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Strong gravitational lensing is a gravitational wave (GW) propagation effect that influences the inferred
GW source parameters and the cosmological environment. Identifying strongly lensed GW images is
challenging as waveform amplitude magnification is degenerate with a shift in the source intrinsic mass and
redshift. However, even in the geometric-optics limit, type II strongly lensed images cannot be fully
matched by type I (or unlensed) waveform templates, especially with large binary mass ratios and orbital
inclination angles. We propose to use this mismatch to distinguish individual type II images. Using planned
noise spectra of Cosmic Explorer, Einstein Telescope and LIGO Voyager, we show that a significant
fraction of type II images can be distinguished from unlensed sources, given sufficient SNR (∼30).
Incorporating models on GW source population and lens population, we predict that the yearly detection
rate of lensed GW sources with detectable type II images is 172.2, 118.2 and 27.4 for CE, ET and LIGO
Voyager, respectively. Among these detectable events, 33.1%, 7.3% and 0.22% will be distinguishable via
their type II images with a log Bayes factor larger than 10. We conclude that such distinguishable events are
likely to appear in the third-generation detector catalog; our strategy will significantly supplement existing
strong lensing search strategies.

DOI: 10.1103/PhysRevD.103.104055

I. INTRODUCTION

Successful detection of gravitational wave (GW) signals
from compact binary mergers by the Advanced Laser
Interferometer Gravitational-Wave Observatory (aLIGO)
and Virgo collaboration has greatly enriched our under-
standing of gravity and many aspects of astrophysics [see,
e.g., [1,2]]. To extract physical information from detector
data, proper signal interpretation is crucial. For this
purpose, it is important to study changes in the waveform
as it propagates through the universe, since, if unaccounted
for, propagation effects can be confused with intrinsic GW
features and introduce bias in subsequent analysis. On the
other hand, results of propagation effects depend on proper-
ties both of the GW and the objects along its path that it
interacts with [see, e.g., [3–8]]. Therefore, identifying such
signatures also maximizes the scientific output of GW
detection.
One GW propagation effect is strong gravitational

lensing, in which the rays of a GW are bent strongly
enough by a gravitational potential and form multiple
images with different magnifications. Gravitational lensing
of gravitational waves has attracted enormous interest. It
has been estimated that third-generation detectors can
detect up to hundreds of strongly lensed events [9–12];

such events can then be used to study cosmological
structures [10,13–16] and fundamental physics [17–20].

However, identifying strongly lensed images is chal-
lenging since the predominant effect of strong lensing,
namely the amplitude magnification by

ffiffiffi
μ

p
, is degenerate

with scaling down the luminosity distance, DL, by
ffiffiffi
μ

p
and

keeping the redshifted mass, M•ð1þ zsÞ, constant [see,
e.g., [21]], whereM• is the total mass of the binary and zs is
the redshift of this GW source. This degeneracy stems from
the fact that general relativity is a scale-free geometric
theory, and that GW frequency evolution is unaffected by
strong lensing [21].
Current search strategies typically look for multiple events

in a catalog that are consistent in intrinsic properties and sky
locations, and have orbital phase related in characteristic
ways [see, e.g., [22,23]]. For example, this has been used to
study the series of events GW170104, GW170814 and a
subthreshold trigger, GWC170620, as potential candidates
for lensed images [23]. In Ref. [24], the event GW170814
and GW170809 are analyzed as potential strongly lensed
companion images using a similar consistency test.
It is also proposed that a sharp transition in the inferred

source intrinsic mass distribution at high mass values could
single out strongly lensed images [16,25]. This mass
distribution anomaly argument, however, must be made in
reference to an expected GW source distribution. Currently,
such source population models are subject to considerable
uncertainties.*yijunw@caltech.edu
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The above strategies share two other drawbacks: (1) with-
out prior knowledge of the lensed source parameters, all pairs
of cataloged events must be searched over to find strongly
lensed candidates. As detector sensitivity improves and next-
generation detectors start observing, the computational cost
of such analysis will surge with the increased number of
detected events; (2) it is also required that more than one
lensed images are detected. If all but one of the images are
missed, the methods described above cannot ascertain if a
GW image is strongly lensed.
For the above reasons, an intrinsic waveform distortion

in a lensed image can be both a more definitive and efficient
indicator of strong lensing. If such a lensed image is found,
its estimated parameters help narrowing down the search
space in the more general pairwise search method men-
tioned above. An example is the frequency-specific GW
diffraction in weak lensing [26,27]. Diffraction signature
was searched for in current detected events, but it has yet to be
found [22]. It is also predicted that, for GWs within the
frequency range of LIGO, diffraction becomes important
when the lensmass ranges from 1–100 M⊙ [4,28,29]. Strong
lensing by such small lenses requires a small impact
parameter, which places stringent requirement on the align-
ment of the GW source, the lens and the observer [see, e.g.,
[30]]. Consequently, we expect such events to be rare.
Though diffraction is negligible for strong lensing

(within a similar frequency range as LIGO), waveform
distortion does occur in the geometric-optics limit when an
image originates from a saddle-point solution to the lens
equation [see, e.g., [30]]. Such images are called type II
images, their waveforms are the Hilbert transforms of the
corresponding unlensed waveforms. By contrast, wave-
forms of type I and type III images are identical to the
unlensed waveform, up to a rescaling—and, for type III
images, a sign flip. In [15], it is pointed out that type II
images are degenerate with type I images with an azimuthal
angle shift of π=4, if only the dominant ð2;�2Þ modes are
considered. For highly eccentric orbits, this degeneracy is
partially lifted. For quasicircular binaries, the degeneracy is
also broken if higher multipoles are considered. Recently,
Ref. [31] has systematically examined the type II images of
a wide range of GW sources, including the effects of spin
precession and orbital eccentricity. It was found that the
type I/II waveform difference is still small upon tuning the
azimuthal angle, the polarization angle and relative phases
between GW modes. In this paper, we build upon the work
in Ref. [31] by exploring whether such type II images can
be distinguished from regular images despite the small
waveform mismatch.
For third-generation detectors, such as the LIGOVoyager

[32], the Einstein Telescope1 [33] (ET) and LIGO Cosmic
Explorer2 [34] (CE)with currentmodels,we expect to be able

to detect a non-trivial number of such distinguishable type II
events thanks to the expected high signal-to-noise ratio
(SNR).
This paper is organized as follows. In Sec. II we review

the geometric optics theory for GW lensing. In Sec. III, we
calculate the best-match overlap between type II and type I
waveforms over a range of detector-frame binary mass,
mass ratio and orbital inclinations. We briefly discuss the
implication of waveform mismatch for detection triggering
in the current LIGO pipeline framework. In Sec. IV we
discuss the distinguishability of type II images in the high-
SNR regime by comparing the log likelihoods under type I
and type II image hypothesis. Based on this, we compute
the fraction of distinguishable type II images. In Sec. V, we
incorporate population models on GW sources and lensing
galaxies, and predict the expected number of events with
distinguishable type II images for LIGO Voyager, ET and
CE. We then discuss the results and draw the conclusion.
Throughout this work, we assume a ΛCDM universe

with ðΩM;ΩΛÞ ¼ ð0.3; 0.7Þ and a Hubble Constant of
H0 ¼ 70 km s−1Mpc−1.

II. LENS THEORY AND IMAGE TYPE

The geometric optics treatment of gravitational lensing is
thoroughly investigated and well established by many
authors [see, e.g., [26,30,35]]. In this section, we summa-
rize and discuss scenarios where type II images are
distinctive from type I counterparts. We closely follow
the discussion in [35] and keep mostly consistent notations.

A. Thin gravitational lens: Geometric-optics limit

We adopt the thin lens model, in which the line-of-sight
lens dimension is much smaller than separations between
the GW source, the lens and the observer. The source plane
and the lens plane are defined by the GW source and the
lens center, and both planes are perpendicular to the optical
axis connecting the lens center and the observer. All the
lens mass is projected onto the lens plane. Lensing
deflection to GW paths occurs only on the lens plane.
On each plane, the origin is established as its intersection

with the optical axis. The source position has the dimen-
sionless coordinate  y ¼  ηDd=ðr�DsÞ and the GW path
intersects the lens plane at  x ¼  ξ=r�.  η;  ξ are coordinates
with physical units of length, r� is the lens’ Einstein radius,
while Dd, Ds are the observer’s angular diameter distance
to the lens and the source.
The amplitude of the observed image is then expressed

as a Kirchhoff integral over the lens plane [see also,
e.g., [27,30]],

Fðω;  yÞ ¼ ω

2πi

Z
d2  xeiωtð  x;  yÞ; ð1Þ

where ω is the source-frame GW frequency and tð  x;  yÞ is
the GW travel time difference between lensed paths and the
unlensed path,

1http://www.et-gw.eu/.
2https://cosmicexplorer.org/.
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tð  x;  yÞ ≈ 1

2
j  x −  yj2 þ tΦ; ð2Þ

where the first term accounts for the geometrical extra path
length in the small deflection limit and the second term, tΦ,
is the Shapiro time delay inside the lens’ gravitational
potential. In the geometric optics limit, only paths very
close to the stationary points of t contribute to the integral,
and we may Taylor-expand the time delay around the jth
stationary point,

tð  x;  yÞ ¼ tð  xj;  yÞ þ
1

2
dxadxbT;abð  xj;  yÞ þOðjd  xj3Þ; ð3Þ

where dxa is a component of the two-dimensional vector
d  x≡  x −  xj on the lens plane, and j; j denotes partial
derivatives and repeated upper and lower indices imply
summation. The integral in Eq. (1) then reduces to two
Gaussian integrals after diagonalizing the time delay
Jacobian, T;ab.
When detðT;abÞ > 0, phase shifts from both the ω=i

prefactor and the two Gaussian integrals depend on the sign
of ω. When TrðT;abÞ > 0, the phase factor is 1, giving type
I images. When TrðT;abÞ < 0, the phase shift is −sgnðωÞπ,
where the function sgn returns the sign of its argument.
This phase shift gives type III images, which differ from
type I by an overall phase of π. (Note that �π phases are
equivalent.)
When detðT;abÞ < 0, the two Gaussian integrals give

opposite phase shifts regardless the sign ofω, and no longer
contribute to the overall phase of Fðω;  yÞ. The overall
phase shift is then −sgnðωÞπ=2, giving type II images
which are equivalent to a Hilbert transform of type I
images.

B. Gravitational waves from circular,
nonspinning binaries

For compact binaries, the complex GW strain at infinity
can be written as

h ¼ hþ − ih× ¼
X
l;m

−2Ylmðι;ϕÞhlm; ð4Þ

where the subscripts þ;× denote plus and cross polar-
izations, and −2Ylmðι;ϕÞ is the s ¼ −2 spin-weighted
spherical harmonics. For non-spinning binaries with qua-
sicircular orbits, we choose the coordinate system such that
the orbital angular momentum is along the z axis. In this
way, arguments ι and ϕ of the spin-weighted spherical
harmonic also corresponds to the orbital inclination angle
and the azimuthal angle, respectively.
Let us start out by considering m ≠ 0 modes. The

contribution from modes with m ¼ �m0, where m0 is a
positive integer, is

h̃I;m0
¼

X
l

X
m¼�m0

−2Ylmðι;ϕÞh̃I;lm; ð5Þ

where the subscript I denotes the regular type I waveforms.
The quantity h̃I;lm is the Fourier transform of hlm in Eq. (4)
via

h̃I;lmðfÞ ¼
Z

∞

−∞
hlmðtÞe−2πiftdt: ð6Þ

We note that ϕ appears only in the factor of expðimϕÞ in
−2Ylmðι;ϕÞ. Furthermore, for nonspinning, circular bina-
ries, with orbital angular momentum along the z axis, in
frequency domain, m > 0 modes only have negative
frequency components and the inverse is true for m < 0

modes. Therefore, the Hilbert transform of h̃I;m0
, h̃II;m0

is
written as

h̃II;m0
ðι;ϕÞ ¼ −i sgnðfÞh̃I;m0

ðι;ϕÞ

¼ h̃I;m0

�
ι;ϕþ π

2m0

�
: ð7Þ

Therefore, for each subset of GW modes with m ¼ �m0,
the Hilbert transform is degenerate with an additional
orbital azimuthal angle Δϕ ¼ π=ð2m0Þ. For example, the
required angle change is Δϕ ¼ π=4, provided that only the
ðl;�2Þ GW modes are considered. Modes with different
jmj require different angle changes to compensate for the
Hilbert transform (e.g., the ðl;�3Þ modes require
Δϕ ¼ π=6). This difference in the compensation require-
ments breaks the degeneracy between Hilbert-transformed
signals and orbital azimuthal angle change.
Physically, jmj ≠ 2 modes can be significant when the

orbit is significantly eccentric [15]. For binaries with
significant mass ratios and inclination angles, the
ð3;�3Þ modes become significant, breaking degeneracy.
Figure 1 is analogous to Fig. 2 in [15] and plots example
type I/II waveforms from a binary with a detector-frame
mass M̃ ¼ 150 M⊙, a mass ratio q ¼ 2.2 and an orbital
inclination angle ι ¼ 80 deg. The binary is nonspinning in
a quasicircular orbit, and all multipoles with l ≤ 4 are
included. The top two panels show that the type II image is
not degenerate with the type I image with an additional time
shift. The bottom panels show that, when we include only
the m ¼ �m0 modes, the Hilbert transform is degenerate
with the original waveform with Δϕ ¼ π=ð2m0Þ.
For m ¼ 0 modes, h is independent from ϕ, and one

cannot recover its Hilbert transform via shifting ϕ. This in
principle further breaks the degeneracy, although m ¼ 0
modes are generally weak for nonspinning binaries in
circular orbits. However, note that these are where the
GW memory effects take place [36–38].
In this paper, we systematically explore GW sources

which are nonspinning binary black holes in quasicircular
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orbits. The distinguishable signature of type II images will
be due to higher order GW modes, which is related to
binary mass ratio, q, and orbital inclination, ι.

III. WAVEFORM MISMATCH

In this section, we quantify the mismatch between type I/
II waveforms for nonspinning binaries, in preparation for
discussion on their distinguishability in the next section.
We also discuss the implication of this mismatch for the
GW signal veto process, namely, whether the mismatch
leads to type II signal rejection in the current LIGO data
analysis pipeline.

A. Best-match overlap

In this section, we describe the procedure to compute the
type I/II waveform difference over a large parameter space.
We model only nonspinning binaries in quasicircular orbits.
Highly spinning binaries or thosewith highly eccentric orbits
are expected to be fewer than the population we consider
[see, e.g., [39,40]]. Since, the optical depth for type II images
is also small, on the order of 10−3–10−4 [10,11,21], we
exclude these less frequent sources from our analysis.
For this source population, frequency-domain GW strain

is given by the Fourier transform of Eq. (4),

h̃IðfÞ ¼
X
l;m

−2Ylmðι;ϕÞ
H̃I;lmðM̃; q; fÞ

DL
e−2πift0−iΦ; ð8Þ

where H̃I;lmðM̃; q; fÞ=DL is equal to h̃I;lmðfÞ in Eq. (6),
with the dependence on DL explicitly shown. The wave-
form is a function of the detector-frame mass (or equiv-
alently, the redshifted mass), M̃ ¼ ð1þ zÞM (where M is
the intrinsic mass), the mass ratio, q≡ M̃1=M̃2 ≥ 1

(M̃1 þ M̃2 ¼ M̃), and the luminosity distance, DL. The
polarization angle, Φ, and signal time-of-arrival, t0, add
additional phase shifts to the signal.
For any two waveforms, h̃1; h̃2, we define the overlap by

overlap ¼ Reðhh̃1jh̃2iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh̃1jh̃1ihh̃2jh̃2i

q ¼ 1 − ϵ; ð9Þ

where ϵ is the mismatch and h·i denotes inner product
given by

hajbi ¼
Z

∞

−∞

a�ðfÞbðfÞ
SnðfÞ

df; ð10Þ

where SnðfÞ is the two-sided noise power spectral density.
By applying the optimal matched filter, the SNR of h̃, ρ, is

given by
ffiffiffiffiffiffiffiffiffiffiffi
hh̃jh̃i

q
.

Throughout this paper, we use Roman numeral sub-
scripts to denote the image types and Arabic numeral
subscripts to represent any individual waveform. We also
adopt the simplifying assumption that bothGWpolarizations
can be independently detected, i.e., the time-domain

FIG. 1. Type I/II NRSur7dq4 surrogate model waveforms from a binary with M̃ ¼ 150 M⊙, q ¼ 2.2, ι ¼ 80 deg. The binary is
nonspinning in a quasicircular orbit. The black dotted line shows the type I waveform with a π=4 shift in the orbital azimuthal angle, and
the shifted waveform is completely degenerate with the type II image. The orange dotted line shows the type II waveform, such that its
peak overlaps with that of the type I waveform. We observe that the type I/II waveform offset cannot be compensated by a time shift.
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waveform is taken to be complex, as in Eq. (4). In Sec. VI, we
discuss in more detail the validity of this assumption.
To obtain highly accurate models for h̃, we adopt the

time-domain numerical relativity surrogate waveform
model, NRSur7dq4, [41] extracted through the PYTHON

package, GWSURROGATE [42]. This surrogate model pro-
vides all l ≤ 4 mode waveforms, hI;lmðtÞ, through the
inspiral, merger and ringdown phases.
To avoid spurious edge effects due to the finite-length of

surrogate waveforms, we apply a time-domain kaiser
window function from numpy.kaiser [43] with
β ¼ 4. The window is centered at the waveform amplitude
peak to maximally preserve waveform features. The signal
is zero-padded prior to the Fourier transform to ensure
sufficiently smooth transformed waveform.
To maximize the overlap, Ref. [31] separately tunes the

azimuthal angle, polarization angle, and the relative phases
between each of the GW multipoles. We adopt a different
approach by tuning the intrinsic parameters of the GW
sources.We adopt a nested searchmethod.We first generate a
type II signal template, h̃II;0, with ðM̃0; q0; ι0;ϕ0Þ. Since the
waveform amplitude scaling does not contribute to the
overlap, we fix DL ¼ 3 Gpc for all waveforms. We make
a ðM̃; qÞ grid, with the mass range centered on M̃0 and mass
ratio between 1 and 4 (the range of q used to train the
surrogate model). At each grid point, we construct the type I
template and use the PYTHON module scipy.optimi-
ze.dual_annealing [44] to find the ðι;ϕÞ that maxi-
mize the overlap between the type I template and the type II
target. The spin-weighted spherical harmonics are computed
using the PYTHON package spherical_functions3

and quaternion.4 To implicitly maximize over t0 and
Φ, we take the Fourier transform of the integrand in
Eq. (9) and pick the element with the largest absolute value
[see, e.g., [45]]:

ð1 − ϵÞmax ¼ maxt0

���� 1a
Z

∞

−∞
df

h̃�I ðfÞh̃IIðfÞ
SnðfÞ

e−2πift0
����;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh̃Ijh̃Iihh̃IIjh̃IIi

q
: ð11Þ

Figure 2 shows an example maximization result contour
plot for a type II signal with M̃ ¼ 150 M⊙, q ¼ 1.7 and
ι ¼ 70 deg with CE noise curve. Due to the waveform
mismatch, the best-match template has different parameter
values from those of the true signal, with a maximal overlap
of 99.06%.
We calculate the overlap for sample points on the grid

XðM̃Þ ⊗ YðqÞ ⊗ ZðιÞ, with

XðM̃Þ ¼ f60; 80; 100; 150; 200; 230; 260;
300; 400; 500; 600; 700; 800g½M⊙�;

YðqÞ ¼ f1.2; 1.7; 2.2; 2.7; 3.2g;
ZðιÞ ¼ f15; 30; 40; 50; 60; 70; 80g ½deg�:

We then interpolate between the samples using the sci-
py.interpolate module [44] to construct a function
ϵðM̃; q; ιÞ. For nonspinning binaries, the interpolated func-
tion ensures that 90 deg < ι < 180 deg is symmetric to
0 deg < ι < 90 deg. We perform the same analyses for
CE, ET, and LIGO Voyager with their respective noise
power spectral density (PSD) [32–34,46].
Figure 3 shows the amplitude spectral density of CE, ET,

and LIGOVoyager [32–34,46], as well as the waveform of a

FIG. 2. Contour plot for maximized overlap for a type II
waveform with M̃ ¼ 150 M⊙; q ¼ 1.7 and ι ¼ 70 deg. Grid
point with the maximum overlap is shown with the red dot at
M̃ ¼ 148.39 M⊙; q ¼ 1.50. 95% overlap contour is shown
in red.

FIG. 3. Positive frequency band waveform for a binary with
M̃ ¼ 200 M⊙, q ¼ 2.2, ι ¼ 80 deg and DL ¼ 1 Gpc, plotted in
black. The amplitude spectral densities (ASDs) for CE, ET and
LIGO Voyager are plotted with colored traces. Note that ASDs
for CE and LIGO Voyager are available starting from 3 Hz.

3https://github.com/moble/spherical_functions.
4https://github.com/moble/quaternion.
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binary with M̃ ¼ 200 M⊙; q ¼ 2.2; ι ¼ 80 deg at DL ¼
1 Gpc as an example. The low-frequency amplitude loss
of the surrogate waveform is due to the finite length of the
NRSur7dq4 waveforms. For less massive binaries, this
effect results in significant loss of ρ, especially in the case of
CE, where the low-frequency sensitivity degrades slower.
To estimate how this ρ loss affects the overlap values, we

compute the maximum overlap for a ðM̃0 ¼ 60 M⊙; q ¼
3; ι ¼ 80 degÞ binary with the CE PSD, filtering all
frequency components below 30 Hz, where the loss of ρ
becomes significant. Compared with the unfiltered case
(ð1 − ϵÞmax ¼ 0.981Þ, the overlap decreases only by
3.3 × 10−3. Since M̃ ¼ 60 M⊙, q ¼ 3 and ι ¼ 80 deg
are roughly the smallest redshifted mass, largest mass ratio
and inclination we consider, other binaries within our
parameter space should have a smaller loss of the overlap.
Considering the small size of the difference, we do not filter
signals in subsequent analysis.
Figure 4 shows the best-match overlap for GW wave-

forms with a redshifted mass of 150 M⊙ for the three GW
detectors at selected mass ratio values. Maximization data
points are shown with solid dots, and the interpolation
functions are shown as smooth curves. The right axis shows
the required ρ to distinguish type I/II waveforms with a log
Bayes factor of 10 at the corresponding overlap values on
the left axis. See discussion in Sec. IV. Consistent with
intuition, the best-match overlap is the lowest for high
mass-ratio signals at large inclinations. Over our parameter
space, the mismatch value for such signals is typically on
the order of 2%. We note that the same type II waveforms
have the largest mismatch with type I waveforms in LIGO
Voyager, as the LIGO Voyager PSD emphasizes high-
frequency waveform components, where the Hilbert trans-
form effect is more pronounced.

B. Signal veto

An ensuing concern from the mismatch is whether the
difference in waveforms could lead to type II signals
vetoed or assigned a lower significance value during
observing runs. For the current GW data analysis pipelines,

once a threshold ρ is reached, the data typically go through
a χ2 veto test to screen out spurious signals. In this section,
we calculate the noncentral parameter in the χ2 statistic
distribution from using type I templates to match type II
signals.
The χ2 veto was described in detail in [47]. This test

characterizes the distribution of ρ over frequency bins and
vetoes detector “glitches,” or loud bursts of non-Gaussian
noise that might have a high ρ, but have a frequency
distribution very different from that of a genuine GW signal.
Suppose the best-match template to the signal, ñþ h̃0 is

h̃T , where ñ is noise and h̃0 is the embedded waveform. We
divide the detector sensitive frequency range into p disjoint
sub-bands, Δfj, such that the template ρ in each bin is 1=p
of its total ρ,

ρT;j ¼
Z
−Δfj;Δfj

jh̃T j2
SnðfÞ

df ¼ 1

p

Z
∞

∞

jh̃T j2
SnðfÞ

df: ð12Þ

We then calculate the signal ρ in each frequency bin as:

sj ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh̃T jh̃Ti

q
Z
−Δfj;Δfj

h̃�Tðñþ h̃0Þ
SnðfÞ

df: ð13Þ

We then define the χ2 statistic as

χ2 ≡ p
Xp
i¼1

ðsi − s=pÞ2; s≡Xp
j¼1

sj: ð14Þ

In the case where the best-match template in the template
bank does not exactly match the embedded waveform, the
distribution of χ2 over many Gaussian noise realizations is a
classical χ2 distribution with a noncentral parameter,

hχ2i ¼ p − 1þ κhsi2; ð15Þ

where h·i denotes the average over noise realizations. The
factor, κ, in the noncentral parameter is bound by

FIG. 4. Overlap between type I and type II waveforms for M̃ ¼ 150 M⊙ at selected mass ratio values. The axis on the right shows the
threshold ρ to distinguish such type II images from type I counterparts by a log Bayes factor of 10, for the corresponding waveform
overlap value. See Section IV for details. Panels from left to right are overlaps for CE, ET, and LIGOVoyager respectively. In all panels,
data points are shown with dots, and the interpolated overlap functions are shown in smooth curves.
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0 < κ <
1

ð1 − ϵÞ2 − 1 ≈ 2ϵ; ð16Þ

where ϵ is the minimized mismatch between the template
and the underlying waveform, as is defined in Eq. (11). The
approximate equality is satisfied when ϵ ≪ 1. This bound
is agnostic of the specific waveform of the signal and
templates. Consequently, the noncentral parameter intro-
duced by using type I templates on type II signals is smaller
than 0.12hsi2 in most cases, if we take the largest mismatch
to be 6%. If such a noncentral parameter lies within the χ2

threshold during detection, type II images are unlikely to be
vetoed.

C. Type II signal recovery

There have been ongoing efforts to look for possible
weaker (sub-threshold) strongly lensed counterparts of
confirmed GW detections, assuming the latter being
strongly lensed signals themselves [48,49]. One method
is to simulate lensed injections of a super-threshold GW
event, then use a generic template bank to search for these
injections through an injection run, and produce a targeted
template bank for searching possible lensed counterparts of
the target event by retaining only templates that can find the
injections.
However, only type I lensed images have been consid-

ered for current searches. The question we would like to
investigate is: Should type II lensed images be present in
the data, would a type I template bank be able to find them?
The answer to this question may be a crucial step for us to
identify possible lensed GWs that we might have already
detected but still not being discovered.
As a preliminary test to this question, we apply the

search method detailed in [48] to the high-mass-ratio
compact binary coalescence event GW190814 [50].
Using the waveform approximant IMRPhenomXPHM
[51], we generate a set of simulated lensed injections for
GW190814. They are then injected into real LIGO-Virgo
data in two ways: (1) by treating them as type I images, and
(2) by treating them as type II images, i.e., applying Hilbert
transform to the waveform in the frequency domain as
discussed previously. Through the GW CBC search pipe-
line GstLAL [52], we apply the previously generated type I
image target bank to search for these injections in both
tests, and finally we compare the number of missed
injections to roughly estimate the effectiveness of a type
I image bank to look for type II images.
As discussed in [48,52], each GW candidate found in the

GstLAL search will be assigned a log likelihood ratio
statistic lnL to measure its significance. The false-alarm-
rate (FAR) can be calculated accordingly, which corre-
sponds to how often noise will produce a trigger with
ranking statistic lnL larger or equal to the ranking statistic
lnL� of the trigger we are considering. In the search, an
injection is said to be found if its FAR passes the usual

threshold 1 in 30 days, as usual for a generic gravitational-
wave search [53].
In both tests, we have injected a total of 8036 simulated

lensed injections. We assume that the injected events are
registered by both detectors in the aLIGO network and the
Virgo detector. In test A, we apply a type I image bank to
look for injected type II images. For testB, we use the same
image bank and look for the type I counterpart of the
injections in test A. In test A, 638 injections are missed,
whereas in test B the missed count is 536. We observe that
the number of missed injections increases when the
injections were treated as type II images, indicating that
the current search method for subthreshold lensed GWs
may be missing possible type II lensed signals.
However, it is important to remark that our current results

are inconclusive since: (1) we have only been testing on one
particular GW event, and (2) the exact reason for the extra
number of injections to be missed are yet to be investigated.
Nevertheless, our results indicate there could be improve-
ments to the current search method for subthreshold lensed
GW signals, and further investigation will be done as
future work.

IV. DISTINGUISHING TYPE II EVENTS

While we have systematically examined the type I/II
waveform mismatch, whether it enables us to distinguish
type II images in actual GW experiments deserves further
discussion. In this section, we use the waveform overlap
and quantify the fraction of strongly lensed GW sources
that have distinguishable type II images.

A. Bayes factor

Using a Bayesian model (or equivalently hypothesis)
selection framework, we quantify the distinguishability
between a type I image and a type II image by computing
the Bayes factor B, which is the ratio of the probability of
observing the data  d under the hypothesis that the signal is
of type II over that under the hypothesis that the signal is of
type I, namely

B ¼ pð  djtype II imageÞ
pð  djtype I imageÞ

¼
R
d  θLð  θjtype II imageÞπð  θjtype II imageÞR
d  θLð  θjtype I imageÞπð  θjtype I imageÞ

; ð17Þ

where Lð  θÞ is the (Whittle) likelihood as a function of the
waveform parameters  θ, and πð  θÞ is the prior distribution,
which is different under the two hypotheses. The log
likelihood function, up to a normalization constant, is
given by
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lnLið  θÞ ∝ −
1

2
hd − hið  θÞjd − hið  θÞi

∝ −
1

2
hdjdi þ hdjhii −

1

2
hhijhii; ð18Þ

where the subscript i ¼ I; II denotes the assumed image
type. In an actual inference analysis, we do not know
a priori the “true” waveform parameters. Therefore, we
usually evaluate the integrals in Eq. (17) using a sampling
algorithm that explores the parameter space spanned by  θ
stochastically.
Still, we can give an analytical approximate of the Bayes

factor for distinguishing a type II image from a type I
image using only the SNR ρ and the mismatch ϵ we
calculated in Sec. III. Following the treatment in Refs. [54–
56], with the Laplace approximation we can write the log
Bayes factor as

lnB ≈ ln

�
LIIð  θMLEÞ
LIð  θMLEÞ

�
þ ln

�
σposteriorII

σposteriorI

�
; ð19Þ

where σposteriori is the posterior (uncertainty) volume assum-
ing that the lensed GW is of type-i. The log likelihood ratio
in Eq. (19) can be shown [56], in the high SNR limit, to
scale as

ln

�
LIIð  θMLEÞ
LIð  θMLEÞ

�
≈ ϵρ2; ð20Þ

when the (minimized) mismatch ϵ ≪ 1. If we ignore the
correlation between the parameters, we can estimate the
posterior volume σposteriori roughly as

σposteriori ≈
YN
j¼1

ffiffiffiffiffiffi
2π

p
Δθj;posteriori ; ð21Þ

with j loops over the N-dimensional vector  θ and
Δθj;posteriori is the uncertainty of the 1D marginal posterior
distribution for θj assuming that the image is of type-i.
Note that here we assumed that identical prior was used
when calculating the Bayes factor, except for the image
type. The posterior volume ratio also scales with the
mismatch, actually. Since hhIjhIi ≈ ð1 − ϵÞ2hhIIjhIIi and
that Δθj;posteriori ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffihhijhii
p

, therefore we have

ln

�
σposteriorII

σposteriorI

�
≈ −Nϵ: ð22Þ

Indeed, in the high SNR limit, the first term in Eq. (19) is
much larger than the second term as N ∼ 10 and ϵ ≪ 1.
Hence, we will ignore the contribution from the log

posterior volume ratio in this paper. Therefore, we can
estimate the log Bayes factor simply as5

lnB ≈ ϵρ2: ð23Þ

Figure 5 shows the log Bayes factor as a function of the
SNR ρ using nested sampling with the help of the library
bilby [57] and dynesty [58] as in Eq. (17), as well as its
approximate using only the optimal SNR and the mismatch
using Eq. (23). Here we use the IMRPhenomXHM wave-
form model [59] for both the simulated signals and the
inference. All simulated signals have a redshifted total mass
of M̃ ¼ 150 M⊙; q ¼ 3.2 viewing at an inclination angle of
ι ¼ 80 deg with different luminosity distances to adjust the
optimal SNR. We see that the simulation results roughly
follow the expected quadratic scaling with the optimal
SNR. Indeed, by performing a least-squares fit we found
that the exponent is 2.02� 0.07.
Since lnB scales as SNR2, even a small type I/II

mismatch could lead to significant lnB in the high-SNR
regime. For instance, for a mismatch of 3%, an SNR of 20
would yield a log Bayes factor larger than 10, favoring the
type II waveform hypothesis, thereby identifying this event
as a strongly lensed image regardless whether other images
are detected. The right axis in Fig. 4 shows the required
SNR to produce lnB ¼ 10 for the corresponding type I/II
overlap values. While such SNR is high for the current
aLIGO, for third-generation detectors, it occurs frequently.
For example, an equal-mass binary with a detector frame
total mass of 100 M⊙ at DL ¼ 8 Gpc has an ρ ¼ 30 for
LIGO Voyager. The same source with DL ¼ 17 Gpc has
ρ ¼ 131 for CE.

FIG. 5. The log Bayes factor lnB as a function of the SNR ρ of
the injections with different luminosity distances and fixed
mismatch ϵ, computed using Eq. (17) with nested sampling
and Eq. (23). We see that the simulation results roughly follow the
expected quadratic scaling with the SNR.

5Note that posterior volume also depends on dependences of hI
and hII on θj.
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B. Threshold inclination

In this section, we find the range of parameters,
ðM̃; q; zs), where type II images can be distinguished via
the log Bayes factor test. We choose lnBthresh ¼ 10 as the
criterion for distinguishability.
We begin by computing the distinguishable threshold

inclination, ι, for sources with certain redshifted mass, mass
ratio and redshift. Since both ρ and ϵ in Eq. (23) depend on
ι, it is more straightforward to first fix M̃; q, and ι to obtain
ϵ, and then scale ρ viaDL to achieve the lnBthresh condition.
Inverting DL;threshðM̃; q; ιÞ yields ιthreshðM̃; q;DLðzsÞÞ,
where zs is the GW source redshift.
To calculate ρ, we assume both GW polarizations can be

detected, and the total amplitude is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

p
. In the

Discussion section, we further discuss the justifications for
this assumption in the context of third-generation GW
detectors. However, the finite length of the surrogate model
waveform can lead to significant loss in ρ, even though the
effect on waveform overlap is negligible, as demonstrated
in Sec. III. For a binary with M̃ ¼ 60 M⊙; q ¼ 3, approx-
imately 15% of ρ is lost in the case of CE. For LIGO
Voyager, the noise increase starts earlier and steeper toward
lower frequencies; consequently, the ρ loss for the same
binary is only ∼5%. To accurately estimate ρ, we supple-
ment the surrogate model waveform with analytical inspiral
stage waveform, whose amplitude scales as f−7=6 [60]. The
inspiral amplitude is matched to the surrogate waveform
amplitude at 0.5fISCO, where fISCO is the innermost stable
circular orbit frequency, approximated as [see, e.g., [61]]

fISCO ¼ c3

63=2πGM̃
: ð24Þ

We note that, by compensating for the lost ρ, our result is
optimistic in estimating the distinguishability; while the
early inspiral phase contributes significantly to ρ, the type I/
II waveform mismatch is less pronounced. For the same ρ,

the compensated inspiral waveform does not offer as much
information as the higher frequency GW phases for
distinguishing type II images. Nonetheless, this overesti-
mate is significant only for systems toward the low mass
limit, where the expected detectable number of events is
low due to the small ρ.
The mismatch ϵ is available from the interpolation

function in Sec. III. We do not consider binaries with
best-match overlap larger than 0.999, i.e., we consider such
mismatch a result of systematic errors and does not reflect
actual waveform difference. As discussed in Sec. III, the
truncated surrogate waveform leads to errors in the best-
match overlap, though for high mass systems, the error will
be much smaller than 3.3 × 10−3 for the M̃ ¼ 60 M⊙; q ¼
3; ι ¼ 80 deg example binary. For computational cost
concerns, we also limit the grid density in the nested
maximization process. If the actual best-match binary is not
on the grid points, the maximization result will deviate
from the true value, and the size of the deviation depends on
the distance between the true best-match and its closest grid
point. Aside from systematic errors in the waveform and
overlap optimization process, interpolation for ϵ also
introduces errors. In particular, the cubic spline fit may
introduce spurious trace curves to guarantee smoothness
when connecting the limited number of samples. Especially
in the case of CE, ρ can be very large, thus exaggerating the
physical significance of such a small mismatch. The exact
value of this threshold is tuned to exclude spurious
interpolation function results. In the next subsection, we
discuss our choice of the upper limit value for the best-
match overlap and assess the impact of this mismatch
resolution in the next subsection.
Figure 6 shows the threshold inclination as a function of

source redshift assuming CE sensitivity. The left panel
shows threshold inclination with fixed redshifted mass
M̃ ¼ 150 M⊙. We observe that the mass ratio becomes an
increasingly important factor at high inclinations. At low
redshift, the threshold inclination is constrained primarily

FIG. 6. Inclination threshold curves for distinguishable type II sources as a function of redshift assuming CE sensitivity. Left:
inclination threshold curves for fixed mass ratio q ¼ 2.67 at selected redshifted mass values. Right: inclination threshold curves for
binaries with redshifted mass M̃ ¼ 150 M⊙ with selected mass ratio values. The curve-crossing at low inclination values are due to
systematic errors; see text for discussion.
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by the mismatch ϵ; at higher redshift (e.g., zs ∼ 4.2 for
q ¼ 1.73), the high inclination regions start to be excluded
despite the large mismatch value, as ρ becomes too small.
Beyond a certain redshift (e.g., zs ∼ 5.2 for q ¼ 1.73), no
combination of ρ and ϵmeets the lnBthreshold condition, and
no more type II images can be distinguishable. The right
panel shows similar threshold cures fixing the mass ratio to
be 2.67. We observe a similar curve shape, although lighter
binaries have smaller ρ and consequently a larger threshold
inclination.

C. Distinguishable image fraction

From the threshold inclination, we can further calculate
the fraction of GW sources with distinguishable type II
images, frðM̃; q; zsÞ. For simplicity, we assume that GW

sources and type II images are isotropically distributed,
therefore the fraction of distinguishable type II images
scales as the area of the celestial sphere within the ι
threshold limits. The differential fraction is then propor-
tional to sin ι. Figure 7 shows the distinguishable fraction of
type II sources for the same binaries as in Fig. 6. The cusps
mark the redshift when high inclination regions start to be
excluded due to smaller ρ. We observe that, for CE, large
fractions of sources with type II images can be distin-
guished via the log Bayes factor test out to high redshift.
Similar plots for ET and LIGOVoyager are shown in Fig. 8
as dashed lines.
We have so far considered only the redshifted mass

(detector-frame mass), M̃, as it is the direct input to the
surrogate model, which assumes an asymptotically flat and

FIG. 7. The fraction of distinguishable type II images as a function of redshift for CE sensitivity. Right: distinguishable fraction,
frðM̃; q; zsÞ, for constant M̃ ¼ 150 M⊙. Left: distinguishable fraction for constant q ¼ 2.67. The cusps in the fraction correspond to the
exclusion of high-inclination binaries with sub-threshold ρ. The fraction curves directly correspond to the threshold inclination curves
in Fig. 6.

FIG. 8. The fraction of distinguishable type II images as a function of redshift. Top row: GW sources have constant mass ratio of 1.73.
Bottom row: GW sources have constant mass ratio of 2.67. The Left, Middle, and Right columns show distinguishable fractions
assuming CE, ET, and LIGOVoyager sensitivity, respectively. The fractions for fixed redshifted mass, frðM̃; q; zsÞ, are shown in dashed
lines, and those for fixed apparent mass, frappðM;q; zsÞ, are shown in solid lines. The mass values are shown in the legend. Note that the
fraction curves are jagged due to interpolation errors and limited data density.
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stationary universe. The “apparent” total mass of the binary,
M, is related to the redshifted mass by M ¼ M̃=ð1þ zsÞ.
Due to lensing magnification, this inferred apparent total
mass could be larger or smaller than the actual GW source
total mass. We discuss magnification effects in Sec. V.
Therefore, the fraction of distinguishable type II sources
with apparent mass M, mass ratio q at redshift zs is
given by,

frappðM; q; zsÞ ¼ frðMð1þ zsÞ; q; zsÞ: ð25Þ

Figure 8 shows frappðM; q; zsÞ for selected apparent mass
values in solid traces. The top row shows the fractions with
a fixed mass ratio of 1.73, and the bottom row shows
similar plots with mass ratio fixed at 2.67. The left, middle,
and right columns show results for CE, ET, and LIGO
Voyager, respectively. The distinguishable fractions for
fixed redshifted mass, frðM̃; q; zsÞ, are plotted for reference
in dashed lines. The exact mass values are specified in the
legend.
As expected, the resulting traces show similar trends and

features as in Fig. 7: at lower redshifts, the distinguishable
fraction decreases with ρ. It then undergoes a cusp where
the high inclination regions start to be excluded before
continuing to decrease. The trace is jagged due to the finite
spacing of the interpolation data points, rather than any
physical jumps in the fraction.
In most cases, there is a significant fraction of GW

sources with distinguishable type II images via the log
Bayes factor test. As Fig. 4 suggests, the mismatch value is
not drastically different across the three detectors with
different noise curve shapes. The redshift reach is rather
primarily determined by ρ, related to the overall sensitivity
level of different detectors. For example, for type II images
with apparent mass M̃ ¼ 60 M⊙ and mass ratio q ¼ 1.76,
60% can be distinguished in CE out to zs ∼ 12.5. For ET,
60% of the same population can be distinguished out to
zs ∼ 2. Due to the lower sensitivity of LIGO Voyager, a
similar fraction of such type II images can be identified
only out to zs ∼ 0.5. However, for type II images with a
higher apparent mass of 100 M⊙, 50% can still be
registered out to zs ∼ 1.
Finally, we assess the impact of mismatch resolution.

Throughout this paper, we adopt aminimummismatch value
of ϵ ¼ 0.001. Figure 9 shows the changes in the distinguish-
able fraction of GW sources with type II images for CE. The
mass ratio is fixed to be q ¼ 1.73, and the solid lines from
left to right represent M̃ ¼ 100 M⊙; 200 M⊙; 260 M⊙;
400 M⊙; 600 M⊙, and 800 M⊙. The dashed horizontal
traces show the largest distinguishable fraction as a function
of the redshifted mass.
As the waveform mismatch resolution becomes coarser,

the distinguishable fraction decreases significantly. For
instance, 70% of all sources with type II images with
redshifted mass m ¼ 100 M⊙ and q ¼ 1.73 have

distinguishable type II images out to redshift zs ∼ 2.5 if
a mismatch of 0.001 is resolvable, but the fraction drops to
30% if the mismatch resolution is 0.007. With a mismatch
resolution of 0.016, no such type II images are distinguish-
able. This critical role of the minimum resolvable mismatch
suggests that the distinguishability of type II images does
not solely depend on the SNR. In the era of third-generation
GW detectors, the possible scientific output from GW
detection events is not solely determined by the noise level.
As is discussed, the waveform template bank density in the
matched filtering search limits the waveform difference
resolution. In addition, the detector calibration must also be
sufficiently accurate such that we can be confident that the
mismatch from the data reflects a real signal difference,
rather than an instrument systematic error. Otherwise, we
cannot take full advantage of the large SNR offered by
exquisite detector sensitivity. Since these factors during the
third-generation GW detector era are still subject to much
uncertainty, to our knowledge, we have chosen ϵ ¼ 0.001
as the fiducial value. The analysis should be refined as such
information becomes available.

V. DETECTABLE POPULATION

The distinguishable fraction calculations depend only on
the waveform mismatch, and do not assume astrophysical
estimates on GW source and lens distributions. In this
section, we describe how results of image distinguishability
can be combined with astrophysical models to give a more

FIG. 9. Distinguishable fractions of sources with type II images
assuming a minimum resolvable mismatch of 0.001, 0.003, 0.007
and 0.016 with CE sensitivity. The solid lines show the
distinguishable fractions for selected redshifted mass. The mass
ratio is fixed to be 1.73. From left to right, the traces correspond
to a redshifted mass of 100 M⊙; 200 M⊙; 260 M⊙; 400 M⊙;
600 M⊙, and 800 M⊙. Dashed lines show the maximum fraction
for this range of redshifted mass. For a mismatch resolution of
0.016 (or 0.984 overlap), fraction traces for type II images with
redshifted mass M̃ ¼ 100; 200 M⊙ (the leftmost two traces) are
absent, since the resolution is larger than the maximum possible
waveform mismatch for such GW sources.
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detailed prediction of the detectable GWevents with type II
images and those with distinguishable type II images. In the
following subsections, we first offer an overview of the
procedures for calculating the lensed population, followed
by more detailed discussions on each ingredient.

A. Overview

We define a GW event as a particular binary black hole
(BBH) merger with possibly multiple images due to strong
lensing. For our calculation, a GW image is detectable if its
single-detector ρ ≥ 8; we defer the detector network
scenario to future studies. AGWevent has a distinguishable
type II image if this image satisfy the log Bayes factor
threshold. The differential detectable and distinguishable
merger rate is given by

∂3 _NII;det

∂M•∂q∂zs
¼ τIIðzsÞ

∂3 _N
∂M•∂q∂zs

Z
d log10μ

×

�∂PIIðμ; zsÞ
∂ log10μ

Z
π=2

0

dι sin ιΘð ffiffiffi
μ

p
ρðM•; q; zs; ιÞ − 8Þ

�
;

ð26Þ

∂3 _NII;dis

∂M•∂q∂zs ¼ τIIðzsÞ
∂3 _N

∂M•∂q∂zs
×
Z

d log10 μ
∂PIIðμ; zsÞ
∂log10μ frðM̃; q; z̃sÞ; ð27Þ

where ∂3 _N=∂M•∂q∂zs is GWevent rate per intrinsic binary
mass, M•, mass ratio, q, and GW source redshift, zs,
measured in the observer frame. The weighting factor sin ι
comes from the assumption that BBH mergers are distrib-
uted evenly on the sky. Θ is the Heaviside function.
Multiplying with the optical depth τIIðzsÞ, we obtain the
rate of events with at least one type II images. The quantity
∂PIIðμ; zsÞ=∂log10μ describes the distribution of magnifi-
cation μ for type II images for sources at zs, normalized
such that

Z
d log10μ

∂PIIðμ; zsÞ
∂log10μ ¼ 1: ð28Þ

Due to magnification, the source appears to have the same
redshifted mass, but the inferred luminosity distance is
different. Therefore,

M̃ ¼ M•ð1þ zsÞ
DLðz̃sÞ ¼ DLðzsÞ=

ffiffiffi
μ

p
: ð29Þ

The differential merger number per observer time is
calculated as [see also [21]]

∂3 _N
∂M•∂q∂zs ¼ RmrgðM•; q; zsÞ

1

1þ zs

dVc

dzs
; ð30Þ

where dVc=dzs is the differential comoving volume. The
1=ð1þ zsÞ factor accounts for the cosmological redshift
and converts the source-frame merger rates into detector-
frame merger rates. In Fig. 12, we plot this “modified”
differential comoving volume and the total merger rates for
reference. Since we have adopted the same population
models, Fig. 12 replicates Fig. 1 in [10].
For fast calculation of ρðM•; q; zs; ιÞ, we use the phe-

nomenological model IMRPhenomHM [62], called from
the PYTHON package pycbc.waveform [63].
We note that for a type I/II waveform mismatch of 6%,

the required ρ to be distinguishable is approximately 13,
larger than the threshold SNR of 8, and none of the GW
sources we consider have a larger waveform mismatch.
Therefore, we may assume that the distinguishable images
are all detectable, leading to the omission of the Heaviside
function in Eq. (27). In addition, only 0.2% of all sample
lens systems have a brighter type II image than the type I
image. Considering errors from the lens-equation solution
algorithm and the small number of events with distinguish-
able type II images, we may assume that the events with
detectable or distinguishable type II images will most
certainly have a detectable type I companion image.
In the following subsections, we compute the type II

image optical depth and the magnification distribution. We
then summarize procedures to calculate the total BBH
merger rates. Detailed steps and adopted parameter values
are presented in Appendix. We then make concrete detec-
tion population for CE, ET, and LIGOVoyager and discuss
results.

B. Optical depth and magnification

To obtain τIIðzsÞ and ∂PIIðμ; zsÞ=∂log10μ, we perform a
Monte Carlo simulation. We consider elliptical galaxies as
lenses, as they are expected to be the predominant lensing
objects [11]. While the lens geometry and properties are
expected to be more complex and varied in nature, studies
showed that a simple lens model, such as the singular
isothermal sphere model, is sufficient to capture most of the
results from more sophisticated hydrodynamic simulations
of the Universe [64]. In this study, we adopt the slightly more
generalized singular isothermal ellipsoid model following
the examples of Refs. [10,11]. References [9,13] adopt
the singular isothermal sphere lens model and predict the
detectable strongly lensed events for ET. For one of the BBH
evolutionary scenarios they investigate, it is predicted that
57.2 strongly lensed events can be detected out of the 2.08 ×
105 total detectable BBH events per year, roughly a factor of
three smaller than our prediction (see Table I). In the future,
we can adapt our analysis using different lens models and
systematically study the uncertainty in the strong-lensing
population predictions.
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We restrict the GW source redshift to 0.05 ≤ zs ≤ 7. In
the low-redshift limit, GW sources in our local universe
(zs ≪ 0.05) is unlikely to be strongly lensed, since lensing
rates are expected to be low, and there are not sufficiently
many massive galaxies in between to compensate. We set
the upper limit of the galaxy redshift to zs ¼ 7, since such
galaxies are faint and robust observational data is relatively
scarce for developing a reliable phenomenological model
of the mass function [65].
At each redshift, we generate samples of lenses, para-

metrized by surface velocity dispersion, σv, ellipticity, e,
lens redshift, zl, and the lens-plane angular coordinates of
the lens,  θ ¼ ðx; yÞ. For the number of lenses per unit σv per
comoving volume, Ψðσv; zlÞ, we first adopt the modified
Schechter function [66], which is calibrated to observation
on galaxies in the solar neighborhood,

Ψðσv; 0Þ ¼ ϕ�

�
σv
σ�

�
α

exp

�
−
�
σv
σ�

�
β
�

β

σvΓðα=βÞ
; ð31Þ

where ϕ� ¼ 8.0 × 10−3 h3 Mpc−3, σ� ¼ 161 km=s, α ¼
2.32 and β ¼ 2.67. h is the Hubble parameter.
To account for the redshift dependence, we follow the

prescription in [11], in which

Ψðσv; zlÞ ¼ Ψðσv; 0Þ
Ψhydðσv; zlÞ
Ψhydðσv; 0Þ

; ð32Þ

where Ψhydðσv; zlÞ is the velocity dispersion function
derived from hydrodynamical simulation in [67]. The
redshift dependence of the galaxy comoving number
density is shown on the right axis of Fig. 10. We truncate
σv at 50 km=s and 400 km=s to include the major part of
the distribution in Eq. (31). In general, the galaxy number
density peaks around z ∼ 1, 2 and decreases toward higher
redshift as they have less time to form.
For galaxy ellipticity, we adopt the same Gaussian

distribution as in [10], where the mean and standard
deviation are 0.7 and 0.16, truncated at e ¼ 0.2 and
e ¼ 1. The lens redshift is uniformly sampled from
½0; zs�. Since strong lensing occurs only when the angular
separation between the lens and the source is small, we
uniformly sample the lens positions within a square region
centered at the source with the side length equal to four
times the Einstein radius of the lens, given by [see [10]]

θE ¼ 4π

�
σv
c

�
2Dls

Ds
; ð33Þ

where Dls and Ds are the lens-source and observer-source
separations, respectively.
For each sampled lens parameter set ðσv; e; zl;  θÞ, we

solve the lens equation with the PYTHON package
lenstronomy6[68] and obtain the number of images,
image types and magnifications. Since our interest in
distinguishable type II images is to identify strongly lensed
GW sources, we compute the “source-based” optical depth,
the fraction of GW sources with type II images, rather than
the fraction of all images that are type II. Each sample with
at least one type II image contributes to τII, while depend-
ing on the solution for μ, it contributes to ∂PII=∂ log10 μ
accordingly. To account for the lens population, each
sample is weighted by the expected count of such a galaxy
within the defined lens position range.

TABLE I. Predicted yearly detection rates. The columns show the detectable BBH merger rates, the rates for
strongly lensed (SL) BBH mergers, the rates for BBH mergers with detectable type II images and the rates for BBH
mergers with distinguishable type II images. The distinguishable event rates are given with lnB ≥ 10, 5, 2. The
fraction of events with detectable type II images that are also distinguishable is shown in the parenthesis.

CE ET Voyager

Det. 2.17 × 105 1.96 × 105 7.59 × 104

Det. SL 184.7 157.1 38.4
Det. type II 172.2 118.2 27.4
Dist. type II lnB ≥ 10 56.9 (33.1%) 8.6 (7.3%) 0.06 (0.22%)

lnB ≥ 5 65.6 (38.1%) 14.9 (12.6%) 0.22 (0.81%)
lnB ≥ 2 73.7 (42.8%) 25.3 (21.4%) 0.80 (2.93%)

FIG. 10. Left axis: optical depths, τIIðzsÞ, for GW sources with
at least one type II image as a function of source redshift. Optical
depths lower than ∼10−5 are omitted, as they are too low to
predict an observable GW source at such redshifts with type II
images in future detectors. Right axis: comoving number density
of all galaxies modeled as lenses. 6https://github.com/sibirrer/lenstronomy.
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Figure 10 shows the type II image optical depth at
various source redshifts on the left axis. Optical depths
smaller than ∼10−5 are truncated, as they are too low to
produce a possible lensed source. We observe that the
optical depth is on the order of 10−3–10−4, consistent with
results from ray-tracing studies using N-body simulations
[see, e.g., [69,70]].
In the generated sample, the probability of a strongly

lensed GW event (i.e., with multiple images) to have no
type II images is smaller than 0.01% and therefore
negligible. We conclude that the type II image optical
depth is effectively identical to the strong lensing optical
depth. We calculate that roughly 91.5% of all sources with
multiple images have a type II image as the second
“brightest” image, which suggests that if multiple images
were to be detected, it is likely that at least one of the
images may be a candidate for type II image distinction via
the log Bayes factor test.
For larger redshifts, we do not extrapolate optical depth

due to the lack of information on extremely high redshift
galaxy velocity dispersion function from hydrodynamical
simulations. Instead, we take the conservative limit and
assume the optical depth to be constant beyond zs ¼ 7.

For the magnification distribution, we extract the type II
images from the Monte Carlo simulation samples for each
redshift. Figure 11 shows the rescaled image magnification
distribution per log10 μ at selected redshifts zs ¼ 0.5, 0.8, 2,
6. The left panel includes all images with the peak
dominated by the slightly magnified type I images. The
right panel contains only type II images, which constitute
the demagnified image population. The rescaling normal-
izes the highest image count in each case to 1. Since the
magnification for all images peaks around 1, we ignore it
when calculating the detectable strongly lensed GWevents;
instead, the detection rate of all strongly lensed events can
be estimated by multiplying the detectable BBH merger
rate under the no-lensing hypothesis by the strong lensing
optical depth, which, as the Monte Carlo samples show, is
effectively identical to the type II image optical depth.

We note that ∂PIIðμ; zsÞ=∂log10μ is independent from
source redshift zs by construction, as Fig. 11 confirms. To
explain this feature, we first note that the lens equation
solution depends only on  θ=θE, where  θ ¼ ðx; yÞ and θE is
defined in Eq. (33). Since the range of the possible lens
angular positions,  θ, is directly determined by θE, the image
solution (image count, magnification, etc.) and its distri-
bution remain constant under the scaling. The only remain-
ing redshift-dependent quantity is the galaxy velocity
dispersion function. However, Eq. (32) shows that only
the overall magnitude of Ψðσv; zlÞ changes with redshift.
Consequently, we expect a universal normalized magnifi-
cation distribution for all redshifts.
Finally, we fit dPIIðμÞ=d log10 μ by a log normal dis-

tribution with a mean of −0.35 and standard deviation of
0.57, truncated at log10 μ ¼ −2, 1.

C. GW source population

We adopt GW source population models provided by
[10,71]. In summary, we assume the merger rate of the
primaryblack hole in a binary tobe proportional to the forma-
tion rate of black holes and their progenitor stars. The
merger rate is then calibrated to the observed BBH merger
density in the local universe. We follow the prescription
and the chosen astrophysical models in [10,71], and we
provide more details in Appendix for reference. The BBH
merger population is calibrated to a local merger
rate of 103 Gpc−3 yr−1 based on LIGO detection data up
until GW170104 [72]. With the second LIGO-Virgo
Gravitational-Wave Transient Catalog (GWTC-2), the local
BBH merger rate is more tightly constrained to be
23.9þ14.3

−8.6 Gpc−3 yr−1 [72]. The data slightly favor that the
merger rate increases with redshift, but remain statistically
consistent with a nonevolving merger rate hypothesis [72].
This updated value suggests that ourmerger ratemodel could
be an overestimate. However, the local rate difference is less
than an order of magnitude, and the high-redshift merger
rates are not constrained by LIGO data. As the local merger

FIG. 11. Rescaled magnification distribution at redshift z ¼ 0.5, 0.8, 2, 6. The left panel shows ∂Pðμ; zsÞ=∂ log10 μ, including all
images from the Monte Carlo samples. The right panel shows the rescaled distribution of only type II images, ∂PIIðμ; zsÞ=∂ log10 μ. The
traces are rescaled such that the largest image count is normalized to 1.
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rate only acts as an overall scaling in the population model,
our result can be easily scaled to reflect any differences.
Consequently, our predictions serve as an adequate reference
and can be easily adapted in light of new data and more
accurate BBH population models.
Figure 12 replicates Fig. 1 in [10] and shows the

predicted BBH merger rate density under the two star
formation rate (SFR) models in [73] and [74], respectively.
Due to the intrinsic uncertainty in these analytical SFR
models, we choose one, the more optimistic SFR in [74],
for the following population estimates.
The total BBH merger rate per source redshift and the

detectable merger rate are plotted in Fig. 13. Since the
strong lensing optical depth is in general smaller than 0.1%
at the redshift with the most GW sources, we will neglect
the magnification effect when calculating the total detect-
able GWevents. To keep the detectable population estimate
general, we assume the detectors to always be online. To
incorporate the detector duty cycle, the detectable and

distinguishable populations simply scale proportionally
with the fraction of detector online time, since the type
II waveforms can be identified by their own waveforms,
and the duty cycle does not disproportionally affect
particular GW image types. We estimate a total of 2.17 ×
105 BBH mergers per year up to zs ¼ 23. The detectable
total merger number is 2.17 × 105 for CE (99.96%), 1.96 ×
105 for ET (90.3%), and 7.59 × 104 for LIGO Voyager
(35.0%). We note that the detection rate is not only affected
by the detector sensitivity, but also by the redshift dis-
tribution of BBH mergers and the comoving volume. Even
though ET has lower sensitivity than CE overall, it already
covers the redshift range with peak GW source count
(zs ∼ 2). At large redshift with zs ≫ 7, BBH mergers
happen far less frequently due to a lack of black hole
formation and the decreasing comoving volume per red-
shift. Consequently, the detection rate of ET is only slightly
lower than CE. In the case of LIGO Voyager, the lower
sensitivity excludes many sources from zs ∼ 2, leading to a
larger loss in the detectable source fraction.

D. Type II image rate

In this section, we combine lensing statistics and GW
source population models to study the rate of detectable and
distinguishable type II images in third generation GW
detectors.
Figure 13 shows the differential event rate as a function

of redshift for three detectors. In each panel, four different
populations are shown. The total rate of BBH mergers are
plotted as solid black curves. The dashed curves show the
rate of detectable GW events. The dotted curves show the
rate of events with a detectable type II image as in Eq. (26).
The dot-dash curves show the rate of GW events with at
least one distinguishable type II image.
As expected, the rate of BBH mergers in all three

categories decreases with the detector sensitivity, especially
at high redshifts. For LIGO Voyager, in particular, the rate
of expected GW sources with distinguishable type II

FIG. 12. BBH merger rate density, assuming two SFR models
in [73,74]. The blue overarching trace plots the modified differ-
ential comoving volume and corresponds to values on the right
axis. The merger rate density is directly analogous to
Fig. 1 in [10].

FIG. 13. Yearly detected population per unit reshift prediction as a function of redshift. The panels from left to right show the detection
population for CE, ET and LIGOVoyager. In all panels, the solid black line denotes the total BBH merger rate. The dashed curves show
the rate of detectable GW sources (i.e., ρ > 8) when unlensed. The dotted curve shows the rate of GW sources with a detectable type II
image. The dot-dash curve shows the event population with a distinguishable type II image. See text for total detection rates.
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images drops quickly with redshift, consistent with the
trend of the distinguishable fraction in Fig. 8.
Figure 14 plots the same population prediction binned by

the total mass of the BBH, with consistent line styles as in
Fig. 13. For all detectors, the detection rate decreases with
increasing total mass, consistent with the underlying initial
mass function. The detection rate of events with distin-
guishable type II images shows a cutoff at small total mass,
which is primarily due to two factors. When the waveform
mismatch for low-mass BBHs is smaller than the imposed
mismatch resolution (i.e., ϵ < 0.001), their type II images
are considered indistinguishable from type I images. When
the mismatch has just exceeded the resolution threshold,
distinguishability requires very large SNRs, which may not
be achievable depending on the detector sensitivity.
Consequently, we observe a mass cutoff in all three
detectors, which shifts to higher masses as the detector
sensitivity decreases.
Overall, we predict that CE will detect roughly 184.7

strongly lensed GW events per year, among which 172.2
have at least one detectable type II image. Among these
strongly lensed GW sources, 56.9 per year have a type II
image distinguishable via the log Bayes factor test. ETwill
be able to detect 157.1 strongly lensed events per year, and
118.2 of these have detectable type II images. However,
due to reduced sensitivity, the number of sources with a
distinguishable type II image drops to 8.6 per year. For
LIGOVoyager, the yearly detection rate of GWevents with
detectable type II images is 27.4 per year out of the 38.4
strongly lensed events. The distinguishable type II image
rate is 0.06 per year, which suggests that the possibility of
observing a GW source with distinguishable type II images
with LIGO Voyager is relatively slim. The detection rates
are summarized in Table I.

E. Discussion

In this section, we discuss the implication of the
predicted detection rates for GW sources with distinguish-
able type II images. We re-examine assumptions in our

analysis and explore how relaxing these assumptions lead
to more an optimistic detection prediction.
As Fig. 14 shows, the yearly detection rates of GW

sources with distinguishable type II images are 56.9, 8.6,
and 0.06 for CE, ET and LIGO Voyager, respectively. In
particular, in the case of CE, more than 30% of all
detectable strongly lensed sources will have distinguishable
type II images. For such sources, detection of the type II
image alone can confirm the existence of strongly lensed
images, without pair-wise GW event inference on the
strong lensing hypothesis. Once such images are identified,
the inferred source parameter values can act as a prior
during the subsequent and more elaborate catalog search
for the other images.
For ET and LIGOVoyager, the expected detection rate is

smaller, thus the distinguishable type II images will not be
as powerful for confirming the strong lensing hypothesis as
in the case of CE. However, we emphasize that if several of
our conservative constraints can be relaxed, distinguishable
type II images can still contribute to the identification of
strong lensing.
The first condition we revisit is the waveform mismatch

resolution. Throughout the analysis, we consistently adopt

FIG. 14. Detection rate as a function of BBH intrinsic mass. The panels from left to right shows the detection prediction for CE, ET,
and LIGO Voyager. The line styles are consistent with those in Fig. 13.

FIG. 15. The number of GW sources with distinguishable
type II images for different log Bayes factor threshold values,
expressed as a fraction of the distinguishable number with the
threshold value lnBthresh ¼ 10.

WANG, LO, LI, and CHEN PHYS. REV. D 103, 104055 (2021)

104055-16



ϵmin ¼ 0.001, which excludes the binaries at small incli-
nations, and the distinguishable fraction is “saturated” at
roughly 70% (see, e.g., Fig. 7 and Fig. 9). As Fig. 9
suggests, the waveform mismatch resolution significantly
affects the fraction of distinguishable type II images. If we
can expect a better waveform resolution from third-
generation GW detectors, the distinguishable fraction
should increase considerably; as Fig. 9 shows, the distin-
guishable fraction roughly doubles as the mismatch reso-
lution improves from Oð1%Þ to Oð0.1%Þ assuming CE
sensitivity. For CE and ET, this increase results in many
more detectable sources at small redshifts (zs ∼ 1, 2), where
the BBH population also peaks. This requirement has two
implications for third-generation GW detector performance
and data analysis process. As is discussed briefly in Sec. III,
the error in detector calibration should be much smaller,
such that the waveform mismatch is not obscured by
systematic uncertainties. In terms of the data analysis
process, the density of the matching template bank should
be such that the waveform difference is large compared
with the template spacing. If such conditions are not
satisfied, the high SNR detection offered by the third-
generation detectors cannot be taken full advantage of to
maximize the scientific output.
We have also taken a conservative estimate by setting the

threshold log Bayes factor to be 10. Even for lnBthresh ¼ 5,
the type II image hypothesis is more than 100 times more
likely than the type I image hypothesis, and an even smaller
threshold value may be sufficient for realistic data analysis.
Figure 15 shows the increase in the number of events with
distinguishable type II images with a lower lnBthresh,
normalized to the number when lnBthresh ¼ 10. We observe
that the increase is the most dramatic for LIGOVoyager, as
a lower threshold extends the sensitive range to higher
redshift ðzs ∼ 2Þ, where the GW source population peaks.
For CE and ET, the increase is more modest, as they already
detect most sources at zs ∼ 2 with high SNR. The extended
range is then expected to add relatively fewer GW sources
in comparison. Figure 16 shows the redshift distribution of

the GW sources with distinguishable type II images with
lnBthresh ¼ 2, 5, and 10. As expected, the distinguishable
rate increase is more significant at high redshift, and the
effect is the strongest for LIGO Voyager; at lnBthresh ¼ 2,
42.8% of all strongly lensed GW sources in CE are
accompanied by at least one distinguishable type II image
and 21.4% for ET. For LIGO Voyager, the distinguishable
number is still small, but at ∼1=yr, it is more promising that
such an event will appear in the LIGOVoyager catalog with
a few years of observing run. The predicted detection rates
are summarized in Table I.
In addition, we have so far considered the single-detector

scenario, and we estimate the advantage of a detector
network via the simplifying assumption that both GW
polarizations can be independently detected, i.e., the time-
domain waveform for calculating the overlap and ρ is
complex. If ET implements a triangular design, the detector
itself is sufficient to capture the polarization content [33].
For LIGO Voyager and CE, the polarization content can
be obtained if a concurrent detector network exists. In
the upcoming decades, more GW observatories across the
globe will start to observe, such as the expansion of the
LIGO network to include IndiGO7 [75]. This global net-
work offers increased detector-networks ρ and an increased
detection spatial resolution. On the other hand, the uncer-
tainty in the polarization content from a realistic detector-
network model may be partially degenerate with the Hilbert
transform signal, thus subtracting away from the type I/II
waveform difference and their distinguishability. A
thorough investigation on realistic detector network effect
is deferred to future studies.

VI. CONCLUSIONS

In this paper, we study an intrinsic waveform signature
of type II images of strongly lensed GW sources. For CE,
ET and LIGOVoyager, we compute the best-match overlap
between type I/II waveforms. We then calculate the

FIG. 16. The expected number of GW sources with distinguishable type II images with lnBthresh ¼ 2, 5, and 10. The expected yearly
detection count for each threshold value is shown in the legend. The panels from left to right correspond to CE, ET and LIGO Voyager.
As expected, the detection number increase is most significant at large redshift for all three detectors.

7http://www.gw-indigo.org/tiki-index.php.
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required threshold orbit inclination to establish the type II
waveform hypothesis by a favoring log Bayes factor of 10.
The fraction of GW sources with distinguishable type II
images is computed from the threshold inclination accord-
ingly. For all three detectors, we find that significant
fractions of type II images (e.g., 50–70%) of sufficiently
high SNR GW events can be identified. In other words, if
such a type II image is detected with reasonable SNR, it can
likely be distinguished from regular type I images and used
as the tell-tale evidence of strongly lensed events.
We also assess the effects of the type II signature in the

context of the current LIGO data analysis process. We
apply the targeted subthreshold search method described in
[48] on an example high-mass-ratio compact binary coa-
lescence event GW190814 [50]. We generate a reduced
template bank based on injection run results using simu-
lated type I lensed injections of the target event. The
resulting reduced bank is used, then, to search for the same
set of simulated lensed injections in two different searches,
in which they are injected as type I images (original
waveforms) and type II images (Hilbert transform of the
same waveforms) respectively.
Our preliminary result shows that there is a slight

increase in the number of injections missed when they
are treated as type II images. This hints at the possibility
that the current search scheme may suffer from sensitivity
loss without considering type II images. However, we
remark that the current results in this study are only
preliminary and will require further studies.
We then incorporate GW source population model and

lensing probabilities to predict the expected number of GW
sources with distinguishable type II images in CE, ET, and
LIGO Voyager respectively. For these three detectors, we
predict the yearly detection rates are 56.9, 8.6, and 0.06
with a conservative threshold at lnBthresh ¼ 10. A relaxed
log Bayes factor threshold boosts the expected detection
rates, especially for LIGO Voyager; at lnBthresh ¼ 2, the
yearly detection rate for LIGO Voyager approaches 1=yr.
Such distinguishable type II images are “shortcuts” for

identifying strongly lensed events, as they guarantee the
existence of at least one other lensed image. They also
improve the computational efficiency of searching for the
companion images, as the estimated parameters, such as the
redshifted mass, mass ratio and sky location, can inform a
more comprehensive catalog search. As illustrated, this
method will be most powerful with the unprecedented
sensitivity offered by third-generation GW detectors.
Our work can be extended and refined in several

directions. We can relax the constraints on GW source
range by including spin and orbit eccentricity, as is studied
in Ref. [31]. On one hand, the Hilbert transform of GWs
from such sources may have a larger mismatch from the
original waveform, favoring type II image distinguish-
ability. On the other hand, the Hilbert transform may be

partially degenerate with a parameter bias with the addi-
tional degrees of freedom. The effect of these competing
factors warrants careful treatment.
We may consider realistic detector networks instead of

assuming complete knowledge on both GW polarizations,
which adds to the underlying waveform uncertainties.
Similar to the hypothesized effect of binary spin and
orbital eccentricity, uncertainty in the polarization may be
partially degenerate with the Hilbert transform signature.
However, a detector network yields larger signal SNR,
which should promote the distinguishability of type II
images.
It is also important to refine the lens modeling. While

theoretical works on various lens types and their respective
image characteristics abound, to our knowledge, the effect
of the model choice on predictions for realistic detection
has yet to be systematically investigated. Therefore, such a
follow-up study is essential for understanding the uncer-
tainty and robustness of this strongly lensing detection
forecast.
In conclusion, this study shows that the intrinsic wave-

form characteristics of type II images can be a powerful
supplemental tool for hunting strongly lensed events in the
catalog of third-generation GW detectors, when tens of
such events may be identified.
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APPENDIX: BINARY BLACK HOLE
MERGER RATE

In this Appendix, we elaborate on the astrophysical
models adopted to calculate the merger rate of binary black
holes. In summary, we compute the BBH merger rate from
population models on black hole progenitor stars and
calibrate to the observed rate in the local universe.
Adapted from Eq. (B1) and (B2) in [10], the birth rate of

individual black holes with mass m• at redshift zs,
Rbirthðm•; zsÞ, is given by
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Rmrgðm•;zsÞ¼
Z

dm⋆dtddZϕðm⋆Þ _ψðtðzsÞ

− tdÞPðtdÞPðZ;tðzsÞ− tdÞδ½m⋆−g−1ðm•;ZÞ�;
ðA1Þ

where m⋆ is the mass of the progenitor star, Z is stellar
metallicity and tðzsÞ is the cosmic time as a function of
redshift. g−1ðm•; ZÞ gives the stellar mass m⋆ with metal-
licity Z that leaves a black hole remnant with mass m•. The
expression of remnant black hole mass as a function of
stellar mass and metallicity is given in [76], with 20 M⊙ <
m⋆ < 105 M⊙ and −5 < log10 Z < −1.7. PðZ; tzÞ is the
redshift-dependent distribution of metallicity. The mean log
metallicity at any redshift is given in [77]. At each redshift,
the metallicity follows a log normal distribution [77].
td is the time delay between black hole formation and its

merger with another black hole. PðtdÞ is the distribution of
time delay, and we adopt the form PðtdÞ ∝ t−1d , truncated at
td ¼ 50 Myr and the Hubble time [10]. Note that we ignore
the time delay between the formation of a star and the
formation of its remnant. Since stellar evolution is on the

order of Myr, which is negligibly small compare to the
evolution time scale of galaxies and hence that of black
holes, we can neglect it for model simplicity without
incurring large errors.
The quantity ϕðm⋆Þ is the initial mass function that

describes the stellar mass distribution, which we assume to
remain constant across redshift. Specifically, we adopt
the Chabrier initial mass function [78] for m⋆ > 1 M⊙,
where ϕðm⋆Þ ∝ m−2.3⋆ . The quantity _ψðtÞ is the star for-
mation rate (SFR) including all m⋆ at cosmic time t. We
adopt the analytic SFR expression in [74]. We calibrate the
merger rate at z ¼ 0 to be 103 Gpc−3 yr−1, which is the
expected local black hole merger rate given LIGO detection
data up until GW170104 [71,72]. See text for the effects of
an updated local merger rate based on GWTC-2.
We note that Rmrgðm•; zsÞ is the rates for black hole

binary at zs whose primary black hole, i.e., the heavier one,
is m•. We then assign a mass ratio value according to the
distribution PðqÞ ∝ q, with q truncated at 1.2 and 3.2. We
can then directly convert the rates into RmrgðM•; q; zsÞ
where M• is the total binary mass.
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