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ABSTRACT
The effectiveness of user interfaces are limited by the tendency for
the human mind to wander. Intelligent user interfaces can combat
this by detecting when mind wandering occurs and attempting to
regain user attention through a variety of intervention strategies.
However, collecting data to build mind wandering detection mod-
els can be expensive, especially considering the variety of media
available and potential differences in mind wandering across them.
We explored the possibility of using eye gaze to build cross-domain
models of mind wandering where models trained on data from
users in one domain are used for different users in another domain.
We built supervised classification models using a dataset of 132
users whose mind wandering reports were collected in response to
thought-probes while they completed tasks from seven different
domains for six minutes each (five domains are investigated here:
Illustrated Text, Narrative Film, Video Lecture, Naturalistic Scene,
and Reading Text). We used global eye gaze features to build within-
and cross- domain models using 5-fold user-independent cross
validation. The best performing within-domain models yielded
AUROCs ranging from .57 to .72, which were comparable for the
cross-domain models (AUROCs of .56 to .68). Models built from
coarse-grained locality features capturing the spatial distribution of
gaze resulted in slightly better transfer on average (transfer ratios
of .61 vs .54 for global models) due to improved performance in
certain domains. Instance-based and feature-level domain adap-
tation did not result in any improvements in transfer. We found
that seven gaze features likely contributed to transfer as they were
among the top ten features for at least four domains. Our results
indicate that gaze features are suitable for domain adaptation from
similar domains, but more research is needed to improve domain
adaptation between more dissimilar domains.
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1 INTRODUCTION
The ideal user interface is sufficiently engaging that the user can
focus until their task is completed. Despite our best attempts to pre-
vent it, humans are subject to the phenomenon of mind wandering
(MW), where their attention shifts from the current task to unre-
lated thoughts. Although the basis and proper conceptualization of
MW are currently being debated [Seli et al., 2018b; Seli et al., 2018c;
Christoff et al., 2018; Christoff et al., 2016; Fox and Beaty, 2019], it
is widely acknowledged that humans can only attend to a limited
amount of information at one time, so when users mind wanders on
the task at hand, their performance on that task drops [Randall et
al., 2014]. Indeed, it has been found that MW negatively correlated
with performance during reading [Feng et al., 2013; Smallwood et
al., 2007b; Smallwood et al., 2007a], signal detection [Robertson
et al., 1997; Smallwood et al., 2004], and memory tasks [Seibert
and Ellis, 1991; Smallwood and Schooler, 2006] to name a few. Fur-
ther, because the rate of MW can be quite high for certain tasks (it
ranges between 20-50% depending on the task and environment
[Kane et al., 2007; Killingsworth and Gilbert, 2010; Schooler et al.,
2004; Smilek et al., 2010; Seli et al., 2018a]), intelligent user inter-
faces would be well served to detect when MW occurs and deliver
interventions in order to reengage users’ attention [Mills et al.,
2020; D’Mello et al., 2017; Mills et al., 2019].

One promising method of detecting MW involves analyzing
users’ eye gaze, which is an increasingly popular modality for re-
search and applications in intelligent user interfaces [Nakano et al.,
2013]. Eye gaze is typically processed and converted into eye move-
ments, primarily fixations (stationary moments), saccades (rapid
movements between fixations), and smooth pursuits (eyes follow-
ing stimulus). It is useful for revealing user cognitive processing
because the direction in which the eye gazes implies a user’s locus
of visual attention [Roda and Thomas, 2006]. Research has led to a
multitude of eye gaze-assisted interfaces that use the information
gleaned from eye gaze to improve user performance and experience,
spanning domains such as driving [Lemercier et al., 2014; Fletcher
and Zelinsky, 2009; Tawari et al., 2014], game playing [Kocur et
al., 2020; Lankes et al., 2016; Sundstedt, 2012; Antunes and Santana,
2018], and learning [Hutt et al., 2021; Mills et al., 2020]. One class
of these attention-aware user interfaces [Roda and Thomas, 2006]
aim to use eye gaze to detect and combat MW in real time [D’Mello
et al., 2016]. These approaches typically use supervised machine
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learning to develop gaze-based detectors of MW, which are subse-
quently embedded in the user interfaces [D’Mello et al., 2017; Hutt
et al., 2021; Rosy et al., In Press]. This entails collecting adequate
training data from users (MW labels along with eye gaze features)
in a domain to develop models that can be applied to new users in
the same domain.

Because gathering labeled data on a domain-by-domain basis
can be expensive, one potential approach is to take advantage of
similar data collected in a different domain. Here we consider a
domain as referring to the type of stimulus and a task goal as
an activity performed using that stimulus. For example, a model
trained using data from users engaged in a scene viewing task
(static images) could be used to detect MWwhile users are watching
an instructional video (sequences of images). This approach is a
subset of transfer learning called domain adaptation [Kouw and
Loog, 2018], where a model is built with data from a source domain
in order to classify data from a target domain. Importantly, this
type of transfer learning requires that the task goal and features
are the same. For example, learning about scientific topics could
be accomplished through either reading a textbook or watching
an instructional video. In both cases, the task goal is the same
but features of the environment (the modality used to learn) will
cause differences in eye movements since the stimuli differ. Domain
adaptation seeks to discover commonalities between the data for
each domain in order to build models that are compatible for both
domains despite their differences.

The goal of this work is to investigate the feasibility of
building cross-domainmodels of mind wandering using eye
gaze. Our aims were to: (1) assess the extent to which models con-
structed from global, stimulus independent eye gaze features could
transfer from one domain to another; (2) determine the effectiveness
of locality features and domain adaptation techniques to improve
cross-domain model performance, and (3) identify which features
were most successful across domains. To investigate this, we col-
lected eye gaze data and MW self-reports from users as they en-
gaged in tasks involving processing static scenes, dynamic scenes,
and reading text. We processed the data using standard eye move-
ment filtration techniques [Voßkühler et al., 2008; Komogortsev
and Karpov, 2013] and computed features for supervised machine
learning models that aimed to distinguish cases of MW from normal
attentive processing (not MW). The stimuli are representative of
those that might be included in an intelligent user interface focused
on facilitating learning and comprehension [D’Mello, 2016].

2 RELATED WORK
We focus on efforts to automatically measure mind wandering
(MW). Researchers typically use thought sampling techniques
where a user reports MW during a task voluntarily or in response to
thought probes [Weinstein, 2018]. MW can also be measured retro-
spectively after a task using questionnaires [Weinstein, 2018]. Using
these paradigms, MW has been investigated in a variety of domains
including reading [Feng et al., 2013; Reichle et al., 2010; Small-
wood, 2011; Unsworth and McMillan, 2013], film viewing [Kopp
et al., 2016], interacting with learning technologies [Lindquist and
McLean, 2011; Mills et al., 2015], and scene viewing [Krasich et al.,
2018; Krasich et al., 2020]. Researchers have also developed MW

detectors using a variety of modalities including physiology [Small-
wood et al., 2004; Pham and Wang, 2015; Blanchard et al., 2014],
neurological signals [Christoff, 2012; Christoff et al., 2009; Jin et al.,
2019], acoustic signals [Drummond and Litman, 2010], behavioral
measures [Franklin et al., 2011; Mills and D’Mello, 2015; Faber et
al., 2018; Dias da Silva and Postma, 2020], eye behaviors [Krasich
et al., 2018; Krasich et al., 2020; Bixler and D’Mello, 2016; Hutt et
al., 2019; Hutt et al., 2017], and facial features [Bosch and D’mello,
2019; Stewart et al., 2017a].

Our approach to MW detection is based on the eye-mind link
[Rayner, 2009; Rayner, 1998; Clifton et al., 2016] that suggests a
close coupling between internal processing and eye movements.
MW is characterized by a decoupling between internal thoughts
and processing of external stimuli [Schooler et al., 2011; Smallwood
et al., 2008], meaning the eye-mind link breaks down during MW.
Thus, eye movement patterns can be used as indicators of MW.
For example, researchers have found that fixations are longer and
less frequent [Smilek et al., 2010; Reichle et al., 2010; Bixler and
D’Mello, 2016; Frank et al., 2015] and that saccades have greater
duration and amplitude [Krasich et al., 2018; Faber et al., 2020]
during MW. This research serves as the basis for eye gaze-based
models of MW, although there are conflicting accounts and patterns
can differ based on domain and task goal [Faber et al., 2020].

Most MW detectors have been built and evaluated in a single
domain, but we are interested in the ability of eye gaze-based mod-
els of MW to transfer between domains. Transfer learning entails
building models from datasets where the training and testing sets
differ [Kouw and Loog, 2018]. Domain adaptation is a subfield of
transfer learning that focuses on problems where the training and
testing set differ in their domains, but both share a task goal and set
of features. For example, reading a paragraph on physics concepts
and viewing a video on cell division would be different domains
but could share a task goal (learning) and set of features (eye gaze).

A previous investigation of facial feature-based MW detectors by
Stewart et. al. suggested some evidence of transfer between domains
[Stewart et al., 2017b]. Data for this study came from two studies
in which they recorded videos of users who self-reported MW
freely while they either watched the narrative film The Red Balloon
(1956) [Zacks, 2010] or read an excerpt from the book Soap-Bubbles
and the Forces which Mould Them [Boys, 1890]. The researchers
focused on developing MW models using facial expressions (e.g.,
facial action units such as eye blinks and dimplers). They found
that within domain models and composite models built from both
domains performed better than chance. The narrative film model
achieved comparable performance on the scientific text data, but
the scientific text model performed around chance level when clas-
sifying the narrative film data. However, adjusting the classification
threshold from the default 0.5 to 0.3, resulted in a scientific text
model with similar performance to the narrative film model when
classifying the narrative film data. A feature analysis suggested
that accuracy was influenced by lip tightener (AU23) and jaw drop
(AU26) features.

To our knowledge, the Stewart et al. study is the only one that
has investigated MW detection among domains. We considerably
expand on this previous study by focusing on eye gaze data collected
from the same users across five domains. We build on previous work
in MW detection, most notably that of [Bixler and D’Mello, 2016;
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Hutt et al., 2019], but our work is unique in that it is the first
investigation of eye gaze-based MWmodels that are built from data
in one domain and evaluated in another.

3 METHODOLOGY
We utilize data from an earlier study on eye gaze and MW [Faber et
al., 2020]. However, this previous study did not build MW models
as we do here.

3.1 Dataset
The participants were 132 students from a mid-sized university in
the Midwest of the USA. Participants were seated in front of one of
two setups consisting of a keyboard and mouse, computer screen
on which stimuli were presented, and an eye tracker. One setup (n
= 90) used a laptop to display stimuli and a Tobii EyeX eye tracker
affixed below the laptop screen to track eye gaze. The other setup
(n = 42) included a monitor spaced 60 cm. away from an EyeLink
1000 eye tracker with a tower mount for head stability. We collected
data from these different setups to increase the generalizability of
the models.

After entering the testing room and receiving verbal instructions,
participants completed a calibration procedure and calibration test.
Each of these consisted of nine fixed points appearing on the screen
in a random order that participants were instructed to look at as
they appeared. Eye gaze recorded during the calibration test was
not used to calibrate the eye tracker, only to evaluate the calibration
for post-hoc analysis.

Participants then received typed instructions, which consisted of
seven tasks in which a different stimulus was presented in pseudo-
random order for six minutes each. Each participant engaged with
the same seven stimuli in random order; two were control stimuli
and not analysed here. The five analysed stimuli were chosen due
to their topicality to various user interfaces for learning and have
been used in previous literature [Kopp et al., 2016; Krasich et al.,
2018; D’Mello and Graesser, 2014; Hutt et al., 2017; Mills et al., 2016].
In all cases, the learning goal was to comprehend the content being
displayed.

The stimuli are listed in Table 1 along with the corresponding
domain and total number of MW instances after filtering out those
unsuitable for computing features (details below). Stills from each
stimulus are shown in Figure 1. The Diagram Set (Illustrated Text)
stimulus consisted of two diagrams displayed for three minutes
each. Each diagram contained an everyday device (e.g., doorbell)
along with an expository text that participants were asked to com-
prehend, striking a blend between the reading domain and static
scene processing. To this point, the Scenes domainwas a series of six
scenes of cities. It shared characteristics with the Diagram stimulus
but did not include descriptive text. Finally, the Red Headed League
(Text) stimulus was a series of pages from a Sherlock Holmes novel,
presented at a varying rate between 5 and 15 seconds depending
on content in order to be consistent with the other domains. The
Red Balloon (Film) stimulus was the first six minutes of a French
narrative film about a boy following a balloon. It is in the narra-
tive domain since the film tells a story. This is different from the
video lecture on population growth since this is in the expository
(informative) domain. Like the Red Balloon stimulus, it was also

a dynamic scene, but in one continuous shot. A further distinc-
tion between the film and video domains is that narrative films
employ techniques such as camera cuts in order to guide attention,
referred to as the tyranny of film [Loschky et al., 2015]. Thought
probes similar to those standard in the field [Weinstein, 2018] were
used to measure mind wandering at pseudo-random intervals of
90-120s from the onset of each stimulus. These thought probes
occurred via an overlay that prompted participants to press a key to
indicate if they were MW or not. Participants were instructed to re-
port MW if they found themselves thinking about something other
than the task when they received a thought probe. We obtained
three thought probes per stimulus resulted in a total of 396 thought
probes for each stimulus across all the participants for a total of
1980 data points across the five stimuli used. Upon completion of
the main experiment participants completed a posttest and filled
out questionnaires collecting demographic information and their
perception of each task.

3.2 Data Processing
We built models with eye gaze data in short timewindows (10, 20, 30,
40, or 50 seconds) prior to the thought probes. Unsuitable instances
were deemed those with fewer than 80% valid eye gaze points or
fewer than 4 fixations since this was considered the minimum num-
ber to compute several gaze features. Overall, only 13% of the data
was discarded. Next, fixations and saccades were computed using
standard eye movement detection algorithms including fixation
dispersion threshold and saccade velocity threshold algorithms [Ko-
mogortsev and Karpov, 2013; Voßkühler et al., 2008]. We computed
fixation qualitative, fixation quantitative, and saccade quantitative
metrics [Komogortsev et al., 2010] from the data collected during
the calibration test. We used these metrics to evaluate different pa-
rameter settings for each eye movement detection algorithm. Each
algorithm performed similarly with minor trade-offs so we decided
to use the dispersion based filter with a dispersion threshold of 57
pixels based on the algorithm used in the Open Gaze and Mouse
Analyzer software [Voßkühler et al., 2008]

We computed features from the fixation filtered data within each
window. We focused on global features based on previous work
[Bixler and D’Mello, 2016; Hutt et al., 2019] that are not dependent
on the stimuli, such as a prespecified area of interest or unique eye
movements such as smooth pursuits that are not present in static
stimuli. Computed features include nine statistical functionals (num-
ber, mean, median, minimum, maximum, standard deviation, range,
skew, and kurtosis) computed from six distributions of fixation
duration (ms), saccade duration (ms), saccade amplitude (pixels),
relative saccade angle between subsequent saccades (degrees), abso-
lute saccade angle in reference to the horizontal line (degrees), and
saccade velocity (pixels/ms). We also computed fixation/saccade
ratio, fixation dispersion, proportion of horizontal saccades, and
blink count, resulting in 58 features. Fixation/saccade ratio was the
total duration of fixations divided by the total duration of saccades.
Fixation dispersion was calculated as the root mean square of the
distance of each fixation to the average fixation position in the
window. Proportion of horizontal saccades was the proportion of
saccades that had an angle no more than 30 degrees above or below
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Table 1: Dataset characteristics including the total number of instances, the final instances for each dataset after data process-
ing, the resultant % of missing instances, the number of instances for each class, and the corresponding MW rate.

Dataset (Stimulus) Domain Total
Instances

Final
Instances

Missing MW
Yes

MW
No

MW
Rate

Diagram Set (Illustrated Text) Static Scene/Reading 396
per domain

350 12% 187 163 .47
Red Balloon (Film) Dynamic Narrative Scene 356 10% 260 96 .27
Video Lecture Dynamic Expository Scene 352 11% 190 156 .45
City Scene (Image) Static Scene 346 13% 145 209 .59
Red Headed League (Text) Reading 354 11% 212 140 .40

Figure 1: Example stills from each domain. A) Diagram Set (Illustrated Text), B) Red Balloon (Film), C) Video Lecture, D) Scene,
E) Red Headed League (Text).

the x axis. Pupillometry features were not explored as the EyeX
lacked pupil diameter data.

3.3 Supervised Classification
3.3.1 Parameter Exploration for Baseline Models. Different param-
eter values may result in better performance for certain domains
but using a consistent set of parameters allows direct comparisons
between models. Hence, before building cross-domain models we
performed a parameter exploration to select appropriate baseline
models. The parameters we explored, their different possible values,
and the value that we selected for the baseline models are shown
in Table 2. Window size was varied in order to measure the effect
different amounts of data had on model performance. Larger win-
dow sizes risk inclusion of data unrelated to MW, while smaller
window sizes risk missing pertinent events. Balancing the class
distribution can sometimes lead to improved accuracy so we built
a set of models with balanced classes using the Synthetic Minority
Oversampling Technique (SMOTE) [Chawla et al., 2002] to compare
to those without any balancing. Importantly, SMOTING was only
done on training data; testing distributions were not modified. Out-
liers can also skew models, especially with smaller amounts of data,
so we built a set of models that used a process called winsorization
where outliers for each feature were replaced with a value three
standard deviations away from the mean value for that feature.
We built sets of models where a certain proportion of the worst
performing features were removed in order see if the models could
be improved with a smaller set of predictive features. We used a

variety of classifiers as there is no prior indication of which would
work best, including support vector machines with a linear kernel,
k-nearest neighbors, logistic regressions, Bayesian networks, and
random forests. Each classifier used the default hyperparameters
used in WEKA [Hall et al., 2009] except for the k-nearest neighbors,
which had k set to 5. We chose the parameter settings in Table 2
for the final models because it was among those best models and
used SMOTE to address class imbalance.

3.3.2 Feature Selection and Cross-Validation. We selected param-
eters using participant-level 5-fold cross-validation (see Figure 2).
For a given fold and iteration the training set consisted of data
from the source domain and from participants that were not within
the fold. The testing set consisted of data from the held-out par-
ticipants from the source domain (for baseline models) and from
each target domain (to evaluate transfer). Data processing steps
including the removal of multicollinear features, within-domain
normalization, and within-domain outlier removal were applied
to the training set within each fold. We determined multicollinear
features by computing the variance inflation factor (VIF) for each
feature and successively removing the feature with the highest VIF
above a VIF of 5. The data were z-score standardized within each
domain to address gaze-related domain differences independent of
MW.

After these data processing steps were completed, correlation-
based feature selection [Hall, 1999] was used to rank each feature.
Feature selection was done five times with a random 66% of the
data in the training set. Features were ranked and their rankings
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Table 2: Selected and possible values for window size, samplingmethod, outlier removal, feature selection cutoff, and classifier
model building parameters.

Parameter Selected Other Options
Window Size 40 seconds 10, 20, 30, 50
Sampling Method SMOTE None
Outlier Removal Winsorization None
Feature Selection Cutoff 100% of Features 30%, 70% of Features
Classifier Support Vector Machine KNN, Logistic, BayesNet, Random Forest

Figure 2: Illustration ofmodel building processwith examples of how the datawere processed in each step. The training setwas
processed prior to feature selection by removing collinear features, normalizing the data within each domain, and removing
outliers within each domain, in that order. Domain adaptation techniques were applied after the classes in the training set
were balanced using SMOTE, with Instance-Based Domain Adaptation (IBDA) shown here.

were summed across each of the five feature selection iterations.
We then selected the best performing percent of features based on
this ranking. The final step before classification was to balance the
classes in the training set using SMOTE. The training and testing
sets were then used to train and evaluate the classifier. This process
was repeated for each fold, upon which each instance from the
target domain had been classified once. We computed the accuracy
metrics by pooling classifications across testing folds. upon which
we averaged accuracies across the 50 iterations.

3.4 Domain Adaptation Approaches
3.4.1 Investigating Domain Shift. One of the primary hurdles in
domain adaptation is domain shift. Two forms of this are covariate
shift where the feature distributions are different from one domain

to the next and prior probability (baserate) shift where the distribu-
tion of labels changes. As seen in Table 1, we have moderate prior
probability shift due to the differences in MW rates between the
domains. The least amount of MW occurs in the Film data with a
rate of .27 compared to the .59 in the Scenes data. This is an indi-
cation that it will be more difficult to build a cross-domain model
between these two domains. Covariate shift can be measured using
the Jensen-Shannon distance, which yields a value of 0 for match-
ing distributions. We computed the Jensen-Shannon distance for
each distribution of feature values between each pair of domains.
We then computed the average across all features that were not
multicollinear in any domain, resulting in the values in Table 3. We
found that the Illustrated Text and Scene domains were the most
similar and the Film and Lecture domains were the least similar.
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Table 3: Jensen Shannon Distance between domains (min and max values bolded).

Source Jensen Shannon Distance
Film Lecture Scene Text

Illustrated Text .26 .27 .22 .23
Film .29 .26 .25
Lecture .27 .26
Scene .23

Figure 3: An example of locality features using a 4x7 grid size. Each cell is a different feature (28 features in this example).

These results indicate that covariate shift could cause some difficul-
ties building cross-domain models. Accordingly, we investigated
two approaches to address domain shift as discussed next.

3.4.2 Locality Features. The first approach to address domain shift
was to investigate locality features that captured the proportional
distribution of eye movements with respect to the stimulus as seen
in Figure 3. These features are distinct from global features because
they measure the spatial distribution of eye gaze in a stimulus-
independent fashion. We selected grid sizes of 4x4 and 10x10, re-
sulting in 16 and 100 features respectively. We built models for the
locality features using the same type of SVM, data processing, and
cross-validation procedure as the global models, with a few key
differences. Specifically, we did not remove multicollinear features,
normalize features, or remove outliers for the locality features in
order to retain the raw values. The features were already normal-
ized and comparable between domains and any removal of features
would reduce screen coverage.

3.4.3 Domain Adaptation. The second approach was to apply ei-
ther feature-level domain adaptation (FLDA) [Kouw et al., 2016]
or instance-based domain adaptation (IBDA) [Shimodaira, 2000].
We chose techniques that operate under the assumption that labels
were available for the source domain but not for the target domain.
We used each of these methods with the same global features and
hyperparameters as the baseline models. The training set was de-
veloped as in Figure 2 and participants in the training set folds were
used for either FLDA or IBDA.

FLDA entails reweighting features based on how their distribu-
tion differs between the source and target domain. We performed
FLDA using the python package libTLDA. This was done by ana-
lyzing the distribution of features in each domain, agnostic to class
labels, and similar features received higher weights prior to training
the models.

IBDA weights individual instances in the source domain based
on their similarity to the target domain, which can then be used to
train a weighted classifier. For IBDA, each instance in the training
set was given a weight using a meta-classifier trained to distinguish
instances of the source domain from those of the target domain.
The first step was to split the participants in the training set into
5 random folds. The instances from the source domain for each of
the participants in each of these folds constituted a nested testing
set and the data from the source AND target domains for the partic-
ipants from the other four folds were used as a nested training set.
Each instance in the nested training set was labeled a 0 if they were
from the source domain and a 1 if they were from the target domain.
A separate SVM was trained using the nested training set and used
to classify the instances in the nested testing set, resulting in a
value between 0 and 1 for each of the instances in the nested testing
set. The weight of each instance was set to this value, and once all
folds were classified by the separate SVM, the weighted instances
constituted a weighted training set. This weighted training set was
then used to train the main SVM model to classify the testing set
of the outer cross-validation fold.

4 RESULTS
We used twometrics to evaluate our models. We used the area under
the receiver operating characteristic (AUROC) to select the best
within-domain model (but also provide several comparison metrics).
The AUROC is a commonly usedmetric where .50 represents chance
and 1 represents perfect classification. Cross domain models were
evaluated using the transfer ratio (TR) [Glorot et al., 2011]. The
TR gives a measure of how well a cross-domain model performs in
comparison to a within-domain model. It is computed using TR =
e(S,T )
eb (T ,T )

, where e(S,T ) is the performance of a model trained on a
source domain S and tested on a target domainT , and eb (T ,T ) is the
performance of the baseline model trained and tested on the target
domain T . Here we computed model performance as the AUROC
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Table 4: Metrics and Characteristics for BaselineWithin-domainModels. Metrics include overall F1 score, F1 score for theMW
class, precision, recall, kappa, and AUROC. Characteristics are the number of instances and corresponding MW rate.

Dataset F1 F1 MW Precision Recall Kappa AUROC Instances MW Rate
I. Text 0.65 0.63 0.65 0.65 0.30 0.72 350 0.47
Film 0.61 0.40 0.65 0.58 0.10 0.58 356 0.27
Lecture 0.57 0.53 0.57 0.57 0.13 0.59 352 0.45
Scene 0.60 0.63 0.61 0.59 0.18 0.63 346 0.59
Text 0.57 0.48 0.58 0.57 0.12 0.57 354 0.40

Table 5: AUROC and Transfer Ratio (TR) for each domain pairing. Values in each cell are the value when using the domain in
the row to classify the domain in the column. The within-domain models are highlighted in light grey. Bolded cells indicate
models that transferred well, with a TR greater than 0.50.

Source Target AUROC Target Transfer Ratio (TR)
I. Text Film Lecture Scene Text I. Text Film Lecture Scene Text

I. Text 0.72 0.56 0.60 0.64 0.51 0.67 1.11 1.08 0.14
Film 0.56 0.58 0.53 0.54 0.56 0.27 0.33 0.31 0.86
Lecture 0.68 0.54 0.59 0.63 0.50 0.82 0.44 1.00 0.00
Scene 0.68 0.56 0.60 0.63 0.55 0.82 0.67 1.11 0.71
Text 0.47 0.58 0.48 0.50 0.57 -0.14 0.89 -0.22 0.00

of the model minus the AUROC baseline of .50 as we are concerned
with how much better or worse the models performed relative to
chance. With this modification, a value of 1 indicates that the cross-
domain model was equivalent to the within-domain model, a value
greater than 1 indicates improved performance, whereas values
less than 1 indicate reduced performance (e.g., 0.5 would indicate a
cross-domain model that is about half as much above chance as the
baseline within-domain model). All metrics were computed using
the average AUROC across the 50 participant-independent 5-fold
cross validation iterations after pooling classifications across folds.

4.1 Within-Domain Models
We first report our baseline within-domain models using the param-
eters from Table 2 which serve as the point of comparison for all
other models. As seen in Table 4, our models outperformed chance
for all domains. The best performing model was built from the Illus-
trated Text data, with an AUROC of .72, while the worst performing
model was in the Text domain with an AUROC of .57. There did
not appear to be a clear relationship between performance and the
number of instances or prior MW rate. These results are compa-
rable with those from previous studies using similar data [Bixler
and D’Mello, 2016; Hutt et al., 2017; Mills et al., 2016], with a best
kappa value of .30 compared to .31 in [Bixler and D’Mello, 2016],
an F1 MW of .57 (chance .45) for the Lecture domain compared to
.41 (chance .30) in [Hutt et al., 2017], and an F1 of .61 for the Film
domain compared to .53 in [Mills et al., 2016].

4.2 Cross Domain Models
We next report AUROC and TR (as discussed above) for cross do-
main models of MW (Table 5) built on global eye gaze data from one
domain and tested on another. We consider models with a TR of .50
or above to show some evidence of transfer to the target domain.

Each cell reflects performance of a given model trained using data
from the domain in the rows and evaluated using data from the
domain in the columns (diagonals reflect within-domain models).
There are three main takeaways from our cross domain results: (1)
The Illustrated Text, Scene, and Lecture domains transferred well
among one another; (2) the Film and Text domains transferred well
to one another; and (3) the Scene domain transferred to all other
domains. The best TRs (1.11) were from the Illustrated Text and
Scene source domains to the Lecture domain. Models trained on the
Lecture domain, conversely, transferred to these other two domains
to a lesser extent.

4.3 Composite Models
We also built composite models with two different source domains
and compared them to the baseline cross-domain models in three
ways (Table 6). The Source Average TR was computed as the aver-
age across all models that were trained using a given domain. For
example, the Source Average TR for the Text domain was computed
as the average of the four TR values in the bottom row of Table 5.
This gives an indication of how well that domain transfers to the
others, on average. The Target Average TR was computed as the av-
erage across all models that were evaluated on a given domain. For
example, the Target Average TR for the Text domain was computed
as the average of the four TR values in the last column of Table 5.
Finally, we computed an average TR for all models, similar to how
TR has previously been used [Glorot et al., 2011], which was the
average of the 20 TR values in Table 5. The means for the composite
models were computed similarly, except there were TR values for
30 models instead of 20. These results show that the composite
models performed better on average, with a TR of .63 versus .54
for the single domain models. This was driven by improved Source
TRs for models trained using data from the Film or Text domain.
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Table 6: Average Transfer Ratio (TR) for single domain models versus composite models. The average TR is computed as the
mean across all models of the type corresponding to the row and with the same source (left side of table) or target (right side
of table). The right most column is an average across all models for the given model type.

Model Type Source Average TR Target Average TR Avg
I. Text Film Lecture Scene Text I. Text Film Lecture Scene Text TR

Baseline 0.75 0.44 0.57 0.83 0.13 0.44 0.67 0.58 0.60 0.43 0.54
Composite 0.73 0.59 0.53 0.73 0.58 0.59 0.61 0.89 0.76 0.31 0.63

Table 7: Transfer Ratio (TR) for the locality (L) and domain adaptation (FLDA and IBDA) models. The average Source and
Target TR is computed as the mean across all models using the method corresponding to the row and with the same source
(left side of table) or target (right side of table). Bolding indicates model performance above global models. The right most
column is an average across all models in a row for the given method.

Method Source Average TR Target Average TR Avg
I. Text Film Lecture Scene Text I. Text Film Lecture Scene Text TR

Global 0.75 0.44 0.57 0.83 0.13 0.44 0.67 0.58 0.60 0.43 0.54
L 4x4 0.90 0.10 0.67 0.70 0.70 0.38 0.31 0.88 0.61 0.89 0.61
L 10x10 0.53 0.11 0.32 0.56 0.11 0.32 0.38 0.34 0.18 0.43 0.33
G (FLDA) 0.12 0.08 0.28 0.28 0.15 0.13 0.06 0.28 0.32 0.11 0.18
G (IBDA) 0.75 0.43 0.56 0.83 0.13 0.44 0.67 0.58 0.61 0.41 0.53

Conversely, composite models were worse at classifying these do-
mains (i.e., lower Target TRs). This analysis indicates that there
are likely small improvements that can be gained by combining
multiple domains in a single model.

4.4 Locality and Domain Adaptation
Results for locality models and domain adaptation techniques are
shown in Table 7. The key takeaways from this table are as fol-
lows. First, the locality models with a grid size of 4x4 performed
better than the global eye gaze models on average. This is due to
improvements in Source Average TR for the models trained on the
Illustrated Text, Lecture, and Text data and comes with a tradeoff of
reduced performance in Source Average TR for the models trained
on Film and Scene data. Second, locality models with a grid size
of 10x10 performed worse than the global models suggesting that
larger grid sizes might spread the information out between too
many features. Third, feature level domain adaptation (FLDA) per-
formedworse than the global eye gaze model on average, and fourth
instance-based domain adaptation (IBDA) performed similarly to
the global eye gaze model on average. Thus, the domain adaptation
techniques we used did not result in improved performance over
the global models.

4.5 Feature Analysis
We analyzed our features by ranking the top 10 features within each
domain. Features were ranked during feature selection as shown in
Figure 2 and features with a higher rank received a higher score.
The highest-ranking feature received points equal to the number
of features included in the feature selection for that round, with
each successively lower ranked feature receiving one less point.
For example, if 20 features were ranked then the highest ranked
feature would receive a score of 20 and the second highest feature
would receive a score of 19. We then converted this score into a

proportion of the total points available in a round. A round with 20
features would have a total of 210 points allocated among features,
so the highest ranked feature would receive a score of .095. We then
summed these scores across all folds and cross-validation within
each domain. The scores for the top ten highest scoring features
in each domain are shown in Table 8 ordered by their mean score
across domains. The scores for features that were not within the
top 10 highest scoring features in a domain are not included in the
table.

We found that the saccade velocity median, saccade velocity kur-
tosis, and saccade amplitude kurtosis were the only three features
that scored in the top ten in all domains. The horizontal saccade pro-
portion and fixation saccade ratio were the highest scoring feature
in two domains but absent in the Text domain, which may explain
why the other domains had difficulty transferring to it. Seven fea-
tures scored in the top ten for four of the domains, indicating that
these features might have contributed to the transfer in our data.

5 DISCUSSION
Mind wandering (MW) detection within a single domain is a chal-
lenging task. In this work we investigated going beyond this to
detect MW using eye gaze data from a different domain. We demon-
strated the extent to which models constructed from global, stimu-
lus independent eye gaze features could transfer from one domain
to another, determined the effectiveness of three additional tech-
niques to improve cross-domain model performance, and identified
which features were most effective for building models. We review
the main findings, discuss limitations and future work, and identify
potential applications.
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Table 8: Top ten scoring features for each domain. The score for each feature in each domain is listed below the domain label,
provided it was among the top ten scoring features for that domain. Features are ordered by mean score across all domains.
The highest score in each domain is bolded, as are the features that scored in the top ten across all five domains.

Feature I. Text Film Lecture Scene Text
Horizontal Sac Prop 16.13 13.57 16.58 16.38
Sac Vel Med 13.74 14.13 13.26 13.44 14.35
Fix Sac Ratio 14.33 17.05 17.29 15.11
Sac Angle Rel Max 15.96 14.99 13.28 15.04
Sac Dur Range 16.01 11.95 18.63
Sac Vel Kur 10.96 12.09 11.95 11.85 12.01
Blink Count 12.06 15.71 10.85 10.10
Sac Amp Kur 12.46 11.46 11.89 11.61 9.91
Sac Angle Rel SD 15.40 15.25 15.21
Fix Dur Med 12.06 12.42 12.64
Sac Angle Abs Med 10.84
Sac Angle Rel Mean 14.43 14.31
Sac Angle Rel Med 17.89
Sac Dur Med 11.55
Sac Vel SD 15.01
Sac Dur Kur 14.51
Sac Angle Rel Skew 12.46 11.85

5.1 Main Findings
Our main finding was that MW models using global eye gaze fea-
tures can transfer across domains with an average TR of .54, sug-
gesting accuracies a bit over half than of within-domain models.
We found that the Illustrated Text, Lecture, and Scenes domains
transfer well to another, as did Film and Text domains. The Scenes
domain was the only one that resulted in transfer across all domains,
though it performed the worst on the Film and Text domains. Build-
ing composite models trained on two source domains resulted in a
slight improvement with an average TR of .63, suggesting benefits
to using data from multiple domains.

We also found that models built using locality features with a
grid size of 4x4 resulted in improved performance overall compared
to global features (on single domains), with an average TR of .61.
This was due to an increase in performance for models built on the
Illustrated Text, Lecture, and Text domains despite lower TRs for the
Film and Scene domains. Adding feature-level domain adaptation
to our global feature model building process resulted in an overall
decrease in performance. Using instance-based domain adaptation
resulted in models that were very similar to our baseline global
feature models.

Finally, we investigated the top ten scoring features and found
three that scored highly among all domains and three that scored
highly in all domains except the Text domain. The domains with the
most highly scored features in common were the Lecture and Scene
domains with nine and the Illustrated Text and Scene domains
with eight, which may have contributed to the high transfer ratio
between these domains.

5.2 Limitations
This work has several limitations. First, the volume of data was
low. This study had a total number of instances that is comparable

to previous work in this area [Bixler and D’Mello, 2016; Hutt et
al., 2019; Krasich et al., 2018; Mills et al., 2016; Bosch and D’mello,
2019] but experimental constraints on the amount of time per user
effectively reduced the number of instances per domain, reducing
performance in general. The lack of data also made it difficult to
explore deep learning methods. The second limitation was the lack
of an effective smooth pursuit classifier. The calibration procedure
involved a 9-point calibration test, but the points did not move on
the screen so smooth pursuit classification metrics could not be
used to classify smooth pursuits. These features are not applicable
to static domains such as the Illustrated Text, Scene, and Text but
the alternative is lumping in smooth pursuits with fixations in the
dynamic (Film and Lecture) domains. A third limitation is that this
is a lab study with a somewhat homogeneous sample. It is therefore
unclear how well these models would generalize when used outside
the lab or to a different population. A final limitation is the use of
domain-specific normalization, which improves the performance
of within-domain models but can limit the ability of a system to
generalize when employed in an unfamiliar new domain.

5.3 Applications and Future Work
One avenue for achieving better models is to expand data collection.
Two to three times as much data would likely lead to better mod-
els and adapting the calibration test procedure to provide smooth
pursuit metrics could lead to more accurate insights into building
models for dynamic domains. Another important endeavor is to
experiment with a wider array of domain adaptation techniques.
These techniques would also provide insight into domain-general
gaze-based models for other applications, such as those that seek to
detect other mental states such as emotion or cognitive workload.
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Future work should also focus on integrating these models in
attention-aware technologies. One potential use case is a learn-
ing system that seeks to improve learning by attending to users’
attention [D’Mello, 2019; Roda and Thomas, 2006]. Effective learn-
ing can involve multiple types of stimuli, but training data is not
always easy to obtain. This work provides some evidence that cross-
domain models such as the ones explored in this work can provide
sufficient predictions for stimuli from some domains without the
need for domain-specific training data. Exploring the most effective
interventions to use in conjunction with the MWmodels is another
important avenue for future work. A variety of interventions are
possible, but it is important that they are robust to false positives
due to the modest model accuracy. For example, switching the
modality from text reading to viewing a video at a natural breaking
point in the system in response to an elevated MW rate would
be covert and have a lower chance of interfering with learning.
Another potential application is a post hoc analyses that identifies
periods of the interaction for content with high MW rates for future
refinement.

5.4 Conclusion
One of the primary challenges to completing a task is our own wan-
dering minds suggesting a potential for detecting and addressing
the occurrence of MW in intelligent user interfaces. Because train-
ing MW models on a per-domain basis is a challenging endeavor,
using previously collected data from one domain to detect MW in
another could facilitate quicker and more widespread adoption of
MW detection and interventions. This work demonstrated a modest
ability to transfer eye gaze-based models of MW across domains,
serving as a basis for future efforts to develop more accurate and
generalizable models.
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