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ABSTRACT: Vortex Rossby waves (VRWs) affect tropical cyclones’ (TCs’) motion, structure, and intensity. They

propagate within annular waveguides defined by a passband between V1D, the Doppler-shifted frequency of a one-

dimensional VRW, and zero. Wavenumber-1 VRWs cause TC motion directly and have wider waveguides than

wavenumbers $ 2. VRWs forced with fixed rotation frequency propagate away from the forcing. Initially outward-

propagating waves are Doppler shifted to zero at a critical radius, where they are absorbed. Initially inward-propagating

waves are Doppler shifted to V1D, reflect from a turning point, propagate outward, and are ultimately absorbed at the

critical radius. Between the forcing and the turning radii, the VRWs have standing-wave structure; outward from the forcing

they are trailing spirals. They carry angular momentum fluxes that act to accelerate the mean flow at the forcing radius and

decelerate it at the critical radius. Mean-flow vorticity monopoles are inconsistent with Stokes’s theorem on a spherical

Earth, because a contour enclosing the monopole’s antipode would have nonzero circulation but would enclose zero

vorticity. The Rossby waveguide paradigm also fits synoptic-scale Rossby waves in a meridionally sheared zonal flow. These

waves propagate within a waveguide confined between a poleward turning latitude and an equatorward critical latitude.

Forced waves are comma-shaped gyres that resemble observed frontal cyclones, with trailing filaments equatorward of the

forcing latitude and standing waves poleward. Even neutral forced Rossby waves converge westerly momentum at the

latitude of forcing.
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1. Introduction

Tropical cyclones (TCs) are a worldwide threat to life and

property. Their impacts are increasing in step with growing

coastal populations, increasing development, and arguably

climate change (e.g., Knutson et al. 2010). TC structure and

track can dominate local impacts. Minor track deviations can

lead to significant differences in storm surge. Outer spiral

rainbands are often destructive even though they are well

removed from the intense vortex core. Here we explore

inner-core dynamics that influence motion and rainband

configuration.

A TC’s primary circulation swirls cyclonically around its low

pressure center in approximate gradient balance. Superimposed

upon it are frictionally and diabatically forced secondary cir-

culations that act to spin up and maintain the vortex. These

flows converge moist air in contact with the ocean surface, rise

in the eyewall to feed intense convection, and diverge near

tropopause level. Convective latent heat release in the eyewall

sustains the warm core. In radar and satellite imagery, the

eyewall is surrounded by curved rainbands (Fig. 1). The ob-

jective here is insight into the dynamics of the bands them-

selves and their interactions with the primary and secondary

circulations.

In a real, bounded hurricane, the radial profile of relative

vorticity z is strongly cyclonic in the vortex core and sur-

rounded by enough anticyclonic z that the circulation becomes

zero at some finite radius. Many idealized studies are incon-

sistent with Stokes’s theorem on a sphere because they are

based upon mean-flow vorticity monopoles. Here we use an

idealized barotropic nondivergent (BND) model to advance

physical understanding of linear vortex Rossby waves (VRWs)

propagating upon the radial gradient of axially symmetric

z (e.g., Montgomery and Kallenbach 1997, hereafter MK97).

VRWs propagate within annular waveguides defined by zero

Doppler-shifted frequency and V1D, the frequency of a one-

dimensional wave with the same azimuthal wavenumber

(Cotto et al. 2015, hereafter Part I; Gonzalez et al. 2015,

hereafter Part II). A realistic, bounded vortex has an inner

waveguide where the waves’ intrinsic propagation is up-

stream, more slowly than the mean flow, and an outer

waveguide where their intrinsic propagation is downstream,

faster than the mean flow. Vorticity monopoles have only the

downstream-propagating waveguide. This study addresses

VRW’s roles in TCmotion, structure, and intensity change. In

addition, the same modeling approach is reapplied to middle

latitude Rossby waves to confirm and extend Macdonald’s

(1968) original analogy with synoptic-scale cyclones.

To a first approximation, TC motion can be modeled as

advection by the large-scale steering flow. Absolute vorticity

is conserved in frictionless, nondivergent flow. On a spheri-

cal Earth, the b effect, where b is the meridional gradient of

the Coriolis parameter, contributes to TC motion (e.g.,

Holland 1983; Chan and Williams 1987). Advection of b by
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equatorward mean flow on the west side of the symmetric

vortex and poleward mean flow on the east side combine to

force a streamfunction dipole such that the flow between its

gyres advects the mean vortex poleward and westward. As

shown in Part II, wave–wave interactions among induced

VRWs are essential to constraining the b drift to a reason-

able 1–2 m s21.

In a BND model, rotating vorticity source–sink dipoles in-

duce motion by forcing flow across the center (Willoughby

1992). This ‘‘convective’’ effect works only for wavenumber 1

because the kinematics of wavenumbers $ 2 require both the

streamfunction and its gradient to be zero in the neighborhood

of the vortex center. Convective asymmetries, such as spiral

rainbands, are more complicated than the static b gyres be-

cause the cells rotate around the center to cause trochoidal

motions observed in nature (Nolan and Montgomery 2000,

hereafter NM00; Nolan et al. 2001; Lawrence and Mayfield

1977). Wavenumber-1 asymmetries also have the widest pos-

sible Rossby waveguide for a given vortex structure and im-

posed rotation frequency.

Macdonald (1968) first noticed that rainbands observed by

radar exhibited Rossby-wave-like characteristics. Observed

spiral bands tilted outward from the axis of mean-vortex ro-

tation andmoved with themean flow, butmore slowly, much as

synoptic-scale troughs do. Their inward transport of cyclonic

angular momentum was analogous to the poleward flux of

westerlymomentum in the general circulation. These analogies

inspired a formal theory on VRWs (MK97): the asymmetric

balance (AB) model based upon the assumption that square of

VRW’s Doppler-shifted frequency was much less than the

square of local inertia frequency. The ABmodel was governed

by the linearized asymmetric vorticity equation, (1), for a

simple vorticity monopole on an f plane in stationary cylin-

drical coordinates:
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Here t is time; y0 is the axially symmetric mean tangential ve-

locity; r is radius; l is azimuth; z0 and c0 represent the pertur-

bation vorticity and streamfunction, respectively; and z0 is the

axially symmetric absolute vorticity. Outward-propagating

VRW packets became nearly stationary at a finite, outer

stagnation radius as their Doppler-shifted frequencies ap-

proached zero and their radial wavenumbers became large.

Existence of the stagnation (or critical) radius highlighted the

dependence of VRW propagation upon the mean radial vor-

ticity gradient. MK97 hypothesized that forced VRWs trans-

ported energy from one radial band to another.

AB was tailored to represent VRWs but not inertia–gravity

waves. Although, MK97 speculated that previous shallow-

water, primitive equation models mistook VRWs for inertia

gravity waves, the faster intrinsic propagation of gravity waves

and their ability to radiate into the storm environment support

a clear distinction. By analogy with nondivergent synoptic-

scale Rossby waves, MK97 derived a VRWdispersion relation,

(2), which showed that VRWs propagate against the cyclonic

angular velocity in the vortex core when the mean vorticity

gradient is negative:
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Here, V(r) is the Doppler-shifted frequency, v is the wave

train’s rotation frequency relative to the ground, n is the tan-

gential wavenumber, and k is the local [in the Wentzel–

Kramers–Brillouin (WKB) sense] radial wavenumber. The

dispersion relation describes the VRW’s propagation dynam-

ics. Bothv and n are fixed for a given wave train. Since ›z0/›r,
0 in the inner waveguide, the waves rotate more slowly than the

windwithin a frequency passband (0$V$V1D5 (›z0/›r)(n/r)
21.

When theV approaches zero at the critical (stagnation) radius,

k becomes large; k approaches zero when V / V1D. Further

notable results from AB theory included linear phase and

group velocities, identification of VRWs with at least some

observed spiral bands, and recognition of VRWs potential role

in TC intensification.

Subsequent research confirmed that angular momentum

transport by forced VRWs may cause eyewall contraction and

mean-flow intensification (Chen and Yau 2001; Möller and

Shapiro 2002; Chen et al. 2003). The first of these studies

identified prograde VRWs that propagate faster than the tan-

gential winds where ›z0/›r. 0 on the inward sides of potential

vorticity rings and carry eddy vorticity fluxes toward the eye-

wall. Chen et al. (2003) specifically noted acceleration of

the mean tangential wind in the lower and middle troposphere

and deceleration aloft. At least two studies (Wang 2002; Chen

and Yau 2003) argued that wave–mean flow interactions ac-

tually preventing intensification because the VRWs accelera-

ted tangential winds in the eyewall directly leading to axially

symmetric outflow and deceleration at the RMW.

Theoretical studies provided insight into VRW dynamics,

but existence of VRWs in real TCs remained uncertain.

FIG. 1. Miami radar image of Hurricane Irma at 1003 UTC 10

Oct 2017, showing the heaviest precipitation in the eyewall and

outer rainbands.
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Aircraft and radar observations in eastern Pacific Hurricanes

Jimena of 1991 and Olivia of 1994 (Reasor et al. 2000; Black

et al. 2002) revealed low-wavenumber, cyclonically rotating

eyewall perturbations, vorticity asymmetries, and rainbands

with VRW-like properties (see Muramatsu 1986; Kuo et al.

1999). In Hurricane Olivia, spiral bands of vorticity were

found in regions where wavenumber-2 vorticity asymmetries

appeared to be symmetrizing. Asymmetries exhibited rota-

tion rates slower than the mean flow’s angular velocity near

deep, intense convection at the RMW. Hurricanes Jimena

and Olivia were sheared storms with periodic convection that

exhibited radar echoes and updrafts forming in the down-

shear quadrant. The reflectivity asymmetries were advected

around the eye at 60%–80% of the swirling wind, consistent

with convectively excited VRW propagation. Numerical

simulations and theoretical studies of these features generally

validated the observational findings (Chen and Yau 2001;

Wang 2002; MK97).

Despite the foregoing advances in understanding of VRW

dynamics, the waves’ effects on TC motion, and the wave-

guides within which they propagate have received limited

attention. Part I built upon previous work with frequency-

domain simulations of episodically forced, BND VRWs with

wavenumbers$ 2 in the inner waveguide of bounded vortices.

Part II simulated wavenumber 1 VRWs in time domain on a

b plane to demonstrate that wave–wave interaction was es-

sential to reasonable poleward and westward b-drift speeds.

The primary motivation here is to extend Part I’s insights

to wavenumber 1, which can force TC motion and has the

widest possible waveguide for given v. The model focuses on

convectively forced wavenumber 1, as in Part I, but uses the

time-domain approach of Part II. Section 2 describes formu-

lation of the BNDmodel in translating cylindrical coordinates.

Section 3 applies it to the convectively forced wavenumber 1 at

different frequencies. Section 4 revisits the b-plane problem

and section 5 examines vorticity monopoles on a spherical

Earth. Section 6 connects VRWs back to Macdonald’s (1968)

original analogy with midlatitude cyclones, and section 7

summarizes the results and draws conclusions.

2. Formulation

A BND, vortex-following, semispectral model set in a still

environment on an f plane is the simplest formulation able

to simulate vortex motion and 2D convectively forced

wavenumber-1 VRWs. The model, written in MATLAB, ac-

cepts as inputs the mean vortex and wave forcing, and marches

the vorticity equation forward in time in translating cylindrical

coordinates (Fig. 2). After each time step, the vorticity is in-

verted to obtain the streamfunction. The moving vortex center

corresponds to the coordinate’s origin. It is tracked by mini-

mizing the a-gyre apparent asymmetry due to mislocation of

the mean-vortex center (Willoughby 1992).

The mean vortex structure derives from the Wood and

White (2010) formulation (Fig. 3). The radial profile of the

cyclostrophic wind inside the RMW obeys U-shaped power

law with an exponent of 1.1; outside the RMW it obeys an in-

verse power law with an exponent of 20.5 (e.g., Riehl 1963);

and it has a smooth, though reasonably sharp, transition

(Wood–White l5 0.25) across the RMW. The RMW is 25 km

and maximum cyclostrophic is 50 m s21.The profile used is the

gradient wind derived from the foregoing cyclostrophic profile

at 208 latitude. This formulation is more logically consistent

because the cyclostrophic profile has a well-defined pressure–

wind relation and the gradient wind’s circulation goes asymp-

totically to zero as r becomes large. It is thus an asymptotically

bounded vortex rather than an unbounded vortex.

Vorticity is the prognostic variable in the present BND

model. The axially symmetric mean-flow relative vorticity is

strongly cyclonic in the vortex core, weakens with increasing

radius, and reverses sign at the periphery before increasing

asymptotically to zero. The mean radial vorticity gradient,

›z0/›r, is generally negative in the core, but can be positive in a

narrow interval within the eye. The derivation of the vorticity

equation begins with the wavenumber-1 radial and tangential

momentum equations, (3) and (4), in translating cylindrical

coordinates (e.g., Willoughby 1992):
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Here u is radial velocity (positive outward), y is tangential

velocity (positive cyclonically), f is geopotential, l is azi-

muth (cyclonically from north), r is radius, cr and cl are the

radial and tangential components of the coordinates transla-

tion, Fr and Fl are radial and tangential momentum forcing,

FIG. 2. Vortex-following cylindrical coordinates used in the

present analysis (Part II). Here O is the origin, the hurricane

symbol marks the vortex center, a is the centering error, and the

other variables are as described in the text.
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and j0 5 2y0/r 1 f is the inertia parameter. The forcing is de-

rived from the gradient of a scalar A such that it is non-

divergent. The complex motion is C5 cx 1 icy, where cx and cy
are its zonal and meridional components, so that cr 5
Re(2iCe2il) and cl 5 Re(Ce2il). Cross differentiation and

subtraction eliminates f to yield the nondivergent wavenumber-1

vorticity equation:
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The imposed forcing Q is the Laplacian of A. In the fre-

quency domain, the wavenumber-1 solution is the real

part of the product of the complex amplitude of the

streamfunction, C(r, t), with an imaginary exponential in

azimuth, c 5 Re{C(r, t)ei(vt 2 l)} such that y 5 ›c/›r and

u 5 2r21›c/›l:
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The amplitude of perturbation vorticity is

J5
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Rearranging the terms in (6) yields the vorticity tendency

equation which is expanded with finite differences to march

z forward in time:
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C is computed by inversion of (7) with the Lindzen and Kuo

(1969) algorithm, and eddy fluxes of geopotential and an-

gular momentum and their convergences are calculated.

The boundary conditions imposed are ›c/›r5 0 at the center

and the periphery. As a practical matter the solutions are

insensitive to them since the evanescent tails have enough

distance to decay between the turning or critical radius and

the boundaries.

The dispersion relation, [(2), offers insight into VRW

propagation. If C(r, t) is represented with zero-order Hankel

functions, (6) becomes
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where kr is the local radial wavenumber. As shown above, ra-

dially long VRWs approach the Rossby cutoff frequency,

V / V1D 5 r›z0/›r, at the inner boundary of the waveguide.

Short waves’ Doppler-shifted frequencies approach zero,V/

0 at the outer critical radius. Radial phase and group velocities,

(10), are obtained as in MK97:
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VRW’s propagation characteristics are consistent with that of

midlatitude Rossby waves. The radial wavenumber determines

the sense of propagation. If kr is positive, phase propagates

outward and energy propagates inward; if it is negative phase

propagates inward and energy propagates outward. This sit-

uation contrasts with tangential propagation in the inner

waveguide, where phase always propagates upstream relative

to the mean flow, and energy may propagate upstream or

downstream dependent upon whether kr is larger or smaller

than r21.

3. Forced wavenumber 1

This section examines wavenumber-1 VRWs forced at ra-

dius rq, specified to be the RMW, with rotation frequencies:

0.25vq, 0.50vq, 0.75vq, and vq, where vq 5 y0(rq)/rq. The

analysis presents the solution expressed in terms of both z, to

highlight propagation within the waveguide, and c, to illustrate

induced, vortex-scale flow that extends beyond the waveguide.

It also depicts mean-vortex track and eddy fluxes of angular

momentum and geopotential to understand interaction with

the mean flow. The rotation frequency v determines the

waveguide geometry and where flux convergences and diver-

gences occur. Comparison of wavenumber-1 results with Part

I’s higher-wavenumber VRW are informative.

FIG. 3. (a.) Mean tangential wind profile and (b) vorticity (red) and

vorticity gradient (blue).
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The forcing is localized in a 20-km-wide annulus centered

at r 5 20 km, 5 km inside the RMW, and is zero everywhere

else (Part I). It rotates with the specified frequency v, has

a bell-shaped radial structure, wavenumber-1 azimuthal

structure, and is constant in time apart from the rotation.

Since the forcing is continuous, only the gyres’ orientation

changes with time as the dipole rotates after startup tran-

sients have died out. For example, v 5 0.25vq corresponds

to a 3.5-h orbital period (T), or approximately 7 full rota-

tions per simulated day. This aspect of the forced dipole’s

behavior is similar to the algebraically growing NM00

instability.

The vorticity field appears as a rotating wavenumber-1 di-

pole centered at rq, the forcing radius (Fig. 4). A smaller dipole

appears near the center of the vortex, because of ›z0/›r . 0

near the center, as described by NM00. The perturbations

symmetrize with time, as z becomes filamented at the critical

radius, to produce an outer ring of tightly wound, interlocking

spirals, and the filamentation time (Tsai et al. 2010) becomes

short. Ripple-like filaments between the dipole and ring are

outward-propagating VRWs. The forcing produces a weak

vorticity gradient across the domain. Subtle vorticity ripples

modulate the boundary between cyclonic and anticyclonic

broadscale vorticity to form a low-amplitude ‘‘wake’’ that

aligns more or less with the vortex motion.

For most frequencies, vorticity is dominated by two features:

the forced dipole near the RMW and filaments in the neigh-

borhood of the critical radius. Short, low-amplitude, waves fill

the middle of the waveguide. Beyond the critical radius, the

oscillations are evanescent. Higher rotation frequencies nar-

row the waveguide and compress the wave pattern (Figs. 4b,c).

Ultimately whenv5vq, the critical radius overlaps the forcing

so that the waves are radially evanescent throughout, consis-

tent with Part I.

The corresponding streamfunctions (Fig. 5) exhibit inner

dipoles of opposite sign to the forced vorticity gyres. At low

frequencies (periods 5 3.5 and 1.8 h, Figs. 5a,b) they have

much larger trailing spirals that become smaller and morph

into circular gyres (period 5 1.2 h, Fig. 5b) and finally to

leading spirals (period 5 0.87 h, Fig. 5c) as vq increases. The

outer gyres/spirals arise because of the way the vorticity fila-

ments interact. Over much of the circumference of the critical

radius, equal numbers of filaments with opposite sign occupy

the same azimuth. They mask each other in the inversion for

FIG. 4. Contour plots of wavenumber-1 perturbation vorticity after 24 h for specified forcing orbital periods: (a) 3.5,

(b) 1.8, (c) 1.2, and (d) 0.87 h, showing symmetrized trailing spirals at the end of each simulation.
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the streamfunction because of their small spatial scale, but

when filaments of one sign or the other predominate they oc-

cupy the centers of the gyres on opposite sides of the center.

There, arcs of net vorticity induce the streamfunction gyres.

The resulting field causes cross-vortex flow between the gyres

that advects the axially symmetric mean vorticity to induce

vortex motion.

Flow across the center is different from that in Part I be-

cause the center boundary condition for wavenumbers $ 2

requires both zero streamfunction and zero radial derivative

across the center, whereas wavenumber 1 requires zero

streamfunction, but nonzero gradient because the stream-

function changes sign across the center. The result is nonzero

flow across the center that rotates with gyres to cause orbital

vortex motion.

Initially the forcing causes a chaotic start-up transient before

the solution stabilizes. The track then spirals cyclonically out-

ward from the initial position and soon becomes a circular orbit

at nearly constant speed (Fig. 6). Orbital speeds and radii vary

with frequency from 2.42 to 3.65 m s21 and from ;1 to 5 km,

respectively. Note that these orbital radii are significantly less

than the RMW. Both motion parameters are sensitive to v.

The orbital motion arises because net asymmetric vorticity

accumulates at the critical radius. It induces the outer

streamfunction gyres, which support flow across the center and

vortex motion. The orbital speed is the product of orbital

radius with v. For a fixed frequency, increased orbital radius

is the only way to increase the speed. Nonetheless, the speed

generally increases incrementally with decreasing period, ex-

cept when v 5 vq, where the vortex has the slowest speed.

By contrast, Willoughby (1992) showed the speed was fastest

when the forcing rotated with mean-vortex flow’s orbital

period.

Vortex Rossby waves can change TC structure and in-

tensity through eddy energy and angular momentum trans-

ports (Fig. 7). For example, NM00 noted that eddy fluxes

due to their algebraic instability adjusted the wind profile

inside the RMW toward solid-body rotation. In the present

simulations, the energy and momentum fluxes are hfui5
r

þ
(fu) dl and hryui5 r

þ
(ryu) dl, respectively. For a 3.5-h

period (Fig. 7a), the magnitudes of the acceleration and

deceleration are nearly identical, so that the net result is

inward redistribution of mean-flow angular momentum. In a

FIG. 5. Contour plots of wavenumber-1 perturbation streamfunction for the same specified duration orbital periods

shown in Fig. 4. Note the change of scale. The dashed circles mark the critical radii from Fig. 4.
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barotropic model, these fluxes would cause the vortex

spinup at the forcing locus (e.g., Gao and Zhu 2016). In a

real hurricane, the momentum sink at the critical radius

would force compensating inflow (Andrews and McIntyre

1976a,b; Boyd 1976) to replace the eddy-flux deficit. It is

reasonable to suppose that inflow would also bring CAPE to

feed convection near a developing outer wind maximum.

As shown schematically in Fig. 8, outside the forcing ra-

dius, initially outward-propagating VRWs sustain an out-

ward energy flux and inward angular momentum flux. Inside

the forcing radius, the initially inward-propagating waves

are reflected from the turning radius. Since the initially

inward-propagating and reflected fluxes are nearly equal

and opposite, the result is essentially zero net fluxes there.

Outside the forcing locus, the initially outward-propagating

and reflected fluxes combine to essentially double the outward

energy flux and inward angularmomentum flux. The net result is

strong hryui convergence that acts to accelerate themean flow at

the forcing, and hryui divergence that acts to decelerate the

mean flow in the neighborhood of the critical radius. This effect

would act to force localized axially symmetric convergence

around the critical radius in nature or full-physics models.

In frequency space (Fig. 9a) the inner waveguide lies be-

tween the loci where V 5 (v 2 y0/r) 5 0 (blue) and k is large,

and V 5 V1D (red) and k / 0, as shown previously. It is

possible to contrive situations where VRWs are trapped be-

tween two turning radii (Gonzalez 2019), but that circumstance

is of limited interest (Fig. 9b). Wavenumbers 2 and 3 exhibit

narrower waveguides (Figs. 9c,d). VRWs obey the dispersion

relation, (9), so that the wave packets propagate upstream

relative to the mean flow. In the limit of large kr, such that the

waves become radially short, V / 0. The rotation frequency

with respect to the ground, v . 0, is constant. It determines

how fast the wave train rotates as a whole and the width of the

waveguide. Slow rotation yields wider waveguides and pass-

bands. Critical radii for 0.25vq # v # vq range between 130

and 25 km, whereas the turning radius remains essentially fixed

at ;20 km.

FIG. 6. Vortex tracks showing cyclonic orbits for the same duration orbital periods shown in Fig. 4.
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4. Beta-plane simulations

Running the convectively forced model on a b plane high-

lights the different responses to these forcings. The solutions

are linear superpositions of the inner gyres forced by the mass

source–sink, and outer b gyres. The b gyres are forced VRWs

in the outer waveguides of bounded vortices where the mean-

flow radial vorticity gradient is weakly positive. These waves

are forced at zero frequency. In the outer waveguide only low-

frequency, downstream-propagating free waves can exist.

Inward-propagating free waves would be Doppler shifted

to zero frequency and absorbed at the critical radius outside

the vortex core. Outward-propagating free waves would be

Doppler shifted to the cutoff frequency and reflected from an

outer turning point before ultimately reaching the critical ra-

dius where their energy would be absorbed (Part II). This ar-

rangement is the reverse of what happens in the inner

waveguide where VRWs are confined by an inner turning point

and outer critical radius. The locus of vorticity gradient sign

reversal acts as the boundary between the waveguides, where

VRWs propagate with different frequencies and oppositely

directed azimuthal phase velocities.

In an idealized experiment where the b effect turns off after

12 h while the rotating vorticity forcing dipole persists, the

poleward/westward translation accelerates when b is active

and then decelerates gradually as the trochoidal motion per-

sists through the end of the experiment after 24 simulated

hours (Fig. 10a). When the mass source–sink stops at 12 h

without turning off the b effect, the immediate response is

rapid damping of the trochoidal motion to produce smooth,

slowly accelerating northwestward track (Fig. 10b).When both

‘‘convective’’ andb forcing stop simultaneously at 12 simulated

FIG. 7. Wave fluxes of angular momentum (blue) and geopotential fluxes (red) for the same orbital periods shown

in Fig. 4.

FIG. 8. Schematic diagram of VRWs propagating in the inner

waveguide, illustrating standing-wave structure inward from the

forcing spiral-shaped phase lines and outward from the forcing, and

the senses of the eddy transports and phase propagation.
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hours, the trochoidal motion dies out in less than a single orbit,

while the b drift decelerates to about 2/3 of its speed at the

transition by the simulation’s end (Fig. 10c). In this case the

forced b gyres project onto a free wave with almost the same

structure when the forcing stops. It persists because its group

velocity is slow and spatial scale is large so that the energy loss

at the outer waveguide’s critical radius is gradual in contrast

with the oscillatory motion which is quickly damped by fila-

mentation at the inner critical radius. These results are su-

perpositions of two linear solutions that do not interact

dynamically. Nonetheless, they highlight the inherently dif-

fering time scales that characterize VRWs in the inner and

outer waveguides. Additional sensitivity studies appear in

Gonzalez (2019).

5. Vorticity monopoles on a spherical Earth

Unbounded mean vortices, those with nonzero circulation

at large radius, have an inherent physical contradiction

(Fig. 11). For a hypothetical cyclonic vorticity patch on a

spherical Earth, surrounded by zero vorticity elsewhere, cir-

culation around any contour encircling it would be equal to the

patch’s vorticity enclosed (e.g., Davis 1961). From the per-

spective of the patch’s antipode, the same contour would have

an anticyclonic circulation that enclosed zero vorticity. This

situation contradicts Stokes’s theorem. More generally, the

component of the curl normal to the surface of any closed

manifoldmust integrate to zero over the whole surface. If there

were a patch of net vorticity, a singularity would arise around

the antipode where the wind would approach infinity as the

circulation remained constant while the contour’s circumfer-

ence approached zero. Thus, any physically consistent vortex

must be bounded on a spherical domain.

Cyclonic vorticity near the center must be surrounded by an

annulus containing an equal total amount of anticyclonic rel-

ative vorticity. This consideration requires a reversed out-

ward radial vorticity gradient and an outer waveguide where

›z0/›r . 0. For any physical vortex, VRWs in the outer wave-

guide propagate downstream, faster than themean swirling flow.

On the other hand, a ‘‘Rankine-like’’ vortex, where the

swirling wind is inversely proportional to the great-circle dis-

tance from the vorticity patch, avoids this seeming contradic-

tion. Since the circulation in that case decreases away from the

vorticity patch and ultimately becomes zero as the contour

length vanishes, such a vortex would, in fact, be bounded, as are

vortices where the swirling flow is explicitly zero beyond some

finite radius. Bounded vortices have outer waveguides where

VRWs propagate downstream because the negativemean-flow

FIG. 9. (a),(b) Wavenumber-1 inner waveguide showing the frequency passbands between the cutoff frequency

(red) and zero frequency (blue) representing (a) VRWs in a passband between the cutoff and zero frequency and

(b) VRWs in a passbandwith cutoff frequencies at the inner and outer bounds of the waveguide. (c)Wavenumber-2

and (d) wavenumber-3 inner waveguides that are much narrower than wavenumber 1.
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relative vorticity increases to zero outward from the small

anticyclonic values required by zero circulation at large radius.

This configuration suggests the possibility of barotropic insta-

bility (e.g., Kossin et al. 2000) even in tropical cyclones that

lack an outer wind maximum.

Part II showed that a linear, BND model on a b plane,

yielded northwestward motion two to 3 times faster than the

observed b drift for both asymptotically bounded, finitely

bounded, and unbounded vortices. Speeds varied substantially,

yielding 10-day track lengths that varied from 4400 to 8000 km.

In the corresponding nonlinear model, wave–wave interaction

dominated the effects of differing mean vortices, which would,

in any case, evolve from their initial structure over time. Thus,

despite consistency arguments against unbounded profiles, it

may not be essential to avoid them as initial conditions in full

physics model simulations.

6. Synoptic-scale Rossby waves

‘‘Waveguide thinking’’ confirms and extends Macdonald’s

(1968) parallels between VRWs and synoptic-scale Rossby

waves on a midlatitude b plane centered at 458 latitude. The
BND model introduced here is spectral in time and the zonal

(x) direction, with specified frequency and zonal wavenumber,

and finite difference in the meridional (y) direction. It solves

the quasigeostrophic vorticity equation for c in a meridionally

sheared mean zonal flow and computes wave momentum and

geopotential fluxes. The mean-wind profile is a uniform shear,

U(y)5 S(y2 yo), where S5 0.243 1025 . 0 is the shear, and

yo (500 km) is the transition from easterly to westerly mean

flow. The domain extends ;4000 km from 208 to 608N. The

mean flow has weak easterly winds south of 258N, and in-

creasing westerly winds that reach 9 m s21 at 608N (Fig. 12a).

The waves may be thought of as numerical Green’s function

solutions excited withQ, a 50-km-wide sinusoidal forcing at 468
latitude. The critical latitude and turning latitude are 298 and
528, respectively.

The model solves the barotropic, nondivergent vorticity

equation expressed in terms of the streamfunction, c(x, y, t),

such that u 5 2›c/›y and y 5 ›c/›x:�
›

›t
1U

›

›x

��
›2c

›x2
1
›2c

›y2

�
1b

›c

›x
5Q(y

o
) . (11)

In uniform zonal flow, the unforced version of (11) reduces to

the familiar dispersion relation for nondivergent plane Rossby

waves with constant frequency v, zonal wavenumber k, and

meridional wavenumber ‘:

V5v2Uk52
bk

k2 1 ‘2
: (12)

When ‘ is large, V / 0; conversely, when l approaches zero,

the dispersion relation is that for a one-dimensional Rossby

wave V / 2b/k 5 V1D. In the shearing zonal flow, seeking

solutions of the form, Re{C(y)ei(vt 2 kx)}, where C(y) is the

meridional structure function, produces

(v2kU)

�
d2C

dy2
2 k2C

�
2bkC5Q . (13)

FIG. 10. Simulated 24 h vortex tracks where (a) the rotating

source–sink dipole is active throughout, but the b effect artificially

turns off at 12 h, (b) the rotating source–sink turns off after 12 h, but

the b effect remains active throughout, and (c) both the b effect

and the rotating source–sink turn off after 12 h.
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As for VRWs, (13) is readily solved for the streamfunction

using the method of Lindzen and Kuo (1969). Boundary con-

ditions are C 5 0 at both ends of the domain, far outside the

midlatitude waveguide. The solution supports calculation of

meridional momentum and geopotential fluxes.

Forcing near themiddle of the domain produces a wave train

that looks like observed midlatitude cyclones. The comma-

shaped gyres are advected eastward by the mean flow and have

curved tails trailing to the southwest. The meridional pertur-

bation flow between the gyres alternates between poleward,

westerly flow and equatorward, easterly flow that transport

geopotential and momentum. The gyres’ domain of active

propagation is confined within the boundaries of the Rossby

waveguide at y5 900 and;3800 km, but evanescent tails of the

perturbations extend outside the waveguide, particularly on

the poleward side.

As the wave packets propagate away from the forcing lat-

itude, translation frequency v and zonal wavenumber k re-

main constant, but their Doppler-shifted frequencies V(y) 5
v 2 kS(y 2 y0) vary meridionally. V becomes more negative

poleward of the forcing latitude and less negative equatorward

(Fig. 12a). Thus, equatorward-propagating waves are Doppler

shifted to V 5 0 at the critical latitude, where their vorticity

becomes filamented. They assume the form of curved, cold-

front-like, troughs, and are ultimately absorbed. Dissipation

and conservation of wave action as V / 0 are the absorption

mechanisms in the linear context, rather than wave breaking

(e.g.,McIntyre and Palmer 1983;Homeyer andBowman 2012).

FIG. 11. An isolated cyclonic vorticity patch on a sphere with no vorticity anywhere else and the apparent

contradiction of anticyclonic circulation at the patch’s antipode, but with no enclosed vorticity.

FIG 12. (a) Rossby waveguide bounded on its equatorward side by a critical latitude where the Doppler-shifted

frequencyV5 0 and on its poleward side by a turning latitude whereV52b/k and (b) streamfunction of a forced,

synoptic-scale Rossby wave within this waveguide.
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The latitude where V/ V1D 5 2b/k is a turning point where

initially poleward-propagating waves are Doppler shifted to

the highest (most negative) frequency propagating Rossby

waves can have. Wave energy reflects from the turning point

(;528N) and is redirected equatorward where the waves are

ultimately Doppler shifted to zero frequency and absorbed

as described above, consistent with Karoly and Hoskins

(1982), Karoly (1983), and James (1987). On the poleward side

of the forcing, between the forcing latitude and the turning

point, the waves have a standing-wave structure due to a

superposition of the initially poleward-propagating and re-

flected wave trains. Between the forcing and critical latitudes,

the waves propagate equatorward. They are a combination

of initially equatorward-propagating and reflected initially

poleward-propagating waves (Fig. 12b). They become comma-

shaped gyres that resemble cold fronts trailing from frontal

cyclones as they approach the critical latitude. The semicircu-

lar half gyres on the poleward side and trailing vorticity fila-

ments suggest the appearance of frontal cyclones on surface

analyses.

As expected, the foregoing discussion confirms and extends

Macdonald’s (1968) analogy between spiral bands and mid-

latitude cyclones. Momentum and wave energy fluxes (Fig. 13)

are also consistent with this analogy. Forced synoptic-scale

Rossby waves produce oppositely directed zonal momentum,

hyui and geopotential fluxes, hyfi (e.g., Lorenz and Hartmann

2003). The geopotential flux is negative (equatorward), sus-

tained by both initially equatorward-propagating waves and

reflected, initially poleward-propagating, waves. It is largely

confined to the equatorward side of the forcing and goes to

zero at the critical latitude. The equatorward decrease of the

energy flux within this interval (Randel and Held 1991) arises

from conservation of wave action, hyfi/V(y). The zonal mo-

mentum flux is poleward and also confined between the forcing

and critical latitudes. It is nearly constant with latitude except

in the neighborhood of the critical latitude where it is divergent

because of absorption. There, it acts to decelerate westerly

mean flow (Held and Phillips 1990). It is strongly convergent

in a narrow region centered on the forcing latitude, where

it acts to accelerate the westerly mean flow (Geisler and

Dickinson 1974). Thus, as shown schematically in Fig. 14, the

simulated waves act to transport westerly momentum from the

subtropics to middle latitudes, just as baroclinically unstable

Rossby waves do. The essential difference here is that these are

forced, neutral, nondivergent Rossby waves. Nonetheless,

these results provide an accessible illustration and extension

of ‘‘negative viscosity’’ (Starr 1968) in which energy input

to Rossby waves embedded in shearing zonal flow acts to ac-

celerate midlatitude westerly flow, whether the energy comes

from baroclinic instability or other sources, such as flow

over topography, localized heating, or even tropical cyclones.

Shapiro and Ooyama (1990) anticipated that the comma con-

figuration of tropical cyclones is a superposition of planetary

Rossby waves ultimately induced by latent heat release in

vortex core and the matching between the high Rossby

number flow there and the low Rossby number flow in the

surroundings. Although the convergence of westerly mo-

mentum at latitudes where neutral Rossby waves are forced

is a straightforward result of their kinematics, it is not widely

appreciated.

7. Conclusions

Addressed here are the dynamics of vortex Rossby waves

(VRWs) in the context of tropical cyclone (TC) motion and

intensity change. The Doppler shift and VRW’s relatively slow

tangential phase propagation confine them to annular wave-

guides. Tangential wavenumber-1 VRWs force vortex motion

directly and experience the least Doppler shift so that they

propagate in radially wider waveguides than wavenumbers$ 2

studied previously.

The simulations address both the time dependent structure

of wavenumber-1 VRWs and the meridional structure of a

train of synoptic-scale Rossby waves. In both cases the solu-

tions have specified propagation frequency with respect to the

ground and tangential, or zonal, wavenumber. The VRWs are

FIG. 13. (a)Meridional wave fluxes of geopotential andmomentum, illustrating how forcedRossby waves transport

wave energy equatorward and (b) westerly momentum poleward.
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simulated on an f plane, forced by an annular, rotating vor-

ticity source–sink pair slightly inward from the radius of

maximum wind and propagate upon the radial gradient of

mean-vortex relative vorticity. The synoptic-scale waves are

forced diabatically or by topography in a narrow band of

latitudes on a b plane with f and b values appropriate to 458
latitude. Waves that propagate inward, or poleward, from the

forcing are Doppler shifted to higher frequency and reflected

from a turning radius, or latitude, where their Doppler-

shifted frequency reaches that of a one-dimensional Rossby

wave. They have standing-wave structure. Waves that ini-

tially propagate outward, or equatorward, are Doppler shif-

ted to lower frequencies and maintain trailing spiral structure.

They evolve into a region of tightly wrapped trailing vorticity

filaments as they approach an outer critical radius, or equator-

ward critical latitude, where their frequencies are Doppler

shifted to zero and they are absorbed.

The waves support eddy fluxes of wave energy and mo-

mentum. The energy flux diverges both toward higher and

lower frequencies from the forcing radius, but the wave

train that propagates toward higher frequencies reflects

from the turning radius so that the net energy flux is zero

inside, or poleward, from the forcing radius. The angular, or

westerly, momentum flux is directed from the critical radius

to the forcing radius. The momentum flux acts to decelerate

the mean flow in the neighborhood of the critical radius and

accelerate the mean flow at the forcing radius. For synoptic-

scale waves the equatorward geopotential flux and pole-

ward flux of westerly momentum are consistent with frontal

cyclone dynamics. The critical latitude is the locus where

the trailing vorticity filaments curve southwestward, remi-

niscent of the wintertime cold fronts in the southeastern

United States.

In the VRW context, combining b-effect forcing with the

rotating vorticity source/sink produces more complex vortex

motion—a linear superposition of large-scale northwestward

drift and high-frequency orbits that resemble observed

trochoidal tracks. The b-effect translation decays slowly after a

shift from a b plane to an f plane because of the b gyres’ whole-

vortex spatial scale and the slower group velocity at the pe-

riphery. When the rotating mass source–sink pair is suppressed

on a b plane, the track oscillations decay quickly.

Vorticity monopoles are inconsistent with Stokes’s theo-

rem on a spherical Earth because the swirling wind would

approach infinity as the length of a contour enclosing zero

vorticity shrinks to zero length near the antipode. By contrast,

bounded vortices, whose circulations approach zero or be-

come identically zero at some finite radius, are consistent with

Stokes’s theorem. Thus, an annulus of anticyclonic vorticity

must surround the inner core of cyclonic vorticity, implying

the existence of an outer waveguide, where VRWs propagate

faster than the mean flow. Because of a reversed radial vor-

ticity gradient at the vortex periphery, the possibility of

barotropic instability exists even without an outer wind

maximum.

Future investigations might include seeking unstable baro-

tropic growing modes on a finitely bounded vortex and

extending the present calculation to VRWs on a three-

dimensional baroclinic vortex. More generally, waveguide

thinking provides clear insight into vortex Rossby wave dy-

namics and reinforces the analogy with synoptic-scale Rossby

waves. It shows promise as an alternative to the traditional

‘‘paper-and-pencil’’ way of teaching dynamic meteorology by

emphasizing numerical solutions of classical problems in

terms of waveguides. One may argue that these solutions are

richer in terms of phenomenology and closer to the under-

lying physics.
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