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A significant number of stellar-mass black-hole (BH) binaries may merge in galactic nuclei or in the
surrounding gas disks. With purposed space-borne gravitational-wave observatories, we may use such a
binary as a signal carrier to probe modulations induced by a central supermassive BH (SMBH), which
further allows us to place constraints on the SMBH’s properties. We show in particular the de Sitter
precession of the inner stellar-mass binary’s orbital angular momentum (AM) around the AM of the outer
orbit will be detectable if the precession period is comparable to the duration of observation, typically a few
years. Once detected, the precession can be combined with the Doppler shift arising from the outer orbital
motion to determine the mass of the SMBH and the outer orbital separation individually and each with
percent-level accuracy. If we further assume a joint detection by space-borne and ground-based detectors,
the detectability threshold could be extended to a precession period of ∼100 yr.
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Introduction.—A significant number of stellar-mass
binary black holes (BHs) detectable by LIGO [1] and
Virgo [2] may merge in the vicinity of supermassive BHs
(SMBHs) due to both dynamical interactions [3–9] and
gaseous effects if accretion disks are present [10–17]. This
possibility is strengthened as the Zwicky Transient Facility
[18,19] detected a potential electromagnetic counterpart
[20] to the LIGO-Virgo event GW190521 [21,22], con-
sistent with a binary BH merger in the accretion disk of an
active galactic nucleus (AGN).
Beyond ground-based detectors, multiple space-borne

gravitational-wave (GW) observatories have been planned
or conceived for the coming decades, including LISA [23],
TianQin [24], Taiji [25], B-DECIGO [26,27], Decihertz
Observatories [28], and TianGO [29]. Their sensitivities
cover the 0.001–1 Hz band where a typical stellar-mass BH
binary stays in the band for years. It thus opens up the
possibility of using a stellar-mass BH binary as a carrier to
probe modulations induced by a tertiary perturber which, as
argued above, can be a SMBH in many cases. This is in
analog to how pulsars are used to test the strong-field
relativity [30] and it offers a complementary way to probe
SMBH properties to extreme and very extreme mass-ratio
inspirals (EMRI and X-MRI) [31–34].
The leading-order modulation is a Doppler shift due to the

inner binary’s orbital motion around the SMBH [35], creating
frequency sidebands at Ωo ¼ ðM3=a3oÞ1=2 with M3 the mass
of the SMBH and ao the semimajor axis of the outer orbit.
The extra dephasing of this effect can be determined up to
ao ≃ 1 pc [36].When 2π=Ωo ∼ Tobs with Tobs the duration of
observation, Ωo can be further resolved to constrain the mass
density enclosed by the outer orbit [37].

In this Letter, we extend the field by including higher-
order effects. The most significant one is that the inner
orbital angular momentum (AM) Li will experience a de
Sitter-like (dS) precession around the outer AM Lo whose
secular effect is [38–40]

dL̂i

dt
¼ ΩdSL̂o × L̂i ¼

3

2

M3

aoð1 − e2oÞ
ΩoL̂o × L̂i; ð1Þ

where eo is the eccentricity of the outer orbit. Here we have
used the hat symbol to indicate unity vectors. As the binary
precesses, the waveform undergoes both amplitude and
phase modulations, thereby allowing the extraction of the
precession signatures.
We illustrate the periods of the dS precession in the

ðM3; aoÞ space in Fig. 1 with brown traces. The upper panel
assumes a circular outer binary and the lower one has
eo ¼ 0.9. The solid (dashed) traces correspond to
PdS ¼ 2π=ΩdS ¼ 100ð10Þ yr. As we will see later, these
periods are the approximate detectability thresholds assum-
ing a detection of a source 1 Gpc away performed jointly by
space-borne and ground-based detectors and by a TianGO-
like detector alone. Also shown are the periods of the outer
orbit (grey traces) and subleading corrections due to the
Lense-Thirring precession (olive traces) and the Lidov-
Kozai effect (i.e., the Newtonian tidal effect; cyan traces).
Explicit expressions are provided in the Supplemental
Material [41].
To connect to astrophysical formation mechanisms of the

inner binary, we indicate in dotted-orange lines the expected
locations of migration traps in accretion disks [43] where
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massive objects are likely to accumulate and binaries may
frequently merge. We find PdS < 100 yrð10 yrÞ at the
migration trap at ≃600M3 if M3 ≲ 2 × 107 M⊙ð2 ×
106 M⊙Þ and the outer orbit is circular. When the outer
orbit is eccentric, the PdS < 100 yr boundary could be
extended to further include M3 ≃ 108 yr.
For bare nuclei, binaries can also be produced by various

dynamical processes. Studies suggest a detection rate of
Oð10–100Þ yr−1 BH binaries produced in the ao ≲ 0.1 pc
region by the interaction channel [3,5,6,44]. Assuming a
density profile ∝ a−2o [3], it indicates Oð0.1–1Þ detection
per year in the central 0.001 pc region (≃200M3 for
M3 ¼ 108 M⊙) where the dS precession could be signifi-
cant. In fact, a binary formed in this channel may be
launched to an outer orbit with significant eccentricity that
reduces PdS by a factor ð1 − e2oÞ and allows the binary
formed at greater ao to also experience significant
precession (see the bottom panel of Fig. 1).
Once observed, the dS precession allows a direct

determination of properties of the SMBH and the outer
orbit. Note its rate is ΩdS=Ωo ¼ M3=½aoð1 − e2oÞ�. When
combined with the outer orbit’s Doppler shift which tells us
Ωo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M3=a3o
p

(and eo for elliptical orbits as we illustrate
in the Supplemental Material [41] which includes
Ref. [45]), we can therefore infer the values of M3, ao,
and eo individually.
Before this method, there were two common approaches

to directly determine the mass of an SMBH with a typical
accuracy of tens of percent, either through directly observ-
ing the dynamics of the star or gas around the SMBH,

or through reverberation mapping of the continuum emis-
sion of AGNs [46]. The former is limited to a nearby
(≲100 Mpc) SMBH and the later is applicable only to Type
I (broad emission-line) AGNs, a trace of the population
[46]. LISA could also constrain SMBH masses via
equal-mass inspirals and EMRIs. However, it is only
sensitive to mergers with masses ≲107 M⊙ [47–49]. Our
approach, on the other hand, probes SMBHs across almost
the entire mass range to a distance of a few Gpc and applies
independent of the SMBH being active or quiescent.
It is thus an invaluable complementary to the existing
methods. Furthermore, it also determines the outer orbit via
measuring ao and eo that are hard to be extracted otherwise
at OðGpcÞ distances, thereby constraining the nuclei
dynamics which currently has considerable theoretical
uncertainties.
Hereafter, we will focus on the dS precession and how

we can utilize it to measure M3 and ao. We neglect the
subleading Lense-Thirring precession and Lidov-Kozai
oscillations for simplicity (but see Ref. [50]) and treat both
the inner and outer orbits as being circular (we will discuss
the effects of eccentricities at the end of the Letter).
Gaseous friction [11,51–55] and encounters with
background objects [5,56] have characteristic timescales
ranging from thousands to millions of years and therefore
can be ignored over an observation over Tobs ≃ 5 yr
(see the Supplemental Material [41] for details). All the
parameters in this Letter correspond to their inferred
values in the detector frame [57]. We use geometrical
units G ¼ c ¼ 1.

FIG. 1. Periods of various dynamical processes. Approximately, below the solid trace an effect is detectable with joint detection by
space-borne and ground-based detectors. Below the dashed trace, the effect can be constrained with a single TianGO-like detector. We
set the lower y limit in each panel to aoð1 − eoÞ ¼ 9M3. The decay of the outer orbit and hence the shaded region with ao=4_ao < 5 yr is
discarded. The triple stability [42] is always satisfied in the upper panel and its boundary is similar to the shaded region in the lower one.
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Waveforms.—In Fig. 2 we demonstrate the geometry of
the problem. We construct two reference frames. The
ðx; y; zÞ frame is centered on the corner detector with x̂
and ŷ pointing along two arms of TianGO [29] (for LISA,
this frame is constructed as in Ref. [58]). As the detector
frame changes in both location and orientation, we also
construct a fixed solar frame ðx̄; ȳ; z̄Þ with ˆ̄z perpendicular
to the ecliptic. In the solar frame, the source’s sky location
N̂ and the total AM Ĵ with J ≡ Li þ Lo ≃ Lo are labeled
with polar coordinates ðθ̄S; ϕ̄SÞ and ðθ̄J; ϕ̄JÞ, respectively.
We further define ιJ as the angle between N̂ and L̂o, and λL
the angle between L̂i and L̂o. The problem now
becomes projecting the GW radiation characterized by a
time-varying orientation L̂iðtÞ onto an antenna with also
time-varying coordinates ðx̂; ŷ; ẑÞ.
To obtain the antenna response of the GW detector, we

follow Refs. [58,59]. The explicit expressions for various
quantities can be found in the Supplemental Material [41].
The frequency-domain waveform under the stationary-
phase approximation is

h̃ðfÞ ¼ ΛðfÞh̃CðfÞ ¼ ½A2þðtÞF2þðtÞ þ A2
×ðtÞF2

×ðtÞ�1=2
× exp f−i½ΦpðtÞ þ 2ΦTðtÞ þΦDðtÞ�gh̃CðfÞ; ð2Þ

whereΛ characterizes the modulation due to antenna response
and h̃C is the antenna-independent “carrier”. We approximate
h̃C with the quadrupole formula, including four intrinsic
parameters, ðM; DL; tc;ϕcÞ, corresponding to the chirp
mass, luminosity distance, and time and phase of coalescence.
The antenna pattern depends on time which is further a
function of frequency, tðfÞ ¼ tc − 5ð8πfÞ−8=3M−5=3.
The changing orientations affect the amplitude both

via Aþ ¼ 1þ ðL̂i · N̂Þ2 and A× ¼ −2L̂i · N̂, and via
Fþð×ÞðθS;ϕS;ψSÞ, where ðθS;ϕSÞ are the polar coordinates
of N̂ in the ðx; y; zÞ frame and ψS is the polarization angle.
Besides amplitude modulations, there are also extra

phase terms. The Φp term characterizes the polarization
phase, and the precession of L̂i further gives rise to a
Thomas precession term ΦT [59]. Lastly, ΦD describes a

Doppler phase due to motions of both the outer orbit and
the detector orbiting around the Sun.
To this point the expressions are generic. A waveform is

specified when one supplies information about the orbits
(for ΦD) and the orientations L̂i and ðx̂; ŷ; ẑÞ.
We model the Doppler phase as [60]

ΦD ¼ 2πf½ao sin ιJ cos ðΩot − ϕð0ÞÞ
þAU sin θ̄S cos ð2πt=yr − ϕ̄SÞ�; ð3Þ

where ϕð0Þ characterizes an initial phase for the outer orbit.
The dS precession of L̂i around L̂o can be written in terms
of three additional parameters ðPdS; λL; α0Þ with α0 an
initial phase characterizing the initial orientation of L̂i. The
detector’s orientation for both LISA and TianGO is
described in Ref. [62].
We compare in Fig. 3 sample waveforms with sensitiv-

ities of various space-borne detectors. The initial GW
frequency fð0Þ is chosen such that the inner binary mergers
in 5 yr, the fiducial value of Tobs. For a stellar-mass inner
binary (solid traces), various missions have similar sensi-
tivities to the precession-induced modulation with the
decihertz observatories having a greater total signal-to-
noise ratio (SNR). With TianGO’s sensitivity, the system
corresponding to the purple-solid trace has a total SNR of
80, and a SNR of 13 if we use only the data at least 0.1 yr
prior to the merger (i.e., integrating from the initial
frequency to the dot markers). While the SNR from the
final 0.1 yr does not directly constrain the precession, it
nonetheless reduces the uncertainties on other parameters
that are partially degenerate with the precession signatures
and is thus critical as well. Similarly, a joint detection of the
source with ground-based detectors enhances the sensitivity

FIG. 3. Sample waveforms shown in 2
ffiffiffi

f
p jh̃j. The olive trace

includes variation in the detector’s orientation only, while the
purple ones further include the dS precession. The initial frequency
fð0Þ is chosen such that the binary merges in Tobs ¼ 5 yr and
the dot symbols indicate the instant 0.1 yr prior to the merger.
We assumed ðDL; θ̄S; ϕ̄S; θ̄J; ϕ̄JÞ ¼ ð1 Gpc; 33°; 147°; 75°; 150°Þ
and ðPdS; λLÞ ¼ ð2.7 yr; 45°Þ.

FIG. 2. Cartoon illustrating the geometry of the problem. Note
the amplitudes of vectors are chosen only for visualization
purpose.
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further. If the inner binary consists of intermediate-mass
BHs [the dashed trace; it has a total (early-stage) SNR of 36
(26) in LISA after combining two detectors’ responses],
then LISA alone would be able to detect the modulations.
Results.—We adopt the Fisher matrix formalism [58] to

quantify the detectability [63]. We start by considering the
parameter-estimation (PE) accuracy of a simple-precession
problem (i.e., dropping the Doppler phase due to the outer
orbit) and parameterize the modulation in terms of
ðPdS; λL; α0Þ. Our aim is to establish the detectability
thresholds for PdS and λL. The results are summarized in
Fig. 4 (we have randomized α0 and plotted the median
values). Throughout this section we assume the source is
detected by TianGO [29] alone.
As expected, the accuracy in both PdS and λL improves

as PdS decreases, and at PdS ≃ 2Tobs ¼ 10 yr we have
approximately ΔPdS=PdS < 1 and ΔλL < 1 rad, marking
the boundary of detectability.
Note that at PdS ≳ 3 yr, the error ΔPdS is smallest when

λL ≃ 90° as it maximizes the variation in the orientation.
At smaller PdS, the optimal detectability is achieved at
λL ≃ 40° ≃ ιJ (and also at 140°). This is thanks to the
Thomas phaseΦT . As shown in Ref. [59], when N̂ is inside
the precession cone ðjL̂o · L̂j < jL̂o · N̂jÞ, each precession
cycle the Thomas term contributes approximately
ð−2π cos λLÞ to the phase. When L̂o · L̂ > jL̂o · N̂j, how-
ever, the contribution per cycle changes sharply to about
2πð− cos λL þ 1Þ [65]. Consequently, when λL ≃ ιJ (or
π − ιJ), ΦT can be determined with high accuracy. Since
the total ΦT is proportional to the total number of
precession cycles, it thus leads to good constraints on PdS.
As we know the detector’s orbit, we do not see it

significantly interfering with the results when PdS ≃ 1 yr.
Moreover, the Thomas phase is associated with the pre-
cession of L̂i only [58], further breaking the potential
degeneracy between a changing L̂ and a changing ẑ. It is
nonetheless crucial to include the detector’s motion to
constrain N̂ [29,58].

We now combine the dS precession with the Doppler
shift to study the constraints on the SMBH properties.
We useM3 and ao as free parameters and write Ωo and PdS
in terms ofM3 and ao. The initial phase ϕð0Þ is included and
randomized over.
The result is shown in Fig. 5. We only include regions

where ΔλL ≤ λL so that the signature of precession is
unambiguously detected. Note the boundary of ΔλL ¼ λL
is broadly consistent with the line of PdS ¼ 10 yr, agreeing
with the results we obtained in the simple-precession
analysis. Along the line of PdS ¼ 10 yr, the fractional
error in the SMBHmass is constrained toΔM3=M3 ∼ 10%,
demonstrating a direct determination of the SMBH prop-
erty is indeed possible. We further find that Δ log ao ≃
Δ logM3=3 for most of the parameter spaces because Ωo is
determined with the highest accuracy among all the
parameters describing the modulations.
Along the line of constant PdS, the error decreases with

increasing M3. This is because the “modulation depth” on
the Doppler phase [Eq. (3)] increases with M3. With the
Doppler shift alone, we cannot utilize the modulation depth
due to the unknown sin ιJ. Once the precession is included,
however, L̂o serves as the precession axis of L̂i, allowing
the outer orbit’s inclination to be inferred. Once we know
sin ιJ, the modulation depth provides another measurement
of ao, enhancing the sensitivity further.
Summary and discussion.—Our analysis so far has

considered detections by TianGO alone. As ground-based
detectors are more sensitive to stellar-mass BHs [29],
they could constrain intrinsic parameters with much
higher accuracy. We thus estimate the joint-detection
effect by still computing the Fisher matrix using a space-
borne detector’s sensitivity but treating ðM;ϕc; tcÞ
as known parameters. For a system with ðM3; aoÞ ¼
ð108 M⊙; 100M3Þ and the rest the same as in Fig. 5,
the errors in ðM3; aoÞ can be dramatically improved
toΔ logM3 ¼ 1.7 × 10−4ð5.2 × 10−2Þ ≃ 3 logao assuming

FIG. 5. PE results combining both the dS precession and the
Doppler phase shift. We assumed an opening angle between
the inner and outer orbits of λL ¼ 45° and other parameters are
the same as in Fig. 4. We also plotted the line of PdS ¼ 10 yr. The
grey regions have ΔλL > λL and therefore are excluded. NoteM3

can be constrained to 10% if PdS ≃ 10 yr with TianGO alone. The
error decreases as M3 increases thanks to the additional infor-
mation provided by the amplitude of the Doppler phase.

FIG. 4. PE results assuming a simple-precession problem (no
Doppler phase of the outer orbit). We fix the inner binary to have
ðM1;M2; fð0ÞÞ ¼ ð50 M⊙; 50 M⊙; 12 mHzÞ. The source’s sky
location in the solar frame is ðDL; θ̄S; ϕ̄SÞ ¼ ð1 Gpc; 33°; 147°Þ
and the orientation of the outer orbit is ðθ̄J; ϕ̄JÞ ¼ ð75°; 150°Þ.
Note the dS precession is detectable if PdS ≲ 10 yr if the source is
detected by TianGO alone.
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the sensitivity of TianGO (LISA). The uncertainty in λL
is also reduced by about a factor of 6 to ΔλL ¼ 0.02 rad
for both TianGO and LISA. If a source instead has
ao ¼ 300M3 with Ppre ≃ 100 yr, we find a median error
ΔλL ¼ 0.72 rad < λL with LISA’s sensitivity after random-
izing initial phases, indicating the precession would still be
detectable. Knowing the source’s distance and sky location
further improves the accuracy in λL by a factor of a
few. For ao ¼ 300M3 and LISA’s sensitivity, we find
ΔλL ¼ 0.16 rad in this case.
We assumed both circular inner and outer orbits. In

reality, finite eccentricities are expected especially if the
inner binary is formed via dynamical channels. One
plausible scenario is that both ei and eo follow a thermal
distribution, with e2i;o uniform in [0, 1) [4,67].
An elliptic outer orbit enhances the detectability. Note eo

does not affect the inference accuracy of Ωo and itself can
be well constrained from the Doppler shift (as demon-
strated in the Supplemental Material [41]). Although the
instantaneous precession rate [68] should be used for
waveform modeling, the secular version [Eq. (1)] none-
theless indicates the qualitative effect of eo, which is to
make the rate greater by a factor of 1=ð1 − e2oÞ. Thus at a
fixed ao the waveform is modulated by more precession
cycles, making its signature more prominent. It also allows
a system at greater ao to potentially experience a significant
modulation (lower panel of Fig. 1).
The eccentricity of the inner orbit ei modifies only the

carrier h̃c. Therefore, it affects the results mostly through
affecting the overall SNR. Following Ref. [69], for mild
eccentricities (ei ≤ 0.7 at ai ¼ 1.4 × 10−3 AU), we find
both the total SNR and that from the early stage (≥ 0.1 yr
prior to merger) in fact increase for TianGO, and decrease
by a small amount (factor of 3) for LISA. A more extreme
eccentricity would make the inner orbit decay too quickly if
we fix the initial að0Þi . Nonetheless, such a system can
merge within Tobs starting at much greater initial separa-
tions of Oð0.1Þ AU. From the evolution from 0.1 AU to
10−3 AU we can still obtain an integration time of more
than a year and a SNR of about 5 (with the sensitivity of
TianGO). Therefore, our results should not change quali-
tatively by the inner eccentricity (detailed calculations
presented in the Supplemental Material [41]).
We did not include the precessions of L̂i due to the spins

ofM1ð2Þ. Nevertheless, this should be well distinguishable
from the precessions around L̂o thanks to the separation in
scales. The spin-induced opening angle is ≲M2

1=Li ∼ 1°
when f ∼ 0.01 Hz, in general much smaller than ΛL
which distributes approximately uniformly between 0°
and 180° (e.g., Ref. [70]). Moreover, the spin-induced
precession rate is ∼Li=a3i [59], corresponding to a period
of 10 days when f ¼ 0.01 Hz, and the period decreases
further as the inner binary decays. In contrast, the dS
precession around Lo has a constant and much longer
period.

Whereas we used the quadrupole formula for the
carrier, our formalism can be readily extended to incorpo-
rated more complicated dynamics of the inner binary
(higher-order relativistic corrections as well as environ-
mental effects due to gas [54] and/or gravitational lensing
[71,72] that alter the observed chirp mass [73]) by replacing
the carrier part with the appropriate h̃CðfÞ. Similar to the
inner eccentricity, changing the carrier affects the detect-
ability of extrinsic modulations mostly through changing
the overall SNR.
To conclude, we demonstrated that the dS precession of

L̂i around L̂o is detectable. The detectability threshold
is PdS ≃ 10 yr with space-borne detectors alone and
PdS ≃ 100 yr if the source is jointly detected by ground-
based detectors. This effect allows a direct determination of
the SMBH mass to better than 10% at Gpc distances and
applies to both active and quiescent SMBHs. It also
constrains the dynamics in galactic nuclei by pinpointing
the outer orbit. Future studies incorporating the orbital
eccentricities and subleading effects, as well as extending
the PE to a more rigorous Bayesian framework would be of
great value.
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