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HIGHLIGHTS
Machine learning can incorporate a variety of data from low-cost sensors and estimate actual ET by comparison with
short-term, higher-cost measurements.
On-farm weather monitoring can be leveraged to estimate site-specific crop-water requirements.
Expanding spatial coverage of weather and actual ET through on-farm monitoring will facilitate localization and leverage
publicly available weather data to guide irrigation decisions and improve irrigation water management.

ABSTRACT . One of the basic challenges to adopting science-based irrigation scheduling is providing reliable, site-specific
estimates of actual crop water demand. While agro-meteorology networks cover most agricultural production areas in the
U.S., widely spaced stations represent regionally specific, rather than site-specific, conditions. A variety of low to moderate
cost commercial weather stations are available but do not provide directly useful information, such as actual evapotranspi-
ration (ET,), or the ability to incorporate additional sensors. We demonstrate that machine learning methods can provide
real-time, site-specific information about ET , and crop water demand using on-farm sensors and public weather infor-
mation. Two years of field experiments were conducted at four irrigated field sites with crops including snap beans, alfalfa,
and pasture. On-farm data were compared to publicly available data originating at nearby agro-meteorology network sta-
tions. The machine learning procedure can robustly estimate ET , using data from a few basic sensors, but the resulting
estimate is sensitive to the range of conditions that are used as training data. The results demonstrate that machine learning
can be used with affordable sensors and publicly available data to improve local estimates of crop water demand when
high-quality measurements can be co-located for short periods of time. Supplementary sensors can also be integrated into

a tailored monitoring plan to estimate crop stress and other operational considerations.
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nnovative irrigation technology offers many benefits, in- and reliable in real-world conditions. A critical area of deci-
cluding improved crop yields, reduced losses from non- sion support is the provisioning of real-time, site-specific es-
uniform application, reduced disease incidence, and con- timates of crop water requirements and crop evapotranspira-
servation of water resources. However, adoption of in-  tion (ET). Real-time estimates of ET can support daily irriga-
novative irrigation technology is slowed by a lack of infor-  tion planning, address potential risks of under-application and
mation and decision support to ensure that new methods are  yield reduction, identify crop water requirement for new vari-
reliable and cost-effective (Molden et al., 2010; Perry, 2007). eties, and evaluate new strategies for addressing climate
The role of researchers and water resource professionals in  change and water scarcity. While state and federal agro-mete-
promoting science-based irrigation methods should include orology networks cover most agricultural production areas in
demonstrations of new methods that are feasible to implement the U.S., the widely spaced stations of most networks can only
represent regionally specific, rather than site-specific, condi-
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by federal and state agencies (Haigh et al., 2018). AgriMet
and the California Irrigation Management Information Sys-
tem (CIMIS) are two agricultural weather networks devel-
oped specifically to provide decision support to farmers with
the goal of conserving water resources. The California De-
partment of Water Resources funds and maintains 145
CIMIS weather stations across the entirety of California. The
U.S. Bureau of Reclamation operates over 70 AgriMet sta-
tions across Oregon, Washington, and Idaho and some parts
of Montana, Wyoming, and Nevada. In the northwestern
states, another valuable resource is Washington State Uni-
versity’s AgWeatherNet and Irrigation Scheduler software
(Peters et al., 2014). These networks maintain automatic
weather stations that report parameters including air temper-
ature, relative humidity, wind speed and direction, precipita-
tion, and solar radiation over a well-watered grass reference
surface, and they also provide estimates of crop water de-
mand via the Penman-Monteith (P-M) equation for reference
ET. Depending on the individual sensor and data type,
AgriMet generally reports weather data every 15 min, and
CIMIS reports hourly. Data are transmitted every hour from
individual stations to a central server, where they undergo
automatic and manual quality control procedures, and the
data are made available through an automated web interface.
The AgriMet quality assurance procedures include checks
on data transmission metrics, upper and lower measurement
limits, rate of change, and a manual graphical review. Addi-
tionally, lab calibration is performed on all sensors prior to
deployment, and field calibrations are performed annually to

Estimates of crop ET are only as good as the calibrated
crop coefficient. Applying the wrong coefficient can lead to
inefficient or insufficient application, and this risk may out-
weigh the potential benefit of incorporating ET into irriga-
tion decisions (Davis and Dukes, 2010). There are other
methods that measure crop ET directly, including the eddy-
covariance (EC) method and weighing lysimeters, but these
methods are costly, time-consuming, and the resulting esti-
mates of crop response do not precisely transfer to all grow-
ing conditions or to new crop varieties (Allen et al., 2011).
When growers use scientific irrigation planning to conserve
water and maximize efficiency, there is a greater risk of
drought stress and yield reduction, poor germination or de-
velopment, reduction of crop quality, and incidence of dis-
ease (Perry et al., 2009). For example, scheduling irrigation
without a site-specific measurement of actual ET can lead to
misapplication, resulting in yield reductions, crop loss, and
reduced water use efficiency (Evans et al., 2013). At present,
irrigators and consultants base their decisions on a variety of
regional weather forecasts and daily reference ET estimates
from both public and private sources (Haigh et al., 2018).
While there is a moderate degree of confidence in publicly
available data, better utilization and adoption of scientific
methods will require leveraging these data to provide real-
time and site-specific estimates of crop ET without requiring
excessive effort on the part of end-users.

Machine learning has seen increasing use in hydrology
and climate science in recent years for predicting and mod-
eling hydrologic processes (Govindaraju, 2000). Artificial

ensure that the data arereliable and accurate (Palmer and neural networks (ANNs) are one form of machine learning,

Hamel, 2009).

Near real-time calculations of P-M reference ET and crop
water demand are available on web interfaces for irrigators
in the region. Reference ET is a measure of the weather-re-
lated crop water use over a well-watered reference surface.
To estimate actual crop water demand, the reference ET is
used with a one-term or two-term resistance model that ac-
counts for crop development and soil evaporation in two sep-
arate terms (Allen et al., 2005) but cannot account for site-
specific effects such as non-uniform irrigation, soil charac-
teristics, or crop varietal differences. The most common way
for farmers to derive actual crop water demand is by adjust-
ing reference ET with a calibrated crop coefficient (Dac-

cache et al., 2015; Knox et al., 2012). The AgriMet, Ag-

WeatherNet, and CIMIS networks provide tables of crop co-
efficients over the growing season so that farmers can select
the most appropriate coefficients for their operations. Crop
coefficients are typically developed from annual or long-
term averages of water consumption by a specific variety of
a specific crop and are most often based on studies using
weighing lysimeters (Marek et al., 2006). Specific circum-
stances, such as the development of new crop varieties, early
or late planting, or interannual differences in plant develop-

with algorithms that “learn” from data and approximate so-
lutions for non-linear, multi-input functions. Due to their
flexibility and robustness, ANNs have seen increasing appli-
cation in modeling reference ET (Kumar et al., 2011), atmos-
pheric fluxes (Alemohammad et al., 2017), plant water stress
(King and Shellie, 2016; Meyers et al., 2019), and irrigation
optimization (Irmak and Kamble, 2009). Because neural net-
works use optimization algorithms and do not depend on
physical models, ANNs can be useful in circumstances
where data quality is variable, and to explore non-linear be-
havior. In one approach to machine learning, supervised
ANNSs learn through a process of error minimization, in
some ways resembling multi-linear regression, but using
non-linear transfer functions to approximate the non-linear
behavior observed in real data (Paliwal and Kumar, 2009).
Previously, a neural network machine learning procedure
was demonstrated that was able to estimate daily ETro-
bustly in actual field conditions (Kelley and Pardyjak, 2019).
This approach used data from a few basic sensors and EC
flux measurements as a control estimate of reference ET.
The EC data were used to train a neural network for a rela-
tively short time, and then the EC measurements were used
to evaluate the robustness of the neural network in estimat-

ment, are not represented by simple crop coefficients and ing ET over an entire field season. The resulting estimates

make it difficult for farmers to choose the correct coeffi-

cients. Many irrigation scheduling software packages can in-
corporate specific information to account for crop stress or
practices such as cutting alfalfa (Peters et al., 2014), but this
information requires an additional level of accounting and
discretion on the part of the irrigator.
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were extremely sensitive to the variety of field conditions
during collection of the training data. In practice, guiding ir-
rigation decisions and estimating consumptive water use
with machine learning has yet to be satisfactorily demon-
strated. For practical purposes, these methods must work
with data that can be monitored affordably in real-world
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conditions, and should only require direct evaporation meas-
urements for the shortest possible training period. We pro-
pose that this approach can integrate research methods into
tailored on-farm monitoring to estimate site-specific crop
water requirements, optimize real-time irrigation schedul-
ing, and improve water management.

MATERIALS AND METHODS

In order to demonstrate that machine learning methods
can provide real-time, site-specific information about ET
and crop water demand, field experiments were conducted
in two different years in four irrigated fields growing snap
beans, alfalfa, and pasture, all in proximity to regional agro-
meteorology or basic weather stations. These data were ana-
lyzed with simple (one and two layer) neural networks that
were trained to estimate actual ET from on-farm data and
local network weather records. The supervised machine
learning algorithm used EC flux measurements to estimate
site-specific ET.

This analysis used data collected during the 2017 and
2019 growing seasons in agricultural fields in Oregon and
California. Each of the four experiments used the EC method
to measure the actual rate of evapotranspiration (ET), which
is treated here as the control estimate of ET , and used in a
supervised machine learning algorithm. Each site was
equipped with supplemental sensors that are typically used
in agro-meteorology networks and on-farm weather stations.
In all cases, EC sensors were installed at a nominal height of
2 m above ground level. Additionally, some experiment sites
were located directly adjacent to permanent agro-meteorol-
ogy network sites, and the other experiments used the closest
available ground-based weather data. Data were collected
using dataloggers, stored in ASCll/binary files, or down-
loaded from public agro-meteorology networks. In Califor-
nia, hourly weather and reference ET records from the co-
located CIMIS stations were downloaded from the CIMIS
website (https://cimis.water.ca.gov). At the Oregon site, data
were obtained from the five closest AgriMet
(https://www.usbr.gov/pn/agrimet/) and AgWeatherNet
(http://weather.wsu.edu/) stations. Data were then re-format-
ted for analysis in Matlab (MathWorks, 2018) using custom-
ized import scripts. The EC flux calculations, corrections,
and quality control were performed with scripts prepared by
one of the authors (Oregon site). For the California sites, ET
was also calculated using EddyPro software (LI-COR,
2019). Machine learning algorithms were implemented in
the Machine Learning and Deep Learning Toolbox (Math-
Works, 2018), as described later.

FIELD EXPERIMENTS

The first field site is located in Benton County, Oregon,
in the Willamette Valley, which has a humid but Mediterra-
nean precipitation regime (little precipitation during the
growing season) that requires many crops to be irrigated.
The EC system and weather station were installed between
two ~50 ha fields irrigated by center pivots. The 22 ha and
29 ha sections of the fields directly adjacent to the sensors
were planted in snap beans (Phaseolus vulgaris). To
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maximize the likelihood of reliable EC measurements, the
station location was chosen so that the field was uniformly
flat, irrigated, and planted for more than 200 m (100 times
the measurement height) in the direction of the predominant
daytime wind direction, and nearly as uniform for 200 m in
the directions of all other wind sectors (based on ten years of
wind data collected from a nearby airport weather station).
During the 2017 season, the timing and amount of irrigation
were inconsistent as the farmer attempted to determine an
adequate schedule for the crop. Irrigation timing was based
on visible crop stress and manual measurements of soil water
levels; application rates were limited by soil intake rates
(farm manager, Greenspring Farms LLC, personal corre-
spondence). As a result, the observed rate of ET varied from
100% of reference ET in the day following irrigation to less
than 40% of reference ET in subsequent days.

The data from the Oregon site used in this analysis were
collected from 12 June to 4 September 2017 (85 days). For
EC measurements, an IRGASON integrated sonic anemom-
eter and open-path gas analyzer (Campbell Scientific, Lo-
gan, Utah) was mounted at 2 m above ground level (a.g.1.)
and oriented in the dominant daytime wind direction. Addi-
tional sensors were included for comparison in the machine
learning algorithm: humidity and temperature sensors at two
measurement heights (HMP-60, Vaisala Oyj, Helsinki, Fin-
land); Decagon GS3 soil water content, soil temperature, and
MP2 soil water potential sensors, Decagon tipping-bucket
rain gauges, and Decagon 2-d sonic anemometers (METER
Group, Pullman, Wash.); a Q-7 thermopile net radiometer
(Radiation and Energy Balance Systems, Seattle, Wash.); a
PAR quantum sensor (Apogee Instruments, Logan, Utah);
and a cup and vane anemometer (R.M. Young Co., Traverse
City, Mich.). For some 2 to 3 week training periods, an
NROI net radiometer and HFP-01 soil heat flux plate
(Hukseflux, Delft, The Netherlands) and two HCS2 humid-
ity/temperature probes (Rotronic AG, Bassersdorf, Switzer-
land) were co-located with the Q-7 net radiometer and HMP-
60 thermo-hydrometers, respectively, to cross-validate the
corresponding sensors. A complete description of this field
experiment is provided by Kelley and Pardyjak (2019).

Eddy-covariance measurements were also taken at three
sites located on flood-irrigated agricultural land in Califor-
nia’s Central Valley, spanning northern to southern regions
during the late summer of 2019. These stations were co-lo-
cated with stations in the CIMIS network that measure hy-
dro-meteorological variables used to calculate potential ET
for use by growers throughout the state. For all stations, fast-
response turbulence measurements were sampled at 20 Hz,
while slow-response sensors were sampled every 20 s and
then averaged and recorded every 60 s.

The northernmost station in California was located near
Biggs over periodically grazed pastureland with a homoge-
neous fetch of approximately 180 m to the southeast and 350
m to the northwest, the two dominant daytime wind direc-
tions during late summer. This station was co-located with
the Biggs CIMIS station (installed approx. 2.5 m to the
north). Eddy-covariance measurements were made with an
IRGASON mounted at 2.46 m a.g.l., while slower-response
measurements were made with EE-181 temperature and rel-
ative humidity probes in non-aspirated radiation shields
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(Campbell Scientific) at 3.50 and 1.82 m, an SP-110-SS py-
ranometer (Apogee Instruments), an NR-LITE-2 net radiom-
eter (Kipp & Zonen, Delft, The Netherlands), and an SI-111
infrared thermometer (Apogee Instruments). All data from
this station were sampled and logged by a CR3000 micro-
logger (Campbell Scientific). The data used in this analysis
were collected at Biggs from 8 August to 6 November 2019
(91 days).

Approximately 75 miles south of Biggs in the Central
Valley, a second station was deployed in Dixon, California,
co-located with the Dixon CIMIS station (approx. 2.5 m to
the northwest). The site was also characterized by periodi-
cally grazed pastureland and had a homogeneous fetch of ap-
proximately 700 m to the southwest in the predominant day-
time wind direction for late summer. The station was
equipped with a CR6 datalogger with a CDM-A116 analog
input module (Campbell Scientific), two IRGASONSs (at
2.21 mand 4.22 m a.g.1.), two HMP-155A temperature and
relative humidity sensors with radiation shields (Vaisala) at
2 m and 4 m a.gl, a CNR4 four-component radiometer
(Kipp & Zonen), two HFPOI-L soil heat flux plates
(Hukseflux) at 0.08 m below the surface and 0.5 m apart,
four 105E-L soil temperature thermocouple probes (Camp-
bell Scientific), two at 0.02 m and 2 at 0.06 m below the sur-
face, and two CS655 soil water content reflectometers
(Campbell Scientific) at 0.05 m and 0.15 m below the sur-
face. The data used in this analysis were collected at Dixon
from 30 July to 8 October 2019 (71 days).

The southernmost station in California was located in
Parlier at the Kearney Agricultural Research and Extension
Center. This EC station was deployed on a 2 ha (5 ac) alfalfa
plot, approximately 500 m southwest of the Parlier CIMIS
station due to a restrictive fetch at the CIMIS station plot.
The station was situated on the alfalfa plot such that it had
an approximate homogeneous fetch of 150 m in the predom-
inant daytime wind directions (southeast and northwest)
with the exception of a narrow, dirt farm road approximately
50 m northwest of the station. This station had an EC-150
(Campbell Scientific), and a CSAT sonic anemometer at
2.02 m a.g.l. for EC measurements. Slow-response measure-

flux, and sensible and latent heat fluxes were used to evalu-
ate closure of the surface energy budget and assess periods
for which to exclude data. Limited gap filling was required
for short periods (typically not exceeding one averaging pe-
riod and totaling less than 5% of all data). Gaps created by
removing data were linearly interpolated for calculating cu-
mulative ET.

The local alfalfa reference ET (ET;) was calculated using
the ASCE-EWRI Penman-Monteith equation (Allen et al.,
2005; Jensen and Allen, 2016) from measured downwelling
shortwave radiation, soil heat flux, air pressure, temperature
humidity, and wind speed. ET; was used to approximate po-
tential ET, identify variability in daily irrigation require-
ments, and identify periods when ET was limited by water
availability rather than available energy. ET , was also used
in combination with single crop coefficients to compare crop
ET with machine learning predictions of actual ET. The sin-
gle crop coefficient method was used because it is a practical
tool for estimating crop ET without requiring additional sup-
porting information, and it is the standard method for esti-
mating crop water requirement in irrigation scheduling soft-
ware such as provided by AgWeatherNet. Established crop
coefficients were obtained from the AgriMet website
(https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.
html) or were adopted from earlier lysimeter studies based
on planting date and crop development (Allen and Wright,
2002) and adjusted to the specific crop and planting dates in
the case of the Oregon field experiment.

For data from the California sites, EddyPro v7.0.4 was
used to calculate turbulent fluxes using data acquired at the
Parlier, Biggs, and Dixon sites. The EC systems collected 20
Hz records. Discontinuities from swapping memory cards
and missing data in general were replaced with non-numbers
(NaNs) to fill data gaps and maintain time series continuity.
Turbulent fluxes were calculated for 30 min intervals. The
flagging policy for quality checks was based on a numbering
system (Foken et al., 2005). Raw data corrections included
the double rotation tilt correction method (Aubinet et al.,
2012), time lag detection by covariance maximization (Fan
et al., 1990), WPL density correction (Webb et al., 1980),

ments of temperature and relative humidity were taken at removal of spikes (at 1% threshold), and replacement by lin-

2.02 m and 3.45 m from two EE-181 sensors (Campbell Sci-
entific) with radiation shields and the four components of net
radiation (i.e., downwelling shortwave and longwave and
upwelling shortwave and longwave radiation) from an SN-
500 net radiometer (Apogee Instruments). All data were
sampled and logged with a CR1000x datalogger (Campbell
Scientific). The data used in this analysis were collected at
Parlier from 27 July to 28 October 2019 (94 days).

DATA HANDLING AND EDDY-COVARIANCE
(EC) FLux CALCULATION

To ensure representative ET measurements, standard EC
corrections and data quality procedures (Foken et al., 2012),
2-D coordinate rotations (Wilczak et al., 2001), and density
corrections (Leuning, 2007; Webb et al., 1980) were em-
ployed. A phase space method of despiking was also em-
ployed (Kelley and Higgins, 2018). Eddy-covariance meas-
urements of ET were calculated for averaging periods rang-
ing from 15 to 60 min. The measured net radiation, soil heat
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ear interpolation (Vickers and Mahrt, 1997). Correction of
high-pass filtering effects followed the spectral corrections
described by Moncrieff et al. (2005), and the fully analytic
spectral correction method was used to correct for low-pass
filtering effects (Massman, 2000). Using conservative esti-
mates, quality control procedures removed less than 1% of
the data in a given 30 min segment for up to the 95th percen-
tile of total segments. Extreme outliers can have greater re-
moval rates, but most outliers reach only about 2% or less,
and the total number of removed points represented less than
0.085% of the raw vertical wind velocity and water vapor
concentration data, whose covariance defined the water va-
por flux from the surface and hence, ET.

MACHINE LEARNING IMPLEMENTATION

The quality-controlled (but otherwise uncorrected) EC
measurements and weather sensor data were imported and
processed in Matlab, and the machine learning analysis used
the Neural Network and Deep Learning Toolbox

TRANSACTIONS OF THE ASABE



(MathWorks, 2018). A simple three-layer network (with two was indicated when the R*> and RMSE of the predicted

layers of 4 to 12 nodes and one single-node output layer) was ETann were comparable to the same statistics comparing
trained using the Bayesian regularization backpropagation ET. to ET. In other words, successful training needed to
algorithm, which uses Levenberg-Marquardt optimization produce a prediction at least as robust as could be found with
(Beale et al., 2016). This algorithm is suited to moderate-size the ASCE-EWRI equation, with both methods compared

datasets as were used in this study. Initially, the machine against the measured actual ET.

learning methods employed here (in single iterations) were

The workflow for training the neural network and esti-

developed as described in a previous study (Kelley and mating ET with the resulting ANN was as follows:

Pardyjak, 2019). The structure of an ANN is built of nodes
(also called neurons). Each node is comprised of weighting

and bias vectors and a transfer function that control the trans-

lation of input parameters to outputs. In the training process,
the functional contribution of each input parameter is
changed by assigning weighting and biases at each node and
comparing the output against the training dataset. The net-
work is randomly initialized from a subset of training data
(in this case, a matrix of time-series records of weather sen-
sor data), and uses feedback from the control estimate (in
this case, ET measured by EC) to minimize error according
to an assigned statistic (in this case, MSE was the learning
statistic used in backpropagation). From random initial con-

ditions, training proceeds by iterating and minimizing the

difference between the control ET measurement and the

value predicted by the neural network. In the Matlab 2.

toolbox, the user specifies the data input, training data, and
algorithms for optimizing the ANN. Processing occurs in an
intuitive user interface that also allows plotting the results

and evaluating the robustness of the resulting solution. Every

iteration of the ANN is randomly initialized, so two ANNs
trained on identical data will produce slightly different out-

puts. As the input data (i.e., either the sensor data or the num-

ber of iterations) are reduced, the resulting output network
can become overfitted to the small data set (Bowden et al.,
2005; Srivastava et al., 2014). ANN predictions of ET result-
ing from overfitted networks become more scattered and do

not reproduce expected patterns, such as the diurnal variabil- 3.

ity in flux magnitude.
Machine learning training was performed iteratively
while varying the number of input parameters, varying the

duration of the training data, and by selecting subsets of

training data from different time periods in each dataset. In-
itially, two contiguous weeks of training data were selected
at random, and subsequent training periods of 1 to 21 days
were used. The predicted ET , results were compared to the
half-hour ET, measured by EC during all half-hour periods.
The resulting time series of latent heat flux was then used to
calculate a cumulative daily evaporation (in mm depth) from
three methods: (1) direct measurement of ET, by EC, (2) the
ASCE-EWRI standardized reference ET equation (ET;) and
single crop coefficients (K ), and (3) the machine learning
prediction based on sensor data (denoted ETann). The result-
ing daily and cumulative ET time series were compared by
linear regression. The correlation coefficient (R 2) and root
mean squared error (RMSE) were used to compare the re-
sulting scatter between the measured and predicted ET , for
all data (inclusive of the periods used to train the ANN). The

coefficients of regression between the measured and pre-

dicted ET, generally were not useful in describing the re-
sults, as most predictions were not uniformly distributed. A

successfully trained network for a specific training subset
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1. Half-hour mean values of each input parameter were cal-

culated, corresponding to the averaging periods used for
calculating actual ET with the EC method. For CIMIS
data, which are provided at hourly intervals, 30 min val-
ues were linearly interpolated. Time of day was deter-
mined from the data record time stamp. The ratio of actual
to reference ET was calculated for all daytime records
(equivalent to a single crop coefficient). Closure of the
surface energy budget (SEB) was calculated at each step,
using direct measurements of net radiation and soil heat
flux where available (i.e., soil heat flux, sensible and la-
tent heat flux were subtracted from net radiation). At sites
where four-component radiometers and/or soil heat flux
plates were not available, net radiation and soil heat flux
were approximated following Allen et al. (1998).
Reference ET values were obtained from nearby AgriMet
or CIMIS station records. For the Oregon site, reference
ET was calculated using the Penman-Monteith equation
using an alfalfa reference, i.e., ET (Jensen and Allen,
2016; Walter et al., 2000). Clear sky radiation (R ) was
calculated following Allen et al. (1998), and downwelling
shortwave radiation (Rs) was corrected at the site and for
periods in which R appreciably differed from R,, follow-
ing Appendix D of Walter et al. (2005). For the Oregon
site, a daily site-specific crop coefficient was obtained by
adapting the alfalfa reference crop coefficient (K) for
snap beans from Allen and Wright (2002).

The network structure (nodes and layers) was specified
for the ANN. The number of nodes in a single layer varied
but did not exceed the number of input parameters. Net-
works with one or two hidden layers were employed in
this study (fig. 1). The network also assigned a single-
node output layer (for the single output of ET,). For each
training, a number of days and a starting day (e.g., 15 days
starting on day 30 of the experiment) were specified, and
a subset of the EC and weather sensor data was input to
the ANN for training. Training proceeded automatically
using the Matlab toolbox, with 90% of the 30 min data
records in the training set used for training and the re-
maining 10% used for testing by the backpropagation al-
gorithm. Training consisted of a random assignment of
initial weights and biases in the hidden nodes, which were
adjusted iteratively until the MSE between the training set
and the training value of ET, no longer improved (Beale
etal., 2016).

. Half-hour averages for the entire data record (including

the training period) were then input to the trained ANN
model, which estimated a time series of predicted actual
ET. The R, RMSE, and linear regression coefficients
were calculated for 30 min and total daily crop ET (K.
ET;) and ANN-estimated actual ET, compared to the ET
measured by the EC method.
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4\ Function Fitting Meural Network {view)

Hidden 1

Hidden 2

Input

Figure 1. Diagram of a typical neural network used in this study showing two hidden layers with seven nodes each, corresponding to the seven
input parameters. Each node consists of weighting (w) and bias (b) vectors and a transfer function, noted in the hidden layers as a log-sigmoid
function. Training was conducted on a subset of 30 min records of weather and other sensor data, using the 30 min EC data as a control estimate
of ET for the supervised learning algorithm. The trained network was then used to estimate ET for all 30 min weather and sensor data for a given
site, and the resulting estimate was compared against the measured EC data (diagram generated using Matlab; MathWorks, 2018).

5. Training was repeated for each network arrangement
(number of nodes, training time, and input parameters) to
determine a minimum set (number of sensors and training
duration) required to train networks that could reliably re-
produce the observed diurnal and seasonal variability in
actual ET. For evaluating ensemble solutions, 100 neural
networks were trained iteratively (each instance was an

independent training with identical input parameters).

RESULTS AND DISCUSSION

The four sites presented in this study demonstrated a wide
range of patterns in seasonal and daily crop water demand.
The EC measurement of actual ET confirmed the expected
patterns in each case. At the Oregon site, the irrigator re-
ported that the irrigation schedule was changed repeatedly
throughout the season, e.g., 25 mm (1 in.) application once
per week, 13 mm (1/2 in.) applied every third day, etc., to
address challenges in irrigating the field characterized by
low intake rates and low to moderate water holding capacity
(farm manager, Greenspring Farms LLC, personal commu-
nication). This was confirmed by actual ET measured by EC,
which matched reference ET on days when irrigation oc-
curred but typically was 30% to 40% of reference, indicating
potential drought stress in the crop (fig. 2). The evaporation
rate predicted by the reference ET and crop coefficient, as
reported by the publicly available data and calculated using
the on-farm weather data, was less than the measured ET
during the first three weeks following germination (fig. 3).

—Agrimet: Kc

x ET
B

w
®
[

......... AgWeatherNet: K_ x ET_

. €3
—-s—.On-farm: KC X ETr 250 %
—e—0On-farm Eddy Cov.: ET, i
{200 2

<

o

{158 M

5

1160 =

[

12Jul 273ul 11Aug 26AuUg

12Jun

273un

Figure 3. Cumulative ET from local and on-farm weather data. Actual

ET (ET 9 was measured using the eddy-covariance (EC) method. Al-
falfa reference ET (ET ) was determined using the ASCE-EWRI Pen-
man-Monteith method for 30 min periods (matching the EC averaging
period) and summed for daily time steps. Daily crop coefficients for
snap beans ( K) were based on days since planting and were adapted
based on alfalfa reference crop coefficients from Allen and Wright
(2002).

An irrigation prescription based on any of these reference ET
estimates would lead to a deficit during early crop develop-
ment, even if the total requirement was met or exceeded over
the entire season. The on-farm (K. ET;) method matched
cumulative season total ET ,, but all reference ET methods
underestimated the daily ET , rate until mid-July, and then
overestimated the daily rate during late July and August (fig.
3). On days when irrigation occurred (visible on day 20, day
27, day 31, etc., in fig. 2), actual ET approached or slightly
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Figure 2. Daily crop coefficients for snap beans (squares, from Allen and Wright, 2002), daily ET ¢ET rratio measured at the closest network
station (triangles), and ET ;ET ratio measured by eddy-covariance (circles) at the Oregon site during 2017.
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exceeded ET,. Subsequently, actual ET returned to a range
of 30% to 40% of reference ET.

At the two pasture sites (Biggs and Dixon), an expected
end-of-season trend was observed, with daily ET decreasing
consistently with the shorter day length and less solar irradi-
ation (fig. 4a shows results at Dixon). In contrast, the alfalfa
at the Parlier site also showed a reduction in ET during peri-
ods following cutting (harvest) of the crop, with a gradual
return toward full ET as the canopy re-established (fig. 4b).
ET at the Parlier site also demonstrated the downward end-
of-season trend in daily ET throughout the July to October
period.

Actual ET varies in diurnal and seasonal patterns, which
are largely driven by available energy. Because the P-M
equation is derived from conservation of energy (Penman,
1948), estimates such as the P-M equation are parameterized
to adjust second-order effects such as crop and soil response
to water availability. These effects are non-linear, confound-
ing a general analytic solution and requiring empirical cali-
brations, such as the development of crop coefficients. While
evaluating ET on a daily time scale, a simple parameteriza-
tion based on phenology, days since planting, or other fac-
tors can resolve these non-linear patterns. However, when
estimating ET over shorter time periods, more complex pat-
terns can emerge. In figure 5, the unweighted, average 30
min ratio was used to approximate a site-specific crop coef-
ficient applied to the reported CIMIS reference ET in calcu-
lating cumulative ET. In this case (alfalfa), the site-specific
crop coefficient was calculated as 0.53, which was at least
partly due to the inclusion of periods when alfalfa was
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Figure 4. Time series of total daily ET at the (a) Dixon and (b) Parlier
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19Sep 030ct

63(5): 1427-1439

=z

-
.

: ET
+
-4

ET
@
o

1

H o5

b F-----1

F----

k- T F-+

RS
F-=----

aliy 12 13 14 15
Hour of day

o k-

-
8 10

Figure 5. Total 30 min ratio of actual ET (ET ) to reference ET (ET ),
the site-specific crop coefficient, for each hour during the day at the
Parlier site. Lines in boxes indicate medians, boxes indicate second and
third quartiles, and whiskers indicate first and fourth quartiles. Plus
markers ( +) indicate a very small number of statistical outliers.

harvested and there was little actual ET. While these second-
order effects are typically site- and crop-specific, they tend
to be consistent for a specific application. Neural networks
are able to reproduce non-linear effects when estimating ac-
tual ET and reproduce the cumulative and instantaneous ET.
The simplest application of this approach, supervised learn-
ing, is feasible if the training set includes a reliable estimator
of the output (fig. 6).

The ANN training was able to reproduce actual ET in the
four field experiments. With appropriate selection of train-
ing data to include a representative sample of the variability
in actual ET and other input variables, the ANN was able to
estimate actual ET (compared to EC measurements) more
accurately than the P-M equation with a single crop coeffi-
cient (fig. 6a), as indicated by an increase in Rand reduction
in RMSE (fig. 6b). Compared to EC, the P-M estimate did
not reproduce the daily variability in actual ET (R 2=0.21,
RMSE = 1.5 mm d ). A neural network can potentially re-
duce RMSE and improve fidelity in estimating daily ET
rates, which irrigators can exploit for scheduling (fig. 6b).
For all four field experiments, the most robust ANN esti-
mates required two weeks of training data, although the per-
formance of the ANN method was better for the California
sites with three weeks of training data. The ANN estimates
were not particularly sensitive to the number of input param-
eters (weather sensor data), and in all ANN results shown
here, a minimum set of the following parameters were used:
air temperature and humidity, downwelling (incoming) solar
radiation, wind speed, and time of day. Inclusion of addi-
tional parameters directly related to evaporative flux, tem-
perature and humidity gradients, and soil heat flux were in-
cluded in some iterations but did not make measurable dif-
ferences in the robustness of the resulting training outputs.
Because temperature and humidity were measured at two
heights at the Oregon site, they were included in most train-
ing iterations and may have contributed to stronger correla-
tions between the ET, resulting from shorter training times.
For the California sites, weather data from the nearby CIMIS
stations supplemented (or replaced) on-site sensor data, with
little observable effect apart from anecdotally improved es-
timates with shorter training times.
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Figure 6. Results from one arbitrarily selected ANN trained for 14 days at the Oregon site using seven input parameters (air temperature and
humidity at two heights, downwelling shortwave radiation, wind speed, and time of day).

From the perspective of providing robust and useful in-
formation to irrigators, the correspondence between the
ANN estimates and EC measurements on 30 min intervals
has little practical meaning. Cumulative ET, in areal depth,
is directly related to crop water demand, as shown in fig-
ure 7. The daily consumptive water demand, as shown here,
is typically more useful in irrigation scheduling than 30 min
flux estimates or sensor data reported on 30 min intervals, as
shown in figure 8.

Previous work with ANNSs to estimate actual ET showed
that the network is sensitive to the representativeness of the
input parameters (compared to the global data) and not par-
ticularly sensitive to small training sets (Kelley and
Pardyjak, 2019). For the Oregon site, highly variable condi-
tions occurred on 2- to 5-day cycles, corresponding to the
irrigation schedule. This meant that when the training data
were drawn from just a few consecutive days, the ANN re-
sponded to a much wider range of conditions (fig. 2) than
would be typical under more uniform, well-watered condi-
tions. For the California sites, the range of variability in ac-
tual ET (and other environmental parameters) was more uni-
form and changed more slowly over longer time periods. As
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Figure 7. Cumulative ET at the Oregon site estimated with the four
methods described in the text. The AgriMet P-M estimate used the re-
ported ET ,from the nearest AgriMet station and the AgriMet tabular
crop coefficient. The on-farm P-M estimate used the same equation
with on-farm sensor measurements and a locally calibrated crop coef-
ficient. The ANN estimate was based on training data from a two-week
period (shaded box).
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a result, the ANNSs trained over periods shorter than 14 days
were not as robust, and sequential training of the ANNS re-
sulted in low correlation with the actual ET. Training periods
as long as 21 days were more robust, but the performance of
the ANNSs was still sensitive to the range of actual ET during
the measurement period (fig. 8). Note that 14 days and 21
days of training data, both starting at day 15, generated sim-
ilar results (figs. 8a and 8c). In contrast, the ANN trained for
21 days starting at day 45, when the range of ET was smaller,
estimated ET with considerably more scatter compared to
the measured ET, (fig. 8b).

One challenge to applying machine learning more
broadly is a lack of information about the generality of the
resulting solutions. Here we have shown that the ANN
method can estimate site-specific ET, given that the training
data include sufficient parameter variability to represent the
range of true conditions. Unlike when using an analytic
equation based in first-order physical principles, such as the
EC method or the P-M equation, estimating the influence of
any specific environmental parameter is beyond the scope of
this study. As a simple evaluation of the generality of the
ANN solutions, we applied the network solution validated at
one site to other sites with comparable data. As an example,
figure 9 shows the cumulative ET measured by EC (circles),
the cumulative ET calculated with a site-specific crop coef-
ficient and the CIMIS reference ET (stars), reference ET (tri-
angles), and actual ET estimated by the ANN (squares). An
ANN was trained using 21 days of data at the Dixon site (fig.
9a). Data from the Biggs site was then input into the same
network, resulting in a less accurate but still reasonable cu-
mulative flux (fig. 9b). The resulting ANN underestimated
actual ET, but the surprising result is that the ANN still pro-
duced an estimate closer to the measured ET than the results
from applying a site-specific crop coefficient to the nearby
CIMIS reference ET. These two sites are similar (irrigated
pasture, same year, similar time of year), so this finding sug-
gests that the same general factors operate at both sites.

A robust machine learning method will also be repeatable
with an acceptable level of variation between each applica-
tion of the learning algorithm, with reliable estimates of the
output parameters and the concomitant uncertainty. Because
neural networks are trained with a random initialization of
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Figure 8. Three training iterations of ANN estimates at the Parlier site. Variability in the ET used as training data increases the scatter of the
resulting 30 min ET estimate (training periods are shown as shaded boxes in left plots).

the weighting and bias functions, we generated large ensem-
bles of trained ANNS to visualize the range of uncertainty
associated with a given size of the input data used in training.
As shown in figure 10, the cumulative ET was estimated by
an ensemble of 100 neural networks (plotted as the mean 1
standard deviation). Although each member of the ensemble
would not typically accumulate error for every day of the

63(5): 1427-1439

entire season, neither is error unbiased for each ANN output;
therefore, the cumulative bounds shown are a moderately
conservative estimate of the cumulative uncertainty for a
specific set of training parameters. It is evident that a 14-day
training period reduced the range of potential ET estimates,
although in this specific case, the ensemble average from
ANN:Ss trained for seven days more closely matches the EC
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Figure 10. Ensembles of cumulative ET from 100 iterations of ANN training at the Oregon site. The heavy dashed line indicates the ensemble

average, with lighter dashed lines indicating the cumulative mean

1 standard deviation of the 100 ensemble members. The square symbols

indicate the crop coefficient adjusted reference ET taken from the closest AgriMet station, and the solid black line indicates the EC measurement

of ET used to train the neural networks.

data used as the control estimate. This supports previous ob-

daily ET values, with lower RMSE and higher R. As shown

servations that an ANN estimate is sensitive to the actualin figure 6, the on-farm Penman-Monteith estimate accu-

conditions under which the network was trained. This is ev-
ident for the 14-day training period (shaded area in fig. 10b),
a period that spans a broader range of conditions that resem-
ble the late season. The resulting ET rate more closely
matches the rate of P-M ET after 18 August, which is also
when the ensemble ET rate departed from the observed ET,.
Prior to 18 August, a heavy irrigation was applied once every
7 to 8 days; after August 18, irrigation was applied at a lower
rate every third day (farm manager, Greenspring Farms
LLC, personal communication).

As an additional description of the error inherent in esti-
mating ET with the ANN, the R and RMSE were calculated
for daily ET values, compared to actual ET. Using total cu-
mulative ET as a conservative estimate of effective total er-
ror for each ANN model, the Rand RMSE were plotted
against the cumulative ET for each of the 100 iterations (fig.
11). For reference, figure 11 also shows the R 2 and RMSE
for daily K. ET, values at both the on-farm and AgriMet
stations. Compared to the actual ET (vertical dashed lines),
nearly all ANN iterations improved fidelity in reproducing
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rately predicted the crop ET for the entire season, but the
ANN was able to predict the daily ET much better, providing
critical information for irrigators in making daily allocation
decisions. As expected, the 14-day training more consist-
ently produced a reliable estimate by reducing the probable
error in the estimation output of the neural network.

CONCLUSIONS

Direct monitoring of actual evapotranspiration for pre-
scribing efficient irrigation application is theoretically at-
tractive to increase water use efficiency, prescribe sufficient
application rates, and schedule irrigation with minimal loss.
However, direct measurement of actual ET is expensive,
technically and practically challenging, and sometimes in-
compatible with farm operations. Direct measurement of ac-
tual ET is fundamentally challenging due to the complexity
and variability of the underlying phenomena. While there is
a substantial body of research to guide irrigators in determin-
ing reference ET, and most U.S. regions have networks in
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place that provide hourly and daily estimates of reference
ET, using these techniques effectively requires an invest-
ment of time and skill that is not feasible for many irrigators.
At the same time, researchers have developed techniques
such as eddy-covariance (EC) that are accurate but which re-
quire skill and significant labor to implement. Beyond this,

it is difficult to translate these data into practical, site-spe-
cific information that is useful to the average irrigator in
making scheduling decisions.

By leveraging affordable, publicly available data and
low-cost sensors, machine learning offers the possibility to
expand the monitoring of actual ET to a broader audience of
end-users. For example, the application in this study imple-
mented EC for training on-farm weather stations to report
actual ET. This suggests possible applications of the EC
method in practical monitoring. It is feasible to implement
similar co-located monitoring, which would allow profes-
sionals such as Extension agents and agro-meteorology net-
work staff to provide regionally specific ANNs that estimate
actual ET. These ET estimates would complement existing
reference ET methods and could facilitate broader adoption
of ET-based irrigation scheduling. More generally, it is also
likely that any reliable estimate of crop water requirement
could be used in lieu of EC, so that other methods, such as
the Bowen ratio, lysimeters, and soil water monitoring could
be integrated through machine learning. The main goal
demonstrated here is to produce estimates of site- and crop-
specific ET from easily measured weather parameters, rather
than relying solely on empirically calibrated equations.

There are many situations in which crop coefficients are
not available, and there is no straightforward way to estimate
crop water requirement apart from monitoring soil water and
crop status. Discrepancies in the estimates of daily ET pre-
vent irrigators from scheduling irrigation to follow time-sen-
sitive crop water demand and undermine confidence in sci-
entifically ET-based estimates, soil water depletion, and
crop water requirements. Under these conditions, irrigators
must depend on their experience and constant manual soil
and plant-stress observations to judge the timing and amount
of irrigation. Examples include when growing newly devel-
oped crop varieties, when there are no nearby public agro-
meteorology stations, when publicly available data are
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unreliable or do not represent site-specific conditions, and
where limited water supply necessitates deficit irrigation. In
any given season, a similar constraint may prevent an irriga-
tor from using ET data in scheduling irrigation. Extreme
weather events such as drought and heat can also affect crop
water demand in both the short term and over the growing
season. In these cases, machine learning may offer adaptable
techniques to predict crop water demand, which would not
be possible with empirically derived crop coefficients. The
ability of ANNs to preserve information from direct meas-
urements can help estimate impacts to crops and help pre-
scribe specific irrigation practices to mitigate negative con-
sequences. This adaptability may be especially pertinent in a
changing and more unpredictable climate. Machine learning
offers a unique advantage in allowing the end-user to accu-
mulate data and improve the resulting model. Furthermore,
the results shown here demonstrate that machine learning
may also be able to produce general, rather than simply site-
specific, models of crop water requirements, although more
testing is necessary.

These results show that ANNs can be useful for leverag-
ing available data and affordable on-farm sensors to estimate
site-specific, actual ET in real time. Integration of this
method into decision support tools could incentivize the
adoption of precision irrigation technology by providing
critical information required to improve irrigation water
management, guide sustainable use of water resources, re-
duce risk from drought stress and underapplication, and pre-
serve crop yields.
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