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1 | INTRODUCTION

| Mahmut Karakaya®

| Andreas Uhl'

Abstract

Accurate segmentation and parameterisation of the iris in eye images still remain a
significant challenge for achieving robust iris recognition, especially in off-angle images
While deep
(i.e. segmentation-based convolutional neural networks (CNNs)) are increasingly being
used to address this problem, there is a significant lack of information about the

captuted in less constrained environments. learning  techniques

mechanism of the related distortions affecting the performance of these networks and no
comprehensive recognition framework is dedicated, in particular, to off-angle iris
recognition using such modules. In this work, the general effect of different gaze angles
on ocular biometrics is discussed, and the findings are then related to the CNN-based
off-angle iris segmentation results and the subsequent recognition performance. An
improvement scheme is also introduced to compensate for some segmentation degra-
dations caused by the off-angle distortions, and a new gaze-angle estimation and
parameterisation module is further proposed to estimate and re-project (correct) the off-
angle iris images back to frontal view. Taking benefit of these, several approaches
(pipelines) are formulated to configure an end-to-end framework for the CNN-based off-
angle iris segmentation and recognition. Within the framework of these approaches, a
series of experiments is carried out to determine whether (i) improving the segmentation
outputs and/or correcting the output itis images before or after the segmentation can
compensate for some off-angle distortions, (ii) a CNN trained on frontal eye images is
capable of detecting and extracting the learnt features on the corrected images, or (iii) the
generalisation capability of the network can be improved by training it on iris images of
different gaze angles. Finally, the recognition performance of the selected approach is
compared against some state-of-the-art off-angle iris recognition algorithms.

variety of techniques have been proposed to perform seg-
mentation in eye images captured typically in a frontal view,

Iris recognition is one of the most reliable and accurate tech-
niques in biometrics used for human identification. The iris is
the only internal organ in humans visible to the outside world.
Therefore, its pattern is well protected, virtually stable and very
difficult to be forged. Iris acquisition is performed in a con-
tactless and non-invasive manner and under ideal acquisition
conditions. Iris data maintains an accurate recognition with a
very low false accept rate [1]. Localisation and segmentation of
the iris in eye images is the key initial step in iris recognition,
which plays a vital role in the accuracy of subsequent feature
extraction and recognition processes. Ever since the first iris
recognition system proposed by John Daugman [2], a wide

under a controlled or constrained environment. In practice,
however, many of the users or operators of these systems are
inexperienced and often capture images where the subjects are
looking in the wrong direction, due to inadvertent eye move-
ment. Meanwhile, the emerging stand-off iris biometric sys-
tems and the recent trend towards ‘on-the-move-acquisition’
are transforming iris biometric systems from being operated in
a well-controlled setup to being smart standoff modalities. The
iris images captured under such conditions are more likely to
be off-angle images, and additional off-angle-related distor-
tions may be incorporated. Segmentation tasks in such images
become quite challenging as the iris boundaries are dilated, of
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elliptical shape, or even missing in the extreme off-angle im-
ages. Most classical segmentation approaches, which are mainly
based on the integrodifferential, circular Hough Transform
and edge detection techniques that rely on the visibility of clear
iris contours, fail to perform segmentation in such images.
Also, most feature comparison algorithms, operating under the
assumption that the iris texture lies on a flat frontal plane and
possesses a circular geometric property, fail to perform the
comparison task properly as well [3]. To address such chal-
lenges, off-angle iris recognition has recently become an
important research topic within the biometrics community.

With recent advancements in deep learning techniques,
some convolutional neural networks (CNN) were proposed for
the challenging task of iris segmentation (e.g. [4-6]). While
there are already several studies addressing the off-angle
distortions in the classical iris segmentation literature,
there exists no detailed research that investigates and quantifies
the affecting mechanism of the off-angle eye-structure-related
distortions on the segmentation capability of the CNNs, and
no comprehensive framework is dedicated specifically for off-
angle iris recognition. The parameterisation and normalisation
tools proposed for the obtained iris segmentations are limited
to frontal iris images only [7], and most algorithms that pro-
posed to estimate the itis gaze angles and/or re-project them
back to frontal view rely on extra supplementary data, such as
head position [8], intrinsic parameters, locations and orienta-
tions of cameras, lights and monitors, cornea curvature,
angular offset between optical and visual axis etc. [9, 10].

In this work, we extend our previous studies [11, 12] within
the frame of the proposed end-to-end recognition pipelines to
enable the usage of the CNN-based segmentations for the final
task of recognition. In particular, in the ‘improved-homoge-
neous’ approach, we estimate the gaze angle of the iris images
and classify them into different classes according to this angle,
so that we can train and apply a dedicated CNN on (homo-
geneous in terms of gaze angle) the iris images of each distinct
gaze angle. The segmentation outputs are then improved, as
will be explained in Section 6. In the ‘improved-heterogencous’
approach, we train a network with iris images exhibiting
different gaze angles, aiming to improve the generalisation
capability of the network in a way that can help obtain
(hopefully) better results than what we obtained using the
angle-specific configuration, as outlined above (where the
training and testing data have identical gaze angles). Also,
we utilise our off-angle iris parameterisation and correction
module along with a couple of other correction algorithms to
geometrically re-project the corresponding off-angle iris im-
ages back to frontal view, before unwrapping and normalising
the extracted iris features. These techniques are termed ‘cot-
rected-homogeneous’ and ‘corrected-heterogeneous’, respec-
tively. Using these approaches, we aim to clarify if correcting
the off-angle iris texture can compensate for the degradations
imposed by the off-angle distortions. Simultaneously, we
investigate the effect of the applied interpolation and the
possible imperfections of the correction algorithms on the
subsequent recognition performance of these experiments.
Furthermore, in the ‘corrected-frontal” approach (as proposed

newly in this work), we apply to the corrected images a
network trained only on the frontal eye images, and likewise,
evaluate the subsequent recognition performance using each
correction algorithm. Doing so, we opt to determine if a
network trained on frontal eye images is able to detect and
extract the learnt features on the corrected images, eliminating
the need for training with off-angle images.

The main new contributions of the current work compared
to previous studies [11, 12] lie in the following:

® Proposing a gaze-angle estimation algorithm (free of need
for any auxiliary data or instrument) to enable the following:
Gaze-angle estimation in the off-angle images, re-projection
of the off-angle images back to the frontal view in a realistic
manner, as well as angle-specific training when using the
segmentation-based CNNss.

® Including other state-of-the-art gaze-angle estimation and
correction algorithms in our experiments, aiming to disen-
tangle and investigate the agonising effect of the interpola-
tion applied during the correction procedure and the
possible imperfections of the correction algorithms in the
frame of several end-to-end recognition pipelines.

® Introducing a new approach (recognition pipeline) termed
‘corrected-frontal’, in which a network trained only on
frontal eye images is applied to off-angle images, which have
been geometrically re-projected back to frontal view. This is
done utilising the proposed off-angle iris parameterisation
and correction module along with the other improvement
algorithms.

® Evaluation of the recognition performance of the best-
performing approach (pipeline) against some well-known
off-angle iris recognition algorithms, after specifying the
propet configuration.

e Extending the experimental validation to cover all subjects
in the dataset [13] used (doubling the scope of the
experiments).

e Extending the recognition experiments to include a further
deep-learning-based segmentation architecture for a selected

approach.

2 | RELATED WORK

Existing classical iris segmentation methods can be broadly
categorised into three types. The first and most popular type is
feature-based methods, which aim to locate the inner and outer
boundaries of the iris in the iris image. The Hough transform
finds the circularity by edge-map voting within the given range
of the radius, which is known as the Wildes approach [14].
Daugman's integrodifferential operator is another scheme that
finds the boundaries using an integral derivative [15]. Many
advancements have been made in these algorithms ever since
the introduction of these two algorithms [16, 17]. The methods
of the second type use texture-based discriminating features to
differentiate between iris and non-iris pixels [18, 19]. The third
type of segmentation methods employs active contour models
[20, 21]. There exist many current and ongoing research
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studies on iris segmentation using the classical approaches
specified. But due to the limitation of space, and in order to
keep the focus on off-angle iris segmentation, here we intro-
duced only a selection of techniques in each category. For a
general overview, please refer to for example [22, 23].

Several different techniques, which stem from classical
methods, have been proposed to address the off-angle iris
segmentation and recognition problem. Daugman proposed to
detect the inner and outer iris boundaries using an active
contour method, based on the discrete Fourier series expan-
sion of the contour data [1]. Shah and Ross combined snake
segmentation with geometric active contours [20]. Generally,
active contour methods require parameters that are distribu-
tion dependent and hard to generalise. Zuo et al. [24] used the
intensity, shape, and localisation features from the iris and
pupil to automatically segment non-ideal iris images. Their
method demonstrated performance improvement on chal-
lenging iris images, up to 30°gaze angle. Kennell et al. [25]
proposed to segment images containing non-circular irises with
morphological operations. Gangwar et al. proposed the IrisSeg
algorithm [26], which adopts a coarse-to-fine strategy to
localise different boundaries. The pupil is coarsely detected
using an iterative search method and by exploiting dynamic
thresholding and multiple local cues. The limbic boundary is
first approximated in the polar space using adaptive filters and
then refined in the Cartesian space. Uhl and Wild proposed the
WAHET (Weighted adaptive Hough and ellipsopolar trans-
forms) algorithm [27], which uses an adaptive Hough trans-
form at multiple resolutions to estimate the approximate
position of the centre of the iris. A subsequent polar transform
detects the first elliptic limbic or pupillary boundary, and an
ellipsopolar transform finds the second boundary based on the
outcome of the first. Few other works such as [28, 29] focussed
on refining the features of the iris after extraction to mitigate
the off-angle-related distortions.

Some other works tried to compensate for the off-angle iris
distortions. Schuckers et al. [30] used a method in which the
angle estimates were searched to pick those that maximise the
value of the integrodifferential operator on iris images.
The algorithm utilises a brute-force technique to re-project the
input image to all possible gaze angles. In [31], the authors
utilised the boundary segmentation of the iris and pupil and
compared the boundaries with a look-up table generated by
using a biologically inspired biometric eye model and finding
the closest feature point in the look-up table to estimate the
gaze angles. Bolme et al. [32] presented four methods for
correcting off-angle iris images so that they appear frontal.
They tested their affine transformation method on segmenta-
tions which are manually corrected. The displacement and
generic algorithms they used require a corresponding frontal
image to perform the correction for each off-angle image
(which is not realistic). Also, the refractive method they used is
based on a synthesised eye model and requires supplementary
information, such as the focal length of the camera, distance to
the iris etc., to perform the correction on the iris images. Price
et al. [33] developed a generalised eye model to correct for
perspective and refractive distortion of the iris pattern using

ray tracing techniques. They reported a median reduction of
Hamming distance for synthetic eyes, with gaze up to 60°. A
main drawback in the majority of recent approaches is that they
rely on classical boundary detection methods, which operate on
the input iris images and generally tend to localise false iris
boundaries (specially in off-angle images). Furthermore, in
many cases, they used synthesised eye models or manually
adjusted data to evaluate their algorithms, which does not
reflect real world scenarios.

To address the drawbacks of classical segmentation
methods and to reduce the complexity of intensive pre- and
post-processing, a fourth category of segmentation methods
evolved recently, which is based on data-driven learning
methods. Within this category, deep learning techniques and, in
particular, convolutional neural networks are the most ideal
and popular schemes due to their accuracy and performance.
Liu et al. [5] located the iris region in non-cooperative envi-
ronments using convolutional neural networks. In their study, a
hierarchical CNN (HCNNs) and a multi-scale FCN (MFCNs)
were used to locate the iris region automatically. Jalilian and
Uhl [6] proposed three types of fully convolutional encoder—
decoder networks for iris segmentation and evaluated their
performance on off-angle iris images available in the UBIRIS.
v2 database'. Their results showed the superior capability of
CNNs to deal with off-angle iris data compared to some
classical methods. The method presented by Arsalan et al. [34]
roughly estimates the iris region using an edge detection
algorithm and then classifies the pixels into two classes (iris and
non-iris) by using a CNN. They performed a fine tuning of a
VGG CNN, and tested their model on iris images captured in
non-ideal environments. Rot et al. [35] presented a deep multi-
class eye segmentation model built around a semantic seg-
mentation architecture. They also examined the sensitivity of
the network to the change of view for four directions (left,
right, up and straight), generally. In order to overcome the
requirement of large quantities of labelled data in the ap-
proaches mentioned above, Jalilian et al. [36] proposed a
domain adaption technique for CNN-based iris segmentation.
Bazrafkan et al. [37] introduced a CNN to perform itis seg-
mentation on lower quality iris images (including off-angle
images). They further investigated the effect of network tun-
ing on the results of the segmentation. The work presented in
[4] proposed a deep network called IrisDenseNet, which is
based on VGG-16, to deal with low-quality iris images, such as
side views, glasses, off-angle eye images and rotated eyes. Roig
et al. [38] proposed to segment the iris region using a multi-
class approach, which differentiates additional classes, for
example the pupil or sclera, aiming to improve the iris seg-
mentation in non-cooperative environments using a CNN.
Nevertheless, none of the above works provided a systematic
analysis on the effect of the different gaze angles on ocular
biometrics and the resulting iris segmentations and recognition
using CNNs. There exist other studies that employed deep
learning models for feature extraction or comparison stages of

]http://iris.di.ubi,pt/ubiris L. html.
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an iris recognition system capable of dealing with off-angle
images. Karakaya et al. [39] proposed a deep-learning-based
iris recognition model, in which they adopted the AlexNet
[40] classifier to simply classify off-angle and frontal iris images
belonging to 52 subjects (as available in their database) to 52
corresponding classes.

3 | EYE STRUCTURE-RELATED
DISTORTIONS AND THEIR EFFECTS ON
THE CNN-BASED IRIS SEGMENTATION

In addition to the known degradation factors affecting the
constrained (frontal) iris imaging (e.g. focus, motion blur,
specular reflections, and illumination variations), off-angle iris
imaging introduces further challenging eye structure-related
distortions to the iris images. In the following sections, we
investigate the interaction mechanism of light rays within the
anterior and posterior eye structure elements, such as the
cornea, limbus, sclera, anterior chamber (aqueous humour),
iris, and lens (as illustrated in Figures 1 and 2), and analyse the
distortions they may introduce to the actual iris image,
depending on the image acquisition angle and the way they can
affect the segmentation capability of the network.

3.1 | Three-dimensional structure of iris

The structure of the iris consists of several types of dilator
muscles, forming a three-dimensional texture on the iris plane.
As the gaze angle changes, the 2D image of the captured iris
texture changes, amending the key content and features learnt
by the CNN networks during the training process (see
Figure 3i, which shows the difference between the normalised
images of an iris captuted frontally (Figure 3g), and from —50°
gaze angle (Figure 3h) in red, where constant parts are depicted
in several shades of blue). Those pixels located on (the side
closer to the camera) the border region of the iris inner
boundary may get occluded in steeper view angles (see the light
rays unseen (blue) and seen (green) by the camera in different
angles in Figure 2). There will be considerable changes in the
distribution of iris features when the gaze angle of training and
testing iris images differs, and the network may not be able to
spot the corresponding features (as learnt in the training ses-
sion) in the test images, failing to segment the iris region
accurately.

3.2 | Limbus occlusion

The limbus is the semitransparent organ that joins the sclera
and the cornea texture, where the fully transparent cornea
cannot reach to the bottom of the anterior chamber and ends
at a higher level than the iris plane. Due to the distance be-
tween the ending points of the cornea and the iris plane, the
diameter of the cornea-limbus border is slightly smaller than
the anterior chamber width. Therefore, the limbus consistently

Aqueous humour

Cornea

Sclera
\ ,ff.)
i,

FIGURE 1
distortions affecting the iris texture geometry
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FIGURE 2 Three-dimensional structure of iris and Limbus occlusion
distortions

occludes the boundary region of the iris texture (especially) in
extreme off-angle view. The extent of occlusion of the iris
texture on the side closer to the camera increases as the gaze
angle increases (see the red-dotted reflections in Figure 2).
Thus, the off-angle images do not exhibit certain outer iris
boundary information, as present in the frontal training im-
ages. This causes a CNN trained on the frontal images to fail to
accurately detect the iris region (especially its outer boundary)
in the (off-angle) test images.

3.3 | Perspective and refraction distortion

The geometric properties of an object's image on the camera
sensor change if the coordinates of the camera change with
respect to the object. This phenomenon is generally referred to
as ‘perspective distortion’. The cornea is the transparent
structure of the eye located at the outermost layer of the eye.
The aqueous humour is the transparent watery fluid that is
located between the cornea and the iris and fills the anterior
chamber. Therefore, incoming and outgoing light rays are first
refracted at the cornea and then refracted at the aqueous hu-
mour due to the refraction index differences between air, the
cornea, and the aqueous humour. When capturing iris images
at steeper angles, light rays refract more at the cornea, causing
the geometric property of the reflected iris features to trans-
form (e.g. get scaled, dilated or eroded), as shown in Figure 1.
Correspondingly, we can see that the circular shape of the iris
image captured in a frontal manner in Figure 3d is transformed
to an ellipse in Figure 3e, when captured from a —50° angle,
mainly due to perspective distortion. We can also observe the
effect of this distortion along with the refraction distortion on
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FIGURE 3 Examples of the iris images in
the dataset and the corresponding off-angle
distortions

the geometric properties of the corresponding normalised iris
textures (Figure 3g, and Figure 3h, respectively), as presented
in Figure 3i. Basically, CNNs learn scale-dependent patterns in
a specific combination of image size and network architecture,
and thus, they face serious difficulties in spotting the learnt
patterns in the testing data if their geometric properties (such
as boundaries and texture information) are changed with
respect to the training data.

34 |
angles

Iris missing boundary in extreme

The sclera is the outer layer of the eye with bright white colour
which strongly contrasts with the coloured iris' texture,
forming a clear boundary between these two tissues. In frontal
imaging, this boundary is clearly visible. But as the gaze angle
gets steeper (especially towards the right-most gaze angle as we
consider the left eye (.e. +50°), the boundary erodes and
finally disappears (see the green curve, showing the missing iris
boundary in Figure 3f). The learning process in CNNs starts
with convolving filters that can be thought of as feature
identifiers, which convolve over the input, looking first for
low-level features, such as edges and boundaries, and then
building up to more abstract concepts through further filtering
layers. Thus, low-level features, such as edges (boundaries),
play a scaffolding role in encoding the feature representations
of target regions. Therefore, if these features (learnt during the
training process) are not presented in the testing data (which
might have a steeper gaze angle than the training data), the
network will not be able to retrieve the accurate boundary

pixels (which are missing) or may wrongly spot false bound-
aries (false-positives) in the image.

3.5 | Posterior eye effect

The space behind the iris and in front of the vitreous body is
referred to as the posterior eye chamber, which includes the
ciliary body muscle and the lens complex. The reflected light
rays (as received by the camera during the iris acquisition) do
not directly interact with the posterior eye structures. However,
during accommodation of the eye, the variation of the lens
thickness can change the curvature of the iris surface by
pushing it forward and backward. To this extent, the effects of
the posterior eye on the iris is indirect, and thus, should be
studied within the frame of anterior eye structures' effects,
which have already been discussed in the previous subsections.

4 | OFF-ANGLE IRIS GAZE
ESTIMATION

Gaze estimation is an important prerequisite for analysing, in
case of a need, correct off-angle iris images. There is extensive
literature on the video-based gaze-angle estimation and eye
tracking applications that is [41-43]. In these applications,
various intrusive and non-intrusive techniques and instruments
are used, depending upon the required level of accuracy, to es-
timate the gaze angles of the eyes. Generally, non-intrusive
methods are cheaper, more comfortable, more practical and
less risky, but less accurate than intrusive methods. These
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methods can be roughly classified into four main categories:
corneal reflection-based methods [9], mapping functions-based
methods [44], model-based methods [31], and appearance-based
methods [10]. To achieve accurate gaze-angle estimation with
these non-intrusive methods, typically, a set of parameters (e.g.
intrinsic parameters, locations and orientations of cameras, lights
and monitors, cornea curvature, head position [45], angular
offset between optical and visual axis etc.) needs to be set initially
by conducting well-controlled calibration and/or training steps.
We have already reviewed the algorithms that propose to esti-
mate the gaze angle without the use of such supplementary data
in eye images and discussed their main drawbacks in Section 2.
Additional works proposed within this category, for example
[40], are mainly theoretical solutions tested only on synthesised
data, which is generated by (controlled) mathematical setups and
generally does not apply to realistic applications.

Addressing this need, we developed a (non-intrusive)
method, which requires no additional instrument or supple-
mentary information to estimate the iris gaze angles in the eye
images, with very high accuracy. The principle of the algorithm
is based on measuring the relative distance of certain off-angle
iris and pupil feature points in the segmentation output masks
generated by the CNNs. The information is then fed to a fine
K-Nearest-Neighbourhood (KINN) classifier to classify the iris
images to their corresponding gaze angles. Based on our ex-
periments, this model is able to successfully classify iris images
into their corresponding gaze-angle classes with about 97%
accuracy. To achieve this, we first decouple the iris and pupil
regions in each segmentation mask. To improve the masks and
remove false-negative pixels, we compute and superimpose the
convex hull of each region, where the iris convex hull
boundary information is used also to decouple the iris and
pupil region in the masks where there is no clear boundary
between these regions (see Figure 4 for an example). Next, we
find the right and left-most extreme iris and pupil pixels on the
horizontal axis passing through the centre points of the cor-
responding regions. Using these 5 points we develop10 relative
measures, which are expected to be unique for each gaze angle
(see Figure 5a showing the corresponding measures).

The rationale behind this is the fact that as the eye gaze
angle moves (towards the left or right) on the horizontal axis,
the geometric features of the iris (e.g. horizontal diameter,
radius etc.) change as well. The proportion of such changes is
assumed to be unique for each gaze angle and ought to provide
an estimation of the eye gaze angle. Based on the same logic,
we support the obtained data by adding further measures
calculated using the segmentations' extrema points (8 points
each). These measures are, in particular, obtained by sub-
tracting the left side points (Top-left (TL), Left-top (LT), Left-
bottom (LLB), and Bottom-left (BL)), from the right side points
(Top-right (TR), Right-top (RT), Right-bottom (RB), and
Bottom-right (BR)), as illustrated in Figures 5b and 5c.

Out of the 42 measures obtained, 11 were found (experi-
mentally) to be unique for each gaze angle. So, we associated
each iris image with a 21-elements (10 + 11) vector (as illus-
trated in Table 1), and trained a fine KNN classifier, which
makes finely detailed distinctions between classes with the

number of neighbours set to 1, with this information. Figure 6
shows the corresponding algorithm performance on the
different classes in the form of a confusion plot. As the results
show, the model is able to determine the iris gaze angles with
high accuracy (x97%), with very low prediction deviations
(possessing standard deviation of ~0.48), in a way that, in most
cases, the falsely predicted gaze angles are adjacent to the target
ones. This, in fact, leads to less deviations when performing
angle-specific training as well as the iris correction tasks. We
used a 20-fold training scheme for training the KNN, where
the training and testing data were fully separated with no
overlap. It was proven that the primary 10 measures (by
experiment) contribute the most to the algorithm's accuracy, as
we were able to obtain about 80% accuracy by including only
these measure. Further, by adding the secondary 11 measures
we could improve this result up to 97% accuracy.

To get better insight into the performance of the model, we
compared the model's performance with another setup applied
to the same data. For this purpose, we first implemented the
core algorithm proposed by Schuckers et al. in [30] (as a
generic angle-correction algorithm) in which the estimates are
searched to pick those that maximise the value of the inte-
grodifferential operator on iris images possessing different
gaze angles, terming it as the ‘Integrodifferential-based algo-
rithm’. We updated the code to enable gaze-angle estimation
within the range of the angles available in our dataset (—50° to
+50°) and then applied the algorithm to our dataset and
compared the results with those obtained using the KNN-
based algorithm. Figure 7 shows the results obtained in this
experiment in the form of a confusion plot. As can be seen, the
performance of the KNN-based algorithm is far better than
this algorithm in terms of accuracy. Also, the run time of 5 min
per image (using an Intel-i5-6500-3.20 GHz CPU) makes the
algorithm computationally very inefficient (compared to the
KNN-based algorithm with a run time of less than 1 s) as well.
It is also interesting to note that, in the majority of the cases,
the algorithm finds the maximum value of the integrodiffer-
ential operator in images which encountered no re-projection
(the horizontal middle row in the table), regardless of the
actual iris gaze angles in the images. Technically, this can reflect
the negative effect of interpolation (applied when re-projecting
the irises to different gaze angles) on the key iris boundary
feature, which causes the integrodifferential operator to fail to
find the maximum value on the corrected circular irises.

5 | ELLIPSE-BASED OFF-ANGLE IRIS
PARAMETERISATION AND
CORRECTION

As already mentioned in Section 1, in this work, we propose an
off-angle parameterisation method to outline the elliptic
boundary of the iris in the segmentation outputs of off-angle
images and use this information to re-project the segmentation
masks along with their corresponding off-angle iris images back
to frontal view. Currently, there is a lack of suitable algorithms,
which enable a true parameterisation of the off-angle iris region
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FIGURE 4 Example of a segmentation output (a)
mask (4a), where the iris convex hull boundary is
superimposed (4b) to decouple the pupil region (4c)

FIGURE 5 Examples of the (zoomed) iris (5a, 5b) and pupil (5¢) segmentation outputs (green areas) and the corresponding measures considered

TABLE 1 2l-clements vector associated with each image e

N50 1 (1] o ) ) ) o V] 2 V] 99.2%
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segmentation outputs. It is ensured that the edges detected here Target Class Gaze-angle
correspond to the actual iris boundaries, as the iris region is
already specified by the CNN. The information on the horizontal

edge is further used to filter out the horizontal noise. Thus, the

FIGURE 6 Gaze-angle estimation results on the different gaze-angle
groups using the K-nearest-neighbourhood-based algorithm

resulting edge points secure the proper fitting of an ellipse to the
actual iris region. A least-squares criterion is then used for esti-
mation of the best ellipse fit to the given set of points (see
Figure 8 for an example). In the next step, we extract the hori-

respectively. Q is the rotation matrix and @ trepresents the
rotation angle. We assume a vertical ellipse, as our rotation

) i ) ) o angles are to the left and right only. Thus,
zontal and vertical axes information of the ellipse. This infor-

mation is used for re-projecting (correcting) the segmentation

(2)

outputs and their corresponding off-angle iris images back to Q= |:COS(90) —Sin(90):| _

frontal view as follows: We assume that our ellipse is in the sin(90)  cos(90)
following parametric form:

We want our transformation to produce y in the shifted,

_ a x cos(0) rotated coordinates as follows:
=%+ Qx {bxsm(e)} )
where x and x, are 2-dimensional vectors and @ > b > 0 y= {1 0 ]_[“ X 695(9) ]’ (3)
corresponds to the horizontal and vertical axes of the ellipse, 0 a/b] [ bxsin(6)
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where x represents the original coordinates. By submitting to
equation (1), we can infer the affine transformation matrix we
need to re-project the parameterised ellipse back to frontal

)

(4)

view, so that it possess a circular shape.
=[elo sl {lo 1)<l

6 | SEGMENTATION IMPROVEMENT
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From the findings in our previous work [11], we already know
that the network tends to produce some false-positive detec-
tion, in particulat, along the segmentation output masks' bot-
ders. Therefore, we improved the segmentation outputs by
applying some specific morphological operation. So, we first
defined a marginal atea (A) along each border of the seg-
mentation output masks (with a width (in pixel) equal to 1/5 of
the length of the same border) and then performed an opening
operation with a big (disk-shape) structutring element (B) as
follows:

A°B=(ASB)®B, (5)

where © and @ denote erosion and dilation, respectively. We
further performed another opening operation on the overall

Gaze-angle estimation results on the different gaze-angle groups

P10 P20 P30
Gaze-angle

P40 P50 total

using the integrodifferential-based algorithm

FIGURE 8 Sample iris segmentation output
(8a), the extracted vertical boundaties (8b), and the
corresponding fitted ellipse (8c)

segmentation output masks using a small (disk-shape) struc-
turing element to remove small false-positive detections
outside the iris region. Figure 9 shows a sample segmentation
output mask and its corresponding improved version.

7 | EXPERIMENTAL FRAMEWORK

Dataset: For our experiments, we used a subset (containing
4400 left eye images captured from 40 subjects) of an off-angle
iris database [13]. The iris images in this dataset are captured by
two near-infrared sensitive IDS-UI-3240ML-NIR cameras.
Images at the 0°gaze angle were captured by a frontal fixed
camera, and off-angle images were captured by a frontal
moving camera rotating horizontally from —50°(N50) to +50°
(P50) at an angle with a 10°step-size. Each camera captured
10 iris images per stop, giving 10 frontal and 100 off-angle
iris images captured from each subject, to comprise about
400 images per angle (examples of images in the dataset are
already presented in Figure 3). The database is accessible on
request (from the authors), and further details about it can be
found in [13]. We developed the ground-truth labels (required
for training the network) for all the images available in the
dataset using the iris, pupil, upper and lower eyelid parameters
specified manually (the data will be made available upon
acceptance of the manusctipt at http://wavelab.at). We used a
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FIGURE 9 Sample iris image with PO gaze
angle (9a) and its corresponding segmentation
(green area) and error mask (red area) before (9b),
and after correction (9¢), using the network trained
on PO images

2-fold training scheme to carry out experiments on segmen-
tation. For this, we divided the whole dataset into two equal
parts (with no overlap according to the subjects). In the first
fold of the training, we used one part as our testing data and
the other one as our training data, and in the second fold of the
training, the roles of the datasets where switched.

Fully convolutional neural network (FCN): We sclected
the RefineNet [47] to perform the iris segmentations in our
experiments. The network is already proven to enable high-
resolution prediction, and at the same time, preserve the
boundary information (which is crucial to our parameterisation
mechanism). It is a multi-resolution refinement network, which
employs a 4-cascaded architecture with 4 refining units, each of
which directly connects to the output of one residual net [48]
block as well as to the preceding refining block in the cascade.
Each refining unit consists of two residual convolution units
(RCU), which include two alternative ReLU and 3 X 3 con-
volutional layers. The output of the RCU units are processed
by 3 X 3 convolution and up-sampling layers incorporated in
multi-resolution fusion blocks. A chain of multiple pooling
blocks, each consisting a 5 X 5 max-pooling layer and a 3 X 3
convolution layer, then operates on the feature maps, such that
one pooling block takes the output of the previous pooling
block as its input. Therefore, the current pooling block is able
to re-use the result from the previous pooling operation and
thus access the features from a large region without using a
large pooling window. Finally, the outputs of all the pooling
blocks are fused together with the input feature maps through
summation of the residual connections. We used an Adam
optimiser with a learning rate of 0.0001, executing 40,000 it-
erations to train the network.

Recognition pipeline: The segmentation outputs (after
applying correction or improvement), are parameterised using
the technique introduced in [7]. The extracted iris patterns are
normalised by unwrapping the circular region into a rectan-
gular block of constant dimensions. Each isolated iris pattern is
then demodulated to extract its phase information (feature)
using quadrature 1-D Gabor wavelets. To compare the unique
extracted features with one another, the Hamming distance,
with rotation correction, was calculated in the comparison
phase. We used the University of Salzburg implementation of
these algorithms, as provided in the Iris Toolkit (USIT)*.
Figure 10 illustrates the overall recognition pipeline, along with
the proposed parameterisation and correction module.

(b)

Segmentation evaluation and measures: In order to
facilitate proper quantification of the accuracy of the seg-
mentations in each expetiment, we considered the nicel iris
segmentation error rate, which is based on the NICE1 pro-
tocol’ and used in several iris segmentation challenges.
Accordingly, the segmentation error rate (nicel) for each seg-
mentation output mask [; is given by the proportion of cot-
responding disagreeing pixels (through the logical exclusive or
operator) with the ground-truth mask, over all the output mask
as follows:

1
cXr

nicel =

ZZO(C’, 7)® C(d,7), (6)

where ¢ and 7 are the dimensions of the segmentation, and O
(¢, 7) and C(¢, 7’) are the pixels of the segmentation and the
ground-truth mask, respectively. The value of (nicel) is in the
[0, 1] interval, where 1 and O are the worst and the best scores,
respectively.

8 | EXPERIMENTS AND ANALYSIS

In the first step, we investigated the effect of different gaze
angles on the CNN-based off-angle iris segmentations, aiming
to address the primary research question: If a gaze-angle spe-
cific training is required for high segmentation accuracy. We
extended the experiments and analysis to the subsequent
recognition as well. So, initially, we used the KNN-based
module to estimate the gaze angles of the iris images in our
dataset. Then, we trained the network following the improved-
homogeneous approach, that is the training data consists of iris
images with identical gaze angles (200 images per gaze angle
for each fold, as in our training data). For each available gaze
angle, a dedicated network was trained, and then we conducted
segmentation on all the testing data, differentiating and
grouping results into the different gaze angles available
(starting from —50°(N50) to +50°(P50)). An analysis of the
network segmentation outputs (examples displayed in
Figure 11) shows that the extensive use of the pooling filters
and residual information, as utilised in the RefineNet archi-
tecture, makes the network vulnerable to textutre-related dis-
tortions, such as perspective, refraction and also 3-D iris
structure distortions, leading to many false-positive detections

lhttp: / /www.wavelab.at/sources/USIT.

“http://nicel.di.ubi.pt/.
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FIGURE 10 Recognition pipeline and the correction module

(a) FIGURE 11 Sample iris images of PO (11a),
N50 (11b), and P50 (11c) gaze angles in the dataset,
and their corresponding segmentation masks
(11days, 11e, 11f) and error masks (11g, 11h, 11i),
using the network trained on the frontal iris data

FIGURE 12 Sample iris images with N50

(12a), PO (12b), and P50 (12¢) gaze angles, and their
corresponding outputs (12d, 12¢, and 12f) extracted
from the intermediate convolutional neural network

layers



JALILIAN ET AL.

1

(specially along the outputs' borders) as well as some unde-
tected iris pixels (false-negatives), especially on the main
texture of the iris, as reflected in the segmentation outputs and
their corresponding error masks in Figure. 11g, 11h, and 11i,
respectively.

The effect of the missing iris boundary is also visible in
Figure 11i (as missed iris boundary pixels), while the effect of
limbus occlusion seems to be negligible. Figure 12 visualises
the outputs of some intermediate CNN layers for the config-
urations where the network is trained on the frontal eye images
and tested on the N50, P0, and P50 data. In particular, we may
notice the network failure to retrieve the accurate iris boundary
pixels (inside the red marked area) in the case of P50 iris im-
ages due to the missing boundary features, as demonstrated in
Figure 12f.

The rule of background vatiation on the distribution of
false-positive detections for different gaze angles (as in
Figure 11h, where the eyebrow region is falsely detected as the
iris, or in Figure 11f, where the periocular region is falsely
detected) is also worth mentioning, While an analysis of such a
variation can certainly contribute to improving the network
performance in these cases, we believe that it is beyond the
scope of this study and needs to be addressed in a separate
research study.

To address these issues, we opt to improve the segmen-
tation outputs using the improvement scheme already
explained in Section 6. Figure 13 shows the corresponding
segmentation tesults, as the average nicel error, after
improving the segmentation outputs. As the results show, the
improvement resulted in considerable enhancements in almost
all the segmentation results (especially for the right off-angle
(P) images) compared to the segmentation results obtained
in [11], as the average segmentation error decreased (about 2
times) from 0.030 to 0.013. Also, in accordance with what we
found using the identical training scheme (Homogeneous) and
the network (RefineNet) already in [11], we can see the direct
relation of the network's performance to the similarity of the
gaze angles of the training and testing images, hereafter the
morphological improvement as well. Yet, the key new finding is
that the performance gradually improves as the gaze angles of
the training and testing data converge in terms of the angle but
may also diverge in terms of the direction. The corresponding
gradual improvement of the results, as they get distanced from
the middle vertical column of the table towards the sides
(except for the extreme right gaze angles, which are most
affected by the missing boundary distortion), cleatly reflects
this fact. Technically, this shows the dominance of the gross
content features (i.e. iris boundaties) learnt by the network over
the fine eye image context features. To be more precise, the
network is able to detect the elliptical features of the symmetric
iris in the images captured from the same angle (with respect to
frontal view) but in opposite direction. The applied improve-
ment, which, in fact, compensated for some false-positive
detections (caused by the off-angle distortions), allowed us to
figure out this capability of the network.

In the next step, we fed the improved segmentations along
with their corresponding images to the recognition pipeline to

Training Data Gaze-angle

o
a
3
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FIGURE 13 Segmentation performance on the different gaze-angle
groups under the improved-homogeneous approach as average nicel error
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FIGURE 14 Recognition performance on the different gaze-angle
groups under the improved-homogeneous approach in terms of equal error
rate error

investigate the recognition performance in terms of equal error
rate under this approach. Figure 14 shows the results of this
experiment. As expected, we observe that the segmentation
results are more or less translated into the recognition scores,
following the same trends discussed in the segmentation
experiments. The only visible difference here is the lower
recognition performance of the extreme gaze-angle images
(i.e. N50 and specially P50), which, as already mentioned, is
mainly due to the extreme 3-D and perspective distortions on
the extracted iris' textures.

In the improved-heterogeneous approach, we considered
investigating if the generalisability of the network can be
improved by switching to a heterogeneous training setting,
where we include iris images with different gaze angles in the
training data. For this purpose, first we trained the network with
all the iris images that have different gaze angles in our training
data and then tested it on all the iris images in our testing data.
Likewise, the segmentation outputs were improved by
morphological opening and the performance was evaluated,
differentiating and grouping the results into the different gaze
angles available. While the heterogeneous configuration was
expected to deliver good results (compared to the angle-specific
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training configuration), based on the findings in [11], here we
(i) evaluated the extent to which the improvement applied can
enhance the segmentation performance and (i) verified if the
improved segmentations can eventually improve the recognition
petformance beyond the improved angle-specific training
configuration.

Figure 15 demonstrates the segmentation results for this
experiment in the form of a boxplot for each gaze-angle group
(after the improvement). As the results show, by applying the
improvement, we obtained considerable enhancement in
almost all segmentation results (especially for the right off-
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FIGURE 15
groups under the improved-heterogencous approach as average nicel error
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FIGURE 16 Recognition performance benchmark and the
corresponding experimental results on the different gaze-angle groups
under the improved-heterogeneous approach using different convolutional
neural networks, in terms of EER error. EER, equal error rate

(a) (b) (c)
\
~

angle (P) images) that we had already obtained in the
identical heterogeneous configuration without improvement
in [11], as the average segmentation error decreased from 0.023
to 0.008. Also, as the results show, we obtained almost the
same segmentation performance as obtained using the
improved-homogeneous approach for the angle-specific
configurations.

Figure 16 shows the subsequent recognition results ob-
tained using the corresponding images. As can be seen in the
figure, in spite of minor degradation in some results (i.e. N50,
P40 and P50 gaze-angle groups' results), we could maintain, on
average, the same recognition performance (x1.85) as that
obtained under the improved-homogeneous approach for the
angle-specific configurations (%1.87). Of course, this is a very
positive result, as it enables us to refrain from the angle-
specific training strategy, and even better, there is no need to
determine the iris images gaze angles or carry out the correc-
tion procedure before deploying the recognition system.

To provide a proper evaluation of the actual performance
of the model, we developed a performance benchmark as well.
For this, we segmented the iris region on the eye images using
the manual ground truths (resembling the petrfect condition)
and then fed the segmented iris regions into the recognition
pipeline. We also considered another well-known CNN (‘Unet’
[49]) to be trained (using the manual ground truths) and ran on
the same data. As can be seen in Figure 17, the segmentation
outputs generated by Unet also contain corresponding errors
(false-positive and false-negative pixels), especially in the
boundary areas, to a certain extent. So, we applied the same
improvements (as proposed in Section 6) on the segmentation
outputs and proceeded to the recognition experiment. As the
corresponding results in Figure 16 show, the RefineNet seg-
mentation outputs maintained better recognition performance
(which is close to the benchmark results in the majority of
cases) than those of the Unet.

In the corrected-homogeneous approach, we aim to
address if re-projecting the off-angle iris images back to frontal
view and correcting the off-angle iris texture can compensate
for the degradations imposed by the off-angle distortions, and
we eventually improve the system recognition performance. To
address this, we re-projected the improved segmentation out-
puts along with their corresponding iris images back to frontal
view using our KNN-based algorithm. To disentangle and
investigate the agonising effect of the interpolation applied
during the correction procedure, and the possible imperfec-
tions of the correction algorithm, we further included the
integrodifferential-based and the ellipse-based algorithms in
our experiment.

FIGURE 17 Sample segmentation outputs
for N50 (17a), PO (17b), and P50 (17¢), using Unet
network
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Re-projecting the off-angle images back to frontal view
(correcting them) concerns with rotating the images back,
along the rotation direction. The off-angle iris images in our
database are captured by rotating the camera around the ver-
tical axis by 6°. Thus, in otdet to correct the (off-angle) images,
theoretically, all we need to do is to develop the corresponding
rotation matrix, substitute the rotation value (e.g. as obtained
using our gaze-angle estimation anti-logarithms), and apply it
to the (off-angle) images as follows:

x T 0 0 x
Y1 =10 cos(6) —sin(d)|.|y (7)
Z 0 sin(0) cos(0) z

Applying such a transformation to the images practically
results in certain changes in the image dimensions, depending
on the value of the rotation applied (see Figure 18 for an
example). To compensate for this, we first calculated a ratio (R)
for the corresponding change as follows:

_ newheight X previouswidth

R previousheight

(®)

A new image width was then calculated using this ratio for
each image, and the images were cropped, centring the middle
of the new calculated widths on the images' centre pixels. The
resulting images then got rescaled to their original sizes, as
demonstrated in Figure 18.

After correcting the iris images in our testing data using
each algorithm, we fed them into the recognition pipeline to
evaluate the recognition performance. Figure 19 shows the
recognition results using the KINN-based algorithm. When
comparing the results to those obtained using the improved-
homogeneous approach (see Figure 13), a notable improve-
ment in the majority of results belonging to right gaze-angle
configurations is observable. The improvement gradually
tends to increase as the testing data gaze angles diverge more
from the frontal view (i.e. P20, P30 etc.), so that we can
observe the maximum improvement in the results of the
extreme right gaze-angle groups (i.e. P40 and P50). However,
this is not true in the case of the left gaze-angle images, and the
results seem to be coherent with those obtained under the
improved-homogencous approach, with a slight degradation of
all the results (see Figure 14 for a comparison). This seems to
be as expected, as the gaze-angle prediction results obtained by

this algorithm for the right gaze-angle groups were better than
those of the left-angle groups (see Figure 6).

Figure 20 shows the corresponding results using the
integrodifferential-based algorithm. As expected, we can
observe an overall degradation in the results (specifically in
those of the frontal view images) compared to the results
obtained using the improved-homogeneous approach and the
KNN-based approach, which is cleatly due to the poor per-
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FIGURE 19 Recognition performance on the different gaze-angle
groups under the corrected-homogeneous approach, using the K-nearest-
neighbourhood-based algorithm, in terms of equal error rate error
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FIGURE 20 Recognition performance on the different gaze-angle
groups under the corrected-homogeneous approach, using the
Integrodifferential-based algorithm, in terms of equal error rate error
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FIGURE 18 Sample off-angle iris image (left)
and its corresponding transformed image (middle)
and the resulting output after cropping and rescaling
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FIGURE 21
groups under the corrected-homogeneous approach, using the Ellipse-
based algorithm, in terms of equal error rate error

Recognition performance on the different gaze-angle

formance of the algorithm when detecting the correct iris gaze
angles. The results obtained using the ellipse-based algorithm
are partially different (see Figure 21), and except for a slight
improvement in those of the extreme right and left gaze-angles
groups (i.e. N50 and P50), all other results encountered a
medium degradation compared to those obtained using the
improved-homogeneous approach. Nonetheless, these results
are generally better than those obtained wusing the
integrodifferential-based algorithm, and except for some im-
provements in the results of the extreme left gaze-angles im-
ages (i.e. N40 and N50), do not show a notable improvement
compared to those obtained using the KNN-based algorithm.

Considering the fact that the KINN-based algorithm was
very highly accurate in predicting the iris gaze angles, we
inspected the corresponding outputs of the N40 and N50
image groups (as demonstrated in Figure 22¢) to get better
understanding of the slight improvement obtained on these
gaze-angles groups, using the ellipse-based algorithm. The in-
spections revealed that the ellipse-based algorithm tends to
underestimate the iris gaze angles (and thus, applies less
interpolation) for the extreme right off-angle images (i.e. N40
and N50), as the value of interpolation in this algorithm is
estimated based on the actual circularity of the iris shape in the
image rather than the capture angle (as in the case of
the KNN-base algorithm) recorded. All in all, regardless of the
type of correction algorithm applied, the overall degradation of
the results, as the gaze angles of the test data diverge more
from the frontal view (moving from the central horizontal
column in the corresponding tables to the sides), is more than
the corresponding degradations observable in the segmenta-
tion results obtained under the improved-homogeneous
approach. So, the experiments here decoupled and clearly
distinguished the negative effect of the interpolation (in dis-
torting the key iris features) applied during the correction
process from the possible defects of the correction algorithms.

We further considered the
approach in which we investigated if correcting the off-angle

COIICCth-thCngCﬂCOuS

iris texture can compensate for the degradations imposed by
the off-angle distortions within a heterogeneous training

configuration. So here, after training the network on iris images
with different gaze angles and testing it on the images of each
gaze angle separately, the segmentation outputs were
morphologically improved, parameterised and re-projected
back to frontal view, using all the three correction algorithms
already used in the previous experiment. Subsequently, the
recognition performance was evaluated. Figure 23 demon-
strates the results of this experiment for each gaze angle and
algorithm, along with the results we obtained using the
improved-heterogeneous approach. As can be seen, the results
obtained using the KNN-based and ellipse-based algorithms
show slight degradation for the left gaze-angle images (N50,
N40,\enleadertwodots), while showing considerable improve-
ment for the P50 gaze-angle images compared to the results
obtained under the improved-heterogeneous approach. The
results for the rest of the gaze-angle groups are more or less
the same. The integrodifferential-based algorithm generally
does not deliver any promising results under this approach
either. Thus, we can see that depending on the correction al-
gorithm used, the correction setup can only improve the
performance on some of the most extreme gaze-angle images
(i.e. N50, P50), while it generally does not improve the results
in other cases. Of course, the type and the scale of the changes
in the performance in each case are subject to the influence of
the two factors already explained.

The corrected-frontal approach experiments are meant to
address if we can enable segmentation in the iris images of
different gaze angles using a network trained on the frontal eye
images, by correcting their gaze angles and bringing them back
to frontal view. For this reason, we first corrected all off-angle
iris images available in our testing data, using their corre-
sponding ground-truth masks, with the help of the correction
algorithms. Then, we trained the network only with the iris
images belonging to frontal view in our training data and
performed segmentation in the corrected images in our testing
data (400 samples per gaze angle). The segmentation outputs
were then morphologically improved, and the recognition
performance was evaluated subsequently.

Figure 24 shows the results obtained in this experiment
along with the corresponding results obtained under the
improved-heterogeneous approach (as the selected approach),
the results obtained by applying the same network to the
corrected off-angle images as obtained by the KNN-based
algorithm (sixth row of the table in Figure 19), and also
those of the angle-specific training obtained under the
improved-heterogeneous approach. As the results show,
almost in all the cases, either the results do not show any
specific improvement or are degraded to a certain extent.
While the KNN-based algorithm delivered the best correc-
tion results, the corresponding segmentation results for the
extreme left gaze-angle images (i.e. N50, N40) obtained by
this algorithm degraded very intensely compared to those of
the other correction algorithms used. Figure 25 demonstrates
the sample segmentation outputs obtained using each
correction algorithm along with their corresponding error
masks in these experiments. As can be observed, there are
many false negative detections (red pixels in Figure 25g) in
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FIGURE 22 Sample corrected iris images of (a)
N50 corrected by KNN-based (22a),
integrodifferential-based (22b), and ellipse-based
(22¢) algorithms
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FIGURE 23 Recognition performance on the different gaze-angle
groups under the corrected-heterogeneous approach, using the different
cortection algorithms, in terms of EER error. EER, equal etror rate
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FIGURE 24 Recognition performance on the different gaze-angle
groups under the corrected-frontal approach, using the different correction
algorithms, in terms of EER error. EER, equal error rate

the corresponding segmentation outputs of this algorithm.
These again show the negative role of the interpolation
applied during the correction process, and the fact that, as it
increases, it can alter the unique texture patterns of the iris
learnt by the network and cause the network to fail to detect
the true iris pixels in the test images.

After investigating the different approaches to figure out a
solid model that can best deal with the iris images captured
from different angles using the CNNs, we further proceeded
with evaluating the model's performance within the frame of
other off-angle iris recognition algorithms. For this purpose,

(b) (c)

WL\ S A e R 1

we implemented some well-known off-angle iris recognition
algorithms, which are based on deep learning, as well as clas-
sical techniques. In particular, we considered the IrisSeg [20]
algorithm and the WAHET [27] algorithm as the classical
approaches and the algorithm proposed in [39] as our deep-
learning-based setup. The technical details of these algo-
rithms are already explained in Section 2. We applied each al-
gorithm to our testing data and prepared the results for each
gaze-angle group separately, as presented in Figure 26. As it
can be seen in the plot, the selected approach (improved-
heterogeneous) is superior to all other classical algorithms. Yet,
the deep learning algorithm has the optimal performance. Of
course, the main drawback of deep-learning-based classifiers of
this type is their non-scalability. To be more precise, these
networks have to be trained each and every time a new subject
is introduced to the system. Furthermore, the performance of
such classifiers gradually declines as the number of classes
increases [50]. Thus, they may show good performance on a
dataset containing a limited number of subjects, but their
performance may deteriorate as the size of the dataset (the
number of classes) increases.

9 | CONCLUSION

We investigated the effect of different gaze angles on ocular
biometrics, and analysed their distorting mechanism on off-
angle iris segmentation using CNNs, as well as their sub-
sequent recognition performance. The effect of perspective,
refraction, and 3-D iris structure distortions on the network
mainly appeared as missing (undetected) iris texture in the
network segmentation outputs. These distortions also caused
considerable changes in the unique iris features, especially in
the extreme (right) gaze-angle images, undermining the
corresponding these gaze-angle
groups as well. The missing and dilated iris boundary and
the limbus distortions caused the network to fail to accu-
rately extract the iris boundary pixels (false-negatives) in the

recognition results for

corresponding segmented areas of the images with steeper
gaze angles. In this case, the recognition results also
degraded due to the missing boundary information, which is
required for seamless recognition. In fact, in all the cases,
the effect of the distortions was more severe on the images
captured from the right angles than those captured from the
left angle, due to the more severe off-angle distortions they
include when captured from the right angles, as we consider
left eyes only.
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FIGURE 26 Recognition performance on the different gaze-angle
groups using the different recognition algorithms, in terms of EER error.
EER, equal error rate

The results obtained under the improved-homogeneous
approach showed that the performance of the network has a
direct relation to the correspondence of the gaze angles of the
training and testing images, and it declines as the gaze angles
diverge. We further found that the network performance
gradually improves as the gaze angle of the training and testing
data converges in terms of the angle but diverges in terms of
direction. This showed the capability of the network to detect
the symmetric iris contents in the images captured from the
same angle, but in the opposite direction, which was figured
out as the result of the segmentation improvement. Also, the
morphological improvement technique proved to compensate
for some false-positive segmentation errors and enhanced the

N o e

. w——
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FIGURE 25 Sample N50 iris images,
corrected using the knn-based (25a), the ellipse-
based (25b), and the integrodifferential-based (25¢)
algorithms, and their corresponding segmentations
outputs (second row) and the error masks (third
row)

segmentation results beyond the results obtained in [11], in
identical configurations. Furthermore, the proposed KNN-
based algorithm for estimating the iris gaze angles in the eye
images successfully classified the iris images into their corre-
sponding gaze-angle classes with about 97% accuracy, without
the need for any supplementary information (i.e. head position,
camera parameters etc.).

The experiments carried out to investigate the effect of
correcting the off-angle iris images on the recognition per-
formance showed that the interpolation applied during the
correction procedure and the imperfections of the correction
algorithms can diversely influence the unique iris features in
the eye images. In some cases, the recognition performance is
improved, while in other settings it is reduced. While the better
correction performance of the KNN-based algorithm
(compared to the other two algorithms) resulted in the general
improvement of the recognition results, the lower extent of
interpolation applied by the ellipse-based algorithm, which
tended to underestimate the angle in the right gaze-angle im-
ages, improved the recognition performance beyond the values
obtained by the KNN-based algorithm on these gaze-angle
groups. The experiments carried out under the corrected-
heterogeneous approach also showed similar outcomes. And
except in some extreme gaze angles (e.g. P40, P50) or when
certain correction algorithms (the KNN-based algorithm) were
used, the correction process did not improve the recognition
performance considerably. So, based on these results we may
conclude the following: (i) provided that a suitable correction
algorithm is applied, the correction setups are recommended
only for the extreme off-angle images (i.e. gaze angles greater
than 30°) and (ii) the type and scale of the improvement
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obtained in this case is defined as a function of the influence of
the value of interpolation applied during the correction pro-
cedure and the possible imperfections of the correction
algorithm.

The experiments carried out under the corrected-frontal
approach, in which we applied the network trained only on
iris images belonging to frontal view to the corrected images
from different gaze angles, showed that the network is not able
to detect and extract the learnt features on the corrected im-
ages in a way that can help us obtain better results than those
obtained when applying the same network to the ‘uncorrected’
off-angle images, using the same configuration.

Also, our experiments actually showed that we can main-
tain almost the same segmentation and recognition perfor-
mance, as that obtained in the angle-specific configurations,
using the improved-heterogeneous approach. Further experi-
ments showed the superiority of this approach (improved-
heterogeneous) over all other classical off-angle recognition
algorithms. These are, in fact, very promising results, as the
selected approach enabled us to refrain from (i) the angle-
specific training strategy, which requires determination of the
iris images gaze angles in advance, and (ii) even more impot-
tant, carrying out the correction procedure (which proved to
be complicated, based on our findings) before deploying the
recognition system. Also, in spite of the fact that the deep-
learning-based recognition algorithms performed better
(.e. [39])- than the classical algorithms, the improved-
heterogeneous model was preferred, as it addresses some key
drawbacks of these algorithms (e.g. poor scalability).
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