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Eye-Mind reader: an intelligent reading interface that promotes
long-term comprehension by detecting and responding to mind
wandering
Caitlin Mills a, Julie Greggb, Robert Bixlerc, and Sidney K. D’Mellob

aDepartment of Psychology, University of New Hampshire, Durham, NH, USA; bInstitute of Cognitive Science,
University of Colorado Boulder, Boulder, CO, USA; cDepartment of Computer Science, University of Notre Dame,
Notre Dame, IN, USA

ABSTRACT
We zone out roughly 20-40% of the time during reading – a rate that is
concerning given the negative relationship between mind-wandering and
comprehension. We tested if Eye-Mind Reader – an intelligent interface that
targeted mind-wandering as it occurred – could mitigate its negative
impact on reading comprehension. When an eye-gaze-based classifier indi-
cated that a reader was mind-wandering, those in a MW-Intervention con-
dition were asked to self-explain the concept they were reading about. If
the self-explanation quality was deemed subpar by an automated scoring
mechanism, readers were asked to re-read parts of the text in order to
correct their comprehension deficits and improve their self-explanation.
Each participant in the MW-Intervention condition was paired with a Yoked-
Control counterpart who received the exact same interventions regardless
of whether they were mind-wandering. Results indicate that re-reading
improved self-explanation quality for the MW-Intervention group, but not
the control group. The two conditions performed equally well on textbase
(i.e. fact-based) and inference-level comprehension questions immediately
after reading. However, after a week-long delay, the MW-Intervention con-
dition significantly outperformed the yoked-control condition on both
comprehension assessments (ds = .352 and .307). Our findings suggest
that real-time interventions during critical periods of mind-wandering can
promote long-term retention and comprehension.

ARTICLE HISTORY
Received 24 February 2019
Revised 12 January 2020
Accepted 12 January 2020

KEYWORDS
Intelligent UI; education;
mind wandering; cognitive
science

1. Introduction

Imagine reading a book. Your eyes are naturally moving across the words in the text and you may
even flip to the next page. Suddenly you realize your mind is no longer focused on the reading and
instead has wandered off to some unrelated topic – for example, something on your to-do list, an
event on the weekend, or a fond memory from last week. The ubiquitous experience of such zone
outs – referred to as ‘mind-wandering’ – occurs approximately 30–50% of the time during everyday
activities (Killingsworth & Gilbert, 2010; Klinger & Cox, 1987; Mills, Raffaelli, Irving, Stan, &
Christoff, 2018; Smith, Mills, Paxton, & Christoff, 2018) and around 20–40% during comprehension
and learning tasks (D’Mello, 2018; Hutt, Mills, White, Donnelly, & D’Mello, 2016; Mills, D’Mello, &
Kopp, 2015; Mills, Graesser, Risko, & D’Mello, 2017; Risko, Buchanan, Medimorec, & Kingstone,
2013; Wammes, Seli, Cheyne, Boucher, & Smilek, 2016). Although mind-wandering is associated
with some benefits, such as our ability to leave the “here and now”, plan future events, and creatively
ideate, ample evidence suggests it may be detrimental in other situations, particularly during more
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complex tasks (D’Mello, 2018; Randall, Oswald, & Beier, 2014; Smallwood, Fishman, & Schooler,
2007). For example, a meta-analysis on 88 studies by Randall et al. (2014) found the average negative
correlation between mind-wandering and performance increased from −.14 (SE = .03) to r = −.32
(SE = .04) when restricted to more complex tasks such as problem-solving and reading.

The prevalence of mind-wandering and its negative relationship with performance has led to
a growing interest in understanding and mitigating its impact in a number of settings, particularly in
educational contexts (Hutt et al., 2016; Kane et al., 2017; Mills et al., 2013; Risko et al., 2013; Szpunar,
2017; Szpunar, Khan, & Schacter, 2013; Wammes et al., 2016). The current research takes a step
toward this goal by developing and experimentally testing the Eye-Mind Reader interface: a real-time
system that uses eye gaze to detect when mind-wandering occurs, then intervenes using self-
explanations and re-reading to correct short term comprehension deficits attributed to mind
wandering in order to improve long-term comprehension. We were guided by two theoretical
considerations. First, interventions should occur the moment readers mind wander so that potential
gaps in their understanding due to mind-wandering can be corrected immediately. Second, the
intervention itself should aim to promote deeper understanding through strategies that have been
shown to enhance comprehension. Whereas the mind wandering detection method has been
previously reported (Faber et al., 2018), we discuss here how it was embedded and tested in the Eye-
Mind interface to improve comprehension outcomes.

1.1. Theoretical background

Converging evidence suggests that mind-wandering can have negative effects on information
processing even at early perceptual levels (Kam et al., 2011; Schad, Nuthmann, & Engbert, 2012).
According to Smallwood’s (2011) cascade model of inattention, when mind-wandering interrupts
basic levels of encoding during early perceptual stages, it has cascading negative consequences for
later stages of processing (e.g., memory access, generation of inferences), ultimately resulting in sub-
optimal representations. In the context of reading, impairments due to mind-wandering begin at the
most basic (surface) level of lexical (i.e., word) encoding and cascade to deeper levels of comprehen-
sion, such as the situation model (i.e., conceptual representations of the text content – Zwaan &
Radvansky, 1998) that require the generation of inferences. The situation model is critical to deep
text comprehension because it guides readers’ text processing by keeping track of the current state of
affairs and generating predictions about what will happen next (Zwaan, Magliano, & Graesser, 1995;
Zwaan & Radvansky, 1998).

In support of this account, research suggests that mind-wandering leads to a decoupling from the
external stimuli, including auditory and visual information (Kam et al., 2011). This is problematic
during reading since participants eye-movements (Foulsham, Farley, & Kingstone, 2013; Reichle,
Reineberg, & Schooler, 2010) and reading times (Franklin, Smallwood, & Schooler, 2011; Mills et al.,
2017) are no longer sensitive to the lexical properties of a text while mind-wandering – which
directly impacts the ability to encode the text, even at the word level. Beyond lexical encoding,
participants who reported more mind-wandering have poorer memories for specific details of the
text, perhaps because they “missed” the information (Feng, D’Mello, & Graesser, 2013; Franklin,
Mooneyham, Baird, & Schooler, 2013; Franklin et al., 2011; Kopp, D’Mello, & Mills, 2015; Mills
et al., 2017; Unsworth & McMillan, 2012). Finally, there is also ample evidence to support the
cascading effect of mind-wandering at deeper levels of processing: Smallwood, McSpadden, and
Schooler (2007) reported that if readers mind-wandered while critical information was prevented in
a Sherlock Holmes story (e.g., the villain was wearing a hood; Smallwood et al., 2007), they were less
likely to generate key inferences later in the story (e.g., John was wearing a hood, thus John is the
villain) and subsequently performed worse on a memory test. This finding is consistent with the
negative relationship between mind-wandering and comprehension assessments, especially those
requiring participants to make inferences across multiple parts of a text (Mills et al., 2015, 2017;
Randall et al., 2014; Smallwood et al., 2007).
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1.2. Related work on mind-wandering interventions

To date, much of the research aiming to mitigate the influence of mind-wandering has taken
a proactive approach – that is, it has focused on eliminating or reducing it (Bixler, Kopp, &
D’Mello, 2014; Jha, Krompinger, & Baime, 2007; Szpunar et al., 2013). For example, interpolated
testing (e.g., intermittently providing quizzes throughout a learning session) has been shown to
reduce overall rates of mind-wandering in video lectures from about 40% to only 20% (Szpunar
et al., 2013). Additionally, a simulation study revealed the possibility of using individual differences
to pre-select optimal learning conditions (e.g., easy vs. difficult texts, and high vs. low stakes value on
a test after reading) that may help deter mind-wandering (Kopp, Bixler, & D’Mello, 2014), but this
has yet to be empirically tested on real participants.

With these exceptions, most proactive intervention attempts have focused on mindfulness train-
ing. Mindfulness training aims to promote a non-judgmental focus on the present moment (Jha
et al., 2007; Mrazek, Franklin, Phillips, Baird, & Schooler, 2013) which encourages attentional
control through the practice of attention regulation. When something besides the present moment
comes into focus, mindfulness training encourages individuals to reorient their attention back to the
present moment immediately. Although mindfulness training has been shown to be effective in
several domains (Brown & Ryan, 2003; Davidson et al., 2003; Grossman, Niemann, Schmidt, &
Walach, 2004), its effectiveness for reducing mind-wandering has been less consistent (Ju & Lien,
2016; Krasich et al., 2018; Mrazek et al., 2013; Mrazek, Smallwood, & Schooler, 2012; Zeidan,
Johnson, Diamond, David, & Goolkasian, 2010) – particularly for brief training exercises (less
than 30 minutes).

Importantly, although proactive interventions can be effective, mind-wandering rates are never
reduced to zero (Mrazek et al., 2013, 2012; Szpunar et al., 2013). This points to an important
question: How should we respond to mind-wandering when it does inevitably occur? Such just-in-
time reactive interventions have rarely been explored. Responding to mind-wandering episodes
requires real-time detection and intervention.

1.2.1. Mind-wandering detection
The ability to intervene when someone is mind-wandering is contingent on knowing when mind-
wandering occurs – i.e., having a real-time measure of mind-wandering that is not dependent on
self-reports. This is difficult since mind-wandering is an elusive, internal cognitive state with few
obvious behavioral correlates (unlike emotions for example). One solution to this problem is to use
machine learning approaches to model the relationship between physiological and behavioral signals
and self-reported instances of mind-wandering (D’Mello, Dieterle, & Duckworth, 2017), such that
the learned model can then be used as an automated measure of ‘mind-wandering.’ This approach
has been successful at detecting mind-wandering using both behavioral (Franklin et al., 2011; Mills &
D’Mello, 2015; Stewart, Bosch, Chen, Donnelly, & D’Mello, 2016) and physiological signals (Bixler &
D’Mello, 2014; Blanchard, Bixler, Joyce, & D’Mello, 2014; Drummond & Litman, 2010; Faber, Bixler,
& D’Mello, 2017; Hutt et al., 2017, 2016) – with accuracy rates reflecting roughly 20% improvement
over chance levels.

Eye-gaze data is one of the most promising signals for mind-wandering detection (Bixler &
D’Mello, 2016; Faber et al., 2017; Hutt et al., 2017, 2016; Mills, Bixler, Wang, & D’Mello, 2016) based
on the strong coupling between eye-movements and visual attention called the “eye-mind” link
(Reichle, 2006; Reichle, Pollatsek, & Rayner, 2012; Starr & Rayner, 2001). Gaze-based mind-
wandering detection models have been successfully developed using both probe-caught (i.e., self-
reports in response to thought probes) as well as self-caught mind-wandering (i.e., self-reports once
the participant becomes aware that they are mind-wandering) across multiple studies. The accuracy
rates of eye-gaze-based mind-wandering detectors (up to 46% above chance; Hutt, Mills, et al., 2017)
will likely continue to improve, but for now, we think that detection has reached a point where it can
be applied to test real-time interventions as we do here. Critically, past studies have also
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demonstrated predictive validity in that the models’ estimates of mind wandering are negatively
correlated with comprehension similar to self-reports (Bixler & D’Mello, 2014; Faber et al., 2017;
Hutt et al., 2019).

Finally, these detectors have been built using a leave-several-people-out cross-validation techni-
que (or leave-one-person-out method), so there is some confidence that they will generalize to new
participants. This is because data from the same person is either included in the training or testing
set, but never both, thereby avoiding overfitting due to a lack of independence across the training
and testing sets. Person-independent detectors are particularly useful for the purpose of real-time
interventions because they need to make accurate predictions for new people without any informa-
tion on them at the outset of the task.

1.2.2. Attempts at real-time intervention
Outside of mind-wandering, other domains have leveraged the improved accuracy, cost-
effectiveness, and scalability of eye-trackers to provide real-time feedback. For example, eye gaze
can be used to increase user control during video games (Smith & Graham, 2006), improve
interaction with artificial agents (Vertegaal, Slagter, Van der Veer, & Nijholt, 2001), and improve
driver experience and safety (Feit et al., 2017; Merat, Jamson, Lai, Daly, & Carsten, 2014). In the
context of learning, one early study attempted to improve remedial reading ability by using eye gaze
to detect when readers were struggling with recognition and pronunciation of words (Sibert,
Gokturk, & Lavine, 2000). When the system detected a reader was having trouble, an auditory
prompt would give students hints on the problematic words. Readers showed improvements in
reading speed and reduced errors after using the system across multiple sessions. However, the
sample size in this study was small (N = 8) and there was no control condition; thus, it is difficult to
draw major conclusions from these results. More recently, D’Mello, Olney, Williams, and Hays
(2012) used a commercial grade eye tracker to reengage students while they were learning from an
interactive computerized tutoring system called GuruTutor. In a gaze-reactive condition, the tutor
used conversational moves to direct students to reorient their attention if they were disengaged as
measured by extended periods of off-screen gaze. Compared to a control group that did not receive
any reactive dialog, the gaze-reactive interventions successfully promoted learning gains on deep
reasoning questions.

Only one known study, conducted by our lab, has attempted to automatically respond to mind-
wandering (D’Mello, Mills, Bixler, & Bosch, 2017). This study prompted students in an experimental
condition to answer a textbase-level (i.e. based on factual information in the text) multiple-choice
question on the content of a page they just read if an eye-gaze-based mind-wandering detector
classified them as mind wandering while reading that page. If they answered incorrectly, they were
given an opportunity to re-read the text, and then were either presented with the same question
again or a different textbase-level question on the same content. Each intervention participant was
paired to a yoked-control participant who received the same interventions on the same pages.
Participants completed a posttest assessing textbase-level comprehension after reading.

This study reported no significant differences in overall posttest performance between the two
conditions. However, they did identify certain cases when the experimental condition outperformed
the control condition by designating each page as either high (1) or low (0) mind-wandering based
on a median split of the detector’s likelihood predictions. Results indicated that the experimental
condition performed significantly better on textbase posttest items that corresponded to pages when
the experimental condition had a low likelihood of mind-wandering but the control condition had
a high likelihood of mind-wandering (d = .548); there were no differences when the reverse was true
(d = .103) or for cases where both conditions were low (d = .066) or high (d = .023) mind-wandering.
The authors interpret this finding as the intervention correcting comprehension deficiencies asso-
ciated with mind-wandering, albeit at the textbase-level only.

Although this study demonstrates the potential feasibility of responding to mind-wandering in real-
time, there is much room for improvement. In particular, the intervention targeted textbase-level

4 C. MILLS ET AL.



comprehension which engendered shallow processing strategies and some participants even reported
“skimming” the text to look for the correct answers while they were re-reading (D’Mello et al., 2017). In
addition, only textbase-level comprehension was assessed immediately after reading in their study,
which does not account for deeper levels of comprehension (e.g., inference-level comprehension), or the
potential for a delayed-effect after a longer memory consolidation period (Ellenbogen, Hu, Payne,
Titone, &Walker, 2007; Nadel, Hupbach, Gomez, & Newman-Smith, 2012; Nadel & Moscovitch, 1997).

1.3. Current study

Our goal is to build a reactive intervention that promotes comprehension by providing an oppor-
tunity for readers to “fill in,” or strengthen information they missed as a result of mind-wandering.
Interventions that simply “bring the reader back” to the text may not address the problem because
they are never given an opportunity to integrate the missed material. We were focused on designing
an intervention that would improve conceptual understanding rather than memory of textbase-level
facts. Accordingly, we examined the reading comprehension literature to identify strategies that most
effectively promote deep comprehension (McNamara, 2007). Self-explanation (i.e., explaining the
meaning of information to oneself during a learning task) has been shown to be one of the most
effective learning strategies for promoting deep comprehension (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; McNamara, 2004; VanLehn, Jones, & Chi, 1992). In particular, self-explanation leads
readers to better integrate the text content with prior knowledge, generate more inferences, and
more effectively monitor their comprehension.

Self-explanations may be particularly beneficial during mind-wandering, as missed or weakly-
coded information may be effectively reconstructed to create an improved mental model of the text.
This prediction is based on the Interactive-Constructive-Active-Passive (ICAP) Framework (Chi &
Wylie, 2014), which posits that readers are more likely to benefit from an intervention that requires
the readers to engage in a constructive activity in comparison to more passive interventions that do
not involve any elaborative processing (e.g., simply re-directing attention). Constructive processing
encourages readers to think deeply about the text while actively formulating a response that
demonstrates conceptual understanding, while also evaluating their own understanding and expos-
ing knowledge gaps. Accordingly, readers were prompted to construct self-explanations when an
eye-gaze-based detector detected that they were mind wandering. Importantly, these prompts
occurred before readers were able to move on in order to correct comprehension deficits thereby
boosting their conceptual understanding of the text.

To the best of our knowledge, our fully-automated system is the first to track and combat mind
wandering in real-time during reading. We also improved upon our previous attempt (D’Mello et al.,
2017) in a number of ways. First, we developed a new self-explanation/re-reading intervention that
targeted deeper levels of conceptual understanding across multiple pages of text rather than fact-
based understanding on individual pages. Second, this required the reader to construct an open-
ended (free text) self-explanation (vs. multiple-choice response as in previous study), which we
scored using basic natural language processing techniques. Third, we improved upon the previous
textbase comprehension assessment by also measuring inference-level comprehension immediately
after reading. Fourth, we assessed both textbase and inference-level comprehension after a week to
measure retention and to account for any potential delayed effects of the intervention after memory
consolidation has occurred. Finally, we improved several usability aspects of the computerized
reading interface based on feedback from the previous study.

2. Building a real-time mind-wandering detection and intervention system

Guided by the cascade model of inattention (see above), our goal was to detect and mitigate the
negative effects of mind-wandering during reading. We addressed a number of considerations in the
development of the intervention, which are detailed below.
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2.1. Text selection and computerized reading interface

The intervention is intended to be text-agnostic; however, we focused on one text in this proof-of-
concept implementation. The text (approximately 6,500 words) was an excerpt taken from the first
35 pages of a book entitled “Soap-bubbles and the Forces which Mould Them” (Boys, 1895). The text
is about the physical behaviors of soap bubbles, how surface tension enables bubble formation, and
how chemical composition affects bubble formation. We selected this text because of the mundane
subject matter (i.e., the high likelihood of mind-wandering) and because we anticipated that most
readers would be unfamiliar with the concepts but it is written to be understandable without prior
knowledge of the topic. The original text excerpt contained multiple figures and textual references to
them. We removed these to simplify the display and because the images were not necessary to
understand the text. The text was otherwise consistent with the original published version.

The text was divided into 57 different screens (approximately 115 words each) that were
presented as “pages” on a computer monitor in 24-point Courier New typeface, with a line height
of 2.15. We chose this text presentation style to reflect relatively ecological reading with multiple
sentences on screen at once. At the same time, restricting the words per screen allowed for there to
be sufficient space between the lines for more accurate eye-tracking, which was important given that
our remote eye tracker does not restrict head movements (see below). Readers could navigate
through the text by pressing the right and left arrow keys at their own pace.

For purposes of the intervention and knowledge assessments, the 57 screens were grouped into 15
“sections” based on distinct concepts in the text. The sections were between three and five screens
long (see Table 1 for an example section). The first three screens are dedicated to explaining the
author’s motivation for writing the book, whereas a later section describes an experiment on how
a water sieve works, how evaporating alcohol contributes to the formation of “legs” on the sides of
a wine glass, and why wet clothes balloon out underwater yet stick to you once you are out of the
water.

2.2. Automated mind-wandering detection

The mind wandering detector used in this study has been described in detail elsewhere (see Faber
et al., 2017). Here, we provide a brief overview of how it was developed and validated.

2.2.1. Development and validation
The mind-wandering detectors built by Faber et al., (2018) utilized a dataset where eye gaze data was
recorded from 132 undergraduate students across two universities (see Kopp et al., 2015 for
a description of the original dataset used to build the detector). In this study, students completed
a computerized reading task using the same text excerpt and a similar reading procedure described
above with the exception of the intervention procedure described below.

Mind-wandering was measured using a self-caught method where participants pressed
a labeled key whenever they caught themselves mind-wandering. Prior to beginning the task,
students received the following definition of mind wandering (we used the more colloquial term
zone outs):

Your primary task is to read the text in order to take a short test after reading. At some points during reading, you
may realize that you have no idea what you just read. Not only were you not thinking about what you are
actually reading, you were thinking about something else altogether. This is called “zoning out.” If you catch
yourself zoning out at any time during reading, please … [REPORTING INSTRUCTIONS].

Each page with a self-report of mind-wandering was used as a positive instance of mind-wandering,
while the remaining pages were considered as negative instances of mind-wandering (i.e. the absence
of mind-wandering). On average, readers reported mind-wandering 18 times across the 57 pages of
text with a standard deviation of 12 and a range of 0 to 53. Five participants never reported any mind
wandering, but were still included in the analyses.
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A Tobii TX300 gaze tracker was used at the Midwestern university with a sampling rate of 120 Hz
and a Tobii T60 was used at the Southern university with a sampling frequency of 60 Hz. Both Tobii
eye-trackers were remote and therefore did not restrict head position or movement. Gaze data was
collected for each eye and included the x and y position of the gaze on the screen, as well as pupil
diameter. This data was converted into a series of fixations (periods where the eye remained fixated
on the same point), saccades (eye movements between fixations), and blinks, from which 62 gaze
features were calculated (see Faber et al., 2018 for more details on feature engineering). The specific
features included: 1) eye movement descriptive features, 2) pupil diameter descriptive features, 3)
blink features, and 4) miscellaneous gaze properties. The eye movement descriptive features were
statistical functionals for fixation duration, saccade duration, saccade amplitude, saccade velocity,
and relative and absolute saccade angle distributions. For the pupil diameter descriptive features, the
eye-tracker’s estimate of pupil diameter was standardized by computing the participant-level z-score.
For these two groups of features, we computed the minimum, maximum, mean, median, standard
deviation, skew, kurtosis, and range. The blink features were simply the number of blinks and the
mean blink duration. Finally, the miscellaneous gaze properties consisted of the number of saccades,
horizontal saccade proportion, fixation dispersion, and the fixation duration/saccade duration ratio.

The eye gaze features were calculated for different window sizes prior to each mind-wandering
report in order to test how much data was sufficient for making accurate predictions (see Faber et al.,
2018 for more details on window selection). For pages with a mind-wandering self-report, the end

Table 1. Example text section and corresponding assessments. Superscript in the text example indicates page breaks.

Text (pages 23–25):
23 if you will only dip a paraffin candle into water. I have melted a quantity of paraffin in a dish and dipped this gauze into the
melted paraffin so as to coat the wire all over with it, but I have shaken it well while hot to knock the paraffin out of the
holes. You can now see on the screen that the holes, all except one or two, are open, and that a common pin can be passed
through readily enough. This then is the apparatus. Now if water has an elastic skin which it requires force to stretch, it ought
not to run through these holes very readily; it ought not to be able to get through at all unless forced, 24 because at each
hole the skin would have to be stretched to allow the water to get to the other side. This you understand is only true if the
water does not wet or really touch the wire. Now to prevent the water that I am going to pour in from striking the bottom
with so much force as to drive it through, I have laid a small piece of paper in the sieve, and am pouring the water on to the
paper, which breaks the fall. I have now poured in about half a tumbler of water, and I might put in more, I take away the
paper but not a drop runs through. If I give the sieve a jolt then the water is driven to 25 the other side, and in a moment it
has all escaped. Perhaps this will remind you of one of the exploits of our old friend Simple Simon, “who went for water in
a sieve, but soon it all ran through.” But you see if you only manage the sieve properly, this is not quite so absurd as people
generally suppose. If now I shake the water off the sieve, I can, for the same reason, set it to float on water, because its
weight is not sufficient to stretch the skin of the water through all the holes. The water, therefore, remains on the other side,
and it floats even though, as I have already said, there are 26

Self-explanation Question
What point does the author make about when water will run through a sieve?
Example Ideal Answer
Water will only run through a sieve when enough force is used to propel the water through
the holes. Otherwise, the elastic skin of the water prevents it from running through the hole
easily.

Keywords
sieve, forced, force, holes, run through
Textbase-level Comprehension Assessment Item
Why did the author shake the gauze coated in melted paraffin wax while hot?
(a) to knock the paraffin out of the holes (correct)
(b) to spread the paraffin so it can cover all the holes (near miss)
(c) the author did not shake the gauze while hot (thematic miss)
(d) because he burned his hand (distractor)

Inference-level Comprehension Assessment Item
Which of the following is the most similar to how water behaves if you poured it in a wax-
coated thimble covered with holes?
(a) Like a colander for draining (near miss)
(b) Carrying a pail of water with a leak (thematic miss)
(c) Like a regular cup of water (correct)
(d) None of the above. (distractor)
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point of the window was positioned 3 seconds prior to the self-report in order to avoid capturing
changes in the gaze data associated with reporting mind-wandering (i.e., looking down at the
keyboard to press a button). For pages without a self-report, the window was 16 seconds into the
page, which was based on the average time between a self-report and the beginning of the page.
Pages that were shorter than the window size were discarded, as were pages with windows that
contained fewer than five fixations (i.e., not enough data to compute features). This was only done
during the initial detector development – no cases were discarded during deployment in the current
study.

Finally, supervised classification models (e.g., support vector machines, naïve Bayes classifier,
Random forest) were trained to discriminate instances of mind-wandering (pages with a self-report)
from instances of normal reading (pages without a self-report). Reader-independent validation is
necessary for the models to generalize to new readers. Accordingly, the models were validated using
a leave-one-reader-out cross-validation method in order to ensure that data from each reader was
exclusive to the training or testing set. This entailed training the model on data from n − 1
participants and testing the model on the remaining participant until each participant was a “test”
participant.

Based on Faber et al.’s results, the best model was a sequential minimization optimization (SMO)
algorithm, an implementation of a support vector machine (SVM) classifier. The model only used
global features (e.g., features that are content-independent) and operated on a window size of
8-seconds. It classified a page as mind-wandering or not based on whether its predicted likelihood
of mind-wandering (ranges from 0 to 1) was below or above the .5 threshold. The default .5
threshold was adopted as it led to a higher rate of true positives while maintaining a moderate
rate of true negatives. The chosen model had a weighted precision of 72.2% and a weighted recall of
67.4%, which we deemed to be sufficiently accurate for intervention. Critically, the model’s predic-
tions of mind-wandering during reading were negatively correlated with textbase-level comprehen-
sion scores after reading, r = −.374; p < .001, providing evidence that the detector is sensitive to
potentially harmful instances of mind-wandering.

2.2.2. Implementing the detector and deciding when to intervene
We embedded the classification model into the computerized reading interface for automated mind-
wandering detection and intervention. Eye gaze features were computed each time a participant
advanced to a new page. These values were then used as features for the detector, which resulted in
a mind-wandering likelihood per page, expressed as a probability between 0 and 1. We did not
include any gaze features from participants’ re-reading behaviors because the model was only trained
on first reads and there are known differences in processing strategies during re-reading (e.g., faster
reading times, skimming, etc.; Callender & McDaniel, 2009; Phillips, Mills, D’Mello, & Risko, 2016)
compared to the first-read. We also accounted for instances when eye-gaze features could not be
computed (e.g., insufficient reading time, missing data for individual features). In these cases, the
detector still made a probabilistic prediction based on default probabilities from the original training
data used in Faber et al., (2018). For example, participants in the training data reported mind-
wandering 56.3% of the time when they spent less than 4s reading a page; therefore, the detector
applied the same default probability (56.3%) of predicting mind-wandering on pages where reading
times were less than 4s without considering any of the gaze features.

As discussed above, the text was divided in the 15 different conceptual sections. Interventions could
only occur at conceptual section breaks in the text (see Figure 1) because concepts spanned multiple
pages of text. We used an aggregation and probabilistic method to determine when to intervene to
mitigate the inherent error in mind wandering detection. Specifically, we first computed the average
mind-wandering likelihood across all pages in a given section to increase reliability of the signal. The
probabilistic decision method was implemented using a sigmoid-like function (see Figure 2). An
intervention was never deployed if the section’s average mind-wandering likelihood was below .3. If
the likelihood fell in the middle section from (.30 – .66), the average likelihood score was used to
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probabilistically determine if a student would receive an intervention. For example, if a student had an
average mind wandering likelihood of .40, he or she had a 40% chance of getting an intervention.
Finally, students always received an intervention if the average mind-wandering likelihood was above
.66. These cutoff points were decided after examining histograms and scatterplots from pilot data
(N = 18). At least 25% of MW likelihoods obtained in the pilot data fell within the “never receive an
intervention” section of the function. Another 25% of the data fell within the “always receive an

Figure 1. Example sections and decisions about mind-wandering based on average likelihood values.

Figure 2. Sigmoid-like function used to make decisions about deploying an intervention based on the average mind-wandering
likelihood in a given section. Values less than .30 will not receive intervention whereas values greater than .66 will always receive
intervention. Values that fall in the middle will probabilistically receive intervention based on their average mind-wandering
likelihood.
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intervention” section of the function, leaving 50% left for the probabilistic decision method (see
Figure 2).

2.3. Intervention development

The goal of the intervention was to ensure that the reader (i.e., the user) understood individual
concepts before progressing through the text and we utilized self-explanations for this purpose.

2.3.1. Self-explanation questions
Our interventions targeted some of the mechanisms described in McNamara’s (2004) definition of
self-explanations, such as understanding gaps in understanding, explaining and elaborating on
concepts, and tying explanations to prior knowledge. The questions required readers to elaborate
on a concept described in the text in order to demonstrate understanding. For example, readers were
asked to explain what the author’s point was or how a concept from the text would apply to another
real-world situation (e.g., “Based on an experiment described in the text, what would happen to your
clothes when you jump in a pool with them on?”). The questions were previously piloted using
Amazon’s Mechanical Turk to ensure they were not too easy without reading the text (N = 25) or too
difficult after exposure to the text (N = 25).

2.3.2. Self-explanation scoring
We needed to provide readers’ feedback on their self-explanations in real-time. First, we asked
research assistants to create 10 “ideal answers” per question (Guerrero & Wiley, 2019). We chose five
of these answers to provide a sufficient number of comparisons and account for differences in
writing styles. Next, we used a basic word overlap algorithm where readers’ answers were compared
to the predefined ideal answers for each question after removing stop words (e.g. “a”, “an”, “the”,
“and”). The overlap score was computed as the number of words that overlapped across the
submitted answer and the ideal answers, divided by the number of unique words in the ideal
answer. Readers’ answers often contained synonyms that did not precisely match words in the
ideal answers, but were correct in their meaning. Thus, we obtained synonyms for each of the words
present in the ideal answers using WordNet (Fellbaum, 1998), a publicly available lexical database
that contains groups of words that denote a specific concept (called a synset), and updated word
overlap scores to include synonym overlap as well. Word overlap scores were computed for each of
the five ideal answers and the highest word overlap score was taken as the reader’s self-explanation
score.

Finally, two human coders identified critical words and phrases (called keywords), which were
essential for a correct answer (e.g., capillary action). These keywords were used to boost the self-
explanation score when readers most likely generated an adequate answer, even if the reader’s exact
wording did not overlap with ideal answers. There were 0 to 9 keywords per question with a median
of 5. Two questions did not have designated keywords because no set of words or phrases adequately
captured the concept. If a readers’ answer contained one of these keywords, their word overlap score
was boosted by .2. This number was chosen in order to give readers a relatively small boost without
guaranteeing their answer would be counted as correct.

We evaluated this scoring method by correlating automatically generated scores to human ratings
(on a scale of 0 [incorrect] to 1 [correct]). We compared a total of 151 self-explanations from 18 pilot
participants who interacted with the system in order to examine responses to self-explanation
questions during reading. The resultant Pearson correlation of .667 (intraclass correlation = .645)
was deemed acceptable based on other attempts to automatically score short-answer, open-ended
responses (see Burrows, Gurevych, & Stein, 2015).
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2.3.3. Feedback and re-reading
The self-explanation scores were used to determine the type of feedback they would receive and if
readers should be given the opportunity to re-read. Similar to the mind-wandering detector, we used
a sigmoid-like function with three different cutoffs. Self-explanation scores less than .30 always
required readers to re-read (re-read cutoff). For scores ranging from .31 to .69, the inverse of readers’
word overlap scores was used to probabilistically determine if they would be asked to re-read
(probabilistic cutoff). For example, a 40% score yielded a 60% chance of re-reading. Finally, readers
with scores ranging greater than .70 were always able to move forward in the text (keep-reading
cutoff) but could re-read if they chose to.

One issue with the scoring of self-explanations, which is imperfect, is that giving readers
incorrect feedback could be demotivating and might cause negative, reactive behaviors. The
feedback mechanism was designed with this in mind. Hedged negative feedback was only given
when readers’ answers were below the re-read cutoff of .30 using one of the following phrases:
“Not entirely! Why don’t you take a second look at the last few pages before continuing?” or
“Not quite! Why don’t you take a second look at the last few pages before continuing?”
Similarly, positive feedback was only given when readers’ answers exceeded the keep-reading
cutoff of .70–1.0 in the form of either, “Good job! Let’s continue reading.” or “Nicely done! Let’s
continue reading.” Neutral feedback was provided when readers’ answers were between .31 and
.69 and varied based on whether it was followed by a re-reading intervention. When readers
were able to continue reading based on the probability function, they were given the following
neutral feedback: “Thanks! Let’s go!” or “Thanks! Let’s continue reading.” However, when
readers were asked to re-read based, they were given the following message, “Thanks! Now we
want you to give a different answer to the question. Why don’t you take a second look at the last
few pages before continuing?” We did not give this any explicit feedback given their self-
explanation scores were in this intermediate zone.

2.4. Putting it all together

The intervention mechanism (depicted in Figure 3) proceeded as follows. An intervention was
triggered based on the averaged mind wandering scores computed at the section boundaries and
based on the sigmoid-like function in Figure 2. A maximum of 10 (out of 15 section boundaries)
interventions could be deployed per reader so as to not be overly burdensome. When an intervention
was triggered, the self-explanation prompt and answer box appeared on the right side of the screen
and the text they were reading shifted slightly to the left (see Figure 4). Readers were unable to
navigate backwards and re-read the text but had to construct a response based on their current
understanding (first attempt).

Readers submitted their self-explanation by clicking the submit button and the system
automatically scored their response. If their self-explanation score was accurate based on
the second sigmoid-like function shown in Figure 2, they received positive feedback and
moved on. If their answer was deemed incorrect or insufficient, they received neutral or negative
feedback, and were asked to re-read the last few screens (i.e. content corresponding to the self-
explanation question) in order to provide an improved answer (second attempt). The answer box
disappeared after receiving feedback and they were able to re-read, navigating back and forth
using the arrow keys. When they were finished re-reading, they pressed a button on screen
labeled “Try Again” in order to construct a new answer. Once they pressed the “Try Again”
button, they were unable to navigate through the text. An empty answer box reappeared for
them to type in their second self-explanation attempt. Readers received feedback on their second
answer using the same feedback algorithm and then progressed to the next screen of text,
regardless of the second self-explanation score.
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Figure 3. Intervention protocol flowchart.

Figure 4. Screenshots from interface. a) example page from the text during normal reading; b) example intervention page when
readers answered self-explanation questions; c) example feedback and re-reading page.
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2.5. User study for formative testing and refinement

The system was refined through multiple rounds of formative testing and feedback from 15
participants at the same private Midwestern university. An experimenter observed participants
while they were interacting with the system and interviewed them afterward about their experience.
Their interactions and responses were also analyzed. During this process, we gleaned several insights
about intervention design, frequency, and the overall usability of the system. First, after learning
from our previous attempt at a fact-based intervention (D’Mello et al., 2017) that students were
skimming the text to look for specific answers, it was important to understand reader behavior with
the new self-explanation intervention strategy. Our piloting process revealed that readers engaged in
less skimming once questions were expanded to target conceptual information that spanned multiple
pages of text. We did observe, however, that participants would go back and search for the
conceptual answers in a section when they were allowed to navigate back and forth through the
pages while answering the self-explanation. This was addressed by freezing the page once a self-
explanation question was active. Second, participants requested that questions be integrated with the
reading rather than a separate page, which we addressed by freezing the questions on the right-hand
side of the screen during re-reading.

We also refined the self-explanation scoring algorithm and the feedback from the data collected.
It became clear that the neutral feedback threshold had to be lowered from a previous value of
greater than .50 since participants reported that they thought their answers were partially correct
even when they received negative feedback. We therefore expanded the window where participants
would get positive or neutral feedback to include scores greater than .31 in order to avoid discoura-
ging readers when their answers were partially correct. This step also included adjusting the negative
feedback to include more fail-soft language, like “Not quite!” instead of harsher phrases like, “That’s
incorrect.”

3. Summative valdiation study

The summative evaluation was designed to answer three overarching research questions: (1) Can
a mind-wandering-sensitive self-explanation intervention correct comprehension deficits in real-
time while participants are reading? (2) Can this self-explanation intervention prevent the cascading
negative effect of mind-wandering on comprehension assessed after reading and a week later?

3.1. Method

3.1.1. Design
We used a between-subjects yoked-control design with two conditions: Mind-Wandering (MW)
Intervention condition (experimental condition), and a Yoked-Control condition (control condi-
tion). All participants read the same text excerpt (described above) and completed text- and
inference-level comprehension assessments both immediately after reading the text as well as after
a one-week delay. Scores on these tests serve as our primary dependent measure.

Participants in the MW-Intervention group received self-explanation interventions as detailed
above. Each Yoked-Control participant was paired with a unique MW-Intervention participant and
received the exact same self-explanation interventions at the same locations in the text as the MW-
Intervention participant, irrespective of whether the Yoked-Control participant was mind-
wandering. The only exception was that the Yoked-Control participants were given neutral feedback
in the event that they had to re-read after receiving high word overlap scores on the first self-
explanation question. This was done in order to ensure that they were still afforded the same re-
exposure to the text, without giving them negative feedback when their responses were likely correct.

A yoked-control design allows us to assess whether intervening at the “right time” in the MW
condition (i.e. when mind-wandering is occurring) is more effective than intervening in general (i.e.
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when mind-wandering might not be occurring). The yoked conditions received the same number of
interventions at the same time for purposes of comparing learning. If control participants received
interventions at every conceptual break, it would not be a fair comparison since we would expect the
self-explanations to have a strong positive effect that would outweigh the benefits of receiving
a much smaller number of timely interventions.

A strict control condition is particularly important because the learning strategies used in our
intervention make it less meaningful to compare it to a “Do-nothing” condition. First, interpolated
testing (i.e. giving intermittent quiz questions during a learning session similar to the intervention)
can reduce mind-wandering rates and improve performance on a comprehension test (Jing, Szpunar,
& Schacter, 2016; Szpunar et al., 2013). The interventions thus give the readers an opportunity for
retrieval practice and to assess their own knowledge, known as the “testing-effect” (Karpicke &
Roediger, 2007; Roediger & Karpicke, 2006). Indeed, retrieval practice is one of the most effective
study strategies (Eglington & Kang, 2018; Karpicke & Blunt, 2011; Rawson & Dunlosky, 2011;
Roediger & Butler, 2011; Smith, Floerke, & Thomas, 2016) It was therefore important that the yoked-
control condition gets the same number of self-explanation opportunities as the experimental
condition as they are considered a form of interpolated testing with retrieval practice.

Second, self-explanations themselves are one of the most effective study strategies, producing
superior learning gains compared to a host of other strategies, including re-exposure and directed
instruction (Chi et al., 1989; Kolić-Vrhovec, Bajšanski, & Rončević Zubković, 2011; McNamara,
2004; Roy & Chi, 2005; VanLehn et al., 1992).

Third, a large body of research has shown that memory and comprehension can be improved by
event boundaries (i.e. a shift from one event to another, such as spational, causal, or temporal break;
Pettijohn, Thompson, Tamplin, Krawietz, & Radvansky, 2016; Radvansky & Zacks, 2017; Swallow,
Zacks, & Abrams, 2009). When an event boundary is encountered, the mental model of the text is
updated and information before the boundary is committed to longer-term memory storage,
resulting in better retention. Our interventions are expected to provide event boundaries during
reading, which is likely to improve learning.

Fourth, another benefit of the Yoked-Control condition is that it implicitly controls for time-on-
task effects, an important consideration given that mind-wandering is expected to increase as a task
progresses (Risko, Anderson, Sarwal, Engelhardt, & Kingstone, 2012; Thomson, Seli, Besner, &
Smilek, 2014).

Finally, a Yoked-Control is an active control, which also addresses “placebo effects.” One
advantage of a “Do-nothing” control is that it is devoid of interruptions compared to the current
conditions. Indeed, interruptions can be harmful when unrelated to the learning task (e.g., a fire
alarm). However, in the context of education, uninterrupted silent reading is considered to be
a passive learning strategy that is less effective compared to more constructive approaches like self-
explanations (Chi & Wylie, 2014). Thus, even though the intervention interrupts the reading process,
we consider this to be a beneficial interruption based on many previous studies where interruptive
self-explanations led to better comprehension compared to other learning reading conditions with-
out interruptions (e.g., re-reading; Allen, McNamara, & McCrudden, 2015; McNamara, Levinstein,
& Boonthum, 2004; Ozuru, Briner, Best, & McNamara, 2010).

With this in mind, we would expect a “Do-nothing” control condition, where participants would not
receive any interventions, to performworse than both of the current conditions, which receive interventions
that capitalize on a host of well-known learning strategies. Thus, a “Do-nothing” condition would yield an
unfair comparison; any advantage in the MW Intervention condition could then be attributed to inter-
polated testing, retrieval practice, self-explanations, event-boundaries, time-on-task, and placebo effects,
rather than the self-explanation interventions that specifically target mind-wandering when it occurs.

3.1.2. Hypotheses
Our first hypothesis was that the self-explanation and re-reading interventions would attenuate the
effect of mind-wandering on comprehension during reading. Because participants in the MW-
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Intervention condition received interventions when their comprehension was expected to be lower
(i.e., because they were mind-wandering), we expected that their self-explanation quality would
improve on their second attempt (i.e., after re-reading) compared to their first attempt. Participants
in the Yoked-Control condition were expected to exhibit no differences in self-explanation scores
across attempts since the timing of the interventions was not contingent on their mind-wandering.

Second, we hypothesized that the MW-Intervention condition would have better overall posttest
comprehension measures compared to the Yoked-Control condition, both immediately after reading and
after a week-long delay scores at posttest, assuming that comprehension deficits due to mind-wandering
were successfully repaired during reading. Although both conditions were likely to benefit from simply
receiving the learning interventions, the control conditiondidnot receive interventions timed to theirmind-
wandering episodes. They were therefore expected to have lower comprehension scores overall because
their mental models were not “repaired” in real-time as they progressed through the text.

Third, we hypothesized that the inference-level assessments would be more sensitive to the intervention
than the textbase-level comprehension assessments because the self-explanation interventions were aimed
at promoting deep levels of comprehension. For the same reason, we expected the delayed assessment to be
more sensitive than the immediate assessment after allowing for a consolidation period which can have
a considerable impact on memory (Ellenbogen et al., 2007; Kuhlmann & Wolf, 2006). Specifically, the
consolidation period (i.e. neural processes contributing to the “permanent” storage of initially encoded
information) is critical to the formation of long-term memories (Nadel & Moscovitch, 1997), and thus
provides us with the opportunity to assess whether participants’ knowledge of the text has been integrated
into long-term memory.

3.1.3. Participants
We collected data from 113 participants enrolled in two universities. Fifty-four undergraduates from
a private mid-western university participated for two research credits and were asked to return one week
later to complete the delayed tests for additional .5 research credit. Accumulating a minimum number of
research credits is typically a requirement for their courses. Out of the 54 participants, 36 of them (67%)
opted to comeback.We also collected data from59participants enrolled at a large publicwestern university.
Participantswere given a $20Amazon gift card for completing the first portion of the study andwere offered
an additional $10 gift card for completing the delayed test one week later. To improve retention rates, we
administered the delayed assessment using online surveys in Qualtrics and 55 (out of 59) participants
completed the delayed test (93%). The differences in compensation schemes were based on practical
constraints associated with each university and are addressed as covariates in the statistical analyses. Four
participants (3.6%) in theMW-Intervention condition did not receive any interventions and were excluded
from the analyses (along with their yoked-counterparts) due to failed treatment in the experimental
condition. In total, we analyzed data from 35 pairs of participants (n = 70) across both cohorts who
completed both sessions and received at least one intervention.

Participants signed an informed consent prior to participating. The consent indicated they could
withdraw from the research at any point without penalty. The study was approved by the Institutional
Review Boards at each university, respectively. Participants were blind to condition.

Participants who responded to a demographic questionnaire (n = 69) were an average age of
21.09 years (SD = 2.90). There were 57.9% females and a majority were Caucasian (68.1%), with
23.1% Asian, 5.8% Hispanic, 1.5% African American, and 1.5% who reported as “Other.”

3.1.4. Materials
3.1.4.1. Eye-tracker. A Tobii TX 300 eye tracker was used to collect eye gaze data in real-time
(sampling rate was set to 120 Hz in binocular mode). Participants’ eye gaze was calibrated at the
beginning of the study (see Procedure) and was not monitored or updated during the task. An
experimenter examined calibration quality before the reading task by assessing the alignment
between gaze-points and predetermined areas of interest that mirrored text placement.
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Participants were not required to have uncorrected vision as the eye-trackers could track eye
movements even when participants wore glasses or contact lenses.

3.1.4.2. Knowledge assessments. We did not include a pretest because participants were not expected to
havemuch (if any) knowledge of this specific text, which we confirmed in pilot testing. Instead, participants
completed one set of knowledge assessments immediately after the reading task and a second set approxi-
mately a week after. Each set included textbase-level and inference-level comprehension questions.

Textbase-level questions required factual knowledge about the text to be answered correctly (see Table 1
for example questions). There were four unique questions per conceptual section of the text, resulting in 60
questions in total (corresponding to 15 sections). Each question contained four answer options consisting of
a target (the correct response to the question), a near-miss (an option that sounds correct but was not),
a thematic miss (an option that follows the theme of the content but is not actually related to the question),
and a distractor (an option that is not at all related). The questionswere split into two subsets of 30 questions
in a quasi-random fashion in order to create an even number of questions per concept. Each subset was
either presented in the immediate or delayed version of the assessments (subset assignment was counter-
balanced across participants).

Inference-level questions targeted conceptual knowledge of the text (see Table 1 for an example). They
required participants to generate inferences or apply knowledge to answer the question correctly (Graesser,
Ozuru, & Sullins, 2010; Graesser & Person, 1994). We adopted the same four-answer multiple choice
structure, where correct responses required conceptual knowledge of a specific section in the text (30 total
questions– 2 per section). Similar to the textbase-level questions, itemswerematched by section anddivided
into two subsets, which were then assigned for the immediate or the delayed assessment (subset assignment
was counterbalanced across participants).

The questionswere piloted usingAmazon’sMechanical Turk to ensure theywere not too easy or difficult
to answer (N = 50). This was done by first asking participants to answer the questions without reading the
text. Here, accuracywas expected to be around chance levels (25%).Wemodified the questions by analyzing
participants’ answers. For example, some multiple-choice options contained obvious incorrect cues and
were therefore never selectedwhile some incorrect optionswere selected too often.Questionsweremodified
and re-tested until all questionswere answered at chance levels without reading the text. In a second step, we
also needed to ensure that participants would be able to answer the questions correctly after reading the text.
Therefore, a different group of pilot participants answered questions after reading the corresponding
conceptual section of text. Participants were able to answer all questions with above chance levels of
accuracy after reading.

3.1.4.3. Procedure. Participants were tested individually over a 1.5-hour session (plus a follow up session
either in person or remotely) in a small testing room. Participants were seated in front of a 511 × 287 mm
monitor with the eye tracker affixed at the base. They were positioned in a non-adjustable chair two feet
from the monitor. We used the eye tracker’s default calibration protocol, which required participants to
focus on a series of five yellow dots that individually appeared in five different locations on the screen. To
test calibration quality, participants were then asked to focus on a set of numbers which appeared at
different locations on the screen. The experimenter checked calibration accuracy by comparing the
recorded location of eye gaze relative to the location of the numbers on the screen. If the calibration was
deemed accurate, the participant was allowed to move on, otherwise the calibration and checking process
was repeated up to three times before allowing the participant to move on.

Next, participants received the following electronic instructions about the reading task:

“Your primary task is to read the text in order to take a short test after reading. The text will be displayed screen
by screen and you can press the “right arrow” key to navigate through the text and the “left arrow” key to return to
the previous page.”

Then, participants were given notice of the intervention questions, but they were not instructed on
why, how, or when the questions would appear.
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“While reading the text, you will occasionally be asked some questions about the pages that you just read.
Depending on your answer, you will have the chance to re-read and answer again. You may have to review the
last few pages that you have read. Remember, you can use the left arrow key to review what you have read.”

The reading session commenced after the instructions were delivered and the experimenter closed the door
and left the testing room. The texts were displayed on a 23-inch monitor using size 36 Courier New font.
There were approximately 115 words per screen (for 57 screens) with 1920 × 1080 resolution. The MW-
Intervention group and the Yoked-Control group received the self-explanation interventions as described
above. Participants read the text at their own pace andwere instructed to notify the experimenter when they
were done.

Participants completed the immediate knowledge assessments, consisting of the 30 textbase-level
comprehension questions followed by the 15 inference-level questions, after the reading session. They
then completed a brief demographics questionnaire.

Participants at the Midwestern university were given the opportunity to return for a follow-up
session to complete the delayed posttest, which was scheduled for a week later using an anonymized
calendar. At the western university, participants completed the delayed posttest one week after their
initial session via Qualtrics. The delayed assessment consisted of 30 and 15 previously unseen
textbase- and inference-level questions, respectively. Finally, participants were fully debriefed.

3.2. Results

We analyzed data from the 35 pairs (N = 70) who had complete data (i.e., scores for both the
immediate and delayed tests) in order to keep the analytic approach consistent. The two
conditions were compared using mixed-effects regression models in R through the lme4 package
(Bates, Mächler, Bolker, & Walker, 2015). Mixed-effects models are the appropriate method of
analysis for these data given the repeated (multiple subjects and interventions) and nested
(participants yoked together) structure of the data (Finch, Bolin, & Kelley, 2016; West, Welch,
& Galecki, 2014). A mixed-effect approach allows for the inclusion of each individual observa-
tion in the regression model without violating the independence assumption required for an
analysis of variance (ANOVA).

The participants’ pair number was used as a random effect in all models so that pair number
was treated as a within-subject effect. This is the recommended approach according to
Schweigert (1994) since the yoked design inherently relates the two participants as a result of
receiving the same number of interventions at the same points during reading (i.e. they should
not be considered independent). The Yoked-Control condition was set as the reference group, so
positive regression coefficients indicate higher values for the MW-Intervention condition (MW >
YC) and vice versa for negative values (YC > MW). Significance tests were conducted with
a two-tailed α of .05 using the Type II Wald chi-square test from the ‘car’ package in R (Fox,
Friendly, & Weisberg, 2013). At the same time, we acknowledge the limitations of p-value
calculations in mixed-effects models (Luke, 2017) and encourage readers to consider the stan-
dard error (SE) of the regression coefficients, the 95% confidence intervals and effect sizes
(Cohen’s d) in addition to traditional significance tests. We also report Hedge’s g for comparison
given our small sample size (see Table 2).

Mind-wandering likelihood and self-explanation (word overlap) scores were analyzed at the concept-
level using mixed effects linear regression. Text and inference-level comprehension scores were analyzed at
the item level, such that binary responses (1 for correct; 0 for incorrect) were regressed on condition using
mixed effects logistic regression.We include cohort (since the data was collected at two sites) as a covariate
in all models but it was never significant so it was removed from the models reported here (see Table 2 for
regression results).

A correlation matrix with an overview of the key variables is presented in an Appendix.
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3.2.1. Number of interventions
In total, participants received 352 self-explanation interventions, with an average of 5.03 interven-
tions each (SD = 2.96) across the 15 possible intervention concepts. This intervention rate of 33.5% is
consistent with self-reported mind-wandering rates observed while reading the same text (Kopp
et al., 2015). See Figure 5 for histograms of the number of interventions received and the MW
Likelihood scores across all participants.

3.2.2. Reading times
We tested for differences in reading times in order to address a potential time-on-task confound.
There were no significant differences in reading times between the two conditions during the first
read (i.e. not including re-reading during self-explanations), B = 2858ms (SE = 2599 [95% CI:-2236,
7953ms]), χ2(1) = 1.21, p = .272. The two conditions also spent similar times re-reading the text

Table 2. Means, standard deviations, and effect sizes (Cohen’s d and Hedge’s g) assessed at the participant level. Reading Time
and Reread Time were calculated based on the average time spent on each section. SE = self-explanation. 19% of data occurred
before the first intervention and was removed for the “After an intervention occurred” analyses.

MW Yoked Control MW-Intervention vs. Yoked-Control

N pairs = 35 N obs. M (SD) M (SD) Cohen’s d Hedge’s g p-value for regression models

All Concepts
Reading Time (seconds) 1050 1.76 (.495) 1.71 (.458) .103 .102 .272
Reread Time (seconds) 450 1.07 (.499) 1.13 (.478) −.123 −.121 .314
Time Constructing First SE (ms) 352 10547

(65666)
25941
(21586)

−.315 −.311 .011

First Self-Explanation Score 352 .498 (.160) .485 (.183) .076 .075 .451
Second Self-Explanation Score 180 .467 (.141) .463 (.183) .024 .024 .675
Δ Self-Explanation Score 180 .143 (.150) .066 (.144) .524 .518 .002
Immediate
Textbase Level 2100 .687 (.137) .698 (.147) −.077 −.077 .560
Inference Level 1050 .472 (.156) .476 (.193) −.023 −.023 .899

Delayed
Textbase Level 2100 .559 (.147) .529 (.162) .194 .192 .152
Inference Level 1050 .436 (.165) .394 (.154) .263 .260 .162

After an intervention occurred
Immediate
Textbase Level 1698 .706 (.158) .731 (.159) −.158 −.156 .354
Inference Level 850 .484 (.194) .471 (.230) .061 .060 .944

Delayed
Textbase Level 1698 .582 (.170) .522 (.171) .352 .348 .031
Inference Level 850 .449 (.200) .389 (.191) .307 .303 .040

Figure 5. Histograms of total number of interventions received and mind-wandering (MW) likelihood scores across both
conditions.
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when they were asked to provide a second answer to the self-explanation question, B = −6868ms
(SE = 6815 [−20218; 6591ms]), χ2(1) = 1.02, p = .314.

3.2.3. Mind wandering likelihoods
Participants’ first attempt self-explanation scores were not associated with their mind-wandering
likelihood on intervention concepts, B = −.012 (SE = .022 [−.055, .031]), χ2(1) = .280, p = .597.
A separate regression revealed the same pattern for their second attempt self-explanation scores,
B = −.008 (SE = .040 [95% CI: −.085, .070]), χ2(1) = .037, p = .847.

We also found that mind-wandering was not reliably related to immediate, B = −.007 (SE = .007 [−.020,
.006], χ2(1) = 1.17, p = .279, or delayed textbase comprehension, B = −.009 (SE = .006 [−.020, .003]), χ2

(1) = 2.53, p = .133; it was also unreliably related to immediate, B = −.012 (SE = .007 [−.025, .001], χ2

(1) = 3.17, p = .075, or delayed, B = .001 (SE = .007 [−.012, .014]), χ2(1) = .014, p = .905, inference-level
comprehension. These results may be attributed to the fact that, as intended, the self-explanation inter-
vention mitigated the negative relationship between mind-wandering and comprehension by correcting
comprehension deficits after re-reading (i.e., after the first self-explanation attempt).

3.2.4. Self-explanation scores
Participants in the Yoked-Control condition spent longer time constructing their first self-
explanation compared to the MW-Intervention condition, B = −14296 ms (SE = 5608 [3285,
25305]), χ2(1) = 6.50, p = .011. Despite spending longer on their response, however, there was no
effect of condition on participants’ first, B = −.021 (SE = .023 [−.076, .034]), χ2(1) = .569, p = .451,
or second self-explanation attempt scores, B = −.014 (SE = .033 [−.077, .050]), χ2(1) = .176, p = .675.

We also assessed if participants in the MW-Intervention condition showed greater improvement
in their self-explanation scores compared to the Yoked-Control condition after re-reading. This was
the case as the intervention-group’s scores exhibited greater change from their first attempt to
the second attempt (Second SE Score – First SE Score), indicating they may have benefited more
from the opportunity to re-read, B = .106 (SE = .034 [.040; .172]), χ2(1) = 9.86, p = .002.

Taken together, the intervention appears to correct for comprehension deficits associated with
mind wandering during reading. The pertinent question now, is whether this is reflected in
comprehension assessed after reading and at delay.

3.2.5. Comprehension assessments
There were no significant condition differences on any of the four comprehension assessments when
including data from all concepts, ps > .15, ds < .2 and 95%CI containing 0 (see Table 2). However, until the
MW-Intervention condition received their first adaptive intervention, the two conditions had identical
reading experiences. Therefore, we can assume that there may not be a difference between the two
conditions before an intervention has even been deployed (i.e., when no manipulation has taken effect).
To address this issue, we repeated the analyses after removing 19% of the items corresponding to concepts
that preceded the first intervention. Items were removed for each pair separately because pairs could receive
their first intervention at different places in the text. We still found no differences in textbase, B = −.101
(SE = .109 [−.314, .113]), χ2(1) = .859, p = .354, or inference-level comprehension immediately after
reading, B = .010 (SE = .141 [−.267, .287]), χ2(1) = .005, p = .944. Critically, however, the MW-Intervention
condition scored higher on both the textbase, B = .216 (SE = .100 [.020, .413]), χ2(1) = 4.64, p = .031 and
inference assessment items, B = .293 (SE = .142 [.014, .573]), χ2(1) = 4.23, p = .040, after the week-long
delay. The differences corresponded to .352 (textbase) and .307 (inference) sigma effect.

4. General discussion

The mind will inevitably wander during reading (Feng et al., 2013; Franklin et al., 2011; Phillips
et al., 2016; Smallwood, 2011). Despite the ubiquity of this experience, mind-wandering can be quite
problematic considering its consistent negative relationship with reading comprehension (Mills
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et al., 2017; Randall et al., 2014; Smallwood, 2011; Smallwood et al., 2007). With this in mind,
a growing body of research has been devoted to preventing mind-wandering from occurring during
learning (Kopp et al., 2014; Szpunar, 2017; Szpunar et al., 2013; Zanesco et al., 2016). However, few
interventions have been designed to improve comprehension by responding to mind-wandering as it
inevitably arises. Further, although it is possible to detect episodes of mind-wandering during
reading with a modicum of accuracy (Bixler & D’Mello, 2016; Faber et al., 2017), with one exception
of our own work (D’Mello et al., 2017), researchers have yet to leverage these detectors to create an
effective learning intervention.

To address these gaps, we developed and tested the Eye-Mind Reader, a real-time gaze-based
detection and intervention interface aimed to promote comprehension outcomes by combating the
negative effects of mind-wandering during reading. After iterative refinement of individual system
components and then the complete system itself, we tested the system in a summative yoked-
randomized controlled study. An experimental condition (MW-Intervention condition) received
automated self-explanation/re-reading interventions based on the classifications of an eye-gaze-
based mind wandering detector. We compared this to a Yoked-Control condition that received
interventions at the same points in the text regardless of their mind wandering likelihoods. Here, we
discuss our main findings along with limitations and future directions.

4.1. Main findings

In line with our predictions, participants in the MW-Intervention condition showed greater
improvement in their self-explanation scores in comparison to the Yoked-Control condition,
providing evidence that the intervention was sensitive to moments when there was room to improve
“online” comprehension (e.g., during the reading process). Repairing online comprehension may be
the minimum viable outcome of our system.

Beyond improvements in online processing, we also tested whether a mind-wandering sensitive
intervention led to differences in comprehension scores immediately after reading and after a one-
week delay. We hypothesized that a reactive self-explanation intervention would improve compre-
hension in the MW-Intervention condition by allowing participants to fill in “gaps” in their mental
model associated with mind wandering. This may help avoid a cascading negative effect of impaired
comprehension for readers in the MW-Intervention condition, compared to those in the Yoked-
Control condition who were not provided interventions that were sensitive to their mind-wandering
episodes.

Although there were no significant differences in comprehension immediately after reading (i.e.,
during the same session), participants in the MW-Intervention condition outperformed the Yoked-
Control condition after a week delay. The difference in conditions on the delayed tests aligns with
Smallwood’s (2011) prediction that mind-wandering influences comprehension across multiple
levels. Here, repairing deficits in comprehension as they arise during reading helped to promote
a long-term, deeper-level understanding of the text – consistent with the idea that a consolidation
period often supports better memories and deeper levels of conceptual understanding (Ellenbogen
et al., 2007; Nadel & Moscovitch, 1997).

4.2. Limitations and future directions

It is important to note the limitations of the current research program. First, participant attrition was
an issue for the follow-up delayed tests. Using an in-person follow-up test may have exacerbated this
issue in our Midwestern university sample as fewer participants returned for the test in person.
Participant attrition does not affect the conclusions drawn here due to the yoked design, but future
replications should consider recruiting a larger sample as well as alternative mechanisms or incen-
tives for maximizing retention across sessions.
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Second, this study only examined students reading one text in a single session. The chosen
text was written a century ago and focused on material that was likely to be unfamiliar to any
of our participants. Thus, it is possible that this particular text elicited specific reading
behaviors that would not generalize to contemporary texts, or to texts that were of high
interest to participants. Participants’ reading behaviors may vary across multiple sessions and
contexts. The effectiveness of our approach should therefore be evaluated using more varied
texts and learning contexts. It is an open question as to how a similar approach might work
across multiple sessions, in particular when participants were asked to read long narrative
texts that require a strong situation model to maintain comprehension, for example, a historic
novel? Although the detector used in this study has not been tested for generalization to
different texts, there is some reason to expect it will generalize given the content-independent
nature of the features used in the model. There is also growing list of mind-wandering
detectors that were validated using different texts (Bixler, Blanchard, Garrison, & D’Mello,
2015; Franklin et al., 2011; Mills & D’Mello, 2015; Nguyen, Binder, Nemier, & Ardoin, 2014)
and in other contexts (i.e. film viewing, online lecture viewing, and driving; Baldwin et al.,
2017; Hutt et al., 2019; Mills et al., 2016; Pham & Wang, 2015; Zhao, Lofi, & Hauff, 2017);
such detectors could also be adopted for testing future real-time interventions.

A third limitation relates to the scalability of this intervention outside of the laboratory as
the eye-tracking technology used in this study was of research-grade and expensive.
Fortunately, cost-effective eye-tracking methods are increasingly available (e.g., Tobii 4C).
As reliable mind-wandering detectors are built using more scalable technologies, follow-up
studies can be done to address scalability concerns. For example, a recent line of work has
helped assuage concerns about scalability and ecological validity by using cost-effective eye
trackers to detect mind wandering in a high school classroom (Hutt et al., 2017, 2016). The
next step is to test out similar interventions with scalable eye tracking in these more
ecological contexts.

Finally, the present intervention approach serves as an initial exploration on how to
address mind wandering with only small to medium effect sizes (Cohen’s ds = .352 and
.307; Cohen, 1992). Promising next steps in this line of research might include explorations of
different intervention strategies coupled with improved detection methods. Future work on
this topic can help to further understand and refine the attentional mechanisms influencing
comprehension.

4.3. Conclusions

The goal of this research was to test Eye-Mind Reader, an intelligent closed-loop interface
designed to detect and combat the cascading negative effects of mind-wandering on reading
comprehension. We accomplished two major research goals: (1) developing a self-explanation
/re-reading intervention that aimed to promote deep processing of texts while addressing
mind wandering, and (2) testing the intervention in a yoked-control experiment. Results
indicate that the real-time intervention helped correct comprehension deficiencies during
reading by targeting episodes of mind wandering. Furthermore, the results suggest that mind-
wandering-sensitive self-explanation/re-reading interventions indeed promoted better long-
term comprehension at both the text-base and inference-levels compared to a control group
that received the exact same interventions but independent of mind wandering. Thus, our
results highlight the advantage of closed-loop interfaces that improve learning by detecting
and combating wandering minds.
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Appendix

Table A1. Pearson Correlations (r) between key variables.

Total #
Intervention

Reading
Time

MW
Likelihood

SE
Score

Textbase
Imm

Textbase
Delayed

Inference
Imm

Reading Time Per
Page

.205

MW Likelihood .356** .393***
SE Score 1 .297* .242* −.111
Textbase Imm. −.100* .200 −.102 .107
Textbase Delayed −.002 .072 −.287* .110 .546***
Inference Imm. −.031 .242* −.042 .061 .511*** .376**
Inference Delayed −.112 .066 −.120 .000 .332** .490*** .0001

Notes. * indicates p < .05, ** indicates p < .01, *** indicates p < .001. Correlations calculated at the participant level; SE Score
1 = first self-explanation attempt; Imm = Immediate comprehension test. 1Due to the zero correlation found here, we
recomputed this correlation separately by Condition: r = −.175 in the MW Intervention Condition (p = .314); r = .156 in the
Yoked-Control Condition (p = .372).

HUMAN–COMPUTER INTERACTION 27


	Abstract
	1.  Introduction
	1.1.  Theoretical background
	1.2.  Related work on mind-wandering interventions
	1.2.1.  Mind-wandering detection
	1.2.2.  Attempts at real-time intervention

	1.3.  Current study

	2.  Building a real-time mind-wandering detection and intervention system
	2.1.  Text selection and computerized reading interface
	2.2.  Automated mind-wandering detection
	2.2.1.  Development and validation
	2.2.2.  Implementing the detector and deciding when to intervene

	2.3.  Intervention development
	2.3.1.  Self-explanation questions
	2.3.2.  Self-explanation scoring
	2.3.3.  Feedback and re-reading

	2.4.  Putting it all together
	2.5.  User study for formative testing and refinement

	3.  Summative valdiation study
	3.1.  Method
	3.1.1.  Design
	3.1.2.  Hypotheses
	3.1.3.  Participants
	3.1.4.  Materials

	3.2.  Results
	3.2.1.  Number of interventions
	3.2.2.  Reading times
	3.2.3.  Mind wandering likelihoods
	3.2.4.  Self-explanation scores
	3.2.5.  Comprehension assessments


	4.  General discussion
	4.1.  Main findings
	4.2.  Limitations and future directions
	4.3.  Conclusions

	Funding
	Notes on contributors
	References
	Appendix

