gestures, have been shown to increase both the number of people who com-
municated with it and the length of the interaction [91]. Additionally, robots are more effective
at conveying their arm motion intent when they can balance the legibility and predictability of
handover motions when interacting with a group of people [39]. Non-anthropomorphic robots
that do not use verbal language and only communicate through gesture and movement have been
shown to influence people’s gaze towards the robot, perceptions of the robot’s sociality [68], as
well as the evenness of the group’s conversational backchanneling turns [176].

3.2.2 Verbal Behavior: Personality and Emotion. A robot’s speech can powerfully influence both its
perceived personality and emotion, which in turn shape the overall dynamic of the group and the
behavior of its members.

Robot personality characteristics (e.g., collaborativeness, competitiveness, trustworthiness, and
warmth) are often communicated verbally, with profound effects on the group. In a series of studies
employing two robots playing a partnered card game with two people, researchers examined
how competitive versus relationship oriented personalities impacted group impressions [29–32,
133]. Competitive opponent robots and relationship-driven partner robots received the most gaze
attention [133], but overall, people tended to prefer a relationship-driven robot as a group member
[32], at least in the game context. People’s preferences for robot teammates also shifted over time,
such that people tend to prefer robot teammates with personalities (collaborative or competitive)
that reflect their own [31, 32]. Time in general seems to be a critical factor in many instances as
trust in human-robot teams forms over time [29, 30] and perceptions of and relationships with
robots tend to evolve over time as well [111].
Robots can also express emotion verbally, shaping how people within a group behave and

perceive the group. Robots have been shown to influence groups of people by displaying emotional
cues [31], recognizing human emotions and empathizing with members [103, 136], and shaping
the affective status, or mood, of a group and its membership [3, 66, 178, 185]. However, it is not
simply a matter of saying that emotion displays make better robots, as the type of robot-enacted
emotion display matters. For example, robots that expressed group-based emotion expressions were
perceived as more likable and trustworthy than robots that expressed individual-based emotion
expressions in human-robot groups playing a game of cards [31]. This research as a whole suggests
great promise in using robots to facilitate positive group emotion, but there remain many gaps
for researchers to explore in understanding precisely when and in what contexts the range of
emotional expression may be influential or effective.

3.3 Interaction Context
In order to gain a broader understanding of the studies that have been conducted examining robot
interactions with groups of people, it is necessary to examine the context of these interactions. We
specifically focus on the study settings, the roles robots adopt within the group, and the type of the
group, highlighting how these contextual factors have shaped this area of research.

3.3.1 Robot Roles and Interaction Settings. To gain better understanding of the roles robots take
on as members of human-robot groups, we examined the settings in which group interactions
occurred and the roles that the robots performed within those settings. We distinguish between lab
settings (environments controlled by and chosen by researchers) and field settings (natural settings
where participants would be found even when the experiment was not taking place). For field
studies, we further categorized each study according to a specific setting (e.g., museum, shopping
mall).
Additionally, we distinguished between three roles the robot took on during studies: follower,

peer, or leader. A robot in the role of a follower reacts to interaction initiatives from people, follows
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Fig. 5. We visualize (a) the number of studies conducted in the lab and in the field and the robot roles found
within each setting and (b) the number of studies conducted in specific field setting and the robot roles found
within each field setting.

instructions, or performs a service task to help people (e.g., a hospital materials delivery robot). A
robot in the role of a peer is positioned similarly to a human in initiating and driving interactions
(e.g., a robot collaborating as a partner on a shared task). A robot in the role of a leader initiates
and guides interactions or facilitates the behavior of the people it interacts with (e.g., a robot tutor).
Figure 5(a) visualizes the number of studies conducted in both the lab and the field with each of the
three robot roles (follower, peer, and leader) and Figure 5(b) shows the number of studies that have
been conducted in each specific field setting with each of the three robot roles. None of the studies
were conducted in multiple settings, however some of the studies investigated multiple robot roles
and the count for each of the roles was incremented by one.

It is important to observe that more than half (57.4%) of the studies have been conducted in the
field, as shown in Figure 5(a). This stands in contrast to the human-robot interaction literature in
general where, for example, of the full papers containing human-subjects studies accepted to the
2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI), only 16.7% of the
studies were conducted in the field (66.7% were conducted in the lab and 16.7% were conducted
online, e.g., Amazon Mechanical Turk). As a result of the high proportion of studies conducted in
the field, this body of work has a strong grounding in and applicability to real-world environments
as well as a proved robustness to the more chaotic and complex interactions that occur outside the
lab.
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In Figure 5(a), we can also see that nearly half of the studies conducted in lab settings have
investigated robots in peer roles (46.7%), whereas in field settings the smallest percentage of studies
have investigated the robot in a peer role (25.9%). Robots in the field are usually either programmed
to convey the same information doing repetitive tasks in the role of a leader or are designed to
be under the direct supervision of people in the role of a follower. The lack of peer robots studied
in the field is likely due to the challenge of equipping a robot in unconstrained settings with all
the necessary skills and knowledge needed to effectively interact with people as a peer. Many of
these essential skills are not unique to robots interacting with groups, such as natural language
understanding, intent prediction, and emotion expression detection. In addition to these skills,
robots interacting with groups of people as a peer and in more flexible and complex roles also must
construct models of the relationships between the people with whom they interact, choose which
person or people to address, and predict how their actions influence multiple different people. As
these underlying technological components that support robots interacting socially with groups of
people improve, robots will be able to take on more sophisticated, flexible, and complex roles in the
unstructured and unpredictable field settings.

Certain types of settings seem to suit particular robot roles better than others, see Figure 5(b). In
settings where the desired behavior of the robot is repetitive and consistent, especially in conveying
information, robots are often put in the role of a leader, for example, explaining museum exhibits
[155, 160, 161, 193], giving directions to people in a shopping mall [140, 154], and tutoring children
[4, 21, 41, 84]. In settings where robots are designed to provide companionship to people, robots are
often given the role of a peer, such as playing with children in day care centers [174] and learning
alongside children in educational settings [69, 117]. In complex settings where robot mistakes
can be costly, robots are often positioned in the role of a follower, where their actions are either
controlled or monitored and can be corrected by the people around them, for example, delivering
items within a hospital [111, 126], working alongside people in a manufacturing plant [144], and
vacuuming people’s homes [45, 46, 166].

Additionally, by examining Figure 5(b) it is clear that some settings have received more attention
than others. For instance, about twice as many studies have been conducted with children in
school settings than with adults in the workplace (e.g., hospital, manufacturing plant, therapist
office) and people in home environments combined. In particular, these two environments, adult
workplaces and homes, are the places where people spend the majority of their time and where
robots have already had great influence and impact (e.g., vacuum cleaning robots, voice assistant
devices, manufacturing plant robots, mobile delivery robots). As research continues exploring
robots interacting with groups of people, more studies examining robots in adult workplaces and
home environments are necessary to better understand the influence of robots on people in these
environments and advance the robotic technology necessary for robots to operate effectively in
these important settings.

3.3.2 Group Types. Another important contextual factor to consider when examining this work on
robots interacting with groups of people is the type of the group. We distinguished between three
group types using those experimentally derived by Lickel et al. (2000) [109]: intimacy groups, task
groups, and loose associations. Intimacy groups are characterized by close personal relationships
(e.g., romantic partners, friends, families). Task groups, or teams, are generally oriented around a
shared task or interest (e.g., an airline flight crew, a student campus committee). Loose associations
include both temporary assemblies of people (e.g., people in line at a bank, people waiting at a bus
stop) and longer-term shared interests or interactions (e.g., neighbors, people who enjoy classical
music). Interactions within the different group types have different characteristics (e.g., entitativity,
permeability, duration, size) and are governed by distinct social rules and norms [26, 109]. Figure
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setting and (b) the number of studies conducted over time for each group type.

6(a) displays the number of studies conducted in both the lab and the field, and within each study
setting, the number of studies that examine each of the three group types. Figure 6(b) shows the
number of studies that have explored each type of group over time.

In Figure 6(a), we observe that the most studied type of group are loose associations, especially
those in field settings. These studies, for example, have analyzed the effectiveness of using robots
to improve the mood and quality of life of elderly people [23, 66, 139, 184, 185], explored the
use of nonverbal behaviors in robot exhibit explanations to enhance the experience of people
attending a museum [91, 155], and examined methods to both effectively and safely navigate within
a shopping mall [20, 86, 154]. This work studying robots interacting with loosely associated groups
also dominated the early work (2002-2010) in this research area, see Figure 6(b).
Since 2010, studies examining robot interactions with task groups has risen dramatically, as

displayed in Figure 6(b). In field settings, studies involving task groups have explored the utility of
robots that deliver medical supplies in hospitals [111, 126], the incorporation of robots as social
co-workers in manufacturing teams [144], and the effectiveness of robot teachers and tutors that
facilitate learning interactions with multiple students [4, 22, 41, 84, 163]. Studies in the lab involving
task groups have explored how robots can shape key aspects of human-robot teaming that are
unique to the type of interactions that occur in task groups (e.g., conflict resolution [81], distribution
of decision making authority [57], moderation of collaborative tasks [157], synchronization one’s
behavior with the group [73, 74]). As robot capabilities continue to improve and an increasing
number of robots are developed to join teams of people, it is likely that work focused on robot
teammates in task groups will continue to grow.
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3.4 Robot Influence on Human-to-Human Interactions
Robots are not only able to shape how groups of people interact with it, there is also increasing
evidence that robots can influence the relationships and interactions that people have with the other
people in the group. Robots have been shown to shape human-to-human interactions in groups by
increasing human social connection, mediating conflict, and shaping positive team dynamics.
Across a variety of settings, there is evidence that robots can encourage and increase social

interactions among the people in a group with one another. Robots have demonstrated a positive
influence on the amount of verbal communication and interaction among older adults within care
facilities [139, 177]. Similarly, studies of robots moderating inter-generational groups [77, 158]
have shown promise in engaging multiple generations in meaningful interaction. Also, robots that
promote social skills development in children with ASD have shown to be effective in increasing
social engagement between these children and others in their group, whether with their caregiver
[145], another playmate [88], or with a therapist [196].
In moments of conflict between human members of a human-robot team, a robot’s actions

can influence how conflict is resolved. For example, robots have demonstrated success in directly
mediating resource conflicts (e.g., fighting over the same toy) between children [149]. Another
study showed that a robot intervening in a team’s conflict after a team member made a hostile
remark increased the salience of conflict and forced team members to actively engage with the
conflict [81].
Robots have also demonstrated the ability to shape human-robot team dynamics, positively

influencing how people interact with each other. For example, robots have been found to im-
prove performance in a collaborative game between pairs of children by asking task-focused
questions and perceptions of performance on the same task between pairs of children by asking
relationship-oriented questions [163]. Another study that used a robot moderator during a three-
person collaborative game showed that group cohesion could be actively influenced by the robot
based on its behavior [157]. Tennent and colleagues [176] introduced a swiveling microphone robot
(‘Micbot’) capable of facilitating more balanced participation during a three-person team’s decision
making discussion. Finally, a robot’s verbal expressions of vulnerability have shown “ripple effects”
in a group by increasing how likely human members of the group are vulnerable with one another
[164]. These studies illustrate the influence robots have to shape group dynamics and the behavior
of people in a group through direct intervention, peripheral non-verbal movement, and indirect
verbal expression.

3.5 Summary of Findings
In order to synthesize the conclusions made from the studies discussed in this review, we present a
framework that describes how a robot’s actions influence the behavior of a human-robot group
(Figure 7). Based on our findings we distinguish between three key factors that explain how robots
can influence the behavior of human-robot groups: descriptive characteristics of the robot(s) and
the group, robot behavior, and interaction context. As we discussed in Section 3.1, descriptive
characteristics of the robot(s) and group (the group composition, the type of robot, and the robot
control method) affect what a robot can and cannot do within a group as well as the magnitude
of the robot’s influence on the people within the group. In Section 3.2, we described how both
nonverbal robot behavior (gaze, proxemics, and gestures) and verbal robot behavior (personality
and emotion) can shape how people in the group perceive and interact with robots and the group as
a whole. We explored how the interaction context affects the nature of the interactions that occur
between groups of people and robots in Section 3.3, where we focused on the interaction settings
(e.g., lab, home, school), the role of the robot (leader, peer, and follower), and the type of the group
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Fig. 7. Based on our analysis of the studies included in this review, we highlight three factors (descriptive
characteristics, robot behavior, and interaction context) that explain how a robot’s actions can influence the
behavior of a human-robot group.

(loose, task intimacy). Finally, in Section 3.4 we analyzed some of the effects of robots on group
behavior, highlighting work that has demonstrated that robots can influence how people in the
group interact with one another (i.e., human-to-human interactions). We hope that this framework
can serve as a guide for future research that investigates how robots can best be designed to interact
with human groups and teams.

4 DISCUSSION
We have presented a review of studies that examined robots in group contexts highlighting specifi-
cally the key descriptive characteristics of robots and human-robot groups, the impact of nonverbal
and verbal robot behavior, the key contextual factors that influence human-robot group interactions,
and the effect of a robot’s actions on how people interact with each other. The contributions made
by studies of robots in groups cover a range of contexts, variables, and use cases. With this in mind,
we next discuss implications for theory, design, and research methods for work examining robot
interactions with groups and teams of people.

4.1 Implications for Theory
As Jung and Hinds [79] have argued previously, it is important to build theory about a robot’s
impact in complex social situations such as group contexts. Research on human robot interactions
has only recently focused on groups as an explicit area of shared concern and no broadly accepted
theories have been developed that capture a robot’s impact on groups and teams. In contrast, CSCW
research began almost 40 years ago with the premise that it is important to depart from a “one
person and one computer” focus towards a focus on understanding “how technology could support
groups, organizations, and communities” [62]. However, to date, efforts to theorize a robots role
and impact within a group or team are scarce, despite some exceptions (e.g. [2, 150, 194]).
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Fig. 8. Human-Robot Group IPO Framework: An input-process-output framework describing robot interac-
tions with a group or team of people, adapted from [64, 119]. The factors specifically discussed in this paper
are denoted with an asterisk (*).

Building on the findings from this review that robots influence groups to a large degree by influ-
encing interactions among people and robots, we propose a Human-Robot Group IPO Framework
(Figure 8) that draws from an influential input-process-output (IPO) framework to study group
interaction that was initially proposed by McGrath (1964) [119] and later adapted by Hackman
and Morris (1975) [64]. The framework places a group’s interaction process as a mediator between
several input factors and a group’s outcomes. It conceptualizes a robot (its behavior and role within
a group) as an input factor to a group’s interaction process. By “interaction process” we refer to all
observational interaction behavior among people and robots that occurs between two arbitrary
points in time (tl and t2). The fundamental assumption underlying the framework is that “input
factors affect performance outcomes through the interaction process” [64] (p.6).

This framework considers individual-level, group-level, and environment level factors that shape
group interaction process and, afterwards, affect the outcomes of the group or team. Within the
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framework, we have included the robot-related factors that we have highlighted in Section 3 of
this review, denoted as asterisks (*), in Figure 8.
With this framework in mind, we discuss what the field as a whole has learned from existing

work by focusing on four questions: 1) How can we conceptualize a robot as part of a group or
team? 2) To what degree does what we know about interactions between one robot and one person
scale to interactions between one or more robots and groups of people? 3) What have we learned
about a robot’s impact on groups? and 4) To what degree does what we know about purely human
groups apply to mixed human-robot groups?

4.1.1 How can we conceptualize a robot as part of a group or team? A perspective on technology that
has been embraced by CSCW and HRI researchers alike (despite some reservations, e.g., [42]) is the
computers as social actors (CASA) theory (e.g., [130, 138]). CASA posits that people mindlessly rely
on social script and heuristics when responding to machines [130, 138]. CASA theory stresses that
social responses to machines are independent of the conceptualization of a machine as human-like.
For example, Nass and Moon [130] report that during their many studies “not a single participant
has ever said that a computer should be understood in human terms or should be treated as a
person” (p.82). While CASA theory helps us understand how people respond to robots, it does not
explicitly address questions about how people make sense of a robot as a member of a group.

Research in CSCW has conceptualized technology predominantly as a tool [96] or infrastructure
[122] based on which groups and teams interact and perform. With that focus on tools and infras-
tructure, time (e.g., synchronous vs asynchronous) and place (e.g., face-to-face vs. electronic) have
been consistently highlighted as dimensions that are among the most relevant when theorizing the
impact a technology has on groups and teams [61, 75]. The focus on time and place has remained
even as CSCW has moved to what Wallace and colleagues [187] call the “Post-PC Era” and broad-
ened its scope to include technologies other than the PC [96]. A robot as tool or infrastructure
perspective does, however, not capture how most of the research examined here conceptualizes
robots within a group or team, where robots are viewed as agents that can act independently.

In contrast to CSCW, research in HRI has rarely conceptualized robots as tools or infrastructure
and has instead theorized robots predominantly as peers, communication partners or teammates
[137]. For example, Fischer argues that it is important “to make collaborative robots social, and even
emotional, actors if we want collaboration to succeed” [43]. Departing from a conceptualization
of technology as a tool has made characteristics and dimensions other than time and place more
relevant when theorizing this technology. In particular, HRI research has focused on understanding
when and why people treat a robot in human-like ways (e.g., [42, 87]) and consequently focused
on aspects such as the type and degree of mind perception [189], anthropomorphism [37, 87], or
the tendency to apply an intentional stance [114] towards a robot. This focus on robots as a social
constituent member of a group rather than a tool is reflected by our findings that highlight the
influence of a robot’s individual-level factors (robot behavior, robot role, robot appearance and
capabilities) on a group or team, as shown in Figure 8.
Although earlier work questioned whether a robot can and should be considered a teammate

[60], current research in HRI has predominately adopted the premise that robots can be group
members. Under this assumption, further work has sought to understand the factors that determine
how people make sense of a robot within a group or team. For example, a recent paper by Abrams
and Rosenthal von der Pütten [2] proposed the I-C-E framework to distinguish between Ingroup
Identification, Cohesion and Entitativity in developing understanding about a robot’s positioning
within a group from an individual or group level perspective. The Human-Robot Group IPO
Framework introduced in Figure 8 builds on the notion of a robot as a constituent member of a
group but conceptualizes a robot (its behavior and role within a group) as an input factor to a
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group’s interaction process and therefore shifts the focus towards understanding how robots shape
group dynamics and outcomes over time.

4.1.2 To what degree does what we know about interactions between one robot and one person scale
to interactions between one or more robots and groups of people? Work included in our review shows
consistent evidence that robot interactions with a single person do not well extend to interactions
with groups of people (see Section 1.1). People have demonstrated an increased likelihood to
converse with a robot receptionist in groups rather than as individuals, and also had longer
conversations with the robot receptionist when in groups [56, 120]. Children have demonstrated
lower retention of educational material when interacting with a robot in a group of children as
opposed to interacting with a robot one-on-one [100, 101]. People are also more likely to comply
with the requests of a robot when they are in a group, as opposed to when they are alone [18].
Lastly, groups of people are more likely than individuals to exhibit competitive [24, 52] and abusive
[17, 20, 143] behavior towards robots.

4.1.3 What have we learned about a robot’s impact on groups? Our review has shown that a robot
can have a profound impact on a group through its behavior, role within a group, and its appearance
and capabilities (Figure 8). Most importantly, research has shown that a robot’s verbal and non-
verbal behavior can extend to shape how the people in a group interact not only with the robot
but also with each other, i.e., human-to-human interactions. For example, Strohkorb Sebo and
colleagues [164] documented what they called a “ripple effect” of a robot’s behavior within a group.
Vulnerable expressions made by a robot turned out to be socially contagious as it led to increased
pro-social behavior among group members. Another study has shown that such ripple effects
extend to simple interactive smart speakers as their behavior has been shown to increase social
cohesion within families [97]. Other recent work has shown that even the mere presence of a robot
can shape people’s interpersonal interactions with each other [35]. Building understanding about
a robot’s impact on interpersonal dynamics is essential since the way people interact with each
other affects outcomes in work and non-work contexts alike (e.g., [59, 78, 80])

4.1.4 To what degree does what we know about purely human groups apply to mixed human-robot
groups? Looking at existing work on groups and teams, a rich body of work comprising more than a
century’s worth of research has provided important understanding and theory of small groups and
teams and identified focal areas of concern such as a group’s ecology, structure, and composition,
or key processes such as performance and conflict [104]. Much of the work captured in this review
has supported the prior work in groups and teams of people, extending the same principles to
human-robot groups and teams. This is especially true in work that supports the notion that robots
can be theorized as filling the role of a human group member [31, 164].
However, this current understanding relies on studies that have predominantly used robots

with highly anthropomorphic physical features (e.g., a head, eyes, hands) and employing very
human-like modalities of interaction (e.g., speech) such as Robovie (16% of studies) and Nao (15% of
studies). It is thus less clear if findings hold for less anthropomorphic robots such as Micbot [176], a
robotic microphone devoid of anthropomorphic physical features, and Kip1 [68], a peripheral robot
companion resembling a lamp. Existing evidence suggests that people indeed react differently to
robotic systems based on their anthropomorphic characteristics. For example, research by Malle
and colleagues showed that people apply different moral reasoning to robots than to humans [112].
However, a later study showed that the effect only applies to non-anthropomorphic system as
people applied the same reasoning to anthropomorphic robots that they apply to humans [113]. We
encourage researchers to pursue work understanding the influence of and building the appropriate
theory for non-anthropomorphic robots that shape human group interactions in unique ways.
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In summary, the literature provides compelling evidence that 1) robots cannot simply be concep-
tualized as tools or infrastructure, but also are not always viewed similarly to people, 2) people
interact differently with robots when they are alone than when they are with other people, 3) that a
robot’s behavior impacts how people interact with each other, and 4) that while current findings on
group effects are consistent with theory on human-only groups, it might be premature to assume
that this is always the case given that most research up to this point relied on anthropomorphic
robotic systems. Additionally, we have presented a human-robot group IPO framework (Figure 8)
that encapsulates the unique contributions and influence robots have in groups and teams.

4.2 Implications for Design
Considering groups and teams explicitly requires new approaches for many facets of robot design,
including the tasks and roles robots adopt, the computational models robots use when interacting
with people, and unique group affordances robots can utilize.

As we develop a broader understanding of robots in groups and teams, it is important to identify
the types of group tasks that robots are uniquely positioned to excel in compared to their human
counterparts. Groom and Nass [60] suggest that one of the key determinants of having robots as
successful teammates is in identifying and leveraging the unique strengths that robots bring to
groups. From our analysis of the roles (leader, peer, follower) robots take on in specific contexts
(Figure 5), we have begun to see trends that suggest that there do exist roles within groups of
people that robots can uniquely fill, and in doing so, bring value to the group. As work continues
in this field, it is critical that we remain focused on investigating the unique value that robots bring
to interactions with groups of people in a variety of contexts.
When developing mathematical models for robots to sense relevant human characteristics as

well as make decisions within the context of a group, the design of new approaches and models
is essential. The work of Leite et al. (2015) highlights this problem well in the space of detecting
disengagement in children. They found that machine learning models trained to reliably detect
disengagement in individual children did not extend to children in the context of a peer group
[102]. In order to build computational models that are successful in group contexts, special care
must be taken to adapt these models to behaviors exhibited in human groups.
Finally, from a design perspective, groups offer specific affordances such as their leadership

structure or network that robots can exploit when interacting with groups. For example, Kwon and
Sadigh [95] proposed an approach for a robot to make inferences about the underlying leadership
structure of a group and showed that a robot can leverage that structural understanding to influence
how the group behaves. Further, Shirado and Christakis [156] showed that an artificial agent can
improve the collective performance of groups when placed at strategic locations within a network.
These examples show that groups not only require new techniques but also offer new opportunities
for interaction.

4.3 Implications for Research Methods
Since this field is young and growing, there are many group compositions that remain sparsely ex-
plored and could benefit from further research. As Figure 4(a) displays, few studies have investigated
the influence and effects of multiple robots interacting with groups of people. Involving multiple
robots in human-robot group interactions can be extremely valuable in educational contexts where
children learn by watching multiple robots interacting [100, 101], in laboratory settings where
multiple robot characters can be evaluated in the same group [31, 32, 133], and in interactions with
children where the addition of another social robot agent can lead to increased engagement [181].
Especially in light of the recent work demonstrating that individual people conform their behavior
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to groups of robots [142, 183], more work investigating the use of multiple robots when interacting
with groups of people is important and useful to this area of research.

Additionally, research investigating robots interacting with groups of people has primarily
focused on short-term interactions and has not thoroughly explored long-term interactions. 75% of
the experimental studies contained within this review were conducted for a single experimental
session, as shown in Figure 3(c). Single session studies may be useful for evaluating the influence of
particular robot behaviors on groups of people in short-term interaction contexts (e.g., advertising
robots in a shopping mall, mail delivery robots). However, in the future we will most likely interact
with robots repeatedly over weeks, months, and years (e.g., household assistant robots, delivery
robots in the workplace, robot tutors), that build relationships with us and adapt their behavior
to us over time. In order to explore the influence of robots on groups of people in the real-world
contexts they are beginning to inhabit, it is essential that more long-term and multiple-session
human-subject research studies are conducted.
As research investigating robots interacting with groups of people continues to grow, more

rigorous and comprehensive methods and measures must be developed to help capture the impact
of robots interacting with groups of people. The methods and measures that are most closely
applicable, from the fields of human-robot interaction and organizational psychology, do not
quite fit when applied to robots interacting with groups of people. For example, in organizational
psychology group-level phenomena like cohesion is measured by administering questionnaires
to company employees. For robots interacting with groups, it would be helpful if a robot could
measure group cohesion through observing the real-time behavior of group members, so that the
robot could adapt its actions based on the current cohesion of the group, rather than having to rely
on an infrequently administered questionnaire.

5 CONCLUSION
As robots interact with people in increasingly complex settings, with more diverse roles, and over
longer periods of time, these interactions will rarely resemble the dyadic interactions historically
studied in the field of human-robot interaction. The body of work highlighted in this review has
taken some first steps in the direction of equipping robots with the abilities to interact with groups
of people, often in complex field settings, and studying the effects of robot actions. As researchers
in this field work to address the current technical and methodological challenges involved with
group interactions, we can work to develop and study robots that richly interact with many groups
over long periods of time in natural environments.
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A RESEARCH STUDIES INCLUDED IN THIS REVIEW
In this review, we included 103 papers that detailed 101 distinct participant studies (please refer to
Section 2 for details on our inclusion criteria and method for selecting these studies). In Table 1 we
list each of the studies as well as their references and categorized attributes.
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