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ABSTRACT 
In this paper, we argue in favor of creating robots that both teach 
and learn. We propose a methodology for building robots that 
can learn a skill from an expert, perform the skill independently 
or collaboratively with the expert, and then teach the same skill 
to a novice. This requires combining insights from learning from 
demonstration, human-robot collaboration, and intelligent tutoring 
systems to develop knowledge representations that can be shared 
across all three components. As a case study for our methodology, 
we developed a glockenspiel-playing robot. The robot begins as a 
novice, learns how to play musical harmonies from an expert, col-
laborates with the expert to complete harmonies, and then teaches 
the harmonies to novice users. This methodology allows for new 
evaluation metrics that provide a thorough understanding of how 
well the robot has learned and enables a robot to act as an efcient 
facilitator for teaching across temporal and geographic separation. 

CCS CONCEPTS 
• Human-centered computing → Collaborative and social 
computing systems and tools. 

KEYWORDS 
Human-robot interaction, human-robot collaboration, musical ro-
bot, robot tutoring, robot learning 
ACM Reference Format: 
Timothy Adamson, Debasmita Ghose, Shannon C. Yasuda, Lucas Jehu Silva 
Shepard, Michal A. Lewkowicz, Joyce Duan, and Brian Scassellati. 2021. 
Why We Should Build Robots That Both Teach and Learn. In Proceedings 
of the 2021 ACM/IEEE International Conference on Human-Robot Interaction 
(HRI ’21), March 8–11, 2021, Boulder, CO, USA. ACM, New York, NY, USA, 
10 pages. https://doi.org/10.1145/3434073.3444647 

∗Both authors contributed equally to the paper 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org. 
HRI ’21, March 8–11, 2021, Boulder, CO, USA 
© 2021 Association for Computing Machinery. 
ACM ISBN 978-1-4503-8289-2/21/03. . . $15.00 
https://doi.org/10.1145/3434073.3444647 

Figure 1: This robot frst learns how to play three-note har-
monies on a glockenspiel from an instructor, then plays on 
its own, or with the instructor, and fnally becomes the in-
structor to teach a novice what it has learned. 

1 INTRODUCTION 
Advancements in machine learning and artifcial intelligence have 
given robots the ability to gain knowledge, complete tasks, and 
teach humans like never before. Yet, to the best of our knowledge, 
there does not exist a robot system capable of all three. In traditional 
learning systems, a robot’s learning process ends once the robot 
demonstrates that it can successfully complete a task. In conven-
tional tutoring systems, a robot’s teaching process does not allow 
for the robot to learn new skills from human experts. We argue 
that robot systems capable of learning a skill, performing it, and 
teaching it to a novice have advantages that can improve robot 
learning, collaborating, and teaching in signifcant ways. 

In traditional learning models, evaluation of a robot’s knowledge 
is limited to its performance. A robot is considered to have mastered 
a skill if it can complete a task to a desired accuracy level. While 
good performance may often be the primary goal of teaching a 
robot, building a truly robust system may require more comprehen-
sive evaluation metrics to ensure there are no gaps in the robot’s 
knowledge. By requiring a robot to teach what it has learned to a 
novice, we can measure the robot’s level of understanding in novel 

https://doi.org/10.1145/3434073.3444647
https://doi.org/10.1145/3434073.3444647
mailto:permissions@acm.org


ways. While it may not be necessary for a robot to teach well to per- 2 RELATED WORK 
form a task well (even highly skilled humans can be bad teachers), 
teaching provides a new viewpoint to evaluate understanding. 

One of the most valuable abilities humans possess is our abil-
ity to pass the knowledge we have learned to others [60]. Much 
research has gone into creating robots that teach people new skills. 
However, none of these robots are designed to gain and adapt to 
new knowledge provided by a human teacher. As a result, knowl-
edge transmission is stunted—the robots that can teach are unable 
to learn, and the robots that can learn are unable to teach. 

Due to the robot’s inability to act as both teacher and student, hu-
mans miss out on the benefts that teaching provides to the learning 
process. Within educational theory, having a student teach others 
has long been accepted as a valuable exercise for improving that 
student’s knowledge [28, 29, 32, 63]. This is often credited to Jean 
Pol Martin who developed a practice called “Lernen durch Lehren” 
(LdL), German for “Learning by Teaching” [9] through which pupils 
were asked to teach relevant concepts to their classmates. Several 
studies of LdL have confrmed its value in improving learning gains 
[1, 26, 61, 66]. The method used to train surgeons, described by the 
adage “See One, Do One, Teach One,” also requires medical students 
to learn, perform, and teach a procedure to be considered profcient 
[39]. Its benefts have been similarly validated [69]. 

We believe that by combining robot learning, doing, and teaching 
into a single process, we can improve learning for both humans 
and robots in multiple ways. In our methodology, the robot begins 
as a novice. An expert teaches the robot a skill by providing a 
set of demonstrations, tests the robot, and provides feedback on 
its attempts. Once the robot has learned the skill, the robot can 
then perform the task on its own, or collaboratively with another 
agent. The robot then teaches a novice the skill through explanation 
and examples. It then tests the novice, correcting them when a 
mistake is made. The interaction can even continue on to have 
the novice teach the robot the recently acquired skill. This allows 
the novice to improve their understanding through teaching, and 
the robot to better assess how well the novice has learned. This 
methodology could potentially be applied to any knowledge that 
can be transmitted from an expert to a robot, and from a robot to a 
novice. 

There are understandable drawbacks to this methodology. It re-
quires signifcant time and investment, which may be unnecessary 
if the primary goal is only for the robot to complete a simple task. 
Therefore, there are likely circumstances in which this system does 
not prevail over traditional learning and teaching systems. Never-
theless, if we want robots whose knowledge is well-evaluated and 
who can transmit the knowledge they have learned to others, we 
must build robots that can both teach and learn. 

To study this methodology, we chose playing three-note har-
monies on the glockenspiel as the simplistic proof-of-concept skill 
for the robot to learn, perform, and teach. We carried out a case 
study in which the robot learned the skill of three-note harmonies 
through observing an expert, collaborated with the expert on play-
ing three-note harmonies, and then taught the skill to novices, who 
in turn, taught the robot what they had learned (Figure 1). We use 
this demonstration as both a feasibility proof and to highlight some 
of the benefts and drawbacks of this approach. 

Because our work involves the process of a robot learning from 
humans, completing a task independently or through collaboration 
with humans, and teaching humans, our research was informed by 
previous work in each of these areas. 

2.1 Robot as Student 
There are many ways of providing a robot with the ability to com-
plete a task. Traditionally, this required having a roboticist program 
the robot exactly how to complete the task. But in the past 20 years, 
there has been a growing interest in providing robots with models 
that allow them to learn from humans without being explicitly pro-
grammed what to do. This area of research generally falls within 
the category of learning from demonstration. 

Learning from demonstration occurs when a robot observes a set 
of demonstrations from a human accomplishing a task and infers 
an action sequence based on those demonstrations to accomplish 
the task itself. This can happen at a variety of abstraction levels. 
At the action level, the robot learns the physical motions of the 
demonstrator [5, 6, 18, 21]. At the program level, the robot considers 
the higher-level structure of more complex actions [5, 22, 38, 48, 59]. 
Demonstrations can be combined with verbal communication [55] 
and dialog and gestures [15] to improve learning capabilities. Some 
research has also focused on enabling the robot to ask questions 
[20] or to request more examples when those provided are not 
deemed sufcient [19, 24, 43]. 

Our work expands on these fndings by extending the learning 
process, using collaboration and teaching to better evaluate and 
improve the robot’s understanding. 

2.2 Robot as Collaborator 
Much of human-robot collaboration involves establishing a shared 
task model. Having a shared task model has been shown to increase 
efciency of a human in a human-robot collaboration setting [58]. 
Though task models can be hard-coded, it is generally preferred that 
they be learned during the interaction [23]. This learning can be 
done through various means, such as questions asked by the robot 
in natural language [51]. Some prior work has focused on learning 
both the high-level structure of a task and the low-level action 
sequences [16, 34, 59]. Other work has studied how to use robust 
task models to adapt a robot’s plan to accommodate human actions 
[8, 35]. In general, learning a well-structured task model that is ro-
bust to human intervention dramatically improves the human-robot 
collaboration experience. Our work requires the learning of task 
models not just for collaboration, but also for teaching, ensuring 
that learned models lend well to introspection and explanation. 

2.3 Robot as Teacher 
Robot tutoring systems are designed to conduct the learning experi-
ence via social interaction between the robot and a human learner 
[10]. It is well established that personalized tutoring that adapts to 
student needs improves learning outcomes [11, 33, 52, 64]. 

Robots have been placed in the roles of peer and novice to aid 
human learning as well. As a peer, the robot might act as a learning 
companion, providing motivational support for the student without 
passing on any knowledge [44]. As a novice, the robot allows the 



Figure 2: High-level overview of the methodology: the robot learns a skill from an expert, collaborates with the expert on that 
skill, and then teaches a novice the skill, such that the task model becomes shared between the expert, robot, and novice. The 
bi-directional arrows in the fgure highlight how learning, collaboration and teaching are bi-directional processes. 

student to act as instructor, leading to improvements in engage-
ment and meta-cognitive skills [62]. Research into these roles has 
demonstrated that both can increase student learning [36, 71]. A 
recent study found that an adaptive robot, capable of dynamically 
exhibiting roles of both tutor and novice while teaching a student, 
can even further improve learning outcomes [25]. 

Our methodology builds on previous eforts by combining the 
roles of novice, collaborator, and teacher, and granting the robot the 
ability to acquire new skills. Through this system, both the robot 
and the novice have the potential to beneft from each role. 

3 METHODOLOGY 
This section describes the diferent components of our methodology 
and analyzes the advantages and disadvantages of creating robots 
that learn, collaborate, and teach. 

3.1 Description of Components 
Combining the three components of our methodology—learning, 
collaboration, and teaching—provides a system with a variety of 
advantages over systems that exhibit only one or two components. 
Figure 2 shows a high-level visual overview of our approach. 

In the frst component, the Learning Interaction, the robot learns 
a skill from a human. A vital property of the learning model is 
that it needs to be interpretable to facilitate the transfer of knowl-
edge to humans. For our purposes of having a shared knowledge 
representation for learning, collaboration, and teaching, we only 
need the robot to explain and reason about what decisions it makes 
for a given scenario using a particular model. We do not neces-
sarily need the robot to understand how the model works, in the 
sense that each input, parameter, and calculation would admit an 
intuitive explanation [42]. Hence, this component could leverage a 
wide variety of learning techniques, including those that are easily 
understandable as well as those that are more opaque. The more 
opaque learning techniques like machine learning, deep learning, 
and reinforcement learning can be used as long as the robot can 
explain the rationale behind its decisions during the collaboration 

and teaching processes. Methods that add this level of explainability 
to these opaque learning techniques are an active research area and 
require signifcant time and efort to create [4, 45, 46, 65]. 

The Collaboration Interaction allows the human and the robot 
to collaborate on a task in a shared environment. For a robot to 
become a skilled collaborator, both the robot and the human should 
have a shared model of the task. Establishing a shared model can be 
challenging. Previous work used high-level task models combined 
with POMDPs [54] and gaze cues [49] to help develop shared task 
models. Our methodology supports shared task models in two ways. 
The frst is the robot’s ability to learn from its collaborator. Learning 
from the collaborator allows the robot to adjust its task model to 
better align with the human’s task model. The second is the robot’s 
ability to teach its collaborator. The robot can utilize its internal 
model’s explainability to share with the collaborator its internal 
model of the task, leading to better alignment of the two models. 

Finally, in the Teaching Interaction, the robot aims to transfer its 
task model to a novice. For a robot to be an efective teacher, the 
robot should periodically test the human on the concepts taught. To 
do that, a robot needs to predict and contextualize a student’s per-
formance throughout an interaction to track the student’s progress. 
This motivates the need for knowledge tracing. Existing literature 
shows that common knowledge tracing models such as Bayesian 
Knowledge Tracing (BKT) ofer adequate performance when task 
success is binary [27, 70]. Other works explore general-purpose 
models such as Deep Knowledge Tracing (DKT) frameworks that 
utilize deep learning models that can account for nuances in student 
learning that are difcult to quantify in other structured models 
[37, 50]. Depending on the the task model, our methodology can 
leverage any knowledge tracing model in complex task settings, 
allowing the robot to modify its teaching strategy as necessary and 
ensure successful transfer of knowledge to the student. 

3.2 Advantages 
Our methodology provides many advantages over the current stan-
dard for robot learning [53]. These include more comprehensive 
evaluation metrics, fexible role selection for the robot, the ability 



to transfer knowledge across temporal and geographic separation, 
and the ability to robustly teach people. 

3.2.1 More comprehensive evaluation metrics. Our methodology 
supports current evaluation metrics for assessing the robot’s perfor-
mance on a learned task which typically compare a robot’s ability 
to perform a task in relation to a human’s. It also proposes new 
metrics to evaluate how quickly a robot learns, how well it collabo-
rates, and how successfully it teaches. These metrics, used alongside 
the traditional metrics, provide a more comprehensive assessment 
of the robot’s understanding of a task. We propose the following 
qualitative and quantitative measures of evaluating the process, 
including, but not limited to: 

• how long it took before the expert deemed the robot to be 
competent 

• how good of a collaborator the expert rates the robot to be 
• how many times the expert had to correct the robot while 
collaborating 

• how many demonstrations and explanations the robot gave 
before the novice gained competence at the task, and 

• how good of a teacher the novice rated the robot to be 

It should be noted that many of the proposed evaluation metrics 
likely have greater variability than standard task evaluation metrics 
because the proposed metrics involve a human-in-the-loop [12]. 

Additionally, our methodology allows us to evaluate the novice’s 
profciency at a task based on the robot’s trained models. This is 
possible by having the novice re-train the robot after they have 
learned from it. The two task models, one taught by the expert and 
another taught by the novice, can be compared using an appro-
priate diference metric. If the robot internalized and relayed the 
knowledge it learned, this diference is expected to be a small value. 
This provides a strong quantitative assessment of how well the 
novice has learned the skill because one can now directly compare 
the novice’s task model with the expert’s task model and identify 
which parts of the task the novice has and has not learned. 

3.2.2 Flexible role selection. There are benefts to enabling a shared 
knowledge representation between our methodology’s learning, 
collaboration, and teaching components. Notably, this shared rep-
resentation allows the robot to switch between components seam-
lessly, based on its and the human partner’s needs. For example, if 
the robot identifes that it doesn’t understand a skill, it could take a 
student’s role and ask for help from its partner. The robot could also 
take a teacher’s role if the robot infers that its partner is facing dif-
fculties performing the assigned task. These interactions are only 
possible because the robot uses the same task models for learning, 
collaboration, and teaching. Therefore, it can infer when a partner’s 
task model does not align with its own and adapt accordingly. 

3.2.3 Knowledge transfer across temporal and geographic separa-
tion. Our methodology allows experts and novices to teach and 
learn without being present in the same geographic location at the 
same time. An expert can train the robot on any given day, and a 
novice can learn the same task from the robot on a diferent day or 
from a similar robot at a diferent location. This fexibility can be ad-
vantageous in situations where it is logistically infeasible or unsafe 
for people to learn the task from each other while being present in 

the same place simultaneously, for example, during quarantine in a 
pandemic [7, 47, 57]. 

A robot as a part of this proposed system can also facilitate the 
transfer of rare skills or cultural heritage that needs to be preserved 
between generations of people when there is no direct contact 
between the people who possess that skill and the people who wish 
to learn it. An embodied robot would be better than virtual sources 
of learning for this transfer of knowledge. This is shown by existing 
work [67, 68], which demonstrates that physical embodiment has a 
measurable positive impact on the performance and perception of 
social interactions like teaching. 

Another potential application of this methodology can be im-
proving the current state of hands-on skill transfer in distance 
learning. Instructors can now teach skills that can only be acquired 
by performing the task under expert supervision via a robot, which 
is not feasible with traditional distance learning. 

Finally, this methodology allows for many novices to be trained 
in an individualized learning environment, with minimal time and 
efort required of the expert. Once the expert has taught the robot 
a task, the robot can then perform teaching interactions with many 
novices. The robot can even customize its instruction for each 
learner, taking as much time as needed with each novice with no 
intervention from the human expert. 

3.2.4 A robust method for teaching people. This methodology al-
lows for developing more robust learning systems for people by 
enabling them to teach the robot what they have learned. This 
provides signifcant learning gains to the person because they can 
take advantage of the benefts of "learning by teaching" discussed in 
Section 1. The robot can also now provide them with an additional, 
objective metric to evaluate their understanding of a skill, which 
goes beyond merely their ability to perform the skill. This can come 
in the form of a comparison between the model taught to the robot 
by the expert and the model taught by the novice. Additionally, 
based on the evaluation metrics described in Section 3.2.1, the robot 
can then tailor its instruction program and its pace of teaching 
according to what seems to be working best for any particular 
learner. People also have the opportunity to learn interactively by 
physically collaborating with the robot. 

3.3 Challenges 
There are challenges to our methodology that we acknowledge in 
detail below. The signifcance of these challenges will vary depend-
ing on the application of this methodology. 

3.3.1 More robust models take longer to design. Because our method-
ology requires the robot to learn, collaborate, and then teach, the 
robot’s knowledge representation must be more complex and gener-
alizable than it would be otherwise. Designing explainable models 
generally requires more efort than creating ones that are opaque 
and difcult for humans to understand. This cost of time must be 
borne by those responsible for creating the models. Opaque models 
can be used in our methodology only if there are additional compo-
nents that interface with the opaque models to add explainability 
in the form of visual saliency [13, 17, 31, 56] or natural language 
explanations [30, 40], which are under active investigation. 



Table 1: This table represents the note intervallic arrange-
ment for each harmony type. The frst note, represented by 
n, can be any bar on the glockenspiel as long as the third note 
exists on the instrument. The next two notes are described 
in reference to this root note, with semitone steps. 

Harmony Type Note 1 Note 2 Note 3 

Broadhurst n n+3 n+5 
Foxwoods n n+1 n+4 
Belasco n n+6 n+9 

3.3.2 Complex system requirements. Creating a robot that can not 
only learn but also collaborate and teach comes with corresponding 
system requirements. For the robot to teach the human, it must 
explain its understanding of the task to the human. In addition, the 
robot needs to semantically disambiguate what the human says 
for successful bi-directional communication between the human 
and the robot, which is not trivial. Further, because the robot and 
human will also likely be interacting in a shared space, the robot’s 
hardware must be designed for safe interactions. Diferent skills 
might also demand additional software and hardware components, 
such as sophisticated perception systems, manipulation capabilities, 
and language models. 

3.3.3 Problems of a generalist approach. This methodology re-
quires a generalist approach to learning. Because the robot must 
learn from expert demonstration, we cannot make assumptions 
about the problem space or solution for any of the three interaction 
types (learning, collaborating, and teaching). The robot must be able 
to adapt to whatever knowledge is taught by the expert. This leads 
to more complex, higher-dimensional learning problems. It also 
makes designing the right collaboration and teaching interactions 
more difcult because, unlike in traditional robot collaboration and 
tutoring systems, the robot begins with an internal model that has 
not been trained. 

4 CASE STUDY 
In this section we present a proof-of-concept application for our 
methodology: playing three-note harmonies on the glockenspiel. 
We outline the interaction fow unique to our case study and present 
an evaluation of our case study with a small group of users. 

4.1 Task Selection 
We selected the skill of identifying and playing three-note har-
monies, a relevant sub-skill for playing the glockenspiel, as a case 
study for our methodology. Three-note-harmonies are the com-
posite product of three diferent notes played simultaneously in 
a specifc intervallic arrangement. In Western music, harmonies 
are generally categorized as either major, minor, or diminished. 
However, to make sure that all novices have the same baseline 
knowledge at the start of the interaction, we’ve created three of our 
own harmonies, named Broadhurst, Foxwoods and Belasco. The 
intervals that denote three-note harmonies in each harmony type 
are shown in Table 1. 

We decided to use the glockenspiel for our case study because 
this domain worked well with our available hardware, and the 
glockenspiel’s independent bars provided a discretized state space 
to use for our knowledge representation. A sequence of notes can 

Figure 3: Experimental setup for the case study. 

easily be represented by the glockenspiel bars which corresponds to 
those notes, and the duration of time between the striking of each 
subsequent bar. The three notes played sequentially either form 
a correct harmony, or they don’t. Although having a discretized 
state space for both the input to the learning model and the task 
evaluation can make the model design and development easier, they 
are in no way requirements of our methodology. 

Since our methodology focuses on the learning and teaching of 
one particular skill, it’s reasonable to assume that a robot must have 
already learned any necessary sub-skills. In the case of learning 
three-note harmonies, a robot must already know how to hold a 
mallet, hit notes on the glockenspiel, and determine which bar(s) 
it’s partner struck. The fact that an average human novice has 
these prerequisite skills in their existing skill set makes the task of 
learning three-note harmonies ideal for our methodology, adding 
to the motivation behind choosing this skill as our system’s proof 
of concept. 

4.2 Implementation 
We use a UR5e robot to implement our case study. As illustrated in 
Figure 3, the robot is placed in front of the glockenspiel such that 
it can hit every bar with a mallet. Because the UR5e only has one 
arm, the three notes of the harmony must be played sequentially, 
instead of following the more common practice of playing them 
simultaneously. Our robot uses an Intel RealSense camera to observe 
the glockenspiel bars. It identifes voice commands through a SE 
VR-2 microphone and Google Cloud’s speech-to-text module, and 
communicates using Google Cloud’s text-to-speech module. 

The robot detects which bar was hit by locating the mallet’s 
position relative to a reference image. The reference image was 
annotated to indicate the bounding-box coordinates of each bar on 
the glockenspiel. Then, for every frame obtained by the camera in 
real-time, the algorithm looks for the circular mallet’s presence by 
comparing the current video frame to the reference image, using 
the OpenCV toolbox [14]. If the robot detects a mallet, it matches 
the position of the circular mallet’s centroid to the position of each 



pre-annotated bounding-box in the reference image, returning the 
unique ID of the associated bar. 

We developed the robot’s internal task model using a determin-
istic, rule-based heuristic learner. The model is represented using a 
dictionary whose formulation is shown in equation 1. 

1(��, ���2 − ���1) : [���3 − ���2 , ..., ���3 − ���2� ], (1) 

The dictionary’s keys are two-valued tuples, each of which maps to 
a list of integers. Each tuple consists of two integers: the unique ID 
associated with each subskill, and the diference between the frst 
two bars in the harmony. The list of integers represents all observed 
diferences between the second and third bars in the harmony for 
k octaves. Storing these as a list prepares the robot for a scenario 
where a three-note harmony is constructed over multiple octaves. 
Once the model is trained, the robot can create valid harmonies on 
its own, complete harmonies when provided one or two bars, and 
evaluate the validity of a proposed 3-note harmony. 

4.2.1 Learning Interaction. During the learning interaction, the 
robot queries an expert on the name of the skill it is learning and 
whether there are any sub-skills. The expert demonstrates the skill 
and the robot is required to repeat the demonstration to show 
knowledge of the skill. Specifcally, for each 3-note harmony skill, 
the expert plays three notes. The robot’s model uses the demonstra-
tions provided to learn the rule. For every example that the expert 
provides, the robot’s model checks whether the example conficts 
with previously learned mappings. If so, the robot asks whether 
the expert can provide a new example that is compatible with the 
robot’s existing model, or alternatively whether the robot should 
remove the incompatible data points from the model. 

4.2.2 Collaboration Interaction. The collaboration interaction al-
lows a human partner to play harmonies in collaboration with the 
robot, so that the robot can apply its acquired knowledge and fx any 
errors in its learned model. These are the four possible techniques 
we designed for the partner to collaborate with the robot: 

• The human plays a single note and says the type of harmony. 
The robot must then fll in the following two notes based on 
the intervals associated with that harmony. 

• The human plays two notes and then says the type of har-
mony. The robot must then fll in the remaining note based 
on the second interval associated with that harmony. 

• The human states the type of harmony. The robot must build 
all three notes of the harmony on an arbitrary starting note. 

• The human plays all three notes that build a harmony. The 
robot identifes the type of harmony associated with the 
three notes, or declares that no match exists. 

4.2.3 Teaching Interaction. The robot conveys its internal knowl-
edge representation through demonstrations and explanations to 
teach the novice three-note harmonies. The robot shows examples 
until the human announces they feel comfortable with that partic-
ular sub-skill. After the demonstrations, the robot tests the human 
by asking them to play one, two, or three notes needed to complete 
a harmony. 

The robot’s internal knowledge representation cannot make 
any assessment of the novice’s current understanding of the skill. 
Therefore, to ensure that the knowledge has been successfully 

transferred from the robot to the novice, the robot must assess the 
the novice’s skill comprehension throughout the interaction. This 
motivates the implementation of knowledge tracing. Specifcally, 
we chose to use Bayesian Knowledge Tracing (BKT) [27, 70], an 
algorithm that predicts the level of skill mastery of a learner based 
on the learner’s performance history on evaluative tests. Although 
we can use any form of knowledge tracing during the teaching 
phase, we chose BKT because of the inherent simplicity of our 
task model. BKT allows the robot to update the sequencing of 
administered tests and ultimately conclude the teaching phase. 
BKT models assume that student knowledge is represented as a 
set of binary variables, one per subskill, which denote whether the 
student either has or hasn’t mastered the skill. We assign separate 
BKT models to each variation of the test and independently update 
the probability that the skill being tested was learned in that step. 
The parameters used for this calculation are: 

• ����� : the probability that the novice knew a harmony but 
made a mistake in the testing phase 

• ������ : the probability that out of all possible bar combina-
tions the novice guessed the correct arrangement 

• �������� : the probability that skill mastery will be reached in 
the next testing step 

• ������ : the conditional probability that given the novice’s 
input, the novice has attained mastery of the subskill 

The calculation of ������ is updated at every testing step and is 
conditional on the correctness of the novice’s test response. An 
incorrect response will decrease the value of ������ while a cor-
rect response will increase the value towards a desired threshold. 
All previously described model parameters are factored into the 
calculation of ������ in a set of standard equations [27]. We empiri-
cally determined the initialization of ������ to be 0.05 (i.e. there is 
a 0.05 probability that the novice knows the skill beforehand) and 
determined the ������ threshold to be 0.95. Once ������ reaches 
this threshold, the robot tutor assumes that skill mastery has been 
achieved, and testing is concluded. We initialize separate ������ 
variables for each variation of the test to allow the robot to assess 
the novice’s mastery of sub-skills separately. 

4.3 Evaluation 
To evaluate our case study, we had 6 participants (3 males, 3 females) 
interact with the robot. One participant, who is also an author of 
this paper, was the expert on playing the three-note harmonies. The 
other 5 participants were students un-afliated with this research 
who were invited to learn three-note harmonies from the robot. 
Though 4 of the 5 novice participants had musical instrument ex-
perience, they were novices to the harmonies they were learning 
from the robot. The expert interacted with the robot for about 30 
minutes, and the novices interacted with the robot for about 1 hour. 
We evaluated the whole methodology by following these steps: 

(1) The expert taught the robot the three harmonies described 
in Table 1 using the Learning Interaction. 

(2) The same expert and robot used the Collaboration Interaction. 
(3) The robot taught the novice, using the Teaching Interaction. 
(4) The novice and robot used the Collaboration Interaction. 
(5) The novice taught the robot a new internal model using the 

Learning Interaction. 



(6) The robot used the new internal model during the Collabo-
ration Interaction with the novice. 

By allowing the novice to teach the robot a new internal model and 
collaborate with the robot a fnal time (Steps 5 and 6), we were able 
to explore how a diferent application of the robots’ fexible roles 
can allow a human to practice learning by teaching. We were also 
able to evaluate how well the robot learned and taught the novice 
by comparing the models taught by the novice and the expert. 

The surveys used throughout this case study had 7-point Lik-
ert responses [41] and short-answer questions based on standard 
course and instructor evaluation surveys, typically administered 
in educational institutions [2, 3]. On the Likert responses, 1 stood 
for "Strongly Disagree" and 7 stood for "Strongly Agree." The frst 
survey, consisting of questions about the novices’ experience with 
music and robots, was administered before Step 3. A second survey, 
where the novice evaluated the robot’s teaching capabilities, was 
conducted after Step 4. A fnal survey in which the novice evaluated 
the methodology as a whole was administered after Step 6. 

4.3.1 Initial Analysis. Our case study evaluation showed that all 
fve novices successfully learned how to play the same three har-
monies which the expert had taught to the robot. This is validated 
by the fact that, by the end of each novice’s teaching interaction 
with the robot, the novice could play each of the harmonies without 
any assistance. On average, each novice user made 0.9 mistakes and 
4.4 successful harmony completions for each of the three harmonies 
during the teaching interaction in Step 3. 

4.3.2 Applying novel evaluation metrics. Implementing our method-
ology allowed us to evaluate our glockenspiel-playing robot with a 
variety of novel metrics. We describe some of these metrics below, 
along with the accompanying results from our case study. 

(1) Measuring the novices’ performance provides insight into 
the success of the robot’s teaching. The novices’ average suc-
cess rate when tested across all harmonies was 62%, which 
was lower than their success rate when learning the individ-
ual harmonies. This can be explained by the novice playing 
the same harmony multiple times in the teaching interaction 
rather than switching between all three harmonies in the 
performance assessment. 

(2) Comparing the robot’s task performance after learning from 
the expert and after learning from the recently-taught novice 
allows for evaluating how well the robot taught and learned. 
The robot’s average success rate at playing the harmonies 
after learning from the novices was 66%. This shows that 
most novices were able to teach back to the robot what they 
had just learned. 

(3) Calculating the diference between the model learned from 
the expert and the model learned from the novice allows 
for a fne-grained analysis of what knowledge the robot 
was and was not able to transfer to the novice. Our robot’s 
knowledge model can be represented with a set. This allows 
us to compare the model learned from the expert and the 
model learned from the novice using set operations. This 
comparison reveals which specifc subskills the novice did 
not understand well and can potentially help the robot tailor 
its future instruction to fll the novice’s understanding gaps. 

Because of a small perception error that occurred when the 
expert was teaching Belasco harmonies to the robot, the 
robot learned an extra rule which resulted in the robot’s 
model having three more elements than it should have had. 
This increased the symmetric distance and the set diference 
between the two models by three. 
(a) Symmetric distance represents what the novice was 

supposed to learn, but did not learn, along with any 
excess information that the novice taught the robot. 
The symmetric diference of the two models averaged 
across all the novices for Broadhurst, Foxwoods, and 
Belasco harmonies was 0, 2.4 and 7.8 respectively. The 
lower the symmetric distance, the better. 

(b) The set intersection evaluates how well the novice was 
able to re-teach the robot what it had learned. The inter-
section of the two models averaged across all novices 
for Broadhurst, Foxwoods, and Belasco harmonies was 
6, 4.8, and 3.6, respectively, with the max intersection 
being 6. The higher the intersection, the more rules the 
participants were able to re-teach the robot correctly. 

(c) The set diference accounts for what the robot taught 
the novice that the novice did not teach back to the 
robot. The set diference averaged across all the novices 
for Broadhurst, Foxwoods, and Belasco harmonies was 
0, 1.2, 5.4, respectively. The lower the set diference, the 
better. 

(4) Using surveys to assess the robot’s teaching and learning 
abilities provides a human-centered evaluation metric. We 
administered our surveys to the novices to obtain their sub-
jective assessment of the robot’s teaching and learning abili-
ties. 
(a) In evaluating the robot as a teacher, the Likert question 

"The instructor knows the subject area very well" had an 
average score of 5.4 while the question "The instructor 
efectively explained and illustrated the concepts" had an 
average score of 6.8. 

(b) In evaluating the robot as a student, the Likert question 
"The robot was able to learn quickly" had an average score 
of 6 while the question, "By the end of our interaction, the 
robot had a strong understanding of the material which I 
taught it" had an average score of 5.8. 

These evaluation metrics provide additional insight into the robot’s 
knowledge beyond merely assessing the robot’s ability to play the 
harmonies independently. 

4.3.3 Demonstrating advantages of the methodology. Our case study 
also allows a robot to learn and teach across temporal and geo-
graphic separation. Evaluating our system would have been difcult 
without this advantage due to the COVID-19 pandemic. An expert 
taught the robot on a given day and the robot taught the majority 
of the novices days after it had learned from the expert, allowing 
us to follow adequate public health safety protocols. 

Implementing and evaluating our case study demonstrated how 
our methodology allows learning by teaching. Analyzing our qual-
itative data showed that having the novice teach the robot what 
they just learned (Steps 5 and 6), allowed them to better understand 
the task themselves. When learning from the robot, none of the 5 



novices realized that the notes in a three-note harmony could be 
played in any order. However, 3 of the 5 novices made this realiza-
tion when they were teaching the robot. For example, when P5 was 
teaching the robot and saw it play the 3 notes in an order he did 
not expect he said "the order is fipped. . . so it’s right." 

5 DISCUSSION 
5.1 Case Study Limitations 
Our case study is admittedly straightforward. Since three-note 
harmonies follow a specifc set of rules and because we’ve used a 
heuristic rule-based learner, the robot understood the rules that 
govern this skill with few demonstrations. In the future, we would 
like to implement this methodology for more complex tasks, such as 
sorting recyclables or assembling furniture. Our simplistic learning 
model allowed us to focus our eforts on building a "full-cycle" 
methodology, but using a probabilistic learning model with our 
methodology would be an excellent direction for future work. 

Our case study may have benefted from a comparison to another 
system, but there does yet exist a system, capable of learning, col-
laborating, and teaching, to provide a meaningful baseline. Though 
Chen et al.’s [25] robot can act as both teacher and peer, the ro-
bot is unable to gather new knowledge. Comparing our system to 
one that only teaches, learns or collaborates would distract from 
our case study’s primary purpose of exploring the advantages and 
disadvantages of a system that incorporates all three components. 

5.2 Flexibility and Confgurability 
Until now, robots that teach a skill or collaborate by applying a skill 
have generally been designed with that singular skill in mind. The 
addition of new skills to the robot’s repertoire requires retraining 
with a new skill set. Within our framework, a robot could instead 
be taught the skill by an expert and incorporate the skill into its 
existing task model, provided that the existing hardware supports 
it and that the robot has the relevant sub-skills to learn the skill. 
Skills that leverage existing sub-skills would additionally be easier 
for the robot to both learn and teach. The robot would build up 
an interconnected model of skills, in which each sub-skill could be 
evaluated and taught individually by the robot. 

We presented the three components of our methodology in the 
order of learning, collaboration, and teaching. Though all interac-
tions must begin with the learning component so that the robot 
has an initial task model, the methodology allows for signifcant 
fexibility of what follows next. After the robot has learned from 
an expert, it could then go on to collaborate and teach as many or 
few times as desired with diferent people or the same person. The 
various components can also be chained together multiple times to 
compute valuable evaluation metrics for the robot or the human 
learning the task. For example, once the robot has learned a task 
model from an expert, a peer could teach the robot that same skill. 
The robot could compare its original task model with that taught 
by the peer in order to determine how profcient the peer is with 
the skill. 

5.3 Future Directions 
We can think of several improvements to specifc components of 
our methodology. The robot could be trained on using a skill for 

a specifc task, and then be presented with a diferent task that 
combines aspects of the skill with the robot’s existing skillset in a 
new manner. For example, a robot trained to catch falling objects 
could be taught how to pitch a fastball and then be tasked with 
catching a ball thrown by the human. The robot could also be 
trained to adapt to their human partners’ preferences and make 
its next intended action very clear to the human, to make their 
collaboration fuent. 

Though our case study did not use the Teaching Interaction to 
improve the robot’s teaching abilities, we see this as a promising op-
portunity for future work. The robot could try a variety of teaching 
strategies for a given task to learn which work best for explaining 
that specifc skill, using student performance and feedback as a 
reward. The robot could also be designed to identify when its own 
task knowledge is insufcient to successfully teach the skill. The 
robot would then know to seek an expert to receive more instruc-
tion to fll in the gaps in it’s understanding. We see this direction 
as another promising opportunity for future work. 

6 CONCLUSION 
In this paper, we argue for the need to create robots capable of 
teaching and learning. We took inspiration from the "Learning by 
Teaching" (LdL) educational theory and the medical adage "See 
one, Do one, Teach one" to create a methodology that incorporates 
three components: learning, collaborating, and teaching. This re-
quired deriving insights from various felds, including learning from 
demonstration, human-robot collaboration, and intelligent tutoring 
systems. A robot system that utilizes our methodology gains signif-
icant advantages, including new and robust evaluation metrics, and 
the ability to transfer knowledge representations across temporal 
and geographic separation. 

We implemented a proof-of-concept case study in which a robot 
learns three-note harmonies from an expert in the skill, collabo-
ratively plays the harmonies with the expert, and fnally teaches 
the same harmonies to a novice user until the robot’s internal 
knowledge tracing models conclude that the novice has a sufcient 
understanding of the skill. We then had the novice teach what 
they had learned back to the robot to further improve the novice’s 
learning gains evaluate the robot learner. 

The three components of learning, collaboration, and teaching 
can be combined multiple times and in diferent arrangements, al-
lowing for more robust robot learners and efcient robot tutoring 
systems. We recognize that such a system requires an explain-
able learning model which is challenging to design and implement. 
However, due to their generalizability to various task models and 
human-robot settings, we argue that for many applications — par-
ticularly for robot tutors and collaborators — the difculties are 
outweighed by the benefts of building such systems. 
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