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HIGHLIGHTS  
 Machine learning can incorporate a variety of data from low-cost sensors and estimate actual ET by comparison with 

short-term, higher-cost measurements. 
 On-farm weather monitoring can be leveraged to estimate site-specific crop-water requirements. 
 Expanding spatial coverage of weather and actual ET through on-farm monitoring will facilitate localization and leverage 

publicly available weather data to guide irrigation decisions and improve irrigation water management. 

ABSTRACT . One of the basic challenges to adopting science-based irrigation scheduling is providing reliable, site-specific 
estimates of actual crop water demand. While agro-meteorology networks cover most agricultural production areas in the 
U.S., widely spaced stations represent regionally specific, rather than site-specific, conditions. A variety of low to moderate 
cost commercial weather stations are available but do not provide directly useful information, such as actual evapotranspi-
ration (ETa), or the ability to incorporate additional sensors. We demonstrate that machine learning methods can provide 
real-time, site-specific information about ET a and crop water demand using on-farm sensors and public weather infor-
mation. Two years of field experiments were conducted at four irrigated field sites with crops including snap beans, alfalfa, 
and pasture. On-farm data were compared to publicly available data originating at nearby agro-meteorology network sta-
tions. The machine learning procedure can robustly estimate ET a using data from a few basic sensors, but the resulting 
estimate is sensitive to the range of conditions that are used as training data. The results demonstrate that machine learning 
can be used with affordable sensors and publicly available data to improve local estimates of crop water demand when 
high-quality measurements can be co-located for short periods of time. Supplementary sensors can also be integrated into 
a tailored monitoring plan to estimate crop stress and other operational considerations. 

Keywords. Agro-meteorology, Irrigation requirement, Machine learning, Site-specific Irrigation. 

nnovative irrigation technology offers many benefits, in-
cluding improved crop yields, reduced losses from non-
uniform application, reduced disease incidence, and con-
servation of water resources. However, adoption of in-

novative irrigation technology is slowed by a lack of infor-
mation and decision support to ensure that new methods are 
reliable and cost-effective (Molden et al., 2010; Perry, 2007). 
The role of researchers and water resource professionals  in 
promoting  science-based  irrigation  methods  should  include 
demonstrations of new methods that are feasible to implement 

and reliable in real-world conditions. A critical area of deci-
sion support is the provisioning of real-time, site-specific es-
timates of crop water requirements and crop evapotranspira-
tion (ET). Real-time estimates of ET can support daily irriga-
tion planning, address potential risks of under-application and 
yield reduction, identify crop water requirement for new vari-
eties,  and  evaluate  new  strategies  for  addressing  climate 
change and water scarcity. While state and federal agro-mete-
orology networks cover most agricultural production areas in 
the U.S., the widely spaced stations of most networks can only 
represent regionally specific, rather than site-specific, condi-
tions (Evans and King, 2012). Because growers need site-spe-
cific weather measurements, a variety of low to moderate cost 
commercial weather stations are available. Although some of 
these commercial systems may be used to estimate reference 
ET, this information is not as directly useful to irrigators as 
would be estimates of crop water requirement (ETc) or actual 
evapotranspiration (ETa). In addition, most commercial 
weather stations and ET models cannot readily incorporate ad-
ditional sensors that may be used by irrigators, such as soil 
water sensors or irrigation flow controls. 

Other resources available to irrigators are irrigation sup-
port tools and public agro-meteorology networks operated  
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by federal and state agencies (Haigh et al., 2018). AgriMet 
and the California Irrigation Management Information Sys-
tem (CIMIS) are two agricultural weather networks devel-
oped specifically to provide decision support to farmers with 
the goal of conserving water resources. The California De-
partment  of  Water Resources funds  and  maintains 145 
CIMIS weather stations across the entirety of California. The 
U.S. Bureau of Reclamation operates over 70 AgriMet sta-
tions across Oregon, Washington, and Idaho and some parts 
of  Montana,  Wyoming,  and  Nevada.  In  the  northwestern 
states, another valuable resource is Washington State Uni-
versity’s AgWeatherNet and Irrigation Scheduler software 
(Peters  et  al.,  2014).  These  networks  maintain  automatic 
weather stations that report parameters including air temper-
ature, relative humidity, wind speed and direction, precipita-
tion, and solar radiation over a well-watered grass reference 
surface, and they also provide estimates of crop water de-
mand via the Penman-Monteith (P-M) equation for reference 
ET.  Depending  on  the  individual  sensor  and  data  type, 
AgriMet generally reports weather data every 15 min, and 
CIMIS reports hourly. Data are transmitted every hour from 
individual stations to a central server, where they undergo 
automatic  and  manual  quality  control  procedures,  and  the 
data are made available through an automated web interface. 
The  AgriMet  quality  assurance  procedures  include  checks 
on data transmission metrics, upper and lower measurement 
limits, rate of change, and a manual graphical review. Addi-
tionally, lab calibration is performed on all sensors prior to 
deployment, and field calibrations are performed annually to 
ensure  that  the  data  are reliable  and  accurate  (Palmer  and 
Hamel, 2009). 

Near real-time calculations of P-M reference ET and crop 
water demand are available on web interfaces for irrigators 
in the region. Reference ET is a measure of the weather-re-
lated crop water use over a well-watered reference surface. 
To estimate actual crop water demand, the reference ET is 
used with a one-term or two-term resistance model that ac-
counts for crop development and soil evaporation in two sep-
arate terms (Allen et al., 2005) but cannot account for site-
specific effects such as non-uniform irrigation, soil charac-
teristics, or crop varietal differences. The most common way 
for farmers to derive actual crop water demand is by adjust-
ing  reference  ET  with  a  calibrated  crop  coefficient  (Dac-
cache  et  al.,  2015;  Knox  et  al.,  2012).  The  AgriMet,  Ag-
WeatherNet, and CIMIS networks provide tables of crop co-
efficients over the growing season so that farmers can select 
the most appropriate coefficients for their operations. Crop 
coefficients  are  typically  developed  from  annual  or  long-
term averages of water consumption by a specific variety of 
a  specific  crop  and  are  most  often  based on  studies using 
weighing lysimeters (Marek et al., 2006). Specific circum-
stances, such as the development of new crop varieties, early 
or late planting, or interannual differences in plant develop-
ment,  are  not  represented  by  simple  crop  coefficients  and 
make  it  difficult  for  farmers  to  choose  the  correct  coeffi-
cients. Many irrigation scheduling software packages can in-
corporate specific information to account for crop stress or 
practices such as cutting alfalfa (Peters et al., 2014), but this 
information requires an additional level of accounting and 
discretion on the part of the irrigator. 

Estimates of crop ET are only as good as the calibrated 
crop coefficient. Applying the wrong coefficient can lead to 
inefficient or insufficient application, and this risk may out-
weigh the potential benefit of incorporating ET into irriga-
tion  decisions  (Davis  and  Dukes,  2010).  There  are  other 
methods that measure crop ET directly, including the eddy-
covariance (EC) method and weighing lysimeters, but these 
methods are costly, time-consuming, and the resulting esti-
mates of crop response do not precisely transfer to all grow-
ing conditions or to new crop varieties (Allen et al., 2011). 
When growers use scientific irrigation planning to conserve 
water  and  maximize  efficiency,  there  is  a  greater  risk  of 
drought stress and yield reduction, poor germination or de-
velopment, reduction of crop quality, and incidence of dis-
ease (Perry et al., 2009). For example, scheduling irrigation 
without a site-specific measurement of actual ET can lead to 
misapplication, resulting in yield reductions, crop loss, and 
reduced water use efficiency (Evans et al., 2013). At present, 
irrigators and consultants base their decisions on a variety of 
regional weather forecasts and daily reference ET estimates 
from both public and private sources (Haigh et al., 2018). 
While there is a moderate degree of confidence in publicly 
available  data,  better  utilization  and  adoption  of  scientific 
methods will require leveraging these data to provide real-
time and site-specific estimates of crop ET without requiring 
excessive effort on the part of end-users. 

Machine learning has seen increasing use in hydrology 
and climate science in recent years for predicting and mod-
eling  hydrologic  processes  (Govindaraju,  2000).  Artificial 
neural networks (ANNs) are one form of machine learning, 
with algorithms that “learn” from data and approximate so-
lutions  for  non-linear,  multi-input  functions.  Due  to  their 
flexibility and robustness, ANNs have seen increasing appli-
cation in modeling reference ET (Kumar et al., 2011), atmos-
pheric fluxes (Alemohammad et al., 2017), plant water stress 
(King and Shellie, 2016; Meyers et al., 2019), and irrigation 
optimization (Irmak and Kamble, 2009). Because neural net-
works  use  optimization  algorithms  and  do  not  depend  on 
physical  models,  ANNs  can  be  useful  in  circumstances 
where data quality is variable, and to explore non-linear be-
havior.  In  one  approach  to  machine  learning,  supervised 
ANNs  learn  through  a  process  of  error  minimization,  in 
some  ways  resembling  multi-linear  regression,  but  using 
non-linear transfer functions to approximate the non-linear 
behavior observed in real data (Paliwal and Kumar, 2009). 

Previously, a neural network machine learning procedure 
was  demonstrated  that  was  able  to  estimate  daily  ETa  ro-
bustly in actual field conditions (Kelley and Pardyjak, 2019). 
This approach used data from a few basic sensors and EC 
flux  measurements  as  a  control  estimate  of  reference  ET. 
The EC data were used to train a neural network for a rela-
tively short time, and then the EC measurements were used 
to evaluate the robustness of the neural network in estimat-
ing ET over an entire field season. The resulting estimates 
were extremely sensitive to the variety of field conditions 
during collection of the training data. In practice, guiding ir-
rigation  decisions  and  estimating  consumptive  water  use 
with  machine  learning  has  yet  to  be  satisfactorily  demon-
strated.  For  practical  purposes,  these  methods  must  work 
with  data  that  can  be  monitored  affordably  in  real-world 
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conditions, and should only require direct evaporation meas-
urements for the shortest possible training period. We pro-
pose that this approach can integrate research methods into 
tailored  on-farm  monitoring  to  estimate  site-specific  crop 
water  requirements,  optimize  real-time  irrigation  schedul-
ing, and improve water management. 

MATERIALS AND METHODS  
In order  to demonstrate  that  machine  learning  methods 

can  provide  real-time,  site-specific  information  about  ETa 
and crop water demand, field experiments were conducted 
in two different years in four irrigated fields growing snap 
beans, alfalfa, and pasture, all in proximity to regional agro-
meteorology or basic weather stations. These data were ana-
lyzed with simple (one and two layer) neural networks that 
were trained to estimate actual ET from on-farm data and 
local  network  weather  records.  The  supervised  machine 
learning algorithm used EC flux measurements to estimate 
site-specific ET. 

This  analysis  used  data  collected  during  the  2017  and 
2019 growing seasons in agricultural fields in Oregon and 
California. Each of the four experiments used the EC method 
to measure the actual rate of evapotranspiration (ETa), which 
is treated here as the control estimate of ET a and used in a 
supervised machine learning algorithm. Each site was 
equipped with supplemental sensors that are typically used 
in agro-meteorology networks and on-farm weather stations. 
In all cases, EC sensors were installed at a nominal height of 
2 m above ground level. Additionally, some experiment sites 
were located directly adjacent to permanent agro-meteorol-
ogy network sites, and the other experiments used the closest 
available  ground-based  weather  data.  Data  were  collected 
using  dataloggers,  stored  in  ASCII/binary  files,  or  down-
loaded from public agro-meteorology networks. In Califor-
nia, hourly weather and reference ET records from the co-
located CIMIS stations were downloaded from the CIMIS 
website (https://cimis.water.ca.gov). At the Oregon site, data 
were obtained from the five closest AgriMet 
(https://www.usbr.gov/pn/agrimet/) and AgWeatherNet 
(http://weather.wsu.edu/) stations. Data were then re-format-
ted for analysis in Matlab (MathWorks, 2018) using custom-
ized  import  scripts.  The  EC flux  calculations,  corrections, 
and quality control were performed with scripts prepared by 
one of the authors (Oregon site). For the California sites, ETa 
was also calculated using EddyPro software (LI-COR, 
2019).  Machine  learning  algorithms  were  implemented  in 
the Machine Learning and Deep Learning Toolbox (Math-
Works, 2018), as described later. 

FIELD EXPERIMENTS  
The first field site is located in Benton County, Oregon, 

in the Willamette Valley, which has a humid but Mediterra-
nean  precipitation  regime  (little  precipitation  during  the 
growing  season)  that  requires  many  crops  to  be  irrigated. 
The EC system and weather station were installed between 
two ~50 ha fields irrigated by center pivots. The 22 ha and 
29 ha sections of the fields directly adjacent to the sensors 
were planted in snap beans (Phaseolus vulgaris). To 

maximize the likelihood of reliable EC measurements, the 
station location was chosen so that the field was uniformly 
flat, irrigated, and planted for more than 200 m (100 times 
the measurement height) in the direction of the predominant 
daytime wind direction, and nearly as uniform for 200 m in 
the directions of all other wind sectors (based on ten years of 
wind data collected from a nearby airport weather station). 
During the 2017 season, the timing and amount of irrigation 
were inconsistent as the farmer attempted to determine an 
adequate schedule for the crop. Irrigation timing was based 
on visible crop stress and manual measurements of soil water 
levels;  application  rates  were  limited  by  soil  intake  rates 
(farm  manager,  Greenspring  Farms  LLC,  personal  corre-
spondence). As a result, the observed rate of ETa varied from 
100% of reference ET in the day following irrigation to less 
than 40% of reference ET in subsequent days. 

The data from the Oregon site used in this analysis were 
collected from 12 June to 4 September 2017 (85 days). For 
EC measurements, an IRGASON integrated sonic anemom-
eter and open-path gas analyzer (Campbell Scientific, Lo-
gan, Utah) was mounted at 2 m above ground level (a.g.l.) 
and oriented in the dominant daytime wind direction. Addi-
tional sensors were included for comparison in the machine 
learning algorithm: humidity and temperature sensors at two 
measurement heights (HMP-60, Vaisala Oyj, Helsinki, Fin-
land); Decagon GS3 soil water content, soil temperature, and 
MP2  soil  water  potential  sensors,  Decagon  tipping-bucket 
rain gauges, and Decagon 2-d sonic anemometers (METER 
Group, Pullman, Wash.); a Q-7 thermopile net radiometer 
(Radiation and Energy Balance Systems, Seattle, Wash.); a 
PAR quantum sensor (Apogee Instruments, Logan, Utah); 
and a cup and vane anemometer (R.M. Young Co., Traverse 
City,  Mich.).  For  some  2  to  3  week  training  periods,  an 
NR01 net radiometer and HFP-01 soil heat flux plate 
(Hukseflux, Delft, The Netherlands) and two HCS2 humid-
ity/temperature probes (Rotronic AG, Bassersdorf, Switzer-
land) were co-located with the Q-7 net radiometer and HMP-
60  thermo-hydrometers,  respectively,  to  cross-validate  the 
corresponding sensors. A complete description of this field 
experiment is provided by Kelley and Pardyjak (2019). 

Eddy-covariance measurements were also taken at three 
sites located on flood-irrigated agricultural land in Califor-
nia’s Central Valley, spanning northern to southern regions 
during the late summer of 2019. These stations were co-lo-
cated with stations in the CIMIS network that measure hy-
dro-meteorological variables used to calculate potential ET 
for use by growers throughout the state. For all stations, fast-
response turbulence measurements were sampled at 20 Hz, 
while slow-response sensors were sampled every 20 s and 
then averaged and recorded every 60 s. 

The northernmost station in California was located near 
Biggs over periodically grazed pastureland with a homoge-
neous fetch of approximately 180 m to the southeast and 350 
m to the northwest, the two dominant daytime wind direc-
tions during late summer. This station was co-located with 
the  Biggs  CIMIS  station  (installed  approx.  2.5  m  to  the 
north). Eddy-covariance measurements were made with an 
IRGASON mounted at 2.46 m a.g.l., while slower-response 
measurements were made with EE-181 temperature and rel-
ative  humidity  probes  in  non-aspirated  radiation  shields 
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(Campbell Scientific) at 3.50 and 1.82 m, an SP-110-SS py-
ranometer (Apogee Instruments), an NR-LITE-2 net radiom-
eter (Kipp & Zonen, Delft, The Netherlands), and an SI-111 
infrared thermometer (Apogee Instruments). All data from 
this station were sampled and logged by a CR3000 micro-
logger (Campbell Scientific). The data used in this analysis 
were collected at Biggs from 8 August to 6 November 2019 
(91 days). 

Approximately  75  miles  south  of  Biggs  in  the  Central 
Valley, a second station was deployed in Dixon, California, 
co-located with the Dixon CIMIS station (approx. 2.5 m to 
the northwest). The site was also characterized by periodi-
cally grazed pastureland and had a homogeneous fetch of ap-
proximately 700 m to the southwest in the predominant day-
time wind direction for late summer. The station was 
equipped with a CR6 datalogger with a CDM-A116 analog 
input  module  (Campbell  Scientific),  two  IRGASONs  (at 
2.21 m and 4.22 m a.g.l.), two HMP-155A temperature and 
relative humidity sensors with radiation shields (Vaisala) at 
2  m  and  4  m  a.g.l.,  a  CNR4  four-component  radiometer 
(Kipp & Zonen), two HFP01-L soil heat flux plates 
(Hukseflux) at 0.08 m below the surface and 0.5 m apart, 
four 105E-L soil temperature thermocouple probes (Camp-
bell Scientific), two at 0.02 m and 2 at 0.06 m below the sur-
face, and two CS655 soil water content reflectometers 
(Campbell Scientific) at 0.05 m and 0.15 m below the sur-
face. The data used in this analysis were collected at Dixon 
from 30 July to 8 October 2019 (71 days). 

The  southernmost  station  in  California  was  located  in 
Parlier at the Kearney Agricultural Research and Extension 
Center. This EC station was deployed on a 2 ha (5 ac) alfalfa 
plot, approximately 500 m southwest of the Parlier CIMIS 
station due to a restrictive fetch at the CIMIS station plot. 
The station was situated on the alfalfa plot such that it had 
an approximate homogeneous fetch of 150 m in the predom-
inant  daytime  wind  directions  (southeast  and  northwest) 
with the exception of a narrow, dirt farm road approximately 
50 m northwest of the station. This station had an EC-150 
(Campbell  Scientific),  and  a  CSAT  sonic  anemometer  at 
2.02 m a.g.l. for EC measurements. Slow-response measure-
ments  of  temperature  and  relative  humidity  were  taken  at 
2.02 m and 3.45 m from two EE-181 sensors (Campbell Sci-
entific) with radiation shields and the four components of net 
radiation  (i.e.,  downwelling  shortwave  and  longwave  and 
upwelling shortwave and longwave radiation) from an SN-
500  net  radiometer  (Apogee  Instruments).  All  data  were 
sampled and logged with a CR1000x datalogger (Campbell 
Scientific). The data used in this analysis were collected at 
Parlier from 27 July to 28 October 2019 (94 days). 

DATA HANDLING AND EDDY-COVARIANCE  
(EC)  FLUX CALCULATION  

To ensure representative ET measurements, standard EC 
corrections and data quality procedures (Foken et al., 2012), 
2-D coordinate rotations (Wilczak et al., 2001), and density 
corrections  (Leuning,  2007;  Webb  et  al.,  1980)  were  em-
ployed. A  phase  space  method of  despiking was  also  em-
ployed (Kelley and Higgins, 2018). Eddy-covariance meas-
urements of ET were calculated for averaging periods rang-
ing from 15 to 60 min. The measured net radiation, soil heat 

flux, and sensible and latent heat fluxes were used to evalu-
ate closure of the surface energy budget and assess periods 
for which to exclude data. Limited gap filling was required 
for short periods (typically not exceeding one averaging pe-
riod and totaling less than 5% of all data). Gaps created by 
removing data were linearly interpolated for calculating cu-
mulative ET. 

The local alfalfa reference ET (ETr) was calculated using 
the ASCE-EWRI Penman-Monteith equation (Allen et al., 
2005; Jensen and Allen, 2016) from measured downwelling 
shortwave radiation, soil heat flux, air pressure, temperature 
humidity, and wind speed. ETr was used to approximate po-
tential  ET,  identify  variability  in  daily  irrigation  require-
ments, and identify periods when ET was limited by water 
availability rather than available energy. ET r was also used 
in combination with single crop coefficients to compare crop 
ET with machine learning predictions of actual ET. The sin-
gle crop coefficient method was used because it is a practical 
tool for estimating crop ET without requiring additional sup-
porting information, and it is the standard method for esti-
mating crop water requirement in irrigation scheduling soft-
ware such as provided by AgWeatherNet. Established crop 
coefficients were obtained from the AgriMet website 
(https://www.usbr.gov/pn/agrimet/cropcurves/crop_curves.
html) or were adopted from earlier lysimeter studies based 
on planting date and crop development (Allen and Wright, 
2002) and adjusted to the specific crop and planting dates in 
the case of the Oregon field experiment. 

For data from the California sites, EddyPro v7.0.4 was 
used to calculate turbulent fluxes using data acquired at the 
Parlier, Biggs, and Dixon sites. The EC systems collected 20 
Hz  records.  Discontinuities  from  swapping  memory  cards 
and missing data in general were replaced with non-numbers 
(NaNs) to fill data gaps and maintain time series continuity. 
Turbulent fluxes were calculated for 30 min intervals. The 
flagging policy for quality checks was based on a numbering 
system (Foken et al., 2005). Raw data corrections included 
the  double  rotation  tilt  correction  method  (Aubinet  et  al., 
2012), time lag detection by covariance maximization (Fan 
et al., 1990), WPL density correction (Webb et al., 1980), 
removal of spikes (at 1% threshold), and replacement by lin-
ear interpolation (Vickers and Mahrt, 1997). Correction of 
high-pass filtering effects followed the spectral corrections 
described by Moncrieff et al. (2005), and the fully analytic 
spectral correction method was used to correct for low-pass 
filtering effects (Massman, 2000). Using conservative esti-
mates, quality control procedures removed less than 1% of 
the data in a given 30 min segment for up to the 95th percen-
tile of total segments. Extreme outliers can have greater re-
moval rates, but most outliers reach only about 2% or less, 
and the total number of removed points represented less than 
0.085% of the raw vertical wind velocity and water vapor 
concentration data, whose covariance defined the water va-
por flux from the surface and hence, ET. 

MACHINE LEARNING IMPLEMENTATION  
The  quality-controlled  (but  otherwise  uncorrected)  EC 

measurements and weather sensor data were imported and 
processed in Matlab, and the machine learning analysis used 
the Neural Network and Deep Learning Toolbox 
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(MathWorks, 2018). A simple three-layer network (with two 
layers of 4 to 12 nodes and one single-node output layer) was 
trained  using  the  Bayesian  regularization  backpropagation 
algorithm,  which  uses  Levenberg-Marquardt  optimization 
(Beale et al., 2016). This algorithm is suited to moderate-size 
datasets  as  were  used  in  this  study.  Initially,  the  machine 
learning methods employed here (in single iterations) were 
developed  as  described  in  a  previous  study  (Kelley  and 
Pardyjak, 2019). The structure of an ANN is built of nodes 
(also called neurons). Each node is comprised of weighting 
and bias vectors and a transfer function that control the trans-
lation of input parameters to outputs. In the training process, 
the functional contribution of each input parameter is 
changed by assigning weighting and biases at each node and 
comparing the output against the training dataset. The net-
work is randomly initialized from a subset of training data 
(in this case, a matrix of time-series records of weather sen-
sor data), and uses feedback from the control estimate (in 
this case, ET measured by EC) to minimize error according 
to an assigned statistic (in this case, MSE was the learning 
statistic used in backpropagation). From random initial con-
ditions,  training  proceeds  by  iterating  and  minimizing  the 
difference  between  the  control  ET  measurement  and  the 
value predicted by the neural network. In the Matlab 
toolbox, the user specifies the data input, training data, and 
algorithms for optimizing the ANN. Processing occurs in an 
intuitive user interface that also allows plotting the results 
and evaluating the robustness of the resulting solution. Every 
iteration of the ANN is randomly initialized, so two ANNs 
trained on identical data will produce slightly different out-
puts. As the input data (i.e., either the sensor data or the num-
ber of iterations) are reduced, the resulting output network 
can become overfitted to the small data set (Bowden et al., 
2005; Srivastava et al., 2014). ANN predictions of ET result-
ing from overfitted networks become more scattered and do 
not reproduce expected patterns, such as the diurnal variabil-
ity in flux magnitude. 

Machine learning training was performed iteratively 
while varying the number of input parameters, varying the 
duration  of  the  training  data,  and  by  selecting  subsets  of 
training data from different time periods in each dataset. In-
itially, two contiguous weeks of training data were selected 
at random, and subsequent training periods of 1 to 21 days 
were used. The predicted ET a results were compared to the 
half-hour ETa measured by EC during all half-hour periods. 
The resulting time series of latent heat flux was then used to 
calculate a cumulative daily evaporation (in mm depth) from 
three methods: (1) direct measurement of ETa by EC, (2) the 
ASCE-EWRI standardized reference ET equation (ETr) and 
single crop coefficients (K c), and (3) the machine learning 
prediction based on sensor data (denoted ETANN). The result-
ing daily and cumulative ET time series were compared by 
linear regression. The correlation coefficient (R 2) and root 
mean squared error (RMSE) were used to compare the re-
sulting scatter between the measured and predicted ET a for 
all data (inclusive of the periods used to train the ANN). The 
coefficients  of  regression  between  the  measured  and  pre-
dicted ET a generally were not useful in describing the re-
sults, as most predictions were not uniformly distributed. A 
successfully  trained  network  for  a  specific  training  subset 

was  indicated  when  the  R2  and  RMSE  of  the  predicted 
ETANN  were  comparable  to  the  same  statistics  comparing 
ETa  to  ETr.  In  other  words,  successful  training  needed  to 
produce a prediction at least as robust as could be found with 
the  ASCE-EWRI  equation,  with  both  methods  compared 
against the measured actual ET. 

The workflow for training the neural network and esti-
mating ET with the resulting ANN was as follows: 
1.  Half-hour mean values of each input parameter were cal-

culated, corresponding to the averaging periods used for 
calculating  actual  ET  with  the  EC  method.  For  CIMIS 
data, which are provided at hourly intervals, 30 min val-
ues  were  linearly  interpolated.  Time  of  day  was  deter-
mined from the data record time stamp. The ratio of actual 
to  reference  ET  was  calculated  for  all  daytime  records 
(equivalent to a single crop coefficient). Closure of the 
surface energy budget (SEB) was calculated at each step, 
using direct measurements of net radiation and soil heat 
flux where available (i.e., soil heat flux, sensible and la-
tent heat flux were subtracted from net radiation). At sites 
where four-component radiometers and/or soil heat flux 
plates were not available, net radiation and soil heat flux 
were approximated following Allen et al. (1998). 

2.  Reference ET values were obtained from nearby AgriMet 
or CIMIS station records. For the Oregon site, reference 
ET was calculated using the Penman-Monteith equation 
using  an  alfalfa  reference,  i.e.,  ETr  (Jensen  and  Allen, 
2016; Walter et al., 2000). Clear sky radiation (R so) was 
calculated following Allen et al. (1998), and downwelling 
shortwave radiation (Rs) was corrected at the site and for 
periods in which Rs appreciably differed from Rso, follow-
ing Appendix D of Walter et al. (2005). For the Oregon 
site, a daily site-specific crop coefficient was obtained by 
adapting  the  alfalfa  reference  crop  coefficient  (Kc)  for 
snap beans from Allen and Wright (2002). 

3.  The network structure (nodes and layers) was specified 
for the ANN. The number of nodes in a single layer varied 
but did not exceed the number of input parameters. Net-
works with one or two hidden layers were employed in 
this  study  (fig.  1).  The  network  also  assigned  a  single-
node output layer (for the single output of ETa). For each 
training, a number of days and a starting day (e.g., 15 days 
starting on day 30 of the experiment) were specified, and 
a subset of the EC and weather sensor data was input to 
the ANN for training. Training proceeded automatically 
using the Matlab toolbox, with 90% of the 30 min data 
records  in  the training  set used for  training  and  the re-
maining 10% used for testing by the backpropagation al-
gorithm. Training consisted of a random assignment of 
initial weights and biases in the hidden nodes, which were 
adjusted iteratively until the MSE between the training set 
and the training value of ET a no longer improved (Beale 
et al., 2016). 

4.  Half-hour averages for the entire data record (including 
the training period) were then input to the trained ANN 
model, which estimated a time series of predicted actual 
ET.  The  R2,  RMSE,  and  linear  regression  coefficients 
were calculated for 30 min and total daily crop ET (K c  
ETr) and ANN-estimated actual ET, compared to the ET 
measured by the EC method. 
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5.  Training  was  repeated  for  each  network  arrangement 
(number of nodes, training time, and input parameters) to 
determine a minimum set (number of sensors and training 
duration) required to train networks that could reliably re-
produce the observed diurnal and seasonal variability in 
actual ET. For evaluating ensemble solutions, 100 neural 
networks were trained iteratively (each instance was an 
independent training with identical input parameters). 

RESULTS AND DISCUSSION  
The four sites presented in this study demonstrated a wide 

range of patterns in seasonal and daily crop water demand. 
The EC measurement of actual ET confirmed the expected 
patterns  in  each  case. At  the  Oregon  site,  the  irrigator  re-
ported that the irrigation schedule was changed repeatedly 
throughout the season, e.g., 25 mm (1 in.) application once 
per week, 13 mm (1/2 in.) applied every third day, etc., to 
address  challenges  in  irrigating  the  field  characterized  by 
low intake rates and low to moderate water holding capacity 
(farm manager, Greenspring Farms LLC, personal commu-
nication). This was confirmed by actual ET measured by EC, 
which  matched  reference  ET  on  days  when  irrigation  oc-
curred but typically was 30% to 40% of reference, indicating 
potential drought stress in the crop (fig. 2). The evaporation 
rate predicted by the reference ET and crop coefficient, as 
reported by the publicly available data and calculated using 
the on-farm weather data, was less than the measured ET a 
during the first three weeks following germination (fig. 3). 

An irrigation prescription based on any of these reference ET 
estimates would lead to a deficit during early crop develop-
ment, even if the total requirement was met or exceeded over 
the entire season. The on-farm (K c  ET r) method matched 
cumulative season total ET a, but all reference ET methods 
underestimated the daily ET a rate until mid-July, and then 
overestimated the daily rate during late July and August (fig. 
3). On days when irrigation occurred (visible on day 20, day 
27, day 31, etc., in fig. 2), actual ET approached or slightly 

 

Figure 1. Diagram of a typical neural network used in this study showing two hidden layers with seven nodes each, corresponding to the seven
input parameters. Each node consists of weighting (w) and bias (b) vectors and a transfer function, noted in the hidden layers as a log-sigmoid 
function. Training was conducted on a subset of 30 min records of weather and other sensor data, using the 30 min EC data as a control estimate 
of ET for the supervised learning algorithm. The trained network was then used to estimate ET for all 30 min weather and sensor data for a given 
site, and the resulting estimate was compared against the measured EC data (diagram generated using Matlab; MathWorks, 2018). 

 

Figure 3. Cumulative ET from local and on-farm weather data. Actual 
ET (ET a) was measured using the eddy-covariance (EC) method. Al-
falfa reference ET (ET r) was determined using the ASCE-EWRI Pen-
man-Monteith method for 30 min periods (matching the EC averaging
period)  and  summed  for  daily  time  steps.  Daily  crop  coefficients  for
snap beans ( Kc) were based on days since planting and were adapted
based  on  alfalfa  reference  crop  coefficients  from  Allen  and  Wright 
(2002). 

 

Figure 2. Daily crop coefficients for snap beans (squares, from Allen and Wright, 2002), daily ET c:ET r ratio measured at the closest network
station (triangles), and ET a:ET r ratio measured by eddy-covariance (circles) at the Oregon site during 2017. 
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exceeded ETr. Subsequently, actual ET returned to a range 
of 30% to 40% of reference ET. 

At the two pasture sites (Biggs and Dixon), an expected 
end-of-season trend was observed, with daily ET decreasing 
consistently with the shorter day length and less solar irradi-
ation (fig. 4a shows results at Dixon). In contrast, the alfalfa 
at the Parlier site also showed a reduction in ET during peri-
ods following cutting (harvest) of the crop, with a gradual 
return toward full ET as the canopy re-established (fig. 4b). 
ET at the Parlier site also demonstrated the downward end-
of-season trend in daily ET throughout the July to October 
period. 

Actual ET varies in diurnal and seasonal patterns, which 
are  largely  driven  by  available  energy.  Because  the  P-M 
equation is derived from conservation of energy (Penman, 
1948), estimates such as the P-M equation are parameterized 
to adjust second-order effects such as crop and soil response 
to water availability. These effects are non-linear, confound-
ing a general analytic solution and requiring empirical cali-
brations, such as the development of crop coefficients. While 
evaluating ET on a daily time scale, a simple parameteriza-
tion based on phenology, days since planting, or other fac-
tors can resolve these non-linear patterns. However, when 
estimating ET over shorter time periods, more complex pat-
terns can emerge. In figure 5, the unweighted, average 30 
min ratio was used to approximate a site-specific crop coef-
ficient applied to the reported CIMIS reference ET in calcu-
lating cumulative ET. In this case (alfalfa), the site-specific 
crop coefficient was calculated as 0.53, which was at least 
partly  due  to  the  inclusion  of  periods  when  alfalfa  was 

harvested and there was little actual ET. While these second-
order effects are typically site- and crop-specific, they tend 
to be consistent for a specific application. Neural networks 
are able to reproduce non-linear effects when estimating ac-
tual ET and reproduce the cumulative and instantaneous ET. 
The simplest application of this approach, supervised learn-
ing, is feasible if the training set includes a reliable estimator 
of the output (fig. 6). 

The ANN training was able to reproduce actual ET in the 
four field experiments. With appropriate selection of train-
ing data to include a representative sample of the variability 
in actual ET and other input variables, the ANN was able to 
estimate  actual  ET  (compared  to  EC  measurements)  more 
accurately than the P-M equation with a single crop coeffi-
cient (fig. 6a), as indicated by an increase in R2 and reduction 
in RMSE (fig. 6b). Compared to EC, the P-M estimate did 
not reproduce the daily variability in actual ET (R 2 = 0.21, 
RMSE = 1.5 mm d -1). A neural network can potentially re-
duce  RMSE  and  improve  fidelity  in  estimating  daily  ET 
rates, which irrigators can exploit for scheduling (fig. 6b). 
For  all  four  field  experiments,  the  most  robust  ANN  esti-
mates required two weeks of training data, although the per-
formance of the ANN method was better for the California 
sites with three weeks of training data. The ANN estimates 
were not particularly sensitive to the number of input param-
eters (weather sensor data), and in all ANN results shown 
here, a minimum set of the following parameters were used: 
air temperature and humidity, downwelling (incoming) solar 
radiation, wind speed, and time of day. Inclusion of addi-
tional parameters directly related to evaporative flux, tem-
perature and humidity gradients, and soil heat flux were in-
cluded in some iterations but did not make measurable dif-
ferences in the robustness of the resulting training outputs. 
Because  temperature  and  humidity  were  measured  at  two 
heights at the Oregon site, they were included in most train-
ing iterations and may have contributed to stronger correla-
tions between the ETa resulting from shorter training times. 
For the California sites, weather data from the nearby CIMIS 
stations supplemented (or replaced) on-site sensor data, with 
little observable effect apart from anecdotally improved es-
timates with shorter training times. 

 
(a) 

 
(b) 

Figure 4. Time series of total daily ET at the (a) Dixon and (b) Parlier
sites in 2019. Squares indicate actual ET determined by eddy-covari-
ance, and “ x” symbols indicate daily estimated reference ET totals from
hourly CIMIS records. 

 

Figure 5. Total 30 min ratio of actual ET (ET a) to reference ET (ET r), 
the site-specific crop coefficient, for each hour during the day at the 
Parlier site. Lines in boxes indicate medians, boxes indicate second and 
third quartiles, and whiskers indicate first and fourth quartiles. Plus 
markers ( +) indicate a very small number of statistical outliers. 
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From the perspective of providing robust and useful in-
formation  to  irrigators,  the  correspondence  between  the 
ANN estimates and EC measurements on 30 min intervals 
has little practical meaning. Cumulative ET, in areal depth, 
is directly related to crop water demand, as shown in fig-
ure 7. The daily consumptive water demand, as shown here, 
is typically more useful in irrigation scheduling than 30 min 
flux estimates or sensor data reported on 30 min intervals, as 
shown in figure 8. 

Previous work with ANNs to estimate actual ET showed 
that the network is sensitive to the representativeness of the 
input parameters (compared to the global data) and not par-
ticularly sensitive to small training sets (Kelley and 
Pardyjak, 2019). For the Oregon site, highly variable condi-
tions occurred on 2- to 5-day cycles, corresponding to the 
irrigation schedule. This meant that when the training data 
were drawn from just a few consecutive days, the ANN re-
sponded to a much wider range of conditions (fig. 2) than 
would be typical under more uniform, well-watered condi-
tions. For the California sites, the range of variability in ac-
tual ET (and other environmental parameters) was more uni-
form and changed more slowly over longer time periods. As 

a result, the ANNs trained over periods shorter than 14 days 
were not as robust, and sequential training of the ANNs re-
sulted in low correlation with the actual ET. Training periods 
as long as 21 days were more robust, but the performance of 
the ANNs was still sensitive to the range of actual ET during 
the measurement period (fig. 8). Note that 14 days and 21 
days of training data, both starting at day 15, generated sim-
ilar results (figs. 8a and 8c). In contrast, the ANN trained for 
21 days starting at day 45, when the range of ET was smaller, 
estimated  ET  with  considerably  more  scatter  compared  to 
the measured ETa (fig. 8b). 

One challenge to applying machine learning more 
broadly is a lack of information about the generality of the 
resulting  solutions.  Here  we  have  shown  that  the  ANN 
method can estimate site-specific ET, given that the training 
data include sufficient parameter variability to represent the 
range  of  true  conditions.  Unlike  when  using  an  analytic 
equation based in first-order physical principles, such as the 
EC method or the P-M equation, estimating the influence of 
any specific environmental parameter is beyond the scope of 
this study. As a simple evaluation of the generality of the 
ANN solutions, we applied the network solution validated at 
one site to other sites with comparable data. As an example, 
figure 9 shows the cumulative ET measured by EC (circles), 
the cumulative ET calculated with a site-specific crop coef-
ficient and the CIMIS reference ET (stars), reference ET (tri-
angles), and actual ET estimated by the ANN (squares). An 
ANN was trained using 21 days of data at the Dixon site (fig. 
9a). Data from the Biggs site was then input into the same 
network, resulting in a less accurate but still reasonable cu-
mulative flux (fig. 9b). The resulting ANN underestimated 
actual ET, but the surprising result is that the ANN still pro-
duced an estimate closer to the measured ET than the results 
from applying a site-specific crop coefficient to the nearby 
CIMIS reference ET. These two sites are similar (irrigated 
pasture, same year, similar time of year), so this finding sug-
gests that the same general factors operate at both sites. 

A robust machine learning method will also be repeatable 
with an acceptable level of variation between each applica-
tion of the learning algorithm, with reliable estimates of the 
output parameters and the concomitant uncertainty. Because 
neural networks are trained with a random initialization of 

 

  
(a) (b) 

Figure 6. Results from one arbitrarily selected ANN trained for 14 days at the Oregon site using seven input parameters (air temperature and 
humidity at two heights, downwelling shortwave radiation, wind speed, and time of day). 

Figure 7. Cumulative ET at  the  Oregon site estimated with the four
methods described in the text. The AgriMet P-M estimate used the re-
ported ET o from the nearest AgriMet station and the AgriMet tabular
crop  coefficient.  The  on-farm  P-M  estimate  used  the  same  equation
with on-farm sensor measurements and a locally calibrated crop coef-
ficient. The ANN estimate was based on training data from a two-week
period (shaded box). 
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the weighting and bias functions, we generated large ensem-
bles of trained ANNs to visualize the range of uncertainty 
associated with a given size of the input data used in training. 
As shown in figure 10, the cumulative ET was estimated by 
an ensemble of 100 neural networks (plotted as the mean 1 
standard deviation). Although each member of the ensemble 
would not typically accumulate error for every day of the 

entire season, neither is error unbiased for each ANN output; 
therefore,  the  cumulative  bounds  shown  are  a  moderately 
conservative  estimate  of  the  cumulative  uncertainty  for  a 
specific set of training parameters. It is evident that a 14-day 
training period reduced the range of potential ET estimates, 
although  in  this  specific  case,  the  ensemble  average  from 
ANNs trained for seven days more closely matches the EC 

 
 

(a) 

 

 

 
(b) 

 

 

 

(c) 

Figure 8. Three training iterations of ANN estimates at the Parlier site. Variability in the ET used as training data increases the scatter of the
resulting 30 min ET estimate (training periods are shown as shaded boxes in left plots). 
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data used as the control estimate. This supports previous ob-
servations  that  an  ANN  estimate  is  sensitive  to  the  actual 
conditions under which the network was trained. This is ev-
ident for the 14-day training period (shaded area in fig. 10b), 
a period that spans a broader range of conditions that resem-
ble  the  late  season.  The  resulting  ET  rate  more  closely 
matches the rate of P-M ET after 18 August, which is also 
when the ensemble ET rate departed from the observed ETa. 
Prior to 18 August, a heavy irrigation was applied once every 
7 to 8 days; after August 18, irrigation was applied at a lower 
rate  every  third  day  (farm  manager,  Greenspring  Farms 
LLC, personal communication). 

As an additional description of the error inherent in esti-
mating ET with the ANN, the R2 and RMSE were calculated 
for daily ET values, compared to actual ET. Using total cu-
mulative ET as a conservative estimate of effective total er-
ror  for  each  ANN  model,  the  R2  and  RMSE  were  plotted 
against the cumulative ET for each of the 100 iterations (fig. 
11). For reference, figure 11 also shows the R 2 and RMSE 
for daily Kc  ETr values at both the on-farm and AgriMet 
stations. Compared to the actual ET (vertical dashed lines), 
nearly all ANN iterations improved fidelity in reproducing 

daily ET values, with lower RMSE and higher R2. As shown 
in  figure  6,  the  on-farm  Penman-Monteith  estimate  accu-
rately predicted the crop ET for the entire season, but the 
ANN was able to predict the daily ET much better, providing 
critical information for irrigators in making daily allocation 
decisions.  As  expected,  the  14-day  training  more  consist-
ently produced a reliable estimate by reducing the probable 
error in the estimation output of the neural network. 

CONCLUSIONS  
Direct  monitoring  of  actual  evapotranspiration  for  pre-

scribing  efficient  irrigation  application  is  theoretically  at-
tractive to increase water use efficiency, prescribe sufficient 
application rates, and schedule irrigation with minimal loss. 
However,  direct  measurement  of  actual  ET  is  expensive, 
technically and practically challenging, and sometimes in-
compatible with farm operations. Direct measurement of ac-
tual ET is fundamentally challenging due to the complexity 
and variability of the underlying phenomena. While there is 
a substantial body of research to guide irrigators in determin-
ing reference ET, and most U.S. regions have networks in 

  

(a) (a) 

Figure 9. ANN trained on 21 days of Dixon data (a) was input with data collected at Biggs (b). Cumulative ET a estimated by the ANN (squares), 
measured ET a (circles), and cumulative ET r  Kc (stars) was reported by the adjacent CIMIS station for each location. 

 

 
(a) (b) 

Figure 10. Ensembles of cumulative ET from 100 iterations of ANN training at the Oregon site. The heavy dashed line indicates the ensemble 
average, with lighter dashed lines indicating the cumulative mean 1 standard deviation of the 100 ensemble members. The square symbols
indicate the crop coefficient adjusted reference ET taken from the closest AgriMet station, and the solid black line indicates the EC measurement 
of ET used to train the neural networks. 
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place  that provide hourly  and daily  estimates  of  reference 
ET,  using  these  techniques  effectively  requires  an  invest-
ment of time and skill that is not feasible for many irrigators. 
At  the  same  time,  researchers  have  developed  techniques 
such as eddy-covariance (EC) that are accurate but which re-
quire skill and significant labor to implement. Beyond this, 
it is difficult to translate these data into practical, site-spe-
cific  information  that  is  useful  to  the  average  irrigator  in 
making scheduling decisions. 

By  leveraging  affordable,  publicly  available  data  and 
low-cost sensors, machine learning offers the possibility to 
expand the monitoring of actual ET to a broader audience of 
end-users. For example, the application in this study imple-
mented EC for training on-farm weather stations to report 
actual  ET.  This  suggests  possible  applications  of  the  EC 
method in practical monitoring. It is feasible to implement 
similar  co-located  monitoring,  which  would  allow  profes-
sionals such as Extension agents and agro-meteorology net-
work staff to provide regionally specific ANNs that estimate 
actual ET. These ET estimates would complement existing 
reference ET methods and could facilitate broader adoption 
of ET-based irrigation scheduling. More generally, it is also 
likely that any reliable estimate of crop water requirement 
could be used in lieu of EC, so that other methods, such as 
the Bowen ratio, lysimeters, and soil water monitoring could 
be  integrated  through  machine  learning.  The  main  goal 
demonstrated here is to produce estimates of site- and crop-
specific ET from easily measured weather parameters, rather 
than relying solely on empirically calibrated equations. 

There are many situations in which crop coefficients are 
not available, and there is no straightforward way to estimate 
crop water requirement apart from monitoring soil water and 
crop status. Discrepancies in the estimates of daily ET pre-
vent irrigators from scheduling irrigation to follow time-sen-
sitive crop water demand and undermine confidence in sci-
entifically  ET-based  estimates,  soil  water  depletion,  and 
crop water requirements. Under these conditions, irrigators 
must depend on their experience and constant manual soil 
and plant-stress observations to judge the timing and amount 
of irrigation. Examples include when growing newly devel-
oped crop varieties, when there are no nearby public agro-
meteorology stations, when publicly available data are 

unreliable or do not represent site-specific conditions, and 
where limited water supply necessitates deficit irrigation. In 
any given season, a similar constraint may prevent an irriga-
tor  from  using  ET  data  in  scheduling  irrigation.  Extreme 
weather events such as drought and heat can also affect crop 
water demand in both the short term and over the growing 
season. In these cases, machine learning may offer adaptable 
techniques to predict crop water demand, which would not 
be possible with empirically derived crop coefficients. The 
ability of ANNs to preserve information from direct meas-
urements can help estimate impacts to crops and help pre-
scribe specific irrigation practices to mitigate negative con-
sequences. This adaptability may be especially pertinent in a 
changing and more unpredictable climate. Machine learning 
offers a unique advantage in allowing the end-user to accu-
mulate data and improve the resulting model. Furthermore, 
the  results  shown  here  demonstrate  that  machine  learning 
may also be able to produce general, rather than simply site-
specific, models of crop water requirements, although more 
testing is necessary. 

These results show that ANNs can be useful for leverag-
ing available data and affordable on-farm sensors to estimate 
site-specific,  actual  ET  in  real  time.  Integration  of  this 
method  into  decision  support  tools  could  incentivize  the 
adoption  of  precision  irrigation  technology  by  providing 
critical  information  required  to  improve  irrigation  water 
management, guide sustainable use of water resources, re-
duce risk from drought stress and underapplication, and pre-
serve crop yields. 
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station ( ) and on-farm P-M estimates ( ) are shown, demonstrating the ability of the neural networks to improve the fidelity of daily ET esti-
mates. Vertical dashed lines indicate the control estimate of cumulative ET as measured by eddy-covariance. 
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