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Synthesis of Vortex Rossby Waves. Part III: Rossby Waveguides, Vortex Motion, and the
Analogy with Midlatitude Cyclones
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ABSTRACT: Vortex Rossby waves (VRWs) affect tropical cyclones’ (TCs’) motion, structure, and intensity. They
propagate within annular waveguides defined by a passband between ();p, the Doppler-shifted frequency of a one-
dimensional VRW, and zero. Wavenumber-1 VRWs cause TC motion directly and have wider waveguides than
wavenumbers = 2. VRWs forced with fixed rotation frequency propagate away from the forcing. Initially outward-
propagating waves are Doppler shifted to zero at a critical radius, where they are absorbed. Initially inward-propagating
waves are Doppler shifted to (p, reflect from a turning point, propagate outward, and are ultimately absorbed at the
critical radius. Between the forcing and the turning radii, the VRWs have standing-wave structure; outward from the forcing
they are trailing spirals. They carry angular momentum fluxes that act to accelerate the mean flow at the forcing radius and
decelerate it at the critical radius. Mean-flow vorticity monopoles are inconsistent with Stokes’s theorem on a spherical
Earth, because a contour enclosing the monopole’s antipode would have nonzero circulation but would enclose zero
vorticity. The Rossby waveguide paradigm also fits synoptic-scale Rossby waves in a meridionally sheared zonal flow. These
waves propagate within a waveguide confined between a poleward turning latitude and an equatorward critical latitude.
Forced waves are comma-shaped gyres that resemble observed frontal cyclones, with trailing filaments equatorward of the
forcing latitude and standing waves poleward. Even neutral forced Rossby waves converge westerly momentum at the
latitude of forcing.
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1. Introduction In a real, bounded hurricane, the radial profile of relative
vorticity { is strongly cyclonic in the vortex core and sur-
rounded by enough anticyclonic ¢ that the circulation becomes
zero at some finite radius. Many idealized studies are incon-
sistent with Stokes’s theorem on a sphere because they are
based upon mean-flow vorticity monopoles. Here we use an
idealized barotropic nondivergent (BND) model to advance
physical understanding of linear vortex Rossby waves (VRWs)
propagating upon the radial gradient of axially symmetric
{ (e.g., Montgomery and Kallenbach 1997, hereafter MK97).
VRWs propagate within annular waveguides defined by zero
Doppler-shifted frequency and €);p, the frequency of a one-
dimensional wave with the same azimuthal wavenumber
(Cotto et al. 2015, hereafter Part I; Gonzalez et al. 2015,
hereafter Part II). A realistic, bounded vortex has an inner
waveguide where the waves’ intrinsic propagation is up-
stream, more slowly than the mean flow, and an outer
waveguide where their intrinsic propagation is downstream,
faster than the mean flow. Vorticity monopoles have only the
downstream-propagating waveguide. This study addresses
VRW’srolesin TC motion, structure, and intensity change. In
addition, the same modeling approach is reapplied to middle
latitude Rossby waves to confirm and extend Macdonald’s
(1968) original analogy with synoptic-scale cyclones.

To a first approximation, TC motion can be modeled as
advection by the large-scale steering flow. Absolute vorticity
is conserved in frictionless, nondivergent flow. On a spheri-
cal Earth, the B effect, where B is the meridional gradient of
the Coriolis parameter, contributes to TC motion (e.g.,
Corresponding author: Hugh E. Willoughby, willough@fiu.edu Holland 1983; Chan and Williams 1987). Advection of 8 by

Tropical cyclones (TCs) are a worldwide threat to life and
property. Their impacts are increasing in step with growing
coastal populations, increasing development, and arguably
climate change (e.g., Knutson et al. 2010). TC structure and
track can dominate local impacts. Minor track deviations can
lead to significant differences in storm surge. Outer spiral
rainbands are often destructive even though they are well
removed from the intense vortex core. Here we explore
inner-core dynamics that influence motion and rainband
configuration.

A TC’s primary circulation swirls cyclonically around its low
pressure center in approximate gradient balance. Superimposed
upon it are frictionally and diabatically forced secondary cir-
culations that act to spin up and maintain the vortex. These
flows converge moist air in contact with the ocean surface, rise
in the eyewall to feed intense convection, and diverge near
tropopause level. Convective latent heat release in the eyewall
sustains the warm core. In radar and satellite imagery, the
eyewall is surrounded by curved rainbands (Fig. 1). The ob-
jective here is insight into the dynamics of the bands them-
selves and their interactions with the primary and secondary
circulations.
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80 Image from: AMX 08A02017 10:03 UTC ( 6:03 AM EDT)
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FIG. 1. Miami radar image of Hurricane Irma at 1003 UTC 10
Oct 2017, showing the heaviest precipitation in the eyewall and
outer rainbands.

equatorward mean flow on the west side of the symmetric
vortex and poleward mean flow on the east side combine to
force a streamfunction dipole such that the flow between its
gyres advects the mean vortex poleward and westward. As
shown in Part II, wave-wave interactions among induced
VRWs are essential to constraining the g drift to a reason-
able 1-2m s .

In a BND model, rotating vorticity source-sink dipoles in-
duce motion by forcing flow across the center (Willoughby
1992). This ““convective” effect works only for wavenumber 1
because the kinematics of wavenumbers = 2 require both the
streamfunction and its gradient to be zero in the neighborhood
of the vortex center. Convective asymmetries, such as spiral
rainbands, are more complicated than the static 8 gyres be-
cause the cells rotate around the center to cause trochoidal
motions observed in nature (Nolan and Montgomery 2000,
hereafter NMOO; Nolan et al. 2001; Lawrence and Mayfield
1977). Wavenumber-1 asymmetries also have the widest pos-
sible Rossby waveguide for a given vortex structure and im-
posed rotation frequency.

Macdonald (1968) first noticed that rainbands observed by
radar exhibited Rossby-wave-like characteristics. Observed
spiral bands tilted outward from the axis of mean-vortex ro-
tation and moved with the mean flow, but more slowly, much as
synoptic-scale troughs do. Their inward transport of cyclonic
angular momentum was analogous to the poleward flux of
westerly momentum in the general circulation. These analogies
inspired a formal theory on VRWs (MK97): the asymmetric
balance (AB) model based upon the assumption that square of
VRW’s Doppler-shifted frequency was much less than the
square of local inertia frequency. The AB model was governed
by the linearized asymmetric vorticity equation, (1), for a
simple vorticity monopole on an f plane in stationary cylin-
drical coordinates:
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Here ¢ is time; vy is the axially symmetric mean tangential ve-
locity; r is radius; A is azimuth; {’ and ¢/ represent the pertur-
bation vorticity and streamfunction, respectively; and ¢ is the
axially symmetric absolute vorticity. Outward-propagating
VRW packets became nearly stationary at a finite, outer
stagnation radius as their Doppler-shifted frequencies ap-
proached zero and their radial wavenumbers became large.
Existence of the stagnation (or critical) radius highlighted the
dependence of VRW propagation upon the mean radial vor-
ticity gradient. MK97 hypothesized that forced VRWs trans-
ported energy from one radial band to another.

AB was tailored to represent VRWs but not inertia—gravity
waves. Although, MK97 speculated that previous shallow-
water, primitive equation models mistook VRWs for inertia
gravity waves, the faster intrinsic propagation of gravity waves
and their ability to radiate into the storm environment support
a clear distinction. By analogy with nondivergent synoptic-
scale Rossby waves, MK97 derived a VRW dispersion relation,
(2), which showed that VRWs propagate against the cyclonic
angular velocity in the vortex core when the mean vorticity
gradient is negative:
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Here, Q(r) is the Doppler-shifted frequency, w is the wave
train’s rotation frequency relative to the ground, # is the tan-
gential wavenumber, and k is the local [in the Wentzel-
Kramers-Brillouin (WKB) sense]| radial wavenumber. The
dispersion relation describes the VRW’s propagation dynam-
ics. Both w and n are fixed for a given wave train. Since d{o/dr <
01in the inner waveguide, the waves rotate more slowly than the
wind within a frequency passband (0 = Q = Q,p, = (0 /or)(nir) .
When the () approaches zero at the critical (stagnation) radius,
k becomes large; k approaches zero when ) — ;p. Further
notable results from AB theory included linear phase and
group velocities, identification of VRWs with at least some
observed spiral bands, and recognition of VRWs potential role
in TC intensification.

Subsequent research confirmed that angular momentum
transport by forced VRWs may cause eyewall contraction and
mean-flow intensification (Chen and Yau 2001; Moller and
Shapiro 2002; Chen et al. 2003). The first of these studies
identified prograde VRWs that propagate faster than the tan-
gential winds where d{¢/dr > 0 on the inward sides of potential
vorticity rings and carry eddy vorticity fluxes toward the eye-
wall. Chen et al. (2003) specifically noted acceleration of
the mean tangential wind in the lower and middle troposphere
and deceleration aloft. At least two studies (Wang 2002; Chen
and Yau 2003) argued that wave-mean flow interactions ac-
tually preventing intensification because the VRWs accelera-
ted tangential winds in the eyewall directly leading to axially
symmetric outflow and deceleration at the RMW.

Theoretical studies provided insight into VRW dynamics,
but existence of VRWs in real TCs remained uncertain.
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Aircraft and radar observations in eastern Pacific Hurricanes
Jimena of 1991 and Olivia of 1994 (Reasor et al. 2000; Black
et al. 2002) revealed low-wavenumber, cyclonically rotating
eyewall perturbations, vorticity asymmetries, and rainbands
with VRW-like properties (see Muramatsu 1986; Kuo et al.
1999). In Hurricane Olivia, spiral bands of vorticity were
found in regions where wavenumber-2 vorticity asymmetries
appeared to be symmetrizing. Asymmetries exhibited rota-
tion rates slower than the mean flow’s angular velocity near
deep, intense convection at the RMW. Hurricanes Jimena
and Olivia were sheared storms with periodic convection that
exhibited radar echoes and updrafts forming in the down-
shear quadrant. The reflectivity asymmetries were advected
around the eye at 60%—-80% of the swirling wind, consistent
with convectively excited VRW propagation. Numerical
simulations and theoretical studies of these features generally
validated the observational findings (Chen and Yau 2001;
Wang 2002; MK97).

Despite the foregoing advances in understanding of VRW
dynamics, the waves’ effects on TC motion, and the wave-
guides within which they propagate have received limited
attention. Part I built upon previous work with frequency-
domain simulations of episodically forced, BND VRWs with
wavenumbers = 2 in the inner waveguide of bounded vortices.
Part II simulated wavenumber 1 VRWs in time domain on a
B plane to demonstrate that wave—-wave interaction was es-
sential to reasonable poleward and westward B-drift speeds.
The primary motivation here is to extend Part I’s insights
to wavenumber 1, which can force TC motion and has the
widest possible waveguide for given w. The model focuses on
convectively forced wavenumber 1, as in Part I, but uses the
time-domain approach of Part II. Section 2 describes formu-
lation of the BND model in translating cylindrical coordinates.
Section 3 applies it to the convectively forced wavenumber 1 at
different frequencies. Section 4 revisits the B-plane problem
and section 5 examines vorticity monopoles on a spherical
Earth. Section 6 connects VRWs back to Macdonald’s (1968)
original analogy with midlatitude cyclones, and section 7
summarizes the results and draws conclusions.

2. Formulation

A BND, vortex-following, semispectral model set in a still
environment on an f plane is the simplest formulation able
to simulate vortex motion and 2D convectively forced
wavenumber-1 VRWs. The model, written in MATLAB, ac-
cepts as inputs the mean vortex and wave forcing, and marches
the vorticity equation forward in time in translating cylindrical
coordinates (Fig. 2). After each time step, the vorticity is in-
verted to obtain the streamfunction. The moving vortex center
corresponds to the coordinate’s origin. It is tracked by mini-
mizing the a-gyre apparent asymmetry due to mislocation of
the mean-vortex center (Willoughby 1992).

The mean vortex structure derives from the Wood and
White (2010) formulation (Fig. 3). The radial profile of the
cyclostrophic wind inside the RMW obeys U-shaped power
law with an exponent of 1.1; outside the RMW it obeys an in-
verse power law with an exponent of —0.5 (e.g., Riehl 1963);
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FI1G. 2. Vortex-following cylindrical coordinates used in the
present analysis (Part II). Here O is the origin, the hurricane
symbol marks the vortex center, e is the centering error, and the
other variables are as described in the text.

and it has a smooth, though reasonably sharp, transition
(Wood-White A = 0.25) across the RMW. The RMW is 25 km
and maximum cyclostrophic is 50 m s~ '.The profile used is the
gradient wind derived from the foregoing cyclostrophic profile
at 20° latitude. This formulation is more logically consistent
because the cyclostrophic profile has a well-defined pressure—
wind relation and the gradient wind’s circulation goes asymp-
totically to zero as r becomes large. It is thus an asymptotically
bounded vortex rather than an unbounded vortex.

Vorticity is the prognostic variable in the present BND
model. The axially symmetric mean-flow relative vorticity is
strongly cyclonic in the vortex core, weakens with increasing
radius, and reverses sign at the periphery before increasing
asymptotically to zero. The mean radial vorticity gradient,
alo/or, is generally negative in the core, but can be positive in a
narrow interval within the eye. The derivation of the vorticity
equation begins with the wavenumber-1 radial and tangential
momentum equations, (3) and (4), in translating cylindrical
coordinates (e.g., Willoughby 1992):

ou v, ou ap
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v v, v 19¢
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Here u is radial velocity (positive outward), v is tangential
velocity (positive cyclonically), ¢ is geopotential, A is azi-
muth (cyclonically from north), r is radius, ¢, and c, are the
radial and tangential components of the coordinates transla-
tion, F, and F) are radial and tangential momentum forcing,
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FI1G. 3. (a.) Mean tangential wind profile and (b) vorticity (red) and
vorticity gradient (blue).

and &, = 2vuo/r + fis the inertia parameter. The forcing is de-
rived from the gradient of a scalar A such that it is non-
divergent. The complex motion is C = ¢, + ic,, where c, and ¢,
are its zonal and meridional components, so that ¢, =
Re(—iCe ™) and ¢, = Re(Ce ™). Cross differentiation and
subtraction eliminates ¢ to yield the nondivergent wavenumber-1
vorticity equation:

d v, 0 v v 1du a¢,
4+ 0 V(D2 + (u— 20
(6t r a)\) (ar r ra/\) (w=c) ar
A 19A  10°A
=—+-—+—-—=0. 5
arz roar r2or? 0 ®)
The imposed forcing Q is the Laplacian of A. In the fre-
quency domain, the wavenumber-1 solution is the real
part of the product of the complex amplitude of the
streamfunction, W(r, r), with an imaginary exponential in
azimuth, ¢ = Re{W(r, )¢/’ ~ M} such that v = dy/or and
u=—r"toglox:

Q(azqf+1a\lfig)7(g,c)%:g (6)
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The amplitude of perturbation vorticity is
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Rearranging the terms in (6) yields the vorticity tendency
equation which is expanded with finite differences to march
{ forward in time:

W v
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W is computed by inversion of (7) with the Lindzen and Kuo
(1969) algorithm, and eddy fluxes of geopotential and an-
gular momentum and their convergences are calculated.
The boundary conditions imposed are di/dr = 0 at the center
and the periphery. As a practical matter the solutions are
insensitive to them since the evanescent tails have enough
distance to decay between the turning or critical radius and
the boundaries.

The dispersion relation, [(2), offers insight into VRW
propagation. If W(r, t) is represented with zero-order Hankel
functions, (6) becomes

-1
v, r oL,/or

Q=w—-2= 0
@ k2 +r2

)
where k, is the local radial wavenumber. As shown above, ra-
dially long VRWs approach the Rossby cutoff frequency,
Q — Qup = rdly/dr, at the inner boundary of the waveguide.
Short waves’ Doppler-shifted frequencies approach zero, () —
0 at the outer critical radius. Radial phase and group velocities,
(10), are obtained as in MK97:

1 (v
c, =—(2+
pr kr<r

VRW’s propagation characteristics are consistent with that of
midlatitude Rossby waves. The radial wavenumber determines
the sense of propagation. If k, is positive, phase propagates
outward and energy propagates inward; if it is negative phase
propagates inward and energy propagates outward. This sit-
uation contrasts with tangential propagation in the inner
waveguide, where phase always propagates upstream relative
to the mean flow, and energy may propagate upstream or
downstream dependent upon whether k, is larger or smaller

than r ™',

r—1a§0/ar>7 - 2krlag,or (10)

k2 +r2 (k2 +r2y "

3. Forced wavenumber 1

This section examines wavenumber-1 VRWs forced at ra-
dius r,, specified to be the RMW, with rotation frequencies:
0.25w,, 0.50w,, 0.75w,, and w,, where w, = vy(r,)/r,. The
analysis presents the solution expressed in terms of both ¢, to
highlight propagation within the waveguide, and , to illustrate
induced, vortex-scale flow that extends beyond the waveguide.
It also depicts mean-vortex track and eddy fluxes of angular
momentum and geopotential to understand interaction with
the mean flow. The rotation frequency w determines the
waveguide geometry and where flux convergences and diver-
gences occur. Comparison of wavenumber-1 results with Part
I’s higher-wavenumber VRW are informative.
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FIG. 4. Contour plots of wavenumber-1 perturbation vorticity after 24 h for specified forcing orbital periods: (a) 3.5,
(b) 1.8, (c) 1.2, and (d) 0.87 h, showing symmetrized trailing spirals at the end of each simulation.

The forcing is localized in a 20-km-wide annulus centered
atr = 20 km, 5 km inside the RMW, and is zero everywhere
else (Part I). It rotates with the specified frequency w, has
a bell-shaped radial structure, wavenumber-1 azimuthal
structure, and is constant in time apart from the rotation.
Since the forcing is continuous, only the gyres’ orientation
changes with time as the dipole rotates after startup tran-
sients have died out. For example, v = 0.25w, corresponds
to a 3.5-h orbital period (T), or approximately 7 full rota-
tions per simulated day. This aspect of the forced dipole’s
behavior is similar to the algebraically growing NMO00
instability.

The vorticity field appears as a rotating wavenumber-1 di-
pole centered at r,, the forcing radius (Fig. 4). A smaller dipole
appears near the center of the vortex, because of df¢/ar > 0
near the center, as described by NMO0O. The perturbations
symmetrize with time, as { becomes filamented at the critical
radius, to produce an outer ring of tightly wound, interlocking
spirals, and the filamentation time (Tsai et al. 2010) becomes
short. Ripple-like filaments between the dipole and ring are
outward-propagating VRWs. The forcing produces a weak
vorticity gradient across the domain. Subtle vorticity ripples

modulate the boundary between cyclonic and anticyclonic
broadscale vorticity to form a low-amplitude ‘“wake” that
aligns more or less with the vortex motion.

For most frequencies, vorticity is dominated by two features:
the forced dipole near the RMW and filaments in the neigh-
borhood of the critical radius. Short, low-amplitude, waves fill
the middle of the waveguide. Beyond the critical radius, the
oscillations are evanescent. Higher rotation frequencies nar-
row the waveguide and compress the wave pattern (Figs. 4b,c).
Ultimately when o = w,, the critical radius overlaps the forcing
so that the waves are radially evanescent throughout, consis-
tent with Part 1.

The corresponding streamfunctions (Fig. 5) exhibit inner
dipoles of opposite sign to the forced vorticity gyres. At low
frequencies (periods = 3.5 and 1.8 h, Figs. 5a,b) they have
much larger trailing spirals that become smaller and morph
into circular gyres (period = 1.2 h, Fig. 5b) and finally to
leading spirals (period = 0.87 h, Fig. 5¢) as w, increases. The
outer gyres/spirals arise because of the way the vorticity fila-
ments interact. Over much of the circumference of the critical
radius, equal numbers of filaments with opposite sign occupy
the same azimuth. They mask each other in the inversion for
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FI1G. 5. Contour plots of wavenumber-1 perturbation streamfunction for the same specified duration orbital periods
shown in Fig. 4. Note the change of scale. The dashed circles mark the critical radii from Fig. 4.

the streamfunction because of their small spatial scale, but
when filaments of one sign or the other predominate they oc-
cupy the centers of the gyres on opposite sides of the center.
There, arcs of net vorticity induce the streamfunction gyres.
The resulting field causes cross-vortex flow between the gyres
that advects the axially symmetric mean vorticity to induce
vortex motion.

Flow across the center is different from that in Part I be-
cause the center boundary condition for wavenumbers = 2
requires both zero streamfunction and zero radial derivative
across the center, whereas wavenumber 1 requires zero
streamfunction, but nonzero gradient because the stream-
function changes sign across the center. The result is nonzero
flow across the center that rotates with gyres to cause orbital
vortex motion.

Initially the forcing causes a chaotic start-up transient before
the solution stabilizes. The track then spirals cyclonically out-
ward from the initial position and soon becomes a circular orbit
at nearly constant speed (Fig. 6). Orbital speeds and radii vary
with frequency from 2.42 to 3.65 m s~ ! and from ~1 to 5 km,
respectively. Note that these orbital radii are significantly less
than the RMW. Both motion parameters are sensitive to w.

The orbital motion arises because net asymmetric vorticity
accumulates at the critical radius. It induces the outer
streamfunction gyres, which support flow across the center and
vortex motion. The orbital speed is the product of orbital
radius with w. For a fixed frequency, increased orbital radius
is the only way to increase the speed. Nonetheless, the speed
generally increases incrementally with decreasing period, ex-
cept when w = w,, where the vortex has the slowest speed.
By contrast, Willoughby (1992) showed the speed was fastest
when the forcing rotated with mean-vortex flow’s orbital
period.

Vortex Rossby waves can change TC structure and in-
tensity through eddy energy and angular momentum trans-
ports (Fig. 7). For example, NM0O noted that eddy fluxes
due to their algebraic instability adjusted the wind profile
inside the RMW toward solid-body rotation. In the present
simulations, the energy and momentum fluxes are (¢pu) =
rd(pu) dr and (rvu) = r¢ (rvu) dr, respectively. For a 3.5-h
period (Fig. 7a), the magnitudes of the acceleration and
deceleration are nearly identical, so that the net result is
inward redistribution of mean-flow angular momentum. In a
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FIG. 6. Vortex tracks showing cyclonic orbits for the same duration orbital periods shown in Fig. 4.

barotropic model, these fluxes would cause the vortex
spinup at the forcing locus (e.g., Gao and Zhu 2016). In a
real hurricane, the momentum sink at the critical radius
would force compensating inflow (Andrews and Mclntyre
1976a,b; Boyd 1976) to replace the eddy-flux deficit. It is
reasonable to suppose that inflow would also bring CAPE to
feed convection near a developing outer wind maximum.
As shown schematically in Fig. 8, outside the forcing ra-
dius, initially outward-propagating VRWs sustain an out-
ward energy flux and inward angular momentum flux. Inside
the forcing radius, the initially inward-propagating waves
are reflected from the turning radius. Since the initially
inward-propagating and reflected fluxes are nearly equal
and opposite, the result is essentially zero net fluxes there.
Outside the forcing locus, the initially outward-propagating
and reflected fluxes combine to essentially double the outward
energy flux and inward angular momentum flux. The net result is
strong (rvu) convergence that acts to accelerate the mean flow at
the forcing, and (rvu) divergence that acts to decelerate the

mean flow in the neighborhood of the critical radius. This effect
would act to force localized axially symmetric convergence
around the critical radius in nature or full-physics models.

In frequency space (Fig. 9a) the inner waveguide lies be-
tween the loci where ) = (w — vo/r) = 0 (blue) and k is large,
and Q = Qp (red) and k — 0, as shown previously. It is
possible to contrive situations where VRWs are trapped be-
tween two turning radii (Gonzalez 2019), but that circumstance
is of limited interest (Fig. 9b). Wavenumbers 2 and 3 exhibit
narrower waveguides (Figs. 9c,d). VRWs obey the dispersion
relation, (9), so that the wave packets propagate upstream
relative to the mean flow. In the limit of large k,, such that the
waves become radially short, ) — 0. The rotation frequency
with respect to the ground, w > 0, is constant. It determines
how fast the wave train rotates as a whole and the width of the
waveguide. Slow rotation yields wider waveguides and pass-
bands. Critical radii for 0.250w, = v < w, range between 130
and 25 km, whereas the turning radius remains essentially fixed
at ~20 km.
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in Fig. 4.
4. Beta-plane simulations rapid damping of the trochoidal motion to produce smooth,

Running the convectively forced model on a 8 plane high- il owly ac?elcir ating nortl'qwestwar.d track (Fig. 100). W.hen both

. . . . convective” and $ forcing stop simultaneously at 12 simulated
lights the different responses to these forcings. The solutions

are linear superpositions of the inner gyres forced by the mass
source-sink, and outer 3 gyres. The B gyres are forced VRWs
in the outer waveguides of bounded vortices where the mean-
flow radial vorticity gradient is weakly positive. These waves
are forced at zero frequency. In the outer waveguide only low-
frequency, downstream-propagating free waves can exist.
Inward-propagating free waves would be Doppler shifted
to zero frequency and absorbed at the critical radius outside
the vortex core. Outward-propagating free waves would be
Doppler shifted to the cutoff frequency and reflected from an
outer turning point before ultimately reaching the critical ra-
dius where their energy would be absorbed (Part II). This ar-
rangement is the reverse of what happens in the inner k ¥
waveguide where VRWs are confined by an inner turning point o5as <
and outer critical radius. The locus of vorticity gradient sign
reversal acts as the boundary between the waveguides, where
VRWs propagate with different frequencies and oppositely
directed azimuthal phase velocities.

In an idealized experiment where the B effect turns off after
12 h while the rotating vorticity forcing dipole persists, the
poleward/westward translation accelerates when S is active
and then decelerates gradually as the trochoidal motion per-
sists through the end of the experiment after 24 simulated  waveguide, illustrating standing-wave structure inward from the

hours (Fig. 10a). When the mass source-sink stops at 12 h  forcing spiral-shaped phase lines and outward from the forcing, and
without turning off the B effect, the immediate response is  the senses of the eddy transports and phase propagation.

ritical Radj

Inner Waveguide

Turning
Radius

¢°—*__.-'

Advection

FIG. 8. Schematic diagram of VRWs propagating in the inner

Unauthenticated | Downloaded 08/04/21 07:35 PM UTC



AUGUST 2021

GONZALEZ AND WILLOUGHBY

2635

T =0.87266 hrs

= = =T=1,1636 hrs
—emeem T =1 7453 hrs
........... T =3.4907 hrs

= slationary wave

]

Doppler-shifted Frequency (s'1 x1 Ija)

0
2T
al
T =-3.4907 hrs
s} = = =T=-14.5444 hrs
—————T = 14.5444 hrs
........... T =3.4907 hrs
—— slationary wave
-8 —

T=1.7453 hrs
= = =T=0.87266 hrs
=e=me=T=(058178 hrs
----------- T=043633 hrs

slationary wave

e {1
215

Doppler-shifted Frequency ($' x1 IJ'S)

0 40 80 120 160
Radius (km)

200 0 40

T =0.87266 hrs
= = =T=04333 hrs
T =0.29089 hrs
s T = 0.21817 hrs
stationary wave

o

u/’ (d.)

i

80 120 160 200
Radius (km)

FIG. 9. (a),(b) Wavenumber-1 inner waveguide showing the frequency passbands between the cutoff frequency
(red) and zero frequency (blue) representing (a) VRWs in a passband between the cutoff and zero frequency and
(b) VRWsin a passband with cutoff frequencies at the inner and outer bounds of the waveguide. (c) Wavenumber-2
and (d) wavenumber-3 inner waveguides that are much narrower than wavenumber 1.

hours, the trochoidal motion dies out in less than a single orbit,
while the B drift decelerates to about 2/3 of its speed at the
transition by the simulation’s end (Fig. 10c). In this case the
forced B gyres project onto a free wave with almost the same
structure when the forcing stops. It persists because its group
velocity is slow and spatial scale is large so that the energy loss
at the outer waveguide’s critical radius is gradual in contrast
with the oscillatory motion which is quickly damped by fila-
mentation at the inner critical radius. These results are su-
perpositions of two linear solutions that do not interact
dynamically. Nonetheless, they highlight the inherently dif-
fering time scales that characterize VRWs in the inner and
outer waveguides. Additional sensitivity studies appear in
Gonzalez (2019).

5. Vorticity monopoles on a spherical Earth

Unbounded mean vortices, those with nonzero circulation
at large radius, have an inherent physical contradiction
(Fig. 11). For a hypothetical cyclonic vorticity patch on a
spherical Earth, surrounded by zero vorticity elsewhere, cir-
culation around any contour encircling it would be equal to the
patch’s vorticity enclosed (e.g., Davis 1961). From the per-
spective of the patch’s antipode, the same contour would have

an anticyclonic circulation that enclosed zero vorticity. This
situation contradicts Stokes’s theorem. More generally, the
component of the curl normal to the surface of any closed
manifold must integrate to zero over the whole surface. If there
were a patch of net vorticity, a singularity would arise around
the antipode where the wind would approach infinity as the
circulation remained constant while the contour’s circumfer-
ence approached zero. Thus, any physically consistent vortex
must be bounded on a spherical domain.

Cyclonic vorticity near the center must be surrounded by an
annulus containing an equal total amount of anticyclonic rel-
ative vorticity. This consideration requires a reversed out-
ward radial vorticity gradient and an outer waveguide where
dlo/dr > 0. For any physical vortex, VRWs in the outer wave-
guide propagate downstream, faster than the mean swirling flow.

On the other hand, a ‘“‘Rankine-like’” vortex, where the
swirling wind is inversely proportional to the great-circle dis-
tance from the vorticity patch, avoids this seeming contradic-
tion. Since the circulation in that case decreases away from the
vorticity patch and ultimately becomes zero as the contour
length vanishes, such a vortex would, in fact, be bounded, as are
vortices where the swirling flow is explicitly zero beyond some
finite radius. Bounded vortices have outer waveguides where
VRWs propagate downstream because the negative mean-flow
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relative vorticity increases to zero outward from the small
anticyclonic values required by zero circulation at large radius.
This configuration suggests the possibility of barotropic insta-
bility (e.g., Kossin et al. 2000) even in tropical cyclones that
lack an outer wind maximum.

Part II showed that a linear, BND model on a 8 plane,
yielded northwestward motion two to 3 times faster than the
observed B drift for both asymptotically bounded, finitely
bounded, and unbounded vortices. Speeds varied substantially,
yielding 10-day track lengths that varied from 4400 to 8000 km.
In the corresponding nonlinear model, wave-wave interaction
dominated the effects of differing mean vortices, which would,
in any case, evolve from their initial structure over time. Thus,
despite consistency arguments against unbounded profiles, it
may not be essential to avoid them as initial conditions in full
physics model simulations.

6. Synoptic-scale Rossby waves

“Waveguide thinking” confirms and extends Macdonald’s
(1968) parallels between VRWs and synoptic-scale Rossby
waves on a midlatitude 8 plane centered at 45° latitude. The
BND model introduced here is spectral in time and the zonal
(x) direction, with specified frequency and zonal wavenumber,
and finite difference in the meridional (y) direction. It solves
the quasigeostrophic vorticity equation for ¢ in a meridionally
sheared mean zonal flow and computes wave momentum and
geopotential fluxes. The mean-wind profile is a uniform shear,
U@y) = S(y — y,), where § = 0.24 X 107° > 0 is the shear, and
Yo (500 km) is the transition from easterly to westerly mean
flow. The domain extends ~4000 km from 20° to 60°N. The
mean flow has weak easterly winds south of 25°N, and in-
creasing westerly winds that reach 9 m s~ ' at 60°N (Fig. 12a).
The waves may be thought of as numerical Green’s function
solutions excited with O, a 50-km-wide sinusoidal forcing at 46°
latitude. The critical latitude and turning latitude are 29° and
52°, respectively.

The model solves the barotropic, nondivergent vorticity
equation expressed in terms of the streamfunction, ¥(x, y, t),
such that u = —dy/dy and v = di/dx:

d a\ (% Y oy
(5+U&) (@"‘Tyz)"‘ﬁa—Q()’O)- an
In uniform zonal flow, the unforced version of (11) reduces to
the familiar dispersion relation for nondivergent plane Rossby
waves with constant frequency w, zonal wavenumber ., and
meridional wavenumber /:

Bk

Q=0-Uk=-5"p

(12)
When / is large, ) — 0; conversely, when A approaches zero,
the dispersion relation is that for a one-dimensional Rossby
wave () — —B/k = Qyp. In the shearing zonal flow, seeking
solutions of the form, Re{¥(y)e® ~ ¥} where ¥(y) is the
meridional structure function, produces

(w—kU)(dif—kZ\If) —Bk¥ =Q.

& (13)

Unauthenticated | Downloaded 08/04/21 07:35 PM UTC



AUGUST 2021

5-{((-33"1,5”0

\/'

°
ANTIPODE

\/‘
FRONT

GONZALEZ AND WILLOUGHBY

2637

g

VORTICITY

(@
@

'\_//—\‘

o
ANTIPODE

.
BACK

]
5
£

FIG. 11. An isolated cyclonic vorticity patch on a sphere with no vorticity anywhere else and the apparent
contradiction of anticyclonic circulation at the patch’s antipode, but with no enclosed vorticity.

As for VRWs, (13) is readily solved for the streamfunction
using the method of Lindzen and Kuo (1969). Boundary con-
ditions are ¥ = 0 at both ends of the domain, far outside the
midlatitude waveguide. The solution supports calculation of
meridional momentum and geopotential fluxes.

Forcing near the middle of the domain produces a wave train
that looks like observed midlatitude cyclones. The comma-
shaped gyres are advected eastward by the mean flow and have
curved tails trailing to the southwest. The meridional pertur-
bation flow between the gyres alternates between poleward,
westerly flow and equatorward, easterly flow that transport
geopotential and momentum. The gyres’ domain of active
propagation is confined within the boundaries of the Rossby
waveguide at y = 900 and ~3800 km, but evanescent tails of the
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perturbations extend outside the waveguide, particularly on
the poleward side.

As the wave packets propagate away from the forcing lat-
itude, translation frequency w and zonal wavenumber k re-
main constant, but their Doppler-shifted frequencies Q(y) =
® — kS(y — yo) vary meridionally. () becomes more negative
poleward of the forcing latitude and less negative equatorward
(Fig. 12a). Thus, equatorward-propagating waves are Doppler
shifted to ) = 0 at the critical latitude, where their vorticity
becomes filamented. They assume the form of curved, cold-
front-like, troughs, and are ultimately absorbed. Dissipation
and conservation of wave action as {) — 0 are the absorption
mechanisms in the linear context, rather than wave breaking
(e.g., McIntyre and Palmer 1983; Homeyer and Bowman 2012).

Streamfunction

; >
i A b Lo 2N w &ag
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4000 8000
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FIG 12. (a) Rossby waveguide bounded on its equatorward side by a critical latitude where the Doppler-shifted
frequency () = 0 and on its poleward side by a turning latitude where ) = —B/k and (b) streamfunction of a forced,

synoptic-scale Rossby wave within this waveguide.
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FIG. 13. (a) Meridional wave fluxes of geopotential and momentum, illustrating how forced Rossby waves transport
wave energy equatorward and (b) westerly momentum poleward.

The latitude where () — Q,p = —B/k is a turning point where
initially poleward-propagating waves are Doppler shifted to
the highest (most negative) frequency propagating Rossby
waves can have. Wave energy reflects from the turning point
(~52°N) and is redirected equatorward where the waves are
ultimately Doppler shifted to zero frequency and absorbed
as described above, consistent with Karoly and Hoskins
(1982), Karoly (1983), and James (1987). On the poleward side
of the forcing, between the forcing latitude and the turning
point, the waves have a standing-wave structure due to a
superposition of the initially poleward-propagating and re-
flected wave trains. Between the forcing and critical latitudes,
the waves propagate equatorward. They are a combination
of initially equatorward-propagating and reflected initially
poleward-propagating waves (Fig. 12b). They become comma-
shaped gyres that resemble cold fronts trailing from frontal
cyclones as they approach the critical latitude. The semicircu-
lar half gyres on the poleward side and trailing vorticity fila-
ments suggest the appearance of frontal cyclones on surface
analyses.

As expected, the foregoing discussion confirms and extends
Macdonald’s (1968) analogy between spiral bands and mid-
latitude cyclones. Momentum and wave energy fluxes (Fig. 13)
are also consistent with this analogy. Forced synoptic-scale
Rossby waves produce oppositely directed zonal momentum,
(vu) and geopotential fluxes, (vp) (e.g., Lorenz and Hartmann
2003). The geopotential flux is negative (equatorward), sus-
tained by both initially equatorward-propagating waves and
reflected, initially poleward-propagating, waves. It is largely
confined to the equatorward side of the forcing and goes to
zero at the critical latitude. The equatorward decrease of the
energy flux within this interval (Randel and Held 1991) arises
from conservation of wave action, (v¢)/Q(y). The zonal mo-
mentum flux is poleward and also confined between the forcing
and critical latitudes. It is nearly constant with latitude except
in the neighborhood of the critical latitude where it is divergent
because of absorption. There, it acts to decelerate westerly
mean flow (Held and Phillips 1990). It is strongly convergent

in a narrow region centered on the forcing latitude, where
it acts to accelerate the westerly mean flow (Geisler and
Dickinson 1974). Thus, as shown schematically in Fig. 14, the
simulated waves act to transport westerly momentum from the
subtropics to middle latitudes, just as baroclinically unstable
Rossby waves do. The essential difference here is that these are
forced, neutral, nondivergent Rossby waves. Nonetheless,
these results provide an accessible illustration and extension
of “negative viscosity”” (Starr 1968) in which energy input
to Rossby waves embedded in shearing zonal flow acts to ac-
celerate midlatitude westerly flow, whether the energy comes
from baroclinic instability or other sources, such as flow
over topography, localized heating, or even tropical cyclones.
Shapiro and Ooyama (1990) anticipated that the comma con-
figuration of tropical cyclones is a superposition of planetary
Rossby waves ultimately induced by latent heat release in
vortex core and the matching between the high Rossby
number flow there and the low Rossby number flow in the
surroundings. Although the convergence of westerly mo-
mentum at latitudes where neutral Rossby waves are forced
is a straightforward result of their kinematics, it is not widely
appreciated.

7. Conclusions

Addressed here are the dynamics of vortex Rossby waves
(VRWs) in the context of tropical cyclone (TC) motion and
intensity change. The Doppler shift and VRW’s relatively slow
tangential phase propagation confine them to annular wave-
guides. Tangential wavenumber-1 VRWs force vortex motion
directly and experience the least Doppler shift so that they
propagate in radially wider waveguides than wavenumbers = 2
studied previously.

The simulations address both the time dependent structure
of wavenumber-1 VRWs and the meridional structure of a
train of synoptic-scale Rossby waves. In both cases the solu-
tions have specified propagation frequency with respect to the
ground and tangential, or zonal, wavenumber. The VRWs are
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FIG. 14. Schematic diagram of synoptic scale Rossby wave
propagating in a zonal waveguide, illustrating standing wave
structure poleward of the forcing and filamented phase lines
equatorward, and the senses of the eddy transports and phase
propagation.

simulated on an f plane, forced by an annular, rotating vor-
ticity source-sink pair slightly inward from the radius of
maximum wind and propagate upon the radial gradient of
mean-vortex relative vorticity. The synoptic-scale waves are
forced diabatically or by topography in a narrow band of
latitudes on a B plane with fand B values appropriate to 45°
latitude. Waves that propagate inward, or poleward, from the
forcing are Doppler shifted to higher frequency and reflected
from a turning radius, or latitude, where their Doppler-
shifted frequency reaches that of a one-dimensional Rossby
wave. They have standing-wave structure. Waves that ini-
tially propagate outward, or equatorward, are Doppler shif-
ted to lower frequencies and maintain trailing spiral structure.
They evolve into a region of tightly wrapped trailing vorticity
filaments as they approach an outer critical radius, or equator-
ward critical latitude, where their frequencies are Doppler
shifted to zero and they are absorbed.

The waves support eddy fluxes of wave energy and mo-
mentum. The energy flux diverges both toward higher and
lower frequencies from the forcing radius, but the wave
train that propagates toward higher frequencies reflects
from the turning radius so that the net energy flux is zero
inside, or poleward, from the forcing radius. The angular, or
westerly, momentum flux is directed from the critical radius
to the forcing radius. The momentum flux acts to decelerate
the mean flow in the neighborhood of the critical radius and
accelerate the mean flow at the forcing radius. For synoptic-
scale waves the equatorward geopotential flux and pole-
ward flux of westerly momentum are consistent with frontal
cyclone dynamics. The critical latitude is the locus where
the trailing vorticity filaments curve southwestward, remi-
niscent of the wintertime cold fronts in the southeastern
United States.

In the VRW context, combining B-effect forcing with the
rotating vorticity source/sink produces more complex vortex
motion—a linear superposition of large-scale northwestward
drift and high-frequency orbits that resemble observed
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trochoidal tracks. The B-effect translation decays slowly after a
shift from a 8 plane to an fplane because of the 8 gyres’ whole-
vortex spatial scale and the slower group velocity at the pe-
riphery. When the rotating mass source-sink pair is suppressed
on a 3 plane, the track oscillations decay quickly.

Vorticity monopoles are inconsistent with Stokes’s theo-
rem on a spherical Earth because the swirling wind would
approach infinity as the length of a contour enclosing zero
vorticity shrinks to zero length near the antipode. By contrast,
bounded vortices, whose circulations approach zero or be-
come identically zero at some finite radius, are consistent with
Stokes’s theorem. Thus, an annulus of anticyclonic vorticity
must surround the inner core of cyclonic vorticity, implying
the existence of an outer waveguide, where VRWs propagate
faster than the mean flow. Because of a reversed radial vor-
ticity gradient at the vortex periphery, the possibility of
barotropic instability exists even without an outer wind
maximum.

Future investigations might include seeking unstable baro-
tropic growing modes on a finitely bounded vortex and
extending the present calculation to VRWs on a three-
dimensional baroclinic vortex. More generally, waveguide
thinking provides clear insight into vortex Rossby wave dy-
namics and reinforces the analogy with synoptic-scale Rossby
waves. It shows promise as an alternative to the traditional
“paper-and-pencil”’ way of teaching dynamic meteorology by
emphasizing numerical solutions of classical problems in
terms of waveguides. One may argue that these solutions are
richer in terms of phenomenology and closer to the under-
lying physics.
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